
 Miklos Laczkovich,  1092 Budapest, Erkel u. 13/a, Hungary

 David Preiss,  MFFUK, Sokolovska 83, 18600 Prague 8, Czechoslovakia

 Clifford Weil, Mathematics Department. Michigan State University, East Lansintr.
 MI 48824-1027, USA

 Infinite Peano derivatives

 Recall that a function f:R IR has a (finite) n th Peano derivative at x

 -means that there are numbers f (x), f (x), ••• „f (x) such that

 (1) f(x + h) = f(x) + hf (x) + ••• + h"f(x)/n! + o(hn) as h 0.

 If (1) holds as h 0 f then we say that f has an n th Peano derivative

 from the right at x and denote the numbers instead by f+ (x), ••• ,£+ (x).

 If f has an (n - 1) th Peano derivative at x and if

 f(x + h) - f(x) - ••• - hn f _ (x)/(n-l)!
 (2) lim

 h hn/n!
 then we write fn(x) = +. We define f ¿x) = - in a similar way.

 Furthermore fn+(x) = + or - is defined by letting h 0 iri" (2).

 Theorem 1: If f has an n th Peano derivative, fn(x), at each x in R

 with infinite values allowed, then fn is a function of Baire class one.

 (This theorem originally appeared in [1] but with an invalid proof.)

 To establish further properties of such functions fn the following

 auxiliary theorem is useful and of interest in its own right.

 Theorem 2: If fn(x) exists for all x in R with infinite values allowed,

 and if fn is bounded above or below on an interval I, then fn = f<n> , the

 ordinary n th derivative of f, on I.

 This result can be established by copying the proof of the corresponding

 assertion for the finite case from [2], [4] or [5] and making the necessary

 minor changes. We chose the last of these three since it required only a

 small modification in a lemma.

 Using Theorem 2 we establish the following properties of Peano derivatives.

 72



 Theorem 3: Let n 2 and suppose f ¿x) exists for all x in IR with

 infinite values allowed. Then

 (i) f„ has the Darboux property

 and

 (ii) fn has the Denjoy-Clarkson property.

 The proof of Theorem 3 uses Theorem 2 with a theorem from [3] for (i)

 and one from [6] for (ii). These two theorems are stated only for finite

 functions but in both cases it is easily seen that they hold for extended

 real-valued functions as well. The assumption n 2 is needed only for (i)

 which is false for n = 1. The statement (i) is true for n = 1.

 The only positive result for unilateral Peano derivatives is the following

 one for the finite case.

 Theorem 4: If fn+(x) exists and is finite for each x in IR, then f„+ is of

 Baire class one.

 The proof of this theorem uses the following lemma which has indepen-

 dent interest.

 Lemma: If f is as in Theorem 4, then f, f+ , *** ,fn->+ are Baire* one

 functions; that is, each nonempty, perfect set contains a portion relative to

 which they are continuous.

 We conclude with an example showing that the assumption of finite in

 Theorem 4 is essential.

 Example: There is a function g defined on [0,1] such that:

 (a) g is bounded and approximately continuous

 (b) g+(x) exists for every x in [0,1] allowing infinite values

 and

 (c) g+ is n°t of Baire class one on [0,1].
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 By (a) there is a continuous function f such that i' - g on [0,1].

 Continuing, for any n 2 there is a continuous function f such that

 f<n-> = g and hence f4-n> = g+.
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