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 A NEW PROOF OF FtEISSNER'S THEOREM ON PRODPCTS OF DERIVATIVES

 Let I be an interval of the real line. Saying that ft I - R is a derivative

 means there exists a differentiable function F: I - R such that F'(x) = f(x), x e

 I. In this case, F will be called a primitive of f.

 Let A = {/ : I - RI f isa derivative} and B = (g : I-R | f'g e A for

 every f e A} .

 In [1] R.J. Fleissner using the theory of the Den joy integral showed that every

 continuous function which is of bounded variation belongs to 5. In the present paper

 we shall give a simple proof of Fleissner's result, which does not involve the theory of

 the Den joy integral. The following result is well-known and will allow us a local

 treatment of the problem.

 Theorem 1. If is a covering of the interval I with open intervals and

 f: I - R is a function with the property that the restriction of f to every interval

 Dj is a derivative, then f: I - R is a derivative.
 The proof of the following theorem is new.

 Theorem 2 (Fleissner Til). Let f: I -> R be a continuous map which is locally

 of bounded variation and let g be a derivative. Then the map h - f'g is a

 derivative .

 Proof. In view of Theorem 1 without loss of generality we may suppose that f is

 a strictly increasing map on I. We shall prove that the map H = f'g - v of is a

 primitive of h , where G is a primitive of g and v is a primitive of the map u

 = G o f'1 on f( I).

 Let a € I and x ¿ q. Then

 g(x)-g(a) = f(x)G(x)-f(a)G(a)-v( f(x))+v( f(a)) =
 x-a x-a

 4 ' G(x)-G( a) , ( f(x)-f(a))G(a)-(v( f(x))-v( f(a)))
 - f(x) 4 '
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 we shall prove that the map

 u(x) s (f(x) ' f<a))G(a> - ivļfj*)) - y(f(a))) x a
 X ™ ä

 satisfies the condition

 (1) ¿ig »<x) » O.

 Prom the Lagrange mean value theorem it follows that for every x ¿ a there exists a

 real number c(x) between f(x) and f(a) such that the following equality holds:

 (2) v(f(x)) - v( f( a ) ) = V(c(x))( f(x) - f(a)).

 it follows that for every x / a there exists a number d(x) between x and a

 such that f(d(x) ) = c(x). Prom (2) we obtain:

 v< f(x))-v< f(a)) = o(e(x))<f<x)-f(a)> = G(d(x.))( f(*)-f(a)).

 Thus

 G< a) - G( <3( x ) )
 b(x) = <f(x> - f(a)) G< a) >x_9 -

 Since 0 < I a - d(x) | < |x - «I, we have

 i G( d( x ) ) - G<a)|
 |u(x)| < lf(x) - f(a) I • ļ i

 which proves ( 1 ) ♦ Hence

 x-a lia B(x)-B(a) x jug a f(x) ,v ' <*.*> ' <*»> + ¿¿g itfx) = f<a)rfa>. x-a x.a x a ,v ' x-a

 Consequently, we have proved that B' = ti.
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