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 A STUDY OF FOfiAN'S C0ÌSDITI0H3 A(N) AND B(N) AÎTO EIS

 GLASS y

 In this paper we show some interesting properties of

 Foran's class of functions Tr • Then we introduce a class of

 continuous functions which strictly contains the class T • The

 basic properties of the new class are established in Chapter V

 of the present paper.

 Let 0 denote the Cantor ternary set, i.e., C = ļx ļ x =
 = 2 Cļ/31 with c^ = 0 or Cļ = 1 for each i}. Each point x£C is

 uniquely represented by 2cj.C:x:)/31 = 0,cļ(x)c2(x) . . .c^(x). . . .

 Let Vp be the Cantor ternary function, i.e., (x) =
 = 2 cj£(x)/2^+"'', for each x6C. Then ^p is continuous on C and,
 by extending linearly on each interval contiguous to C, one

 has *p defined and continuous on [o,Īļ .
 Definition 1. ja Given a natural number N and a set E, a

 function f is said to be B(N) on S if there is a number M<oo

 such that for any sequence I^, .. . ,1^, . . . of no nover lapping in-

 tervals with IķHE ^ 0, there exist intervals n=l,2,..,N,
 such that

 N N , ,
 B(f ¡Sii U L)CU U (IkX Jkn) and 2 2 ļjfc , , | < M.

 k k n=l k n=l

 (Here B(f;X) is the graph of f on the set X.)

 Definition 2. Jä Given a natural number N and a set E, a

 function f is said to be h(N) on E if for every £>0 there

 is a £>0 such that if I^, .. .,1^, . . . are no nover lapping in-
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 tervals with ¿ 0 <S , then there exist

 intervals n = 1»2,...,N, such that

 N N

 B(f;EOU Ik)C U U (Ï^JJ and S 2 I^J < £ •
 k k n=l k n=l

 If a function f is continuous and satisfies A(N) on a

 "bounded set E then f satisfies B(N) on E. (See [*2] , (v) ,pp .361)

 We denote by V(f;N) = infili s M is given by the fact that
 f is B(N) on a set e}.

 The class Tr (respectively ) consists of all continuous
 functicns F defined on a closed interval I for which there exist

 a seqúense of sets{Sn} and natural numbers {Nn}sucb that I=UEq

 and F is A(NQ) (respectively B(Nn)) on ĒQ .
 For an shows in DO that B(N) generalizes bounded variation

 and A(N) generalizes absolute continuity. But the fact that

 these generalizations are strict (if the set E is not an inter-

 val) does not follow by Foran's paper [2] since the function F
 constructed there is AO. (We show this in Chapter I.) Also in

 Chapter I we construct a continuous function which is A(N+1) on

 a perfect set and which is not B(N) on any portion of this set.

 Hence & strictly generalizes the class BVG and 3* strictly
 generalizes the class AGG.

 CHAPTER I - Foran's conditions A(M) and A(N+1)

 F oran' s function F is AC. Let F be the function defined in

 [2], i.e., define F on C by F(2 ci/3i) = where h(i)=
 = ^k-1 w^en i < «iķ and jķ is a strictly increasing-

 sequence of natural numbers with 0q=O. Then F is continuous on
 C and, by extending F linearly on each interval contiguous to C,

 one has F defined and continuous on [o,l].
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 Consider an interval I sucb that IOC ¿ 0 and l/3m+^ļlļ<
 <1/3e for a natural number m. Since ļlļ < 1/3E , there exist

 cļ,c2, . ..»c^ such that if xGIOC then Cj_(x) = c^, i=l,2, . . . ,m.
 m i

 Let a = 2 0^/3' i and suppose that h(m) = i Let J = i_l i K-l
 o»

 [f(A), F(A + 2 2/31)] . Then F(IH 0) C J and |j| =
 i=m+l

 = c, (l/3m+1 + ... + 1/3 + 2(1/3^ + l/3°k+1 + ...)<
 Dk-1

 ^l/3m ^3ļlļ. Therefore F is AO on 0.
 Remark 1. If we define a function analogous with F, but

 h(i) = when then F^ is also AO on 0.

 Theorem 1. Given a natural number N, there exists a contin-

 uous function Gjj which is A(N+1) on a perfect set and which is
 A(N) on no portion of this set.

 Proof . Let O2N+I = íx : x = 2 c^/(2N+l)1, Cj=0,2,4, . . .,2N

 for each i} and define G^ on 02N+1 by GjJ(Sci/(2N+l)i) =

 = 2 c, /(2N+1) k""1 . Then G^ is continuous on 02N+]_. Let I be
 cL

 an interval, ino2N+1 i 0, such that l/(2N+l)m+1 <|lļ <

 <. l/(2R+l)m for some m. Since ļlļ <. l/(2N+l)ra there exist c^,

 c2,...,cm such that if x€in02N+ļ then c^(x) = c^, i=l,...,m.
 in ±

 Let k€ N be such that ^ m < ūķ and let A = S c^/(2N+l) .

 7/e define as follows:

 Ji = DVA + - ) , gn(a + - 2i_ + 2 . 2N i )] ,
 (2N+1) k (2N+1) k 1=1 ^k+1 . (2N+1)

 N . i
 i = C,1,...,N. Then GN(in02N+1) C U JŁ and ļ . ī±' i =
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 = 2N(l/(2N+l)3ic + l/(2N+l)Ūk+1 + ...) ^ (2N+l)'ļlļ • Therefore

 G-rç is à ( IÑ+ 1 ) on ^2N+1#

 Let K be a portion of C2N+I* T^en K ^ I'i^^2N+l' wtiere

 .00

 I' = r 2 c./CSN+l)1 1 , 2 ci/(2K+l)1 1 + 2 2N/(2N+1)1]. i=l 1 , i=l 1 i=jk+l
 f ł nk

 Let {I-jj. f j=l,2,...,(N+l) , nk = ük+1-ük~l, be tbe retained

 closed intervals from the ( ūk+]-l)-st step in a (2N+l)-ary
 process (analogous to the Oantor ternary process) which are con-

 tained in I1 and set 11 = J W® observe that for each j = nj J J
 ļ r

 = 1,2, . . . , (N+l) there exists l^i^n^and c j +i» • • • ,cök+i
 00

 such that a!¡ = 0,ci.«»c^ A s and b'. = a' + S 2N/(2N+l)m. If J A Jlr+1 K J « m- -i Jlr+1 K « m- m-ūk+l -i

 gn(iÒ0o2N+I)c Jj iU ...U N "^en l0as't one of the in-

 tervals J - _, m=l,2,...,N has the measure greater than
 J >m

 2

 (2N+1) k (2N+1) k+1 (2N+1) k+2
 nk k

 (N+l) nk k

 ** Ì'z+l = th0n ~ "^00 * Tberefore
 Gjj is not B(N) on K.

 CHAPTER II - A continuous function in f which is B(2) on

 C and which is not A(N) on G for any nat ural number N.

 Remark 2 . Let a,b6G, a <. b. Then there is a natural number

 n6N such that b-a€ [l/3n+1, l/5n). If b-a = l/3n+1, we. have

 exactly two possibilities: a) There exist ci»***»cn+i such that
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 a = 0,Cļ. . *cn+iOOO. .. and b = 0,Cļ. . .cn+ļ222. . . , bence,

 clearly [a,bļ is a retained closed interval from the step (n+1)

 in Cantor's ternary process; b) there exist cļ,...,cn, such that
 a = 0,Cļ. * .cn0222. . . and b = 0,Cļ. . .cn2000. . . , hence, clearly
 (a,b) is an excluded open interval from the step (n+1) in the

 Cantor ternary process.

 If b-a e (l/3n+1, l/3n), then there exist cļ,...,cn such that
 a = OjC]^. . .cnOcn+2(a) .. ,cn+k(a) .. . and

 b = 0 , c^. • • Cjj2c^2(b) » • .Cj^j^Cb) . . « •

 Lemma. For any str ictl.y increasing sequence of natural
 O-T+T

 numbers , the function F(x) = 2 # (x)/2 , xg C is B(2)

 oņ C and V(F,2) 4I onC.

 Proof. Let I be en interval such that IOC ¿ 0 and let a =

 = inf(inc), b = sup(inc). Suppose that a<b and let n£N such

 that l/3n+^ ^ b-a < l/3n. If b-a = l/^11*^, then we have the two

 situations given by the Remark, namely a) and b). In the case

 a) , let a^ - 0 , c^. • #c^ ^0222. . « and b^ - 0 , c^ • • . cû+i2°°0... .

 Clearly F(inc)c [F(a),F(a1)] U [F(bx),F(b)] and

 (F(a1)-F(a) ) + (F(b)-F(b1))^ ^(b) -Vp(a) = | Vp (I)| .

 In the case b), P(IOO) C [F(a),F(a)] U [F(b),F(bj] and

 (F(a)-F(a)) + (F(b)-F(b)) = ^(b) -<ļ)(a) = 0.
 If l/3n+1 < b-a < l/3n, then using the Remark for this case, let

 a1 = 0,Cļ. . .cn0222.. . and b = OjCļ. . .cn2000 .. . . Let a2 belong

 to [a,aļJOC such that F(a2) = inf (F([a,a Jn C) ) and let b2€

 [bpb]OC such that F(b2) = sup (F([b^,bļ O C) ) . Clearly F(I0C)C

 C(J' ( a2 ) , F ( a x )] U [F(b1),F(b2)3 and (F(a]L)-F(a2)) + (F(b2)-

 -F(b1)) (to) -lļ) (a) = Hļ) (I) I . Therefore F is B(2) on C.
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 Theorem 2. For any natural number , p ^ 1, there exists ą

 continuous function Fp:[o,f| - >[0, 1/2P"]') such that : a) is
 A(2P) on 0; b) F is not A (2^-1) on C; c) F is 3(2) on 0 and

 xr r

 V (Fp , 2 ) ^1 oņC.
 Pr oof . Let p be a natural number and let be a strictly

 increasing sequence of natural numbers such that

 di+P ^ 0i+1-P 1+1
 (1) 3 di+P < ^ 2 0i+1-P 1+1 and 01 = p.

 o® p-1 jļ+k+l
 For each x£C let F (x) =2 2 cť ^(^/2 . Then F is p i=l k=0 cť Ji+t . p

 continuous on 0 and, by extending Fp linearly on each interval

 contiguous to 0, one has Fp defined and continuous on [0,1].

 Moreover, Fp:[o,l]
 a) Let I be an interval such that IOO 4 0 and choose n so that

 1/3Û+"'"^ |l| ^ Then there exist Cļ,»..,cn such that c^(x)=

 = c^, i=l,2, ...,n, for each x6IOO. Let k be a natural number

 such that n <. Suppose that k>l. (For k=l the proof

 is similar.) Then we have two possibilities: 1) ^ ^.n <

 j^l+P-1 ; 2) ô^^+p-l^n We shall consider each of

 them separately. 1) Let j Clearly j<p-l. Hence

 by (1) we have

 (2) i = . 1 , , = £±L > žzi± - -
 351 = ^k-l+^1 . , , = 3ūk-i+P > 2ūk-P - -

 2p.2Ū-1.3P-ū-l ^ 2P
 ūif+d-i K Ov+ū3! 2 K 2
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 Let A = [xfeC | c^x)^ for i=l,2, . . .,n; ci(x)=0 for eacb i€

 eťk-l+p' * and ūfe+ū} • Let x1 < x2 < ... <x2p be

 tbe elements of tbe set A. Let y . = x. + 2 2/2 ,• i =
 t^jk+0+l

 2P

 = 1,2, ...,2P. Clearly Fp(IfiC)C i- U 1 [FpCaCļ) »FpCy^] and by (2) i- 1

 2p ' + '-i
 2 (Fp Cy ì ) -Fp (x± ) ) ^ 2p/2ük+J + '-i < i/3n+;L<|i| .

 2) Let A = [xgC ļ ci(x)=ci for i=l,2, . . . ,n; ci(x)s=0 for each iG

 €.{n+l, . . . , jķ-l} and i ^ dķ+p} • Let x^ < x2 < . . . < x^p be tbe

 elements of tbe set A. Let y* = Xj + 2 2/2^. Clearly
 t^ jķ+p

 2P 2P

 Fp(IOC) C U 1 Pp(xi),Fp(yi)] and by (1) 2 1 ^ X- 1 1 1

 * -^k+l"1 = 23fc!l-p < j3k+P ^ ^ I?*'1' '*'*
 By 1),2) and tbe definition of A(2P), it follows that Fp is
 A(2P) on G,

 Dv-1

 b) Let Iq = Laq»bqj» q=l»2,...,2 ,be tbe retained closed

 intervals from the step j^-l in the Cantor ternary process and

 let I* = [a^jb^] be tbe retained closed intervals from the step

 jķ-1+p in the Cantor ternary process, which are contained in 1^.

 Clearly (hq,a^+3-), i = 1,2, ... ,2^-1, are the excluded open in-
 tervals from tbe steps j^+l, • • •, j^+p-l in the Cantor ternary
 process. By Remark 2 we have

 (3) Vemj) C [y aq) . Vbq)] . 1=1.2
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 (4) FpOļ+1) - Vbq) ^ 2/2Dk+P - 2/23k+1 .

 By (3) and (4) it follows tbat if we cover tbe set Fp(COlq)

 with 2^-1 intervals J-.;, j=l,2, . .. ,2^-1, tben there exists a
 <ļj

 j 6 {l,2, . . .,2^-1} sucb tbat tbe interval contains tbe in-

 terval CFp(bq) »F(aq+'I")3 • Hence for any intervals J^, 3 =
 T> ūķ-1 = 1,2, ... ,2^-1, T> q = 1,2,... ,2 , for which

 2^ 2P-1 2^k 1 2P-1
 B(FPîC)C ¿1 We baVe q?i ó?i|jqá'^

 ^ 2^k ' (2/2^k+P - 2/2^k+P) ■
 k » o©

 c) follows by tbe above lemma.

 Corollary. There exists a continuous function F on [0,l]

 sucb tbat: a) F is B(2) on 0; b) F G ^ on [0,lļ ; c) F is not
 A(N) on C for any natural number N.

 Pr oof . Let xn,yn6 C be sucb tbat: - Cj_(yn) = 2, i =
 = l,2,...,n; c^x^ = 0, i> n; cn+1(yn) = 0; cŁ(yn) = 2, i>n+l.

 Let F be defined as follows: For each xe[xn,yn], F(x) =

 = (l/2n)Fp(3n«(x-xn)) and F(l) = 0. Extending F linearly to the
 intervals (yn*xn+l^' we ^ave ^ defined and continuous on [0,1] •
 Now, the proof follows by the above Theorem 2.

 CHAP T SEŽ III - A function in F or an' s class J' not a.e.

 approximately derivable.

 It is well known the following theorem of Denjoy-Khintcbine :
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 A function which is measurable and BVG (respectively ACG)

 on a set is approximately derivable at almost all points of this

 set. (See [6] , PP. 222-223.)

 In what follows we show that the above theorem is no longer

 true if VEG (respectively AGG) is replaced by the class lr •

 Theorem 3« There is a function in f that is not a.e.

 approximately derivable.

 Proof« For each xSO we define two functions F^ and F2 as
 follows :

 Fx(x) = 2 and F2(x) = (l/2)2c2i(x) /41 .
 Extending F^ and F2 linearly on each interval contiguous to 0,

 we have F^ and F2 defined and continuous on [0,í]. We have shown

 in ra that F^ and F2 have the following properties: a) F^ and

 F2 are ordinary diff erentiable a.e. on [o,lļ ; b) 1f^(G)| =
 = I F2(C)| = 0, hence F^ and F2 satisfy Lusin's condition (N) on
 [0,3 ; c) F^ and F2 satisfy Foran's condition B(2) on 0; d) F^
 and F2 do not belong to ? ,

 Using a composition of F^ and F2 with an homeomorpbism h

 we obtain two continuous functions G^ = F^oh and G2 = F2ob both

 of which satisfy our theorem. Moreover, G^+G2 is ordinary

 diff erentiable a.e. on [0,1} .

 Let a 6(0,1) and let P be the perfect set contained in [0,1]

 defined as follows: P = {y : y = 2 d^( (l-a)/2* + ¿aA1), with d^
 taking the values 0 and 1 onlyj. Each point y6P is uniquely

 represented by S dj_(y ) ( (1- a)/2^ + 3a/V"). Clearly |p| = 1-a. Let
 h be the continuous function defined as follows: For each ygť,

 h(y) = 2 <3¿(y) (2/31). Extending h linearly on each interval
 contiguous to P one has h defined and continuous on TOjlJ .
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 Clearly b(P) = C. Let g, and G2 be continuous functions on

 [0,1] , defined by g = ^ob, GŁ = FjOb and G2 = F2©b. Clearly

 Gx+G2 = g, for eacb ye P g(y) = Sdi(y)/21, and on eacb inter-
 val contiguous to P g is a constant. In fact g is a Lipscbitz

 function with constant l/(l-a). Indeed, let a^,"b^GP, b^.

 Tben tbere exists a k€N sucb tbat a^ and b^ bave tbe first k
 digits after tbe comma equal. Let

 S = S (d1(b,)-d1(al)>(l/4i"k""1). Clearly S€ [-1/3, 1/3].
 i=k+2

 pO •

 Now we bave bj-a^ = 2 (d^(bļ)-<l^(aļ) >((l-a)/2 + 3a/4-X) =

 = (l-aXg(b1)-g(a1)) + ja /4k+1 + (3a/4k+1).S> (l^gt^J-gtiļ)).
 Hence

 (5) g(b^)- g(a^) ^ (bļ- a^)/( 1- a ) , a^,b^€P, ®i^b^ •
 We show now tbat botb G^ and G2 satisfy our theorem. Let

 al»bi€P, a-j^bļ, b(aļ)=a', b(b^)=b'. By [l](tbe proof of

 Theorem 1), tbere exist two closed intervals Jļ and J2, with

 |jJ + I J2| ^ Vp(b')AP(a,) and F2(CO [a',b'])C JXUJ2- By (5)

 |G2(Pf| ra1,bj)l = fF2(Cn[a*,b'])| ^ |JX| + I J2 |^^(b* )-Vf>Caf )

 = g(bļ)-g(a1) -C ("bļ_-a^)/(l-a) . Hence G2 is A(2) on P. Since g is
 AC on [0,1] it follows that G^ is A(2) on P. (See [2], (vi), pp.
 361.)

 We show now tbat Gļ and G2 are not a.e. approximately

 derivable. Suppose on tbe contrary tbat G^ and G2 are approxim-
 ately derivable at almost all tbe points of P. By [4] (Lemma K:

 If F¿ exists at every point of a set E and ļF(E)ļ = 0, tben

 F' ť (x) = 0 at a.e. point x^E) together witb ļG-.(P)ļ 1 = ļG~(P)| = ť 203 1



 = 0 it follows that (Gļ)^p(x) = (G2^àp^x^ = 0 a,e* on P* Birb

 Gļ = -G^ on aru^ consequently (G^+^)^ = 0 a. e. on .

 Since G2+G2 = g 6 -AC it follows that g is identically constant on
 [o,l] . Contradiction.

 Remark: 5> The functions G^ and G2 are not a.e. preponderant-

 li der ivable . Moreover , there exists a subset S of [0,lļ with
 positive measure such that for every point x6 E there corresponds

 no measurable set Q(x) for which 1) the linear unilateral density

 of Q(x) at ï is positive on at least one side of the point x and

 2) (gÌ)q(x)(x) < +0° ^^QCx)^^ ~°°' 1 = 1»2,
 Proof. Let xļ = ļx€P : there corresponds a measurable set

 Q(x) for which 1) and 2)}, i = 1,2 and let x| = { x6P :

 exists and is finite} and X^ = {x^P J (Gj.)àp(x) exists and is

 finite}1, i = 1,2. Olearly X^CL X^ C Xļ| and X^ is measurable

 (see [V], pp. 447 and [6], pp. 297 a remark on Theorem 10.1). By a

 theorem of Denjoy- Khintcbine (see £6^ »pp»295- 296 the proof of
 • • • j

 Theorem 10.1) it follows that ļ X^ - X^ ļ = 0. Hence X^ and X2 are
 also measurable. By the proof of our theorem it follows that

 |xj| = 1 x| I = ļx^l^ lpļ = 1-a .

 CHAPTER IV - Differentiation and Foran's class of functions

 7.

 Foran proves in [?] the following theorem:

 Given two continuous functions and F2 defined on a closed

 interval I, if F^ is AGG, if F2 satisfies Lusin's condition (N)
 and if both Ft 1 and F0 ¿ are d iff erentiable a.e., with FÍ = FA a.e. 1 ¿ 204



 on I, then F2-F^ is identically constant.
 We show now that the above theorem is no longer true if

 AGG is replaced by For an' s class of functions ♦

 Theorem 4-. There exist an almost everywhere d iff erentiable ,

 continuous function F belonging; to ^ [° » an^ a decreasing ,
 unbounded sequence of almost everywhere d iff erentiable t contin-

 uous functions Gg, satisfying Lusin' s condition (N) on [0,l]such

 that Gģ = F1 a. e. on [0,l] and G (0) = F(0) = 0 for each natural

 number s, but Gg-F i£ not identically 0«

 Proof. Let ļūķ} be 3 strictly increasing sequence of natural
 numbers such that = 0 and

 3 It* J ļr K+i « ļ
 (6) 3 < 2 ļr K+i « ļ , and set nfc = 3k+1-dk-l*

 ^ ūi+1
 For each x€C, let F(x) = 2 c, (x)/2 and let

 i=l ūi

 o® ni jL+k+l
 G(x) = I (2 C4 (x)/2 ). Then F and G are continuous on

 i=0 k=l Ji+Łc

 C and, by extending F and G linearly on each interval contiguous

 to C, one has F and G defined and continuous on [0,11. Clearly

 (7) F(x) + G(x) = ^)(x) on [0,1] .
 n

 Let Gg(x) = -G(x) + (1-2 ).vp(x) on [0,1. By (7) one has

 (8) Gs(x) = F(x) - 2ns.vP(x) on [o,l].

 Clearly Gg(0) = F(0) = 0 and by (8) G¿ = F' a. e. on [0,l] . Let

 I be a closed interval such that IOC / 0 and l/3n+^^ |lļ <■

 l/3n, ngN. Since ļlļ < l/3n, there exist cļ,...,cn such that
 ^ i

 if x6 CO I then cn-(x) = c^ , i = 1,2, ...,n. Let A = 2 c^/3 XX • -i X

 205 1=1 • -i



 and suppose that 11 < and J2 be two closed

 intervals defined as fellows: = £f(a), F(A+l/3 k)] and

 J2 = [F(A+2/3Ük) , F(A+3/3°k)] . Then F(IOG) C JjU J2 and by (6)

 I Jx| 1 = |J2| ¿ = 2 2/2^1+1< 2/2^k+1< 2/3¿k< 2/3n < 6|l|.Kence 1 ¿ i^k+1

 it fellows easily that F is A(2) on G anfl FS T on [0,lļ.
 '.Ve show now that G and G_ have Lusin's property ■" (N) on the S ■"

 interval [0,1]. Given a natural number p G(C) can be covered

 il, n-, n ^ j -, witb 2 «2 •...•2 ^ intervals eacb of length at most 2/2 p+ -, .

 Hence ļG(C)ļ = 0, and G fulfils the property (N).
 Now observe that for each x6 0 and s^l ,

 n s-1 ¿i dļ+k+l 1 n s-1 ¿L 1 + l
 -Ga(x) s = (2 s) 2 (2 ci +k(x)/2 1 ) + (2 -1) 2 ci (x)/2 1 s i=0 k=l ci üi+ i=0 ai

 n ns n -k
 (2 -l)ci (x) + 2 (2 )ci , v(x) £ Js+i k=l Js+i+K ,

 + 2 i . i

 i=0 2 s+i

 n oo ns+i"ns j ,+n +k+l

 + (2S)2( s C=i °s+i+ns+K +Dłk(x))/2 >• i=0 k = 1 °s+i+ns+K

 ne"l s na
 Since 1 + 2 + ... + 2 s = 2 -1 , it follows that -GS(C) can

 be covered with (2 s )*{(2 S -1)'[(2 s -1)2 s+^" s]*. ..*

 •[(2ns+1-l)2 s+p ns]}= [(2 s+1-l)/(2 s+ )]P • (2^s+p+1) intervals

 each of length at most (2 S )/(2 s+p+^). Hence ļ-Gg(C)l =

 = 1gs(C) I = 0, and Gg has Lusin's property (N).

 Remark 4. Our theorem shows that the class AGG is strictly
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 contained in if .
 This theorem shows also that the Banach-Sarecki theorem

 (see [ô] , pp. 227) is no longer true if AC is replaced by A(N)

 and VB by B(N). Indeed, suppose that the Banach-Zarecki theorem

 remains true. Then by an argument analogous to the proof of

 Foran* s theorem, one contradicts our theorem.

 CHAPTER V - An extension of F oran' s class of functions % .

 Definition 3« Given a real set E and a natural number N we

 will say that a function F is E(N) on E if for every subset S of

 E ļs| =0 and for each s> 0 there exist rectangle s Dkn"Ik;X Jkn»

 n = 1,2,...,N, with {ijj.} a sequence of no nov er lapping intervals,

 Ikn3 / 0 such that
 N N

 B(F;S) C U U Dkn and 2 2 (diamD. tn ) < € . k n=l k n=l tn

 We denote by the class of all continuous functions F,

 defined on a closed interval I, for which there exist a sequence

 of sets {En} and a sequence of natural numbers {Nq} such that

 I = U3n anfl F is B(N ) on En.

 Remark 5» By [2]( (iii), pp. 360) it follows that each function

 belonging to also satisfies Lusin's condition (N).

 Theorem 5* a) ^ is not an additive class of continuous

 f unctions , i . e . , there exist two continuous functions F^ and F^,

 belonging to tf on £o,í] such that Fj+Fg does not belong to .
 Moreover , F ^ and F 2 are d iff erent iable a . e . oņ [o , lļ , F ļ = -F£

 a. 9., but F1+F2 is not identically constant,
 b) strictly contains the class y .
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 c) If F1e ¥ and if F2e , then F1+F26 .
 3) is strictly contained in the class of all continuous

 functions, satisfying Lusin' s condition (N).

 e ) The class -£ PI $ is not an add it ive class of continuous fune-

 tions, but it contains strictly the class 3" •

 Proof. Let be a strictly increasing sequence of natural

 numbers, such that = 0 and

 ¿H 3-5,1 1+1 (9) 3 ¿H < 2 3-5,1 1+1 .

 Let n^ = Oļ+ļ - 3j_» For each x6 0, we define

 o° n2i+l j-. ,+k+l
 Fi(x) 1 =2(2 ci +k(x)/2 21+1 ) and 1 i=0 k=l "2i+l

 o o n2i Ôp. + k+l
 Fo(x) ¿ = 2 ( 2 C • ,_(x)/2 ) . Then F-, 1 and F0 ¿ are contin- ¿ i=0 k=l J2i+K 1 ¿

 uous on 0 and, by extending F^ and F2 linearly on each interval

 contiguous to G one has F^ and F2 defined and continuous on[b,l3.
 Glear ly

 (10) F]_ + F2 = .

 a) We show that F2 is E(l) on G. (For F^ the proof is similar.)
 Let 6 >0 and let p be a natural number such that

 (11) 'f2.(2/3)°2p+1< è .

 Let 3^, m = 1,2,.. .,2 be the retained closed intervals

 from the step dgp+l in tbe Oantor ternary process, Im=&m»bm] •

 Clearly 1^1 = 1/3 29+1 » If ^6^0, then c^x) = c^^) =

 = ci(V' 1 = 1'2'***'ū2p+iī ci(am) = 0 and ci^m) = 2» for each

 i> Ū2P+1- Let Jm = CVV'VVl- Then B^2î°)C U
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 and by (9) |jJ = 2 £ Z/Z^^K ltf2»*1 ='''.
 i>p+l k=l

 By (11), SdiamC^X Jm) < '[2 • |lj • 2Ū2p+1< S aud F26Ē(1) on G.

 It follows easily that F2€ ~£ on [0,1]. (10) and Remark 5,
 since does not have Lusin's property (N), it follows that

 Pl+?2 does not belong to tS . The second part is evident.

 b) By (iii) ( [2] , pp. 360) it follows that ^ is contained in "è •
 Since is not an additive class and since 7 is such a class,

 it follows that strictly contains the class ¥ .

 c) It suffices to show that if F^ is A(N^) on E and F 2 is E(^)

 on E, then Fļ+F£ is Ē(N^% N2) on E. Let 3 be a subset of E such

 that 1 3 1 = 0. Given £>0 let ^ = £/(2N1+N2). Let S1 be
 the 5 determed by S the fact that F^ is A(N^) on E. Let
 £2 = min( 8^, <S^). There exist rectangles ® =
 = 1,2, where {i^} is a sequence of no nov er lapping inter-
 vals with I^O S ¿ 0, such that

 N2 N2
 B(F2;3)CU UVyn and 2 2 (dianiD^) < £2 .

 k m=l k m=l

 Clearly SCU Ik and 2|lk|< • Let n= l,2t...,NL, be
 k k

 intervals such that

 Ki Ni

 BĄiSJC anā U1lJ¿ni< fl •
 Let Jtaii = Jta + anā Dkmn = IkXJtan- Tben we obtain that

 n2 n2 hx
 B(F1+F2;S)e ¿ u (J U nta ™n aid Ï í S(diamDto ™n )< ¿ k=l m=l n=l ™n k=l m=l iti ™n

 % N2

 <V»2-2Ukl k + k2-? k n=l 2 |J¿n| + Nť2 k m=l 2 |Jta| « %-Sa + ♦ k k n=l k m=l
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 + iVe2 < ^(21^+^) < s .
 d) It is well known tbat there is a continuous function F

 satisfying Lusin's condition (N) such tbat F(x) + x does not

 satisfy this property [5]. By (iii) ([2] , pp. 360) and Remark 5» we
 have our result.

 e) By an argument analogous to theorems 2 and 3 of [i] it follows

 that the above functions F^ and F 2 belong to (R . By part a)t F^

 and belong also to ; but F^+Fg does not belong to Ïj. Hence
 ■ê nS is not an additive class of functions and by (ii) ( [2].

 PP «360 ) , ■%c'% strictly contains the class J' .

 Theorem 6. a) If F is a continuous function be longing to T ,

 G is a continuous function "belonging to "<f and if "both are

 approximately d if ferentiable a.e. on an interval I, such tbat

 Gap = ^¿p a,e*» ^-G is identically constant on I.
 b) If G is a continuous function, approximately d iff er enti a ble

 a. e. on an interval I, "belonging to Z> - i', then G¿ is not
 integrable in the F oran sense .

 Proof, a) Let H = G-F. Then H^p = 0 a.e. • By Theorem 5,c)
 and d), it follows tbat H satisfies Lusin's property (N). Hence

 by [ó'] (pp. 285-286), H is identically constant on I.

 b) Suppose on the contrary that there is a continuous function

 G belonging to tj - 3^sucb that G¿p is integrable in the Foran

 sense. Then there is a function H€ Tr , such that H¿p = G^p a.e.
 Hence by part a) H-G is identically constant and G belongs to

 3^. This contradiction proves the theorem.
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 preparing this article and to tbe anonymous reviewer, for many
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