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A STUDY OF FORAN'S CONDITICIS A(N) AND B(X®) AND EIS
CLASS F

In this paper we show some interesting properties of
Foran's class of functions F . Then we introduce a class é of
continuous functions which strictly contains the class ¥ . The
basic properties of the new class are established in Chapter V
of the present paper.

Let C denote the Cantor ternary set, i.e., C = {x | x =
= 3 cy/3" with ¢y = O or oy = 1 for each i}. Each point x€C is
uniquely represented by Zci(x)/Bi = O’°1<X)°2(x)'”°1(X)'“ .

Let \P be the Cantor termary function, i.e., kp(x)
= ch(x)/2k+1, for each x€ C. Then \P is ccntinuous cn C and,

by extending kP linearly on each interval contiguous to C, cone
bas \P defined and ccntinuous on [0,I].

Definition 1.12_] Given a natural number N and a set ¥, a

o]

function f is said to be B(N) on ¥ if there is a number ¥ < oo
such that for any sequence Ij,«ce I ,ese oOF nonover lapoing in-
tervals with I,NE # ¢, there exist intervals J,,, n=1,2,..,N,

such that
nuv g ( N‘l l
B(f;E I.)CU U (I, XJ,.) and > >, |J < N
! K K % n=1 K kn k ne1 ko

(Here B(f;X) is the graph of f on the set X.)

Definition 2.[2;‘ Given a natural number N and a set E, a

function f is said to be a(N) on E if for every g > 0 there

is 2 § >0 such that if I;,...,I;,... are nonoverlapping in-
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tervals with NI, # ¢ and J|I,|<S , then there exist

intervals J, ,, n = 1,2,.¢.,N, such that

N N
B(fsENU I,.)C U (I, %XJ,,) and 2 3 |[d, |< &
( ) k) J U (DX Jen 2 n.-.-lI vl

If a function f is continuous and satisfies A(N) on a
bounded set E then f satisfies B(N) on E. (See [2],(v),pp.361)

We denote by V(f;N) = inf{M : M is given by the fact that
£ is B(N) on a set E}.

The class F (respectively B ) consists of all ccntinuous
functicns F defined on a closed interval I for which there exist
a sequenze of sets{E } and natural numbers {N }such tbat I=UE,
and F is A(Np) (respectively B(N,)) on E .

Foran shows in [2] that B(N) generalizes bounded variation
and A(N) generalizes absolute continuity. But tbe fact that
these generalizations are strict (if the set E is not an inter-
val) does not follow by Foran's paper [2] since the function F
constructed there is AC. (We show this in Chapter I1.) Alsc in
Chapter I we construct a continuous function which is A(N+1l) on
a perfect set and which is not B(N) on any porticn of this set.
Hence B strictly generalizes the class BVG and J strictly

generalizes the class ACG.

CHAPTER I - Foran's conditions A(N) and A(N+1)

Foran's functicn F is AC. Let F be the function defined in

[2], i.e., define F on C by F(Te;/30) = 3 °h(i)/5i where h(i)=

= Jg.1 When jk_lss i<j,and Jp 1is a strictly increasing
sequence of natural numbers with jozo. Then F is continuous on
C and, by extending F linearly on each interval ccntisuous to C,

ons has F defined and ccntinuous on B);ﬂ.
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Consider an intsrval I such that INC # P and 1/3m+]< 1<
<1/5m for a natural nimber m. 3ince |I| < l/3m, there exist

C11Cpyess,Cy such that if x€ INC then c;(x) = ¢y, 1=1,2,...,n.

m .
let 4 = X ¢./3" and suppose that h(m) = j, 4. Let J =

1

oo .
[F(a), P(a + = 2/37)]. Then F(INC)C J and |J]| =
i-m+1

Ju+l

Jr=1 J
:Cjk 1(1/5m+1+ eee + 1/3k )+2(1/3k+1/5k + ooo)s

<1/3" < 3|I|. Therefore F is AC on C.
Remark 1. If we define a function F, analogous with F, but

h(i) = J when j, ;<1 < Jjy, then F; is also AC on C.

Theorem 1. Given a natural number N, there exists a contin-

ucus function Gy which is A(N+1) on a perfect set and which is

A(N) on no portion of this set.

Proof. Let Coy.; = {X : X = Jey/ (N1, ¢4=0,2,4,...,2N
for each i} and define Gy on Gy, q by GN(Zci/(2N+1)1) =

e
= ZCJK/(2N+1) k-l + Then Gy is continuous on 02N+l‘ Let I be

an interval, INC,y | # §, such that 1/(2m1)™! <|1| <

< 1/(2§+1)" for some m. Since |I| <1/(2N+1)" there exist c,
CoyesesCy Such that if x€INC,y ; then ci(x) = cjy i=1l,¢..,m,

m .
Let k€ N be such that j,_,<m < j, and let A = .Zlci/(2N+l)l.
i=
Ne define Ji as follows:
00
2i 21 2N
Tum Lol e s Ol e e 2 G
(2N+1) (2N+1) Jk

N
i=20C,1,ass,H. Then G(INCoy 1) C igoJi and || =
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3
- 2N(1/(28+1) € + 1/(25+1) Jierl + e0e) < (2N+1)|1]. Therefore

G‘T\T is 4{l+1) on C2N+l’
Iet K be a portion of C,y ;. Then K 2I'N Coy,10 Where
Jig . i .
i . i
[ Sey/m1)t, 3 ci/(zrwl) + E 2N/(28+1)7].
i=1 i=1 1—3k+l
Let {Ij}, j=1,2 ,...,(N+l) , my = Jy, 1~J-1, be the retained

closed intervals from the (jk+1-1)-st step in a (2N+1l)=-ary
process (analogous to the Cantor ternary process) which are con=-
tained in I' and set I3 [a' b'] We observe that for each j =

= 1,2,000,(N+1) there exists 1< i< n, and C; +1"°"ch+1

o0
. + 1y@
such that a} = O’cl”’cjk+i and bE] = as + 2— 2N/(2N+1)", If

011

GN(Ijﬂ 02N+1)C Jj,lu eee U Jj,N then at least one of the in-

tervals J,j,m’ m=1,2,..,N has the measure greater than

J
2.1 - 2N+ ( L - 1 — ) > 1/(2N1) ke
(2N+1) K (2N+1) B+l (omp1)Tk#e
n,
g k( (b1) ) £
If j, - = 3j, then Gy(bL) = Gt —* o° , Therefore

Gy is not B(N) on K.

CHAPTER II - A continuous function in F which is B(2) on

C and which is not A(N) on C for any natural number N,

Remark 2. Let a,b€C, a <b. Then there is a natural number
n€ N such that b-a€ [1/3™1, 1/3%). If b-a = 1/3™*!, we have

exactly two possibilities: a) There exist Cyses+yCp 1 Such that
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8 = O,Clooocn_*-lOOO.n. and b = O,cl.oocn+1222..', hence,

clearly [a,b] is a retained closed interval from the step (n+l)
in Cantor's ternary process; b) there exist ClsesesCps such that
a = 0,C1ss0c 0222000 and b = o,cl...cnzooo..., bence, clearly
(a,b) is an excluded open interval from the step (n+l) in the
Cantor ternary process.

If b-a € (1/5n+1, I/Bn), then there exist CyyesesCp such that

a = O’cl"’°n0°n+2(a)"'°n+k(a)’“ and

b

Oycq. ..cn2cn+2(b) .o ’cn+k(b)° e o

Lemma., For any strictly increasing sequence of natural

Js+1
numbers {ji}, the function F(x) = 3 cj‘(x)/Z 1 , X€C 1is B(2)
i

cn C and V(F,2) < 1 on C.
Proof. ILet I be 2n interval such that INC # @ and let a =
inf (INC), b = sup{INC). Suppose that a<b and let n€N such

that 1/5n+1$ bma < 1/3n. If b=a = l/an’*l, then we have the two
situations given by the Remark, namely a) and b), In the case

a), let a; = 0,C1s+0C, 10222, 40 80d by = 0,C1000C, 12000400 &
Clearly F(INC)C [F(a),F(a))] U [F(by),F(b)] and
(F(ap)=F(a)) + (F(0)=F(by))< P(o) - P(a) = | PD)].

In the case b), F(INC) C [F(a),F(a)] U [F(b),F(b)] and

(F(a)=F(a)) + (F(B)-F(b)) = P(b) - P(a) = o.
If 1/311““1 < b=-a < 1/3n, then using the Remark for this case, let
al - O,Clo. ocno2220.0 an.d b - o,cl.. .anOOO... ° Iet 82 belon.g

to [2,3;]NC such that F(a,) = inf(F([a,a;]NC)) and let by €
[b;,6]NC such that F(b,) = sup(F([bl,b]nC)). Clearly F(INC)C
clF(ay),7(a))] U [F(by),F(by)] and (F(ap)=F(ay)) + (F(by)-

“F(by)) <€Pm) -P (a) = [P (@)] . Therefore F is B(2) on C.
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Theorem 2. For any natural number, p >1, there exists a

——

continuous function Fp:[O,f_I—’[O, 1/2°71) such that: a) F, is

A(2P) on C; b) F, is not A(2P-1) on C; o) F, is 3(2) on ¢ and
V(F,,2) €1 on C.
Proof. Let p be a natural number and let {j;} be a strictly

increasing sequence of natural numbers such that

331+P

Ji, =P
(1) < o'+l and j; = p.

' oo p-1 ji+k+l
For each x€C let F (x) = 3 3 c. . (x)/2 . Then F_ is
P i=1 k=0 it P

continuous on C and, by extending F_ linearly on each interval

p

contiguous to G, one has F_ defined and contimuous on [0,1].

P
Moreover, Fp:['o,l:]-—s[o, 1/2P~1y,
a) Let I be an interval such that INGC # @ and choose n so that

l/3n+l$ |I| < 1/3™. Then there exist C1se+e,Cp Such that ci(x)=
= cif i=1,2,¢.4,n, for each x€ INC., Let k be a natural number
such that jk_1$ n < j,. Suppose that k> 1, (For k=1 the proof
is similar.) Then we have two possibilities: 1) jk-l <n<

<jk_1+p-1 3 2) Jge1*P-l <n <Jge We shall consider each of
them separately. 1) Let j = n-j,_1e Clearly j < p-l. Hence

by (1) we bhave

2) 1 _ 1 3P - zP=J=1
Bnﬂ 3;]K._]_+;1+1 - 3Jk_.l+p 2jk-p

P pd=1,5p=il P
= S I e D S
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Let A = {xeC | ey (x)=c; for i=1,2,...,n; cy(x)=0 for each i€

€{Ik1*Preeer =1} and 1> G4} . Iet x) < xy < ... <xp be

the elements of the set A. Let yi' =X + 2/2Jc sy 1=

ot el
. 2P o
= 1,2,.0042°. Clearly Fp(InC)C iE__)].I:Fp(xi),I«’I.,,(yi)] anq by (2)

%p . p, okt na
2 Fp)-R(x) < 2772 /37" < 1]
2) Let A = {xec | ci(x)=ci for i=1,2,...,n; ci(x)=0 for each i€

€fn+l,..., =1} and i > j+p}. Let x; < x, < ... <x_p be the
elements of the set A, Lot yy = x; + 3 2/2%., Clearly
t2 jk"'P

2P 2P |
Fp(Ine) U [Fp(x3),Fp(y4)] and by (1) i}zil(Fp(yi)-?p(xi»s

oP
2 2 2 1 2
< = er——— L —— L e <L ==e|I < |I}f.
IS -1 5Yk+ 17P 5P =3 el TP 1] < 1l

By 1),2) and the definition of A(2P), it follows that F, is
A(ZP) on C,
b) Ilet Iq = [aq,bq], q = 1,2,.00,2

G-l |
k , be the retalned closed

intervals from the step I -1 in the Cantor termary proces's and
Let I = [aq, q] be the retained closed intervals from the step
Jk-l+p in the Cantor ternary process, which are contained in Iq.
Clearly (bq,al+1), i=1,2,...,2°=1, are the excluded open in=-
tervals from the steps jk,jk+1,...,jk+p-l in the Cantor ternary

process. By Remark 2 we have

(%) F, (cnI ) < [F) (a ),F (bq)] , 1=1,2,...,2° and
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i+l i 'jk+p jk-c-l
(%) Fp(aq ) - Fp(bq) = 2/2 - 2/2 .

By (3) and (4) it follows that if we cover the set Fp(Can)

with 2P=1 intervals T3 §=1,2,4 +s,2’=1, then there exists a

je{1,2,...,2P-1} such that the interval Jq; contains the in-

terval [Fp(bz),F(a?l)]. Hence for any intervals qu, j =

j, =1
= 1,2,000,P=1, q=1,2,...,2" %, for which

B(F50)C U U 1(Iq)( Jq3)» we bave q§l j.;lqujl?

Ji+P
K%y — 1/2P.
k—s po

- 2/2

¢) follows by the above lemma.
Corollary. There exists a continuous function F on [0,1]

such that: a) F is B(2) on C; b) FE€ F on [0,1] 5 ¢) F is not

A(N) on C for any natural number N,

Proof. Let x

117 €C be such that: c;(x,) = ci(yn) =2,1-=

= 1,2,400,0; ci(xn) = 0, 1> nj cn+l(yn) = 03 ci(yn) = 2, 1>n+1.

Let ¥ be defined as follows: For each xe[xn,yn], F(x)

= (l/2n)Fp(3n.(x-xn)) and F(1) = O, Extending F linearly to the
intervals (y,,X, 1), we bave F defined and contimuous on [0,I].

Now, the proof follows by the above Theorem 2,

CHAPTER III - A function in Foran's class F not a.e.

approximately derivable.

It is well known the followlng theorem of Denjoy-Khintchine:
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A function which is measurable and BVG (respectively ACG)
on a set is approximately derivable at almost all points of this
set. (See [6] ,pp.222-223.)

In what follows we show that the above theorem is no longer
true if VBG (respectively ACG) is replaced by the class ? .

Theorem 3. There is a function in F that is not a.e.

approximately derivable.

Proof, For each x€C we define two functions Fl and F2 as

follows:

Fi(x) = Sepy ((x)/4F and Fo(x) = (1/2)Tepy(x)/4t .

Extending Fq and F2 linearly on each interval contiguous to C,
we have F; and F, defined and continuous on [O,l]. Ve have shown
in [I] that F; and F, bave the following properties: a) F, and
F, are ordinary differentiable a.e. on [0,1 ; b) |F1(C)| -

= |F,(¢)| = 0, hence F; and F, satisfy Lusin's condition (N) on
[0, ; ¢) Fy and F, satisfy Foran's ccndition B(2) on C; d) Fy
and F, do not belong to ¥ .

Using a composition of F, and F2 with an homeomorphism h
we obtain two continuous functions G; = Floh and G, = Fyobh both
of which satisfy our theorem. Moreover, G;+G, 1s ordinary
differentiable a.e. on [0,1].

Let a €(0,1) and let P be the perfect set contained in [0,1]
defined as follows: P = {y : y = X d;((L-a)/2} + 3a/sh), with a;
taking the values O and 1 only}. Each point y€EP is uniquely
represented by S'_,di(y)((l-a)/2i + 5a/4i). Clearly IPI = l-a., Let

b be the continuous function defined as follows: For each ye€r,

h(y) = Zdi(Y)(2/5i)- Extending h linearly on each interval

contiguous to P one has h defined and continvous on [0,1].
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Clearly b(P) = C. Let g, G; and G, be continuous functions on
[0,1, defined by g = \Pob, Gy = Fyob and G, = Fyoh. Clearly
Gy+6, = g, for each ye P g(y) = Zdi(y)/.?i, and on each inter-
val contiguous to P g is a constant. In fact g is a Lipschitz
function with constant 1/(1-a). Indeed, let a,,b;€P, a; < D;.
Then there exists a k€N such that a; and b; bave the first k
digits after the comma egual. lLet
oo -
5= 3 2(di(bl)-di(al))-(1/41-k-1). Clearly s € [-1/3, 1/3].

i=k+

Now we have bi-a; = ?l(di(bl)-di(al) )'((l-a)/gi . 3a/4i> =

= (L-aXg(by)=g(ap)) + 3a/4"*1 4 (3a/45 )55 (1-a)(g(by)-g(ay)).
Hence
(5)  (bp)=e(a)) < (by=a;)/(1-a) , &1,b; €P, a;<b .

We chow now that both G, and Gy satisfy our thecrem. Let
a;,b;€P, a;<b;, h(a;)=a', h(by)=b'. By [1](the proof of
Theorem 1), there exist two clcsed intervals Jy and J,, with
135l + (3,0 < P)P(ar) ana Fo(cn [',b']) C 33U T,. By (5)
[6,(PN [a, 00D = [Eo(cnfa, o < |3, + [leéLP(b')-\P(a')
= g(by)-&(a;) < (by-a;)/(1l-a). Hence G, is A(2) on P. Since g is
AC on [0,1] it follows that G; is A(2) on P. (See [2], (vi),pp.
%61.)

We show now that Gl and G2 are not a.e. approximately
derivable. Suppose on the contrary that G, and G2 are approxim-
ately derivable at almost all the points of P. By [4](lemma K:
If Fl  exists at every point of a set E and |F(E)| = O, then

ap

1 — s cat . - —
Fap(x) = 0 at s.e. point er%O;oDetber with [Gl(P)l = [GZ(P)l =



= 0 it follows that (Gl)ép(x) = (G2)ép(x) =0 a,e, on P, But
GY = =G4 on O,]J-P and consequently (G,+G,)!. = O a.e, on [0,1] .
1 2 1772/ap ’

Since G1+G.2 = g€ AC it follows that g is identically constant on
[0,1]. contradiction.

Remark 3. The functions G1 and G2 are not a.e. preponderant-

1y derivable. Morecver, there exists a subset E of [0,1] with

positive measure such that for every point x€ E there corresponds

no measurable set Q(x) for which 1) the linear unilateral demnsity

of Q(x) at x is positive on at least one side of the point x and

2) @)Q(x)(x)< voo or (G;)opy(X)> =00, 1= 1,2,

Proof. Let Xi = {xeP : there corresponds a measurable set

Q(x) for which 1) and 2)}, i = 1,2 and let X5 = { x€P : (6566

exists and is finite} and X; {xeP : (Gi)ép(x) exists and is

finite}, i=1,2, Clearly X%C x%c:xi and X% is measurable

(see [4],pp.447 and [6],pp.297 a remark on Theorem 10.1). By a
theorem of Denjoy-Kbintchine (see [6],pp.295-296 the proof of
Theorem 10.1) it follows that |X:]L_ - X%] = 0. Hence Xi and Xg‘ are
also measurable. By the proof of our theorem it follows that

Izl = 123 ] = 1G1<1?| = 1-a .

CHAPTER IV = Differentiation and Foran's class of functions

T.

Foran preves in [3] the following theorem:
Given two centinuous functions F; and F, defined on a closed
interval I, if F; is ACG, if ¥, satisfies Lusin's condition (N)

and if both F, and F, are differentiable a.e., with F] = F; a.e.
1 2 204 1



on I, then F,y-Fy is identically ccnstant.
e shcw now that the above thecrem is no longer true if
ACG is replaced by Foran's class of functions T .

Thecrem 4. There exist an almost everywhere differentiable,

centinucus functicn F belonging to F on [0,1] and a decreasing,

unbounded sequence of almost everywhere differentiable, contin-

uous functions G, satisfying Lusin's condition (N) on [0,I]such

that G = F' a.e. on [0,I] and G_(C) = F(O) = O for each nmatural

nunber s, but GS-F is not identically O.

Proof. Let {jk} be a strictly increasing sequence of natural

numbers such that jO = 0 and

jk 'jk+l . .
(6) 3 &L 2 , and set n = 3k+1"3k'1‘

For each x€C, let F(x) = .Elcj.(x)/Z and let
1= 1

n

oe i ji+k+l
G(x) = .EO(Elcj‘+k(x)/2 ). Then F and G are continuous on
1= = 1

C and, by extending F and G linearly on each interval contiguous

to C, one has F and G defined and continuous on [0,1]. Clearly

(7) F(x) + 6(x) = P(x) on [0,].
Let Gs(x) = =G(x) + (1-2ns).\P(x) on [O,l]. By (7) one has

F(x) - 2ns.\P(x) on [O,l].

(8 6 ()

Clearly GS(O)

i

F(0) = 0 and by (8) G = F' a.e. on [0,1]. Let

I be a closed interval such that INC # ¢ and 1/3n+l$ 11| <
<1/2% neN. Since 1| < 1/3%, there exist ClseeesCy Such that
n
if x€ONT then o3(x) = ci, i = 1,2,.00,0. Iot A = = c3/3"
205 i=1



and suppese that j, ;< n<J,. Let J; and J, be two clcsed
d
intervals defined as fcllcws: Jl = [F(A), F(A+1/3 k)] and

J J
= [PCa+2/2™) , P(4+3/3"5]] . Then F(INC) C 3,U T, and by (6)

Ji+1 J J
3yl = 10,1 = = 272" "< 272" g 273" < 2/3 < 6|1|.Eence
it fcllows easily that F is 4(2) on C anfl FE F ¢n [O,l].
We show now that G and G, bave Lusin's prcperty (N) on the

interval [0,1]. Given a natural number p G(C) can be covered

n J
with 2n002 ]'°...°2I:Lp intervals each of lencth at most 2/2 D+l.
Hence |G~(C)| = 0, and G fulfils the prcperty (N).

Now observe that for each x€C and s >1 ,

n_s=1 i Js+kal Ji+l
G0 = @HT (S, 02 L QBT e, /e’
i=0 k=1 Jl+

i=0 Ji

n s n_—k
o (2 %=1y () + T (27 ey (0
S : s+i k=1 s+i*

+

N R Jo s+n_+k+1

P @ >z< Y +n+k<x>>/2S+l S ).

k=1 Je+i

n -1 n
Since 1 + 2 + eue + 2 5T L o0 , it follows that -G (C) can

Je=1 ng n, +1 n -n
be covered with (2 ° )-{(2 -1)0[(2 —1)p S*t1 78]. e

n_+1 n_+1 n_+1 _p+1 -1
f(2® -1 N S]} [2®° -1n/@® )] - S+P+1) intervals

n+1 J
each of lensth at most (2 ° )/(2 s+D+1y  Hence |G @l =

= \C—,S(C)\ = 0, and G, has Lusin's preperty (),

Remark 4., Our thegrem shows that the class ACG is strictly
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contained in T .

This theorem shows also that the Banach-Zarecki theorem
(see [6],p‘p.227) is no longer true if AC is replaced by Aa(N)
and VB by B(N)., Indeed, suppose that the Banach-Zarecki theorem
remains true. Then by an argument analogous to the proof of

Foran's theorem, one contradicts our theorem,

CHAPTER V - An extension of Foran's class of functions T .

Definition 3, Given a real set E and a natural number N we

will say that a function F is E(N) on E if for every subset S of
E |8| = 0 and for each §£>0 there exist rectangles D, =I, XJ,,
n=1,2,...,N, with {I,} a sequence of nonoverlapping intervals,

Ian # @ such that

N N
B(F;S)C V UD,, amd 2 X (diamd )< & .
k n=1 k n=1

e denote by 75 the class of all continuous functions F,
defined on a closed interval I, for which there exist a sequence
of sets {En} and a sequence of natural numbers {Nn} such that
I = UEn anfl F is E‘(Nn) on En.

Remark 5. By [2]((iii),pp.360) it follows that each function
velonging to & also satisfies Lusin's condition (N).

Theorem 5. a) ' is not an additive class of continuous

functions,i.e., there exist two continuous functions F, and F2,

belonging o & on [0,0] such that Fy+F, does not belong to & .

Moreover, F, and F, are differentiable a.e. on [0,1}, F{ = -F}

a.e., but Fy+F, is not identically constant.

b) € strictly contains the class F .
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a) & is strictly contained in the class of all contimuous

functicns, satisfying iusin's condition (N).

e) The class €N P is not an additive class of continuous func-

tions, but it contains strictly the class F .

Procf. Let {ji} be a strictly increasing sequence of natural

nunbers, such that ;jo = 0 and

Js J;
(9) 3 i < > i+l .

Let n; = ji+1 - Jj- For each x€ C, we define

o "2is1 jZi+l+k+1
Fl(X) = 2 ( 2 Cj +k(x)/2 ) and
i:O k:l 2i+1
x) = 3 (n}z2i (x)/ RS F, and F t
Fo(x) = C. x)/2 « Then a are contin-
2 120 Kol Jpitk 1 2

uous on C and, by extending F; and F, linearly on each interval
contiguous to C one bhas F; and F, defined and continuous on[O,l] .
Clearly

(10) Fp+F, = P

a) We show that F, is E(1) on C. (For F; the proof is similar,)
et € >0 and let p be a natural number such that

3
(11)  VZ-(2/3) Pl g

'jEp+l

Let T, m = 1,2,400,2 be the retained closed intervals

from the step j,,,; in the Cantor termary process, I= [a,s0g] -
'j2p+1

Clearly |1,[ = 1/3 . If x€I NG, then ¢ (x) = ¢3(by) =

= ci(am), i= 1,2,...,j2p+1; ci(am) = 0 and ci(bm) = 2, for each

1> jo,,1- Let Iy = [Fa(am),Fgogbmﬂ + Then B(Fp;0) C U (T XJ)



n-. . . .

2i Jos+k+l J J
and by (9) || = 2 3 2/2"%t < 123
i>p+l k=1

2p+1

= | 1,l.

J
By (11), Sdiam(I XJ )<\2-|1 |-2"®* < € and F,€E(1) on C.

It follows easily that F,€ € on [0,1]. By (10) and Remark 5,
since \P does not have ILusin's property (N), it follows that

F,+F, does not belong to 'g . The second part is evident.

b) By (iii)([Z],pp.560) it follows that 'I is contained in 'é .
Since 6 is not an additive class and since F is such a class,
it follows that f strictly contains the class F .

¢) It suffices to show that if F, is A(N;) on E and F, is E(N2)
on B, then Fy+F, is E(N;*N,) on E. Iet S be a subset of E such
that S| = 0. Given £>0 let &; = &/(aNj+N,). Let & be
the & determed by €, and the fact that F; is A(N;) on E. Let
52 = min( &, 51). There exist rectangles D, = I, XJ_ , m =
= 1,2,¢04,N;, where {Ik} is a sequence of nonoverlapping inter=-

vals with IkﬂS # ¢, such that

N, N,
B(F,33)C U UD and X 3 (diamD, ) < &, .
2 k m=1 km k m=1 km 2

Clearly SCU I, and i |< $, . Let 3, n=1,2,...,§, be
¥

intervals such that

Ny N

1

B(F;8)C U U@, %xd) anld X Il 1< &, .

1 k ool k kn K n:ll kn' 1
Let kan = Jk:m + me and kan = IkXkan’ Then we obtain that
Farinc U U O 5 55
B(F,+F,;8) Uod and (diamD, ) <

12 k=l mo1 pn-1 OB k=1 mel n=l kmn

Nl N.

2
<1y Nz'%:llkl + NE.E ~n§=;1|Jl'<n| + Nl’% mz-:l‘JKmI < Npo&5 + Ny &g 4
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+ Npe€, < Ej(aip+N,)< E

d)} It is well known that there is a continuous function F
satisfying Lusin's czndition (N) such that F(x) + x does not
satisfy this property [5]. By (iii)([2],pp.3%60) and Remark 5, we
have our result.

e) By an argument analogous to theorems 2 and 3 of [i] it follows
that the above functions F; and F, belong to ®R . By part a), Fq
and F2 belong also to ?f ; but F1+F2 does not belong to z?. Hence
€ NB is not an additive class of functions and by (ii) ([2],
PP.360), é NnR strictly contains the class F .

Theorem 6. a) If F is a continuous function belonging to ?’,

G is a contimuous function belonging to 1f and if both are

approximately differentiable a.e. on an interval I, such that

Gép = Fép a.e., then F=G is identically constant on I.

b) If G is a continuous function, approximately differentiable

a.e. on an interval I, belonging to 'c‘g-}’, then Gép is not

intecrable in the Foran sense.

Proof. a) Let H = G=F. Then Hép =0 a.,e. . By Theorem 5,c)

and d), it follows that H satisfies Iusin's prcperty (N). Hence
vy [6)(pp.285-286), H is identically constant on I.

b) Suppose on the contrary that there is a continuous function
G belonging to 1§ - gfsuch that Gép is intezrable in the Foran

sense. Then there is a function HE F , such that Hyp = Gap a-e.
Hence by part a) H=G is identically constant and G belongs to

‘;: This contradiction proves the theorem,
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