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ON THE BOUNDARY VALUE OF BESOV-BERGMAN SPACES
Dedicated to Arnaldo Antonio de Souza and Corina Soares de Souza, my parents.

Let b denote a special atom, b: [-m,m) > R, b(t) = 1/27 or for any

interval I in [-m,m), b(t) = -III_I/pxR(t) + III-llpr(t), L 1is the

left half of I, R the right half, III denotes the length of I and

Xp the characteristic function of E. For 1/2 < p < =, let (bn)

E

be special atoms and (cn) a sequence of real numbets, then we define the

space BP = {f: [-m,m) » R; £(t) = ) cnbn(t), ) 'cn' < =}, We endow BP with

norm Ifl D = Inf Zlcn,, where the infimum is taken over all possible
B

representations of f£.

These spaces were originally introduced by the author who has extensively
studied them. The reader is referred to [2], [3], [4], [5]; (el, (71, (8],
[9] and [10].

In the early 1960's the following spaces were introduced, now known as
Besov-Bergman Spaces. For 0 < a<1,1<r, s {= let

(Hf(x+t)-f(x)ﬂr)s 1/s

)= el + (f_ﬂ |t|1+as dt) < =},

AMa,r,s)={f: [-m,7) > R; IEN) o

b ]
where | "r is the Lebesgue Space L -norm.
These spaces have been studied in depth in [1], [11], [12], [13] and

[14] .

We have the following result.
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THEOREM A (Embedding Theorem). If f € BP, 1 < p < =, then £ € A(1 - 5 ,1,1).
Moreover Ifll < MIfll , where M 1s an absolute constant.
1 P
A(1- 5 1,1) B

Because of Theorem A we can regard B? as a subset of A(1-1/p,1,1), so

that we have:

LEMMA B BP 1is a dense subset of A(l - =, 1,1).

o) -

Theorem A and Lemma B, in addition to the fact that the dual space of
B? coincides with that of A(l - %.,1,1), see [6], [8] implies the
following result:

THEOREM C £ ¢ B for 1 < p < = 4if and only if £ e A(L - 1, 1,1).
P

Moreover there are absolute constants M and N such that

MIEIN S_ [Pl 1 _(_Nllfll .
P AL - 5 1,1) P

We recall that one of our earlier results with Richard 0'Neil and G.
Sampson, see [8], was that BP 1is equivalent

with the spaces of all analytic functions in the disk for which
L 1
l-fl f“ IF'(reie)I(l-r)p dédr < =
T Q -7
in the sense that f € B? if and only if F satisfy the above condition,

0
where 1lim Re F(re1 ) = £(0) a.e. For an account of this space see [12], [13]
r>1

and [14].
This characterization tells us that BP in the boundary value of the

analytic functions satisfying the above condition, a real characterization.
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Theorem C will help us to have a better understanding of these
Besov-Bergman spaces.
Finally, we mention that the same technique used to prove Theorem C can

easily be used to show that

AL LI T {¢2] RPN
[x - 7|

As a consequence of the boundedness of this integral, any f in BP
satisfies Dini's condition and therefore the almost everywhere convergence is
readily established, see [10]. Also other consequences of this technique will
follow.

We would like to thank Professor Mitchell Taibleson with whom we had

several conversations about these spaces.
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