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 ON THE BOUNDARY VALUE OF BESOV-BERGMAN SPACES

 Dedicated to Arnaldo Antonio de Souza and Corina Soares de Souza, my parents.

 Let b denote a special atom, b: [ - ir , it) ->• R, b(t) = 1 /2 ir or for any

 interval I in [ - tt , it) , b(t) = - ļ I ļ ^^x^ít) + ļlļ ^^^(t), L is the

 left half of I, R the right half, ļlļ denotes the length of I and
 X„ the characteristic function of E. For 1/2 < p < let (b )
 h n

 be special atoms and (cn) a sequence of real numbers, then we define the

 space = { f : [- ir, it) R; f(t) = £ c b (t), I le ļ < "l. We endow B^ with
 Tl Tl I Tl I

 norm llfll ^ = Inf I|cn|> where the infimum is taken over all possible

 representations of f.

 These spaces were originally introduced by the author who has extensively

 studied them. The reader is referred to [2], [3], [A], [5], [6], [7], [8],

 [9] and [10].

 In the early I960' s the following spaces were introduced, now known as

 Besov-Bergman Spaces. For 0< ot < 1, l<^r, s<^°°, let

 ( llf(x+t)-f(x) II )S 1 / s

 AKr.sMf: - R; "fA(a,rjS)= "f "r + (L,

 £

 where II II ^ is the Lebesgue Space L -norm.

 These spaces have been studied in depth in [1], [11], [12], [13] and

 [14].

 We have the following result.
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 THEOREM A (Embedding Theorem). If f e BP, 1 < p < », then f e A(1 - i ,1,1).

 Moreover II f !l . < M II f II , where M is an absolute constant.
 A( 1- 1 , 1,1) BP

 Because of Theorem A we can regard BP as a subset of A(l-l/p,l,l), so

 that we have:

 LEMMA B BP is a dense subset of A(1 - , 1,1).

 Theorem A and Lemma B, in addition to the fact that the dual space of

 BP coincides with that of A(1 - - ,1,1), see [6], [8] implies the
 P

 following result:

 THEOREM C f e BP for 1 < p < « if and only if f e A(1 - Ì , 1,1) .
 P

 Moreover there are absolute constants M and N such that

 M II f II < llfll , < N II f II .
 BP A(1 - I , , 1,1) BP

 We recall that one of our earlier results with Richard O' Neil and G.

 Sampson, see [8] , was that BP is equivalent

 with the spaces of all analytic functions in the disk for which

 I- i
 - • /ïï |f' 1 (re10) 1 I (l-r)P d9dr < 00 TT 0 -IT 1 1

 in the sense that f e if and only if F satisfy the above condition,

 i 0
 where lim Re F(re ) = f ( Ö) a.e. For an account of this space see [12], [13]

 r+1

 and [14].

 This characterization tells us that BP in the boundary value of the

 analytic functions satisfying the above condition, a real characterization.
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 Theorem C will help us to have a better understanding of these

 Besov-Bergman spaces.

 Finally, we mention that the same technique used to prove Theorem C can

 easily be used to show that

 j. r |f(x) - f(y>| dydx < - TT '-TT J

 |x - y

 As a consequence of the boundedness of this integral, any f in B^

 satisfies Dini's condition and therefore the almost everywhere convergence is

 readily established, see [10]. Also other consequences of this technique will

 follow.

 We would like to thank Professor Mitchell Taibleson with whom we had

 several conversations about these spaces.
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