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 DIFFERENTIATE RESTRICTIONS OF CONTINUOUS FUNCTIONS*

 The following theorem was proved by Bruckner, Ceder

 and Weiss in M-

 Theorem A. For every continuous function f defined

 on a perfect set PCR there exists a perfect subset

 QCP such that the derivative of the restriction fļ^
 exists at each point of Q .

 (Infinite derivatives are allowed and cannot be excluded.

 In fact, it is possible that f (x) = +00 holds at every

 X € P .)

 If f is defined on an interval, then a stronger

 assertion can be proved.

 Theorem B. Let f be continuous on the interval Ca,b] .
 Then either

 (i) there is a perfect subset QC[a,bļ such

 that fļg is constant,
 or (ii) there is a perfect subset QC[a,b] such

 that f ' (x) exists at each point of Q .

 Indeed, if (i) does not hold, then f fulfils condition

 (T2) on [a,b] . Hence, by a theorem of Banach ([3],
 p. 280) , f 1 (x) exists at the points of a non-countable

 * The work presented here will appear in [2ļ.
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 set and this easily implies (ii) .

 The assertion of Theorem B is not true for

 continuous functions defined on perfect sets. It was

 shown in [1] that there exists a continuous function

 defined on a perfect set P such that f is strictly

 increasing and nowhere dif f erentiable in P. However,

 our next result shows that if f is continuous on a

 set of positive measure, then the assertion of Theorem B

 "almost holds true".

 Theorem 1. Let PCR be a perfect set of positive

 measure and let f : P - R be continuous. Then one of

 the following assertions is true.

 (*) There is a perfect subset QCP such that

 (f Jq) ' (x) = 0 for every x6Q .
 ■(**) f is dif f erentiable at almost every point of a

 set U CP which is everywhere dense and open

 relative to P and, for every e > 0 , there

 exists a perfect subset QCP such that

 X (P-Q) < e and fj^ is dif f erentiable at each
 point of Q .

 (Observe that (*) is weaker than (i) and (**) is stronger

 than (ii) . )

 Theorem 1 obviously implies the following sharper

 form of Theorem A.

 Corollary 2. Let PCR be perfect, A (P) > 0 and

 let f : P - R be continuous. Then there is a perfect
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 subset Q CP such that is dif f erentiable

 (with finite derivative) at each point of Q .

 Moreover, we can easily prove the following,

 apparently much stronger

 Corollary 3. Let PCR be perfect, A (P) > 0 and

 let f : P -*■ R be continuous. Then either

 (a) there is a perfect subset Q CP such

 that f ļ q is infinitely dif ferentiable
 on Q and, in addition,

 (fļQ) (n) (X) =0 (X £Q)
 holds for n large enough,

 or (b) for every e > 0 there is a perfect

 subset QCP such that X (P-Q) < e

 and f ļ q is infinitely dif ferentiable
 on Q .
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