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 Lebesgue Equivalence

 by

 Casper Goff man

 We consider real functions on a closed interval

 [a,b] . Functions f and g are said to be Lebesgue

 equivalent if there is a homeomorphism h of [a,b]

 onto itself such that g- = foh, Lebesgue equivalence

 clearly satisfies the conditions of an equivalence

 relation. We shall be concerned with two sorts of

 questions :

 (i) Does a given- equivalence class contain a

 "nice" function?

 (ii) Are all functions in a given equivalence

 class well behaved?

 A related notion is that of Lebesgue equivalence

 of sets. Two sets S and T, contained in [a,b] ,

 are said to be Lebesgue equivalent if there is a

 homeomorphism h of [a,b] onto itself such that

 T = h(S) .

 We shall discuss only matters of special interest

 to us. Some of these questions are related to functions

 whose Fourier series converge everywhere.

 1. Our first remarks pertain to the well known

 theorem of Maximov, [13] . It is an elementary fact

 that every derivative is of class Baire 1 and has the
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 Darboux property, but that there are Baire 1 Darboux

 functions which are not derivatives. Maximov's theorem

 asserts that every Baire 1 Darboux function is Lebesgue

 equivalent to a derivative. The existing proof of

 this statement may be deemed unsatisfactory in one

 sense or another. The proof has been stated to be

 correct by some mathematicians. However, it is quite

 complicated and rather shadowy. In any case, a new

 and more transparent proof would be a welcome contribu-

 tion. An independent treatment has been given by

 Choquet [5] , for semicontinuous functions. Perhaps

 his proof works for the general case.

 A related statement, also given by Maximov is that

 every Baire 1 Darboux function is Lebesgue equivalent

 to an approximately continuous function. The

 corresponding theorem on sets has been proved by Gorman,

 [11] . A point X is said to be a bilateral c point

 of a set S if, for every c < x < d, the sets

 S n (c,x) and S n (x,d) have cardinality c.

 Gorman's result asserts that if S is of type F^
 and each x 6 S is a bilateral c point of S then

 S is Lebesgue equivalent to a set T such that T

 has density 1 at each of its point. We note that if

 f is Baire 1 Darboux then, for each open set G, the

 set f ^"(G) is of type and each of its points is
 a bilateral c point, while if f is approximately

 continuous then f (G) has density 1 at each of its

 points .
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 2. We now consider the following questions. Which

 functions are Lebesgue equivalent to everywhere

 differentiable functions? Which functions are Lebesgue

 equivalent to functions a) with summable derivative,

 b) with bounded derivative, c) with continuous

 derivative? If f:[a,b] -»■ R is of bounded variation,

 then every function which is Lebesgue equivalent to f

 is also of bounded variątion. Moreover, if f has a

 summable derivative then it must be of bounded variation.

 Accordingly, if f is Lebesgue equivalent to an every-

 where differentiable function with summable derivative

 then f must be continuous and of bounded variation.

 We note, as a converse, that if f is continuous and

 of bounded variation then f is Lebesgue equivalent

 to an everywhere differentiable function with bounded

 derivative. The proof of the last statement appears

 in [4] , and is an immediate consequence of a deep

 result of Zahorski [17] . To obtain the result we

 first observe that a continuous function of bounded

 variation is Lebesgue equivalent to a Lipschitzian

 function by using a slight modification of the arc

 length representation. The theorem of Zahorski which

 is applicable asserts that if Z c [a,b] is of

 measure 0 and of type , and if k > 0 , there is

 a homeomorphism h of [a,b] onto itself, differenti-

 able in the extended sense, with h' (x) > k every-

 where and h' (x) = +°° on Z. It follows that every
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 Lipschitzian function is Lebesgue equivalent to an

 everywhere dif ferentiable function with bounded derivative.

 The above remarks imply that the set of continuous

 functions of bounded variation is exactly the set of

 functions Lebesgue equivalent to either the everywhere

 dif ferentiable functions with bounded derivative, or

 with summable derivative.

 The Cantor function satisfies the above conditions

 and is accordingly Lebesgue equivalent to an everywhere

 dif ferentiable function with bounded derivative. Since

 its derivative is zero on a dense set of intervals

 and cannot be everywhere zero the Cantor function is

 not Lebesgue equivalent to a continuously differentiable

 function. However, if g: [0,1] -*■ R is the Cantor

 function and f:[0,l] R is defined by f (x) = g(x) +x,

 then f is strictly increasing, and is accordingly

 Lebesgue equivalent to a linear function; hence, a

 continuously differentiable function.

 Not every continuous function of bounded variation

 is Lebesgue equivalent to a continuously differentiable

 function, e.g., the Cantor function. The further

 necessary property involves a notion called point of

 varying monotonicity . A point x is a point of

 varying monotonicity of f if there is no neighborhood

 of x on which f is either strictly monotonie or

 strictly constant. For a Cantor like function its

 perfect set of support agrees with its set of points
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 of varying monotonie i ty . Furthermore, the set of

 points of varying monotonicity is a closed set K and

 so has a unique decomposition K = P U D, where P n D

 is empty, P is perfect and D is countable. P is

 the perfect kernel of K.

 Our observation in [4] was that if f is to be

 Lebesgue equivalent to a continuously diff erentiable

 function then the set f (K) must be of measure 0.

 This follows because for a continuously diff erentiable

 function the derivative is zero at every point in K,

 the set of points of varying monotonicity of f. If

 f (K) had positive measure then f 1 (x) would have to

 be positive at some points in K. Thus, a necessary

 condition that f be Lebesgue equivalent to a

 continuously dif ferentiable function is that f" be

 continuous, of bounded variation, and that the image

 f (K) of its set K of points of varying monotonicity

 be of measure 0.

 These conditions are also sufficient but the

 proof is rather delicate. We give a rough indication

 of the required construction. Let f satisfy the

 above conditions and let K, P, and D have the meanings

 given above. Then if 1^, 1 2 , ••• are the pairwise
 disjoint open intervals complementary to P, we have

 ? k < °°, ' where k is the variation V(f,I 'n ) of f n n ' n 'n

 in the interval In. There is a homeomorphism h^ of
 [a,b] onto itself such that 2 a < °°, where

 n n
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 an = |h (I ) f ' being the length of the

 interval |h^(In)|. We follow by a homeomorphism
 hj which acts only on the intervals hļ(In), so that

 f o (l^oh^) * is continuously dif f erentiable on
 has derivative equal to 0 at the end points, and

 |f'(x)| < 4an for each x € h2°lll^In^* This may be

 accomplished because K n IR is closed and countable.
 It then follows from f (K) has measure 0, that

 f 9 (h2°hj| ) ^ is continuously dif f erentiable. The
 interested reader will find the details in [4] .

 It is conjectured that the same conditions suffice

 for functions to be Lebesgue equivalent to functions

 in the class C^, k > 1, or even in C°°, but a required

 construction has not been attempted.

 It is known that everywhere dif ferentiable functions

 are of type VBG* ; details are in Saks [14] . As a

 converse, Fleissner and Foran have shown that every

 VBG* function is Lebesgue equivalent to an everywhere

 dif ferentiable function.

 3 . It is well known that there are continuous

 functions f on the unit circle, or on the interval

 [- it , it ] , with f(-ir) = f(ir), whose Fourier series do

 not converge everywhere. However, if a function is

 continuous and of bounded variation then its Fourier

 series converges uniformly. Since every function

 which is Lebesgue equivalent to a continuous function
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 of bounded variation is also continuous and of bounded

 variation, we have here a subset of the set f of

 functions whose Fourier series converge uniformly for all

 homeomorphic changes of variable. We shall discuss

 this set of functions as well as the set for which only

 everywhere convergence holds for all Lebesgue equivalent

 functions .

 This treatment features the set of regulated

 functions. A function f is regulated if its right

 and left limits exist everywhere. A discussion of some

 properties of regulated functions is given in [8] . Also

 important in these considerations is the class of sets

 of absolute measure 0. A set S is of absolute

 measure 0 if h(S) has Lebesgue measure 0 for every

 homeomorphism h. The regulated functions are invariant

 under Lebesgue equivalence as are the sets of absolute

 measure 0 .

 The main fact in this context is that if

 f:[-ir,ir] R is such that the Fourier series of f°h

 converges everywhere for every homeomorphism h of

 t-ir,ir] onto itself, then f must differ from a

 regulated function on a set of absolute measure 0, or

 as we may say, f is AMZ- equivalent to a regulated

 function.

 In the first place, if f is not AMZ-equivalent

 to a bounded function, then there is a homeomorphism

 h such that the Fourier series of fch does not

 13



 converge everywhere. So we assume that f is AMZ-

 equivalent to a bounded function but not to any

 regulated function. By a standard normalization of f,

 we may assume that, for each ó > 0, the sets

 [f >1] n (0,6) and [f < -1] n (0,6) are not of

 absolute measure 0, A homeomorphism h of [0,tt] onto

 itself may be adjusted in such a way that foh > 1 and

 f°h < -1 on a large enough part of enough pairs of

 intervals on which sin n^t is positive in the one
 case and negative in the other, so that

 ff
 lim I f og (t) Dn . (t) dt = 00 for an increasing sequence
 1 - - o 1
 {n^}. The homeomorphism h is defined on [-n,0] to
 itself in such a way that the sequence

 ļ I f og (t)Dni (t) dtj is bounded. This may be accomplished
 -IT

 since f is bounded, by having foh nearly constant on

 enough pairs of intervals on which sin n^t is positive
 on the one hand and negative on the other.

 A stronger necessary condition is obtained by a

 similar but somewhat delicate analysis of the Dirichlet

 kernel. A necessary condition that f:[-ir,ir] -*■ R be

 such that for every homeomorphism h, the Fourier series

 of foh converge everywhere is that it be AMZ-equivalent

 to a function g such that, for each e > 0 and x

 there is a 6 > 0 such that, for each finite system

 of nonover lapping intervals, indexed from right

 to left with U In c (x,x + 6) , or indexed from left
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 to right with Ul c(x-6, x), we have

 2 5 l««n>l < £

 where f(I) = f (b) - f (a) for any interval I = [a,b] .

 This condition is given in [9] where it is also

 shown to be sufficient. The proof is accomplished in

 analogy with an argument used by Salem, [15] , in his

 proof of a criterion he gives for the convergence of a

 Fourier series.

 There is an example of Lebesgue of a continuous

 function whose Fourier series converges everywhere but

 not uniformly, [18] . Baernstein and Waterman, [2] , have

 shown that the present situation is similar. They have

 shown that for continuous functions f the Fourier

 series of f<>h converges uniformly for every

 homeomorphism h if and only if, for each e > 0 there

 is a 6 > 0 such that for each finite system

 indexed from left to right, or from right to left, with

 diam(U I ) <6 we have 2- If 1 (I )| 1 < e. They u then n n 1 n 1 u

 construct a continuous function f such that foh has

 everywhere convergent Fourier series, for each

 homeomorphism h, but for which the convergence is

 not always uniform.

 4. We now consider some special classes of

 functions which are invariant under homeomorphisms.

 The set of functions of bounded variation has this
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 property since f and foh have the same variation.

 The other sets of functions we shall discuss are various

 sorts of extensions of the set of functions of bounded

 variation. First, for any regulated f we associate

 with each x the interval I whose end points are

 the right and left limits of f at x. For each y,

 let N(y) be the set of x for which y € I . Banach* s

 Theorem says that f is of bounded variation if and

 only if N(y) is summable.

 We are now ready to consider three different

 generalizations of bounded variation.

 a) Let A = i^n} be a sequence of real numbers
 which are positive and strictly increasing to infinity.

 A regulated function f, with f(x) = ^ (f(x+) + f (x )},
 for every x, is said to be of A bounded variation ,

 ABV, if
 oo

 sup 2 j- |f (x.) 1 - f (y.) 1 I < » i=l i 1 1

 for pairwise disjoint sequences i(x^,y^)} of intervals.
 Of particular interest is the case A = . A

 function of bounded A variation for this case is said

 to be of harmonic bounded variation , HBV. These notions

 were introduced in [16] , the notion HBV being implicit

 in [7] . If f € HBV, then the Fourier series of f

 converges everywhere, [7] . The proof follows

 immediately from the change of variables theorem of the

 last section. It may be proved directly by an argument
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 similar to the one used in the proof of that theorem,

 but somewhat simpler. A third proof, [16] , may be

 given by use of the standard Lebesgue test for convergence.

 Conversely, Waterman showed, [16] , if A is such that

 ABV 3 HBV properly, then there is a function in ABV

 whose Fourier series diverges somewhere.

 These results suggest the guess that HBV is a

 characterization of the set of function whose Fourier

 series converge everywhere for all changes of variables.

 However, this conjecture seems to be difficult to

 handle. We feel that this is a worthwhile problem to

 consider.

 b) Let $: [O,00) [O,00) , with $(0) = 0,

 lim $ (x) =0, and lim <ř(x) = °°, be a convex
 X -*• 0 x »

 function, and let ¥ be the associated function in the

 sense of W. H. Young. Let [a,b] be an interval. For

 each partition ir:a = x^ < x^ < ... < xn = b, let

 V$(f,TT) = 2 <ř(|f(xi) - f(xi_1)|). The $ variation

 of f is defined by V$ (f ) = sup V^(f,ir), for all
 partitions u of [a,b] . Now, if f is of bounded $

 variation and 2*ř^^ < 00 , then the Fourier series of

 f converges everywhere. Moreover, [1] , if 2V ^ ®
 there is an f of bounded $ variation whose Fourier

 series diverges somewhere. The positive part of this

 result follows from the fact (an immediate consequence

 of the Young inequality) that HBV contains the set of

 functions of bounded $ variation if < 00 •
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 c) This extension of bounded variation follows

 from the Banach criterion. Let w be a continuous

 increasing function on [O,00) such that w(0) = 0 and

 lim w(x) = Let S (w) be the set of functions for
 X + »

 which J w(N(y))dy < 00 . Garsia and Sawyer, [6], showed
 that for w(x) = log+(x) , f € S (w) implies that the

 Fourier series of f converges everywhere, i.e., if

 f is such that ļ log+N(y)dy < «>, then the Fourier
 series of f converges everywhere. This result also

 follows readily, as shown in [7] , from the result in a) .

 In this case, a simple lemma on measurable sets is

 needed. Let I = [a,b] , and let Ar c I, n = 1,2,...,
 with I = u A , be such that each x € I is in a

 n

 finite number of the A . For each n, let S
 n n

 consist of those x which are in exactly n of the A^ .
 Then 2n*m(A ) - 00 implies 2 log n»m(S ) = ~.

 n n +
 Conversely, if w(x) is such that lim + ^ = 00

 X -> co

 there is an f € S (w) whose Fourier series diverges

 somewhere .

 Thus, each of the above three variations criteria

 is sharp.

 Brownian motion is of bounded $ variation, with

 2+e
 probability 1, for $ (x) = x , e > 0. It follows

 that the probability is 1 that the Fourier series of

 a continuous function converges uniformly.
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 5. We now turn to questions of the sort: Does

 a Lebesgue equivalence class contain a nice function?

 An example is the Bohr-Pal theorem which says that every

 periodic continuous function, of period 2it, is

 Lebesgue equivalent to a function whose Fourier series

 converges uniformly. The only known proof of this

 theorem involves some rather sophisticated complex

 variable theory, including the Riemann mapping theorem,

 the Caratheodory theorem extending the mapping to the

 boundary in case it is a Jordan curve, and the fact

 that convergence of the power series expansion of the

 mapping function extends to the boundary. The last

 fact uses Fe jer* s theorem on (C,l) convergence of

 Fourier series together with the fact that the area of

 the image domain is given by a certain series. The

 convergence of this last series turns out to be a

 Tauber ian condition for (C,l) convergence. An

 outline of the proof is given in [10] . The special

 character of this proof has made the study of analogous

 questions impossible.

 There are two indicated directions in which

 extensions may possibly be made. First, it is

 natural to ask whether similar results hold for other

 orthonormal systems. Such results would require a

 new kind of proof not using complex variables. Little

 progress seems to have been made in this direction.

 The other problem is to determine which measurable
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 functions f have a Lebesgue equivalent fog whose

 Fourier series converges everywhere. Of course, in order

 to have this property, fog must be equal almost every-

 where to a Baire 1 function. We are accordingly

 interested in knowing whether or not every measurable

 function is Lebesgue equivalent to a function which is

 almost everywhere equal to a Baire 1 function. Interesting

 results along these lines were obtained by Gorman, [12] ,

 and subsequent results by Bruckner, Davies, and

 Goff man, [3] .

 The positive results obtained by Gorman are:

 a) If f has the property of Baire there is a

 homeomorphism g such that f°g is almost everywhere

 equal to a Baire 1 function, b) If f is measurable

 and its range is finite, there is a homeomorphism g

 such that fog is almost everywhere equal to a

 Baire 1 function.

 On the other hand, Gorman gave an example of a

 measurable f such that for no homeomorphism g is

 fog equal almost everywhere to a Baire 1 function.

 Since a function whose Fourier series converges every-

 where must be equal almost everywhere to a Baire 1

 function, this shows the existence of a measurable

 function which is not Lebesgue equivalent to any

 function whose Fourier series converges everywhere.

 The example of Gorman turns out not to be

 absolutely measurable, i.e., it has a non measurable
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 Lebesgue equivalent function. It is shewn in [3] that

 if f is absolutely measurable there is a Lebesgue

 equivalent fog which is almost everywhere equal to

 a Baire 1 function.

 The proof uses the following characterization:

 f is Lebesgue equivalent to a function f«h which is

 almost everywhere equal to a Baire 1 function if and

 only if there is a c-dense type set E and a

 Baire 1 function g such that f(x) = g(x) for

 every x € E. We accordingly must show that absolutely

 measurable functions have this characterizing property.

 This is shown by an iteration procedure using first

 the proof of the theorem for the case where f takes

 on countably many values, a l'emma that says that if f

 is absolutely measurable and P is perfect, then

 there is a perfect Q c P such that f restricted

 to Q is continuous, and the fact that the limit of a

 uniformly convergent sequence of ¿aire 1 functions is

 also Baire 1.

 Because of this result, we do not know of any

 absolutely measurable function which is Lebesgue

 equivalent to a function whose Fourier series diverges

 at some point. We do not even know if every regulated

 f is Lebesgue equivalent to a function whose Fourier

 series converges everywhere.
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