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Products of Darboux Functions

Let us establish some terminology to be used. R denotes the set of all reals.
I denotes a non-degenerate closed interval. If A is a planar set, we denote its
z-projection by dom(A) and y-projection by rng(A).

We shall consider real functions defined on a real interval. No distinction is
made between a function and its graph. The symbols C~(f,z) and C*(f,z)
denote the left and right cluster sets of f at the point z. The symbol C(f)
denotes the set of all continuity points of f. The notation [f > 0] means the set
{z : f(z) > 0}. Likewise for [f = 0], [f # 0], etc. For subsets A, B C R let
D*(A, B) denote the class of all functions f : A — B such that cl4f~1(y) = A
for each y € B. Let us remark that if A is an F,, set and A is ¢ dense-in-itself,
then the class D*(A, R) contains Baire 2 functions (see [2]).

The function f is said to be Darboux if f(C) is connected whenever C is a
connected subset of the domain of f. If each open set containing f also contains
a continuous function with the same domain as f, then f is almost continuous
[2]. It is clear that if f : ] — R is almost continuous, then f is connected and,
therefore, it has the Darboux property. Moreover, if f meets each closed subset
F of I x R with int(dom(F')) # @, then f is almost continuous [2].

We shall use the following set-theoretical assumption.

A(c) - the union of less than 2% many first category subsets of R is of the first
category again.

Note that this statement is a consequence of Martin’s Axiom and therefore also
the Continuum Hypothesis (see e.g. [2]).

It is well known that each real-valued function defined on a real interval can
be expressed as a sum of two Darboux functions [2]. This fact was improved by
Fast in the following way: if F is a collection of c-many real functions then there
exists a function g such that f + g is Darboux for each f € F [2]. In 1967, Misik
proved that for each countable family F of Baire a functions (where a > 1)
there exists a Baire a function g such that f 4 g has the Darboux property
for every f € F [2]. In 1984, Pu and Pu proved the analogous result for finite
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families of Baire 1 functions [2]. In 1974, Kellum proved that Fast’s theorem
holds if “Darbouz” is replaced by “almost continuity”. In the present paper we
state some similar results with respect to products of functions.

First, let us remark that a general function may not be a product of Darboux
functions (and therefore also almost continuous functions) [2], see for example
the function f given by f(z) = 1 for £ # 0 and f(0) = —1. Products of two
Darboux functions, Darboux Baire 1 functions and almost continuous functions
are characterized in [2], [2] and [2], respectively.

Theorem 1 If F is a countable family of Baire o functions and o > 1, then
there ezists a non-zero Darbouz Baire « function g such that:

1. fg has the Darbouz property for each f € F,

2. the set[g # 0] has Lebesgue measure zero and is of the first category (hence
g and all fg, for f € F, are measurable and have the Baire property).

Proof. Let us assume that F = {f, : n € N} is a given family of Baire «
functions defined on I. Forn € N, let G, be the union of all subintervals J of I
such that J N[f, # 0] has the cardinality less than 2% (in fact, since f, is Borel
measurable, this set must be countable). Let us define H, = G, N [fn # 0].
Since each H, is of the first category, A = UneN H, is of the first category
too. Let (In,tn)nen be a sequence of all sets of the form J x {n}, where J is a
subinterval of I with rational end-points and n € N. Inductively we can choose
a sequence (Cp)nen of Cantor sets (having measure zero) such that for each
n € N the following conditions are fulfilled.

(i) If In C Gy, then Cn C In N [fi, = 0]\ (AU Ui, Ci)-

() I, \ Gy, # 0, then Cp, C In N[fr, # 0]\ (AUU;(, Ci).

Forany n € N, let us put T,, = |J{C; : t; = n}. Then each Ty, is of the type F,
and c-dense in I. Moreover, all T,, have measure zero, are of the first category
and satisfy the following conditions.

(it)) T, C I\ 4,

(1) Ta\Gn C [fa #0].
Now for any n € N, let T} 5, T n be two disjoint F, subsets of the set T,, \ G,,
both c-dense in I\ G,. Let us fix Baire 2 functions go, € D*(Gn N Ty, R),
Jin € 'D*(Tl,n, R) and h, € 'D*(Tz_n, R)
We define g : I — R as follows:

go,n(z) forz e G, NT,,

g1,n(2) for x € T n,

9(z) = ho(z)/ fa(z) for z € Ty,
0 otherwise.



234 T. Natkaniec

We shall verify that g fulfills the conditions (1) and (2). First, let us fix a
subinterval J C I. If J C Gy, then g(J) D go,0(J N Go N Tp) = R. Otherwise,
J\Go # 0 and g(J) D g1,0(J NT1,0) = R. Thus g € D*(I, R) and consequently,
g #0. Now fix n € N and a subinterval J of I. If J C G, then (fng)|J = 0.
If J C I\ Gn, then (fng)lJ D hn|(J N T2,n) and hence (fng)|J € D*(J,R).
Additionally, let us remark that f,g|(G,, \ G») = 0. These three conditions
imply easily Darboux property of f,g.

Since [g # 0] C U,hen Tn, the function g equals zero except a first category set
of Lebesgue measure zero.

Finally, it is easy to verify that ¢ is a Baire o function. a

Theorem 2 Let us assume A(c). If F is a family of Baire 1 functions of the
power less than 2%, then there exists a non-zero function g € DB, such that fg
has the Darbouz property for each f € F.

Proof. Let us assume that k < 2% and F = {fy : a < k} is a family of Baire
1 functions. Then for each & < & the set C(f,) of all continuity points of f, is
residual and, by A(c), B = (), <, C(fa) is residual too. We choose a Cantor set
C C B and a non-zero function g € DB; such that [g # 0] C C (see e.g. [2],
p-13). Note that for a given a < k the product f,g is a Baire 1 function. Using
the Young’s criterion (see [2], p. 9), we shall verify that f,g has the Darboux
property. Fix o € I. We consider two cases.

(a) o € C(fa). Since g € DBy, there exist sequences z,, / o, Yn \, Zo With
l?m,,_.(,° 9(zn) = limp 0 9(yn) = g(20). Then limy_ o (fag)(zn) =
lim, — oo (fa9)(yn) = (fag)(20)-

(b) zo € C(fa). Then g(xo) = 0, and since [g = 0] is dense in I, we can select
two sequences z,, /" Zo, Yn \ To With g(z,) = g(yn) =0 for n € N. Thus
limn—‘oo(fag)(zn) = limn-—»oo(fag)(yn) =0= (fay)(l'o).

Consequently, fog has the Darboux property. m]

Theorem 3 Let us assume A(c). If F is a family of real functions of the power
less than 2, then there exists an almost continuous function g # 0 such that fg
ts almost continuous for each f € F.

Proof. Let us assume that x < 2% and F = {f, : a < k}. Fora < k, let G4 be
the union of all subintervals J of I such that J N[fy # 0] is of the first category.
Then A =J,¢((Ga \ Ga)U(Ga N[fa # 0])) is of the first category again. Let
(Fa)ac2- be a sequence of all closed subset of I x R with int(dom(F,)) # 0.
Let ¢ : K X 2¥ — 2“ be a bijection. For each y¥ < 2 such that v = ¢(a, 8), we
choose z,,t, € R? such that:
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(i) if int(dom(Fp)) \ Go # 0, then z,,t, € Fp,

dom(z,) € [fa # 0]Nint(dom(Fp))\ (GaUAUdom{z,,t,: v <17}),
dom(t,) € [fa # 0]Nint(dom(Fp))
\ (GaUAUdom{z,,t, :v<v,pu<v}U{0}),

(#9) if int(dom(Fp)) C Gq, then t, = (0,0), 2y € Fjg and

dom(zy) € Ga N [fa = 0]\ dom{z,,t, : v < 7},

Now we define the function g : I — R by

rng(z,) if z = dom(z,), v < 2¢
g(z) = { rg(ty)/fa(z) if z#0, z=dom(ty), p(v) = (o, 8), @, B,y < 2%,
0 otherwise.

Since g meets every blocking set, g is almost continuous [2]. Moreover, it is easy
to observe that g € D*(I, R) and therefore, g # 0. Finally we will verify that for
a < k the function f,g is almost continuous. Notice that (fog)|J = 0 for each
component J of the set int(G,). If J is a component of I \ Ga, then (fag)|J is
almost continuous and, moreover, (fog)|J € D*(J, R). Finally we observe that
the set C = G4 \ Gq is closed and nowhere dense. Thus f, g fulfills the following
conditions:

(a) fag(z)=0forzeC,
(0) 0€ C~((fa®)II\C),z2)NCH((faI(I\C),z) for z € C,
(¢) (fag)|J is almost continuous for any component J of the set I\ C.

By Lemma 3 [2], we conclude that the function f,g is almost continuous. O
Note that the following example shows that Theorems 2 and 3 can not be
improved for families F with card(F) = 2“.

Example 1 There exists a family F of 2¥-many Baire 1 functions such that for
every non-zero function g there is some f € F such that fg does not have the
Darbouz property.

Indeed, let h = 1 and Fy be the family of all characteristic functions x, of
singletons, and let F = {h} U Fo. Let us assume that g : I — R is a function
such that fg has the Darboux property for each f € F. Since g = gh, g has
the Darboux property. Let us fix £ € I. Since (xz9)(y) = g9(z)x=z(y) = 0 for all
y # z and xr¢ has the Darboux property, g = 0.
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