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 Positive Linear Functionals on Spaces of
 Continuous Functions

 1. Introduction

 In [9] Ilausdorff defines a complete ordinary function system fi on a space X as a
 linear lattice of continuous functions containing the constants which is uniformly
 closed, which is a ring, and which is closed under inversion, i.e., if / G fi and
 / > 0, then 1 // G fi (here / > 0 means that f(x ) > 0 for all x G X and
 / > 0 means that f(x) > 0 for all x G X). In particular, each space C(X) of
 all continuous functions on a topological space is a complete ordinary function
 system (abbreviated cofs). These systems of functions have been studied by
 many other authors and we shall refer to some of them in this paper.

 If fi is a cofs, then the bounded functions in fi form a real Banach algebra
 under the uniform norm that we shall denote by fi* . A representation by mea-
 sures of the dual space of this Banach space has been obtained by Alexandroff
 in

 The aim of this paper is to represent all positive functionals defined on a cofs
 fi by means of integrals. This representation was given by Hewitt in [12], Theo-
 rems 13 and 18, when fi is C(X) for X a realcompact space. Cater in [3] gives
 a representation of all positive linear functionals defined on B(X), the set of all
 Baire functions on a realcompact space X , as finite sums of Riesz Homomor-
 phisms. Finally, Tucker in [18] considers a cofs fi and obtains a representation
 of all positive linear functionals defined on jBi(fi), the set of all pointwise limits
 of sequences in fi, as sums of a finite number of Riesz homomorphisms.

 2. Preliminaries

 N (resp. R,Q) will denote the set of all natural numbers (resp. real numbers,
 rational numbers).
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 By space we mean a completely regular Ilausdorff space. The closure of a
 subset A of X will be denoted by cl A or, when there is possibility of confusion,
 by c'x A. Analogously, the interior of A will be denoted by int A or intx A.
 The complement of a subset D of X will be denoted by X'B.
 As usual, C(X) will denote the collection of all real-valued continuous func-
 tions on X. A zero-set in X is a set of the form Z(f) = {x G X : f(x ) = 0}
 for some / G C(X). Complements of these are called cozero-sets. If fi Ç C(X),
 then Z(fi) = {Z(f) : / G fi}. By Z(X) we mean the family of all zero-sets
 defined by C(X)i by Bai(X) we mean the Baire sets in X and by Bo(AT) we
 mean the Borei sets in X.

 Whenever fi is a cofs on a space (set) X , we always assume that X is given
 the weak topology generated by fi. Thus the sentence "fi is a cofs on the space
 X" means that fi is a cofs on X which generates the topology of X.

 Every cofs fi on a space X has associated a compactification /?(fi) and a
 realcompactification i/(fi) of the space X which, when fi is the ring of all con-
 tinuous functions on AT, coincide with the Stone-Čech compactification and the
 Hewitt realcompactification of X respectively. See [8], [16], [7] and [15], for dif-
 ferent constructions of these spaces. In [14] Lorch considers a Banach algebra of
 bounded continuous functions on a space X to obtain a compactification and a
 realcompactification of X which coincide with the ones above when the Banach
 algebra of continuous functions is fi*, the bounded functions of a cofs.

 Given a cofs fi on X we shall denote by E(fi) the <r-algebra of sets generated
 by Z(fi) and by ba(AT, E(fi)) the set of all real-valued bounded additive set
 functions defined on E(fi). A function /i G ba(A, E(fi)) is said to be regular if
 for every A G E(fi) and € > 0 there is F G Z{Q) and G G coz(fì) such that
 F Ç A Ç G and the variation of // over G'F, var(/i,G'F), is less than e. Let
 rba(X, E(fì)) be the subset of ba(Ar, E(Q)) consisting of all regular set functions.

 By i?i(fì) we mean the set of all pointwise limits of sequences of fi, i?2(fi) =
 jBi(i?i(fi)) and in general, if a is an ordinal number, a > 0, £a(fi) is the family
 of all pointwise limits of sequences from U{i?7(fi) : y < a}. Finally is
 denoted by #(fi) (see [15] for discussion of Baire systems).

 3. A Representation Theorem

 In the sequel we shall give a representation theorem for positive linear functionals
 on a cofs fi which separates points in A'. Ilere, I is a positive linear functional
 on fi means that I is linear and 1(f) > 0 whenever / > 0 belongs to fi.

 We recall that X is provided with the weak topology induced by fi. Thus X
 is a completely regular Ilausdorff space. We also have that when / G fi, there
 is a continuous extension of /, denoted /, defined on ř^(fi) (see [8], [16], [7] and
 [15]).
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 Theorem 1. Let I be a positive linear functional on cofs fì. Then

 (a) There is a compact subset K Ç v(Cl) and a positive linear functional J on
 C(K) such that

 i(f) = J(f'K) for evefy / en.

 (b) There is /i G rba(X> £(fì)) such that fi is countably additive and

 1(f) = I f dp, for every / G Í2.
 Jx

 Proof. First we shall prove that for all / G (fì+ denotes the set of positive
 elements of Q) there is n G N such that /(/Vn) = I(n).

 Let us suppose there is / G such that /(/ Vn) > I(n) for all n G N. Then
 we define gn = (/ V n) - n and we have that I(gn) = I(f Vn) - I(n ) > 0. Let
 g = 9n/i(gn) and let us see that g G fi (notice that g is well defined, as
 gn(x) = 0 for n > f(x)).

 Let Dn = f~ ([n -f l,oo)) and C„ = /_1((n,oo)) for all n G N. We have
 that coz gn = Cn and Cn D Dn D Cn+ 1 for all n G N; on the other hand
 n{C„ :nGN} = f If we denote gn/i(gn ) by /n then, for every open set V in
 M, it is true that g~l{V) = U{(/i -f /2 -I-

 Hence G coz (Q) and by ([9], Th. VIII) this means that g G Q. Since
 0 > !£n=i /n for ail p G N, /(#) > I($2n=i fn) = P for everY P € N; that is a
 contradiction.

 In the sequel we can suppose that I is a positive linear functional on Q such
 that 7(1) = 1.

 Let us consider the compactification /?(Q) defined by Ū. We know (see [15],
 Th. 5.6) that for every f £ Q* there is a continuous extension of /, denoted /,
 defined on /?(fi). The correspondence / - ► / between fi* and C(ß(Q)) defines an
 isomorphism which permits us to identify Ū* with C(ß( Q)). In this way, we can
 assume that I is a positive linear functional on C(/?(íí)), by setting 1(f) = 1(f)
 for all f £ ii* . Let us see that there is a smallest compact set K Ç ß(Q) such
 that 1(f) = 0 when / is zero on K.

 Let T be the collection of all compact subsets H of ß(£l) such that whenever
 f E Q* and / = 0 on H is follows that 1(f) - 0. We claim that T has the finite
 intersection property.

 In fact, if H i and II 2 belong to T and H' D H 2 - <ļ>, then there is a finite
 partition of unity in C(/?(Q)) subordinated to the cover {ß(Q)'Hi : 1 < i < 2}.
 Clearly I is zero on the functions which belong to the partition of unity and so I
 is zero on C(ß(Q)). This contradiction shows that T has the finite intersection
 property. Therefore C'{fí : II G J7} ^ <j>.
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 Let K = n{tf : H £ J7} y and let us see that K G T . Suppose f € Ū* such
 that / = 0 on K. We define An = {p G ß(P) : 'f(p)' > l/n}- Since fi/f = <£,
 there is H G J7 with fl i/ = <j>. Take gn E Í2 such that 0 < gn < 1> <7n = 0 on
 # and ¿fn = 1 on An and let fn = f'9n • The sequence {/„} converges uniformly
 to / and /(/n) = 0 for all n G N. Since 7 is a positive functional, it is continuous
 with respect to the topology of the uniform convergence. Thus 1(f) = 0, and
 K e T.

 Finally, let us prove that K is included in
 If p G A''i/(fì), then there is / G Í2* such that lim¿ex> f(xs) = +oo for every

 net in X , {xò}ò£D, which converges to p (see [8], Prop. 2.5). Let n be a natural
 number such that I(f V n) = /(n); the function ¿7 = (/ V n) - n is such that
 /(#) =0 and may be extended to a continuous function g : /?(Q) - ► [0, -foo] (see
 [15], Th. 5.6). Let H = {?G ß(Sl) : g(q) < 1} 0 K then H Ç K and H ķ K.
 Take h E Cl* with h = 0 on H and let us see that 1(h) = 0; there is no loss of
 generality by supposing that 0 < h < 1. We know that there is a function in
 ÍÍ*, r, with 0 < r < 1, r = 0 on Z([g - |] A 0) and ř = 1 on Z([g - | V 0).
 Then h < h • r -ļ- 3g and h • r = 0 on /ť, i.e., 1(h) < I(h • r) -h 3 1(g) = 0. This
 contradicts the property that the compact set K is the smallest compact subset
 of ß(Q) with the property above. Thus K Ç v(Q).

 Since K is compact, it is a C-embedded subset of ß(Cl). On the other hand,
 Z(ß(Q)) fi v(Q) = {cl„(ft)Z) : D G Z(ū)} (see [2], Cor. 3.4). Thus for every
 Z G Z^K), there is D G Z(Q) with Z = (cĻ(n)i^) H K.

 Let us denote by Û the collection of all continuous functions on i/(Q) which
 are continuous extensions of functions in ÎÎ. Then Û is a cofs on i/(iî) and
 Z(Û) = Z(ß(Ü)) fi i/(fi). Hence Z(Û) fi K = Z(K) and E(Ô) fi K = Bai(/ť).

 Now we can prove part (a) of the Theorem. Let us define a positive linear
 functional on C(K) as follows. For each h G C(K), let h denote any continuous
 extension of h to the space ß(Cl) and state J(h) = I(h'x). J is a positive linear
 functional on C(K) and it is well defined by the election of K. This proves part
 (a).

 In order to prove part (b), note that I is a positive linear functional on Q*
 such that, in Lorch's terminology, the /-measure of each Baire set in /?(Q)'i/(Q)
 is zero; this is because K Ç z/(Q). Hence we can apply ([14], Th. 13) and we
 deduce that I is a Danieli integral on Q*, i.e., there is a bounded, countably
 additive set function fi on E(Q) such that every function in Q* is //-integrable
 and besides /(/) = fx f dļi for every / G fì*.

 Let us see that every function in fì is /i-integrable. Take / G then
 the sequence {/ An}^=1 is monotone-increasing and converges point wise to /.
 Since fx (f A n) d/i = /(/ A r?) < 1(f) for every n G N. Lebesgue's Monotone
 Convergence Theorem shows that / is //-integrable and fx f d // < 1(f). On
 the other hand, we know that there is m G N such that /(/ V m) = /(m); as
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 / = (/ V m) + (/ A ra) - ra, we have that 1(f) = /(/ V m) + /(/ A m) - /(m) =
 /(/ A m) = fx (f A m) d/i < fx f elfi, i.e., /(/) = fx f dp for every / G fi+.
 Since every / in fi may be written as the difference of two positive functions, we

 have proved that every function in fi is /i-integrable and also 1(f) - fx f dfi
 for every f E il. Now it is proved analogously to the proof of Theorem 14.2 of
 [5] that p is a regular measure on £(fi). This proves part (b) of the Theorem.

 4. Some Applications

 In the sequel we shall make use of the term P-space, that is, a space in which
 every Gs (countable intersections of open sets) is open.

 Proposition 2. Let fi be a cofs on a space X and suppose that i/(Q) is a P -
 space. Then every positive linear functional on fi is the sum of a finite number
 of Riesz homomorphisms.

 Proof. Let I be a positive linear functional on fi. Then there is a compact
 subset K of */(fi) and a positive linear functional J on C(K) such that 1(f) =
 J(f'K) for all / E fi. Since i/(Q) is a P-space we know that K is a finite subset
 of v(Q). Hence there are { xiyx2 , . . .,zn} Ç i/(Çl) and {Ai, A2, . . . , An} C M such
 that 1(f) = J(f'K) = ' f(xj ) f°r / € Í2, i.e., I is the sum of a finite
 number of Riesz homomorphisms.

 Remark. Suppose that is a vector lattice of functions which contains the
 constants, and let us denote by Q the smallest cofs continuing $. We know that
 i?a($) = 5a(Q) for every a such that 1 < a < u>i (see [15], Th. 3.5). On the
 other hand v(Ba( fi)) = v(Q,)p for all a with 1 < a < u>' (here f(fi)p denotes the
 same set i/(fi) endowed with the P-topology associated, i.e., the topology for
 which the collection of G s -subsets of i/(fi) form an open base). Thus i/(5a(fi))
 is a P-space for all a with 1 < a < wi (see [11], Th. 2.4.). Hence the Proposition
 above is a variation of Theorem 1 of [18] and Theorem 2 of [3].

 Let fi be a cofs on a space X) we can identify fi with a subalgebra of C(^(fi))
 by the embedding / - ► /. In many cases the range of the embedding is different
 from C(^(fi)) and it is an unsolved problem to give a general method in order
 to generate the algebra C(^(fi)) internally from the cofs fi (see [10], Problem 1
 which is closely related). In the sequel we develop a formal method for obtaining
 C(i/(fi)) from fi by applying the ideas above. First we shall introduce some
 definitions.

 Given a cofs fi, consider the order dual space fi" (see [4] for definitions
 and notation) and let (fi/;)+ denote the positive elements of fi". It is known
 that every element of fi" is the difference of two elements of (fi")+ (see [4],
 16B). We can suppose that fi is included in the Dedekind complete Riesz space
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 (fi")" via the canonical evaluation map (see [4], Prop. 31C). We denote by
 fit fi fi* the space of all G G (fi")" such that G = sup {/ : / G fi, / < G} and
 G = inf{<7 : g G fi, g > G) (this in the order of (fi")").

 Theorem 3. Let Q be a cofs on a space X. Then C(v(ÇÍ)) is lattice and vector
 isomorphic to fiî fi fi*.

 Proof. Let G be an element of fi* fi fi*, by ([4], Th. 16D(b)) we know
 that for every I G (fi")+ we have G(I) = sup {1(f) : / G fi,/ < G) =
 inf{/(</) : g G fi, <7 > G }. Every point p G f(fi) defines an element of (fi")+,
 that we shall denote by 6pi by defining 6p(f) = f(p). Hence we can define
 G : J/(fi) - ► R by G(p) = G(SP). From the equalities above we deduce that
 G(p) = sup{/(p) : / G fi, / < G] = inf {ģ(p) : g G fi, g > G}. Therefore G is a
 continuous map on i/(fi).
 Conversely, let F be a continuous map on j/(fi). We can suppose that F
 belongs to (G(j/(fi ))")" via the canonical evaluation map.
 On the other hand, by Theorem 1, part (a), every positive linear functional
 defined on fi (resp. C(v( fi)) is localized on a compact subset of i/(fi) (resp.
 i/(G(i/(fi)))). Since fi) is a realcompact space we have that i/(G(f(fi))) =
 i^(fi), i.e., fi and C(v(Q)) have the same realcompact spaces associated. Thus
 every positive linear functional on fi is also defined on C(i/(fi)) and vice versa.
 Therefore it follows that fi" = G(/;(fi))", i.e., we can assume that F belongs to
 (fi")".

 By Theorem 1, part (a), every I G (fi;/)+ 'ias associated a compact subset
 of i/(fi), Ki ) and a positive linear functional on G(/v/)>«/> such that 1(f) =
 J(f'K¡)- Applying ([13], Th. 9), we get a regular Baire measure on A'/, H , such

 that J(h) = fKj h d fi for every h G G(A'/). Thus 1(f) = fKg f'Kj dfi for
 every / G fi. Since fi" = G(¿/(fi))" we also have that I G C(v(Çt))" and that
 m = ¡K, F'k, dß.

 Let us see that F = sup {/ : / G fi, / < F) in the natural order of (fi")",
 i.e., we must prove that 1(F) = sup {(/(/) : / G fi, / < F} for every I G (fi")+-

 Suppose that I is in (fi")+ and let Kj be the compact set associated with
 I as before. For every x G Ki there is Ux G coz fi such that ose ( F , Ux) < e.
 Since Z( fi) is a normal base oil i/( fi) (see [16], Th. 4.3), there is Dx G Z( fi)
 such that x G int Dx Ç Ux. The collection {int Dx : x G Ki} is an open
 cover of Kj. Let {int . . . , int Dn} be a finite subcover of A/ and consider
 also the finite open cover {Ł/i, . . . , Un }• For every Ł/,- there is a,- G fi such that
 Ū < or,- < 1 and Z(ai) = i/(fi)'í/¿. Consider also ß G fi with 0 < ß < 1 and
 Z(ß) = Di U - • - U Dn. Set <t> = ¿"=i(úr¿ V/?) and fc = Then {<¡>i : 1 < i < n]
 is a partition of unity in A'/ subordinated to {ŁĄ, . . . , Ł/„}, <j>i G fi for 1 < i < n
 ancl Xrr=i - 1 ^(^)-
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 Take a fixed point x, of for each i € {1, . . n} and define the following
 function on X, / = Then / € Q, / < F and 'F(x)-f(x)' <
 e for every x £ Kj. Hence we can approximate F on by functions in Q which
 are bounded above by F. By Lebesgue's Monotone Convergence Theorem, we
 get 1(F) = fKj FifC¡ du = sup {¡K¡ /|Kf dpi : f G Si, f < F} = sup {1(f) : f G

 Analogously it is proved that 1(F) = inf{(I(g) : g £ Q, g > F).
 This proves that F G fi* H iìA.

 Theorem 4. Let X and Y be two spaces and let 0 be a cofs on X. IfT:Q->
 C(Y) is a positive linear operator then it may be extended to a positive linear
 operator Ť : C(i/(Q)) -+ C(Y).

 Proof. Let y 6 Y and let 6y denote the evaluation map on y. The composition
 6y o T is a positive linear functional on fì which, by the Theorem above, may be
 extended to a positive linear functional, ( Sy o TJ , on C(*/(fî)) as follows:

 (*) ( 6yoT)~(f ) = sup{(5yoT)(<7) : g G ū,g < /} = inf{(5yoT)(/í) : h G ft, h > f}.

 This enables us to define a map Ť(f) on Y, for every / E C(i/(Q)), by Ť(f)(y) =
 (6y o Ty (/) for all y E Y and, from the equalities in (*), we deduce that
 Ť(f) € C(Y).

 Remark. If $ is a linear lattice of functions on a space X, we have that
 for all a such that 1 < a < u>i (see [11], Th. 2.4). Thus

 Q C(^(.Bi(^))). Let us suppose that T : 2?i($) -► C(Y) is a positive linear
 operator. By applying the Theorem above T may be extended to C(j/(i?i($)))
 and, since £($) Ç C(v(B' ($))), T may be extended to a positive linear operator
 T : £($) - i ► C(Y). Taking this into account we see that the Theorem above
 contains Corollary 3 of [18], Theorem 9 of [19] and Theorem 3 of [3].

 Corollary. Let $ be a linear lattice of functions containing the constants and
 let T : £i($) - * C(Y) be a positive linear operator. //{/n}^L i is a sequence in
 #i($) which converges pointwise to a function f, then the sequence {T(fn)}^>=1
 converges pointwise to a function in C(Y).

 Proof. By the remark above we can extend T to a positive linear operator
 Ť : B($) - ► C(Y). Since / G we liave tliat T(f) € C(Y). Let us see that
 {T(/n)} converges pointwise to T(/).

 Take y E Y and consider Sy of which is a positive linear functional on #($).
 By Proposition 2, there is {a?i, . . . , xn} C */(#($)) and {Ai,...,A„} C R such
 that 6y o T = A ¿ • 6Xt. Thus, in order to prove that {T(/n)} converges
 pointwise to T(/), we only need to prove that {/n} converges pointwise to / in
 "(£(*))•
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 Let us suppose that there is x G i/(J3(3>)) and €q > 0 such that 'fnj(x) -
 f(x)' > £o for every nj belonging to a sequence of natural numbers {nj}JL1. Let
 Un = {y : y G f(£($)), |/n(l/) ~ /(î/)| > £o}. Then a: 6 C'{Unj : j G N} which is
 a zero-set in Hence fl{{/ni flX) : j G N} ^ 0, which is a contradiction.

 Remark. This result contains Theorem 4 of [17]. Also, it is easily checked
 that if T is a positive linear map defined on a cofs and with values on a space
 of functions, then T satisfies Lebesgue's Monotone Convergence Theorem and
 Lebesgue's Dominated Convergence Theorem. This means that if {/n} is a
 sequence pointwise convergent to / and the sequence satisfies the further condi-
 tions of any of the two theorems mentioned previously, the sequence {T(/n)} con-
 verges pointwise to T(/). For example, let us suppose T : Q, - ► Ry, {fn : n € N}
 a sequence in ÎÎ which converges pointwise to /, and g G with |/n| < g for
 all n G N. For every y G Y, 6y o T is a positive functional on fi which, by
 Theorem 1, satisfies Lebesgue's Dominated Convergence Theorem. Thus / is
 Sy o T-integrable and {(<5y o T)(fn) : n G N} converges to Sy o T)(/). Since
 o T)(/n) = T(/n)(?/), if we define T(f)(y) = (¿y o T)(/), we obtain that
 {T(fn)} converges pointwise to T(f).
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