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Horn’s problem and Fourier analysis

Jacques Faraut

Let A and B be two n × n Hermitian matrices. Assume that the eigenvalues
α1, . . . , αn of A are known, as well as the eigenvalues β1, . . . , βn of B. What
can be said about the eigenvalues of the sum C = A+ B? This is Horn’s problem.
We revisit this question from a probabilistic viewpoint. The set of Hermitian
matrices with spectrum {α1, . . . , αn} is an orbit Oα for the natural action of the
unitary group U (n) on the space of n × n Hermitian matrices. Assume that
the random Hermitian matrix X is uniformly distributed on the orbit Oα and,
independently, the random Hermitian matrix Y is uniformly distributed on Oβ .
We establish a formula for the joint distribution of the eigenvalues of the sum
Z = X + Y . The proof involves orbital measures with their Fourier transforms,
and Heckman’s measures.

Introduction

Consider two Hermitian matrices A and B, and their sum C = A+ B. Assume that
the eigenvalues α1, . . . , αn of A and the eigenvalues β1, . . . , βn of B are known.
Here is Horn’s problem: what can be said about the eigenvalues γ1, . . . , γn of C?
Horn’s conjecture [1962] says that the set of possible eigenvalues γ1, . . . , γn for C
is determined by a family of inequalities of the form∑

k∈K

γk ≤
∑
i∈I

αi +
∑
j∈J

β j ,

for certain “admissible” triples (I, J, K ) of subsets of {1, 2, . . . , n}. Weyl inequal-
ities [1912] are of this type. Klyachko [1998] describes these admissible triplets in
terms of Schubert calculus. To a subset I ⊂ {1, . . . , n} one associates a Schubert
variety. The admissible triplets are those for which the associated Schubert varieties
have a nonempty intersection. We will not go further in this direction. See for
instance the survey paper [Bhatia 2001].

It is possible to consider Horn’s problem from a probabilistic point of view
(see [Frumkin and Goldberger 2006; Zuber 2018]). The set of n × n Hermitian
matrices X with eigenvalues α1, . . . , αn is an orbit Oα for the action of the unitary
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group U (n). Assume the random Hermitian matrix X to be uniformly distributed
on Oα and, independently, the matrix Y uniformly distributed on Oβ . The question
is now: what is the distribution of the eigenvalues γ1, . . . , γn of the sum Z = X+Y ?
We follow this approach to determine explicitly the distribution να,β .

The proof uses the celebrated Harish-Chandra–Itzykson–Zuber integral and Heck-
man’s measures. For α = (α1, . . . , αn) ∈ Rn the orbit

Oα = {U diag(α1, . . . , αn)U∗ |U ∈U (n)}

carries a natural probability, the orbital measure µα. The Fourier–Laplace trans-
form of µα is given by the Harish-Chandra–Itzykson–Zuber formula. Heckman’s
measure Mα is the projection of the orbital measure µα on the space of diagonal
matrices. Heckman [1982] studied this measure in a more general setting and
gave an explicit formula for it. Our main result is an explicit formula for the
distribution να,β (Theorem 4.1):

να,β = CnVn(x)
∑
σ∈Sn

ε(σ )δσ(α) ∗Mβ,

where Vn denotes the Vandermonde polynomial in n variables,

Vn(x)=
∏
i< j

(xi − x j ),

and Sn is the symmetric group which acts on Rn as follows:

σ((x1, . . . , xn))= (xσ(1), . . . , xσ(n)).

The support S(α, β) of the measure να,β is the set of possible systems of eigenval-
ues for the matrix C = A+B, if α1, . . . , αn are the eigenvalues of A and β1, . . . , βn

the eigenvalues of B.
Horn’s problem is related to representation theory. If α and β are highest weights

of two irreducible representations πα and πβ of the unitary group U (n), the spec-
trum of the tensor product πα⊗πβ is contained in the support of να,β . But we will
not consider this aspect of Horn’s problem. See [Fulton 1998; 2000; Knutson and
Tao 1999; Knutson et al. 2004].

We introduce in Section 1 the orbital measures on the space of Hermitian ma-
trices and the radial part of a measure which is invariant under the action of the
unitary group. In Section 2 we recall the Harish-Chandra–Itzykson–Zuber integral
and, in Section 3, some properties of Heckman’s measures. We state and prove
our main result in Section 4. The case of a rank-one matrix B is considered in
Section 5, and our result is compared to results of Frumkin and Goldberger [2006].
In Section 6 we give some formulas related to the case of 2× 2 real symmetric
matrices. We conclude with a few remarks.
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1. Orbital measures

Let Hn(R)= Sym(n,R), the space of n×n real symmetric matrices, and Hn(C)=

Herm(n,C), the space of n × n Hermitian matrices. For a matrix X ∈ Hn(F)

(F= R or C) the classical spectral theorem says that the eigenvalues are real and
the corresponding eigenspaces are orthogonal. We will denote by Dn the space of
real diagonal matrices, Dn ' Rn , and define the chamber

Cn = {(t1, . . . , tn) ∈ Rn
| t1 ≥ t2 ≥ · · · ≥ tn}.

Let Un(R) = O(n), the orthogonal group, and Un(C) = U (n), the unitary group.
The group Un(F) acts on the space Hn(F) by the transformations X 7→ UXU∗

(U ∈Un(F)). Let Oα denote the orbit of the diagonal matrix A = diag(α1, . . . , αn)

with (α1, . . . , αn) ∈ Cn:

Oα = {UAU ∗ |U ∈Un(F)}.

From the spectral theorem it follows that

Oα = {X ∈Hn(F) | spectrum(X)= {α1, . . . , αn}}.

The orbit Oα carries a natural probability measure: the orbital measure µα , which
is the image of the normalized Haar measure ω of the compact group Un(F) under
the map

Un(F)→Hn(F), U 7→UAU ∗.

For a continuous function f on Oα,∫
Oα

f (X)µα (d X)=
∫

Un(F)

f (UAU ∗)ω (dU ).

Let µ be a measure on Hn(F) which is invariant under Un(F). The integral of a
function f can be decomposed as follows∫

Hn(F)

f (X)µ (d X)=
∫

Rn

(∫
Un(F)

f (U diag(t1, . . . , tn)U∗)ω (dU )
)
ν (dt),

where ν is a measure on Rn which is invariant under the symmetric group Sn . For
a function F on Rn and σ ∈Sn∫

Rn
F(tσ(1), . . . , tσ(n))ν (dt)=

∫
Rn

F(t1, . . . , tn)ν (dt).

The measure ν is called the radial part of the measure µ. If µ is a probability
measure on Hn(F) which is Un(F)-invariant, its radial part ν is the joint distribution
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of the eigenvalues of a random matrix X whose distribution is the measure µ. For
instance, the radial part να of the orbital measure µα is

να =
1
n!

∑
σ∈Sn

δσ(α),

where σ(α)= (ασ(1), . . . , ασ(n)). If the measure µ has a density h with respect to
the Lebesgue measure m on the real vector space Hn(F), µ(d X) = h(X)m(d X),
then, by the Weyl integration formula,

ν(dt)= Ch(t)|Vn(t)|ddt1 · · · dtn,

where Vn is the Vandermonde polynomial,

Vn(t)=
∏

1≤i< j≤n

(ti − t j ),

d = 1 if F = R, d = 2 if F = C, and C is a constant which depends on d and n.
In this paper the radial part ν is defined as a Sn-invariant measure on Rn . It is
more usual to define the radial part as a measure on the chamber Cn . This is a
slight difference, but responsible, in some explicit formulas, for the appearance of
a factor n! which does not show up in some other papers.

Assume that the random Hermitian matrix X is uniformly distributed on the
orbit Oα , i.e., according to the orbital measure µα , and, independently the random
Hermitian matrix Y is uniformly distributed on Oβ , i.e., according to µβ . Then
the sum Z = X + Y is distributed according to the convolution product µα ∗µβ
and the joint distribution of the eigenvalues of Z is equal to the radial part να,β of
µα ∗µβ . In case of F= C we will determine explicitly the measure να,β by using
Fourier analysis (Theorem 4.1).

2. Fourier–Laplace transform

The Fourier–Laplace transform of a bounded measure µ on Hn(F) is given by

Fµ(Z)=
∫
Hn(F)

etr(Z X)µ (d X).

The function Fµ is defined on iHn(F). If the support of µ is compact, then Fµ
is defined on Sym(n,C) if F = R, on Mn(n,C) if F = C. If the measure µ is
Un(F)-invariant, its Fourier–Laplace transform Fµ is Un(F)-invariant as well and
determined by its restriction to the space Dn of diagonal matrices. For

Z = diag(z1, . . . , zn), z = (z1, . . . , zn) ∈ Cn,

T = diag(t1, . . . , tn), t = (t1, . . . , tn) ∈ Rn,
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define the function

En(z, t)=
∫

Un(F)

etr(ZU T U∗)ω (dU ).

The Fourier–Laplace transform of a Un(F)-invariant bounded measure µ can be
written, for Z = diag(z1, . . . , zn),

Fµ(Z)=
∫

Rn
En(z, t)ν (dt),

where ν is the radial part of µ. Observe that the Fourier–Laplace transform of the
orbital measure µα is given by

Fµα(Z)= En(z, α).

Since F(µα∗µβ)=FµαFµβ , we obtain the following key relation for determining
the measure να,β .

Proposition 2.1. The measure να,β is determined by the relation, for z ∈ Cn ,∫
Rn

En(z, t)να,β (dt)= En(z, α)En(z, β).

This relation is nothing but the product formula for the spherical functions of
the following Gelfand pair (G, K ):

G =Un(F)nHn(F), K =Un(F).

The group G acts on Hn(F) by the transformations

g · X =UXU∗+ A (g = (U, A)).

A function f on G which is K -biinvariant can be seen as a Un(F)-invariant function
on Hn(F) and such a function only depends on the eigenvalues. Hence we can
identify a K -biinvariant function f on G to a Sn-invariant function F on Rn:

f (g)= F(t1, . . . , tn),

if t1, . . . , tn are the eigenvalues of g · 0. The spherical functions of the Gelfand pair
(G, K ) are given by

ϕz(g)= En(z, t) (t = (t1, . . . , tn), z ∈ Cn).

They satisfy the functional equation:∫
K
ϕz(g1Ug2)ω (dU )= ϕz(g1)ϕz(g2) (g1, g2 ∈ G).

With the identifications

ϕz(g1)= En(z, α), ϕz(g2)= En(z, β)
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the functional equation can be written as∫
Rn

En(z, t)να,β (dt)= En(z, α)En(z, β).

For this viewpoint see the inspiring paper [Berezin and Gelfand 1962]. See also the
recent paper [Kuijlaars and Román 2016]. Closely related are the papers [Dooley
et al. 1993; Graczyk and Sawyer 2002], and Section 7 in [Rösler 2003].

In the case F= C, there is an explicit formula for En(z, t), the Harish-Chandra–
Itzykson–Zuber formula [Itzykson and Zuber 1980]. In fact it is a special case of a
formula established by Harish-Chandra [1957] for the adjoint action of a compact
Lie group on its Lie algebra.

Theorem 2.2. Let A, B,∈ Hn(C) with eigenvalues α1, . . . , αn and β1, . . . , βn .
Then ∫

Un(C)

etr(AU BU∗)ω (dU )= δn!
1

Vn(α)Vn(β)
det(eαiβ j )1≤i, j≤n,

where δn = (n− 1, n− 2, . . . , 1, 0), δn! = (n− 1)!(n− 2)! · · · 2!.

Then we get

En(z, t)= δn!
1

Vn(z)Vn(t)
det(ezi t j )1≤i, j≤n.

The formula can be seen as the Fourier–Laplace transform of an orbital measure:

Fµα(Z)= δn!
1

Vn(z)Vn(α)
det(eziα j )1≤i, j≤n,

for Z = diag(z1, . . . , zn).

3. Heckman’s measure

Let us consider the projection q of the space Hn(F) onto the subspace Dn ' Rn of
real diagonal matrices,

q :Hn(F)→ Rn, X 7→ (x1, . . . , xn), xi = X i i .

Recall Horn’s convexity theorem [1954]: the image q(Oα) of the orbit Oα is equal
to the convex hull C(α) of the points σ(α),

q(Oα)= C(α) := Conv({σ(α) | σ ∈Sn}).

From now on, in this section, we assume F = C. The image Mα = q(µα) of
the orbital measure µα is called Heckman’s measure. In fact this measure has
been described by Heckman [1982] in a more general setting (see also [Duflo et al.
1984]). The measure Mα has support q(Oα) which is contained in the hyperplane
x1+ · · ·+ xn = α1+ · · ·+αn . It is symmetric, i.e., invariant under the group Sn ,
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acting by permuting the coordinates. If the eigenvalues α1, . . . , αn are distinct,
Heckman’s measure Mα is absolutely continuous with respect to the Lebesgue
measure of this hyperplane and its density is piecewise polynomial. These facts
have been established by Heckman. Let us recall their proof in the present special
case. For a bounded measure M on Rn we will denote by M̂ its Fourier–Laplace
transform:

M̂(z)=
∫

Rn
e(z|x)M (dx).

For α ∈ Rn with the αi all distinct, define the skew-symmetric measure

ηα =
δn!

Vn(α)

∑
σ∈Sn

ε(σ )δσ(α).

The Fourier–Laplace transform of ηα is given by

η̂α(z)=
δn!

Vn(α)

∑
σ∈Sn

ε(σ )e(z|σ(α)) =
δn!

Vn(α)
det(eziα j )1≤i, j≤n.

The map α 7→ ηα extends as a continuous map Rn
→ E ′(Rn), the space of distribu-

tions on Rn with compact support. In particular

η0 = Vn

(
∂

∂x

)
δ0.

Proposition 3.1. Heckman’s measure Mα satisfies the following equation

Vn

(
−
∂

∂x

)
Mα = ηα.

Proof. For a bounded measure µ on Hn(C), the Fourier–Laplace transform of the
projection M = q(µ) of µ on Dn is equal to the restriction to Dn of the Fourier–
Laplace transform of µ: M̂(z)= Fµ(Z), for Z = diag(z1, . . . , zn). Hence

M̂α(z)= Fµα(Z)= En(z, α).

Therefore, by the Harish-Chandra–Itzykson–Zuber formula (Theorem 2.2),

M̂α(z)= δn!
1

Vn(α)Vn(z)
det(eziα j )1≤i, j≤n =

1
Vn(z)

η̂α(z).

This equality, which can be written Vn(z)M̂α(z) = η̂α(z), means an equality be-
tween two Fourier–Laplace transforms of compactly supported distributions, and
implies the following differential equation

Vn

(
−
∂

∂x

)
Mα = ηα. �
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For solving this equation we will use an elementary solution of the differential
operator Vn

(
∂
∂x

)
. Let us define the distribution En on Rn:

〈En, ϕ〉 =

∫
R

n(n−1)/2
+

ϕ

(∑
i< j

ti jεi j

)
dti j ,

where εi j = ei − e j ({e1, . . . , en} is the canonical basis of Rn).

Proposition 3.2. The distribution En is an elementary solution of the differential
operator Vn

(
∂
∂x

)
:

Vn

(
∂

∂x

)
En = δ0.

The support of En is the convex cone in the hyperplane x1+ · · ·+ xn = 0 generated
by the vectors εi j , with i < j . The distribution En is absolutely continuous with
respect to the Lebesgue measure of the hyperplane x1 + · · · + xn = 0. The cone
supp(En) decomposes into a finite union of cones, and the restriction of the density
to each of these cones is a polynomial, homogeneous of degree 1

2(n− 1)(n− 2).

Proof. The differential operator Vn
(
∂
∂x

)
is a product of degree one differential

operators:

Vn

(
∂

∂x

)
=

∏
i< j

(
∂

∂xi
−

∂

∂x j

)
.

An elementary solution of ∂
∂xi
−

∂
∂x j

is the Heaviside distribution Yi j defined by

〈Yi j , ϕ〉 =

∫
∞

0
ϕ(tεi j ) dt.

Hence the convolution product

En =

∗∏
i< j

Yi j

is an elementary solution of Vn
(
∂
∂x

)
. �

For a function ϕ define ϕ̌(x)= ϕ(−x), and for a distribution T , 〈Ť , ϕ〉 = 〈T, ϕ̌〉.

Theorem 3.3. The Heckman measure Mα is given by

Mα = Ěn ∗ ηα.

If the αi are all distinct, the measure Mα is absolutely continuous with respect to
the Lebesgue measure of the hyperplane x1+· · ·+xn =α1+· · ·+αn and the density
is piecewise polynomial. This density is continuous for n ≥ 3. The map α 7→ Mα

extends as a continuous map Rn
→M1

c(R
n), the set of probability measures on Rn

with compact support.
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Proof. Let F and G be distributions on Rn . Assume the support of F to be compact.
Let D = P

(
∂
∂x

)
be a differential operator with constant coefficients. Then

DF ∗G = F ∗ DG = D(F ∗G).

Therefore

Ěn ∗ Vn

(
−
∂

∂x

)
Mα = Vn

(
−
∂

∂x

)
Ěn ∗Mα = Mα.

By Proposition 3.1,

Vn

(
−
∂

∂x

)
Mα = ηα.

Hence
Mα = Ěn ∗ ηα. �

Example 3.4. n = 2 The elementary solution E2 is given by

〈E2, ϕ〉 =

∫
∞

0
ϕ(tε1,2) dt.

In the present case

S2 = {Id, τ }, τ : (x1, x2) 7→ (x2, x1).

By Theorem 3.3,

〈Mα, ϕ〉 =
1

α1−α2

(∫
∞

0
ϕ(α− t1ε1,2) dt1−

∫
∞

0
ϕ(τ(α)− t2ε1,2) dt2

)
.

=

∫ 1

0
ϕ((1− t)α+ tτ(α)) dt.

The support of Mα is the segment [α, τ(α)].

Example 3.5. n = 3 The elementary solution E3 is given by

〈E3, ϕ〉 =

∫
(R+)3

ϕ(uε1,2+ vε2,3+wε1,3) du dv dw

=

∫
(R+)3

ϕ((u+w)ε1,2+ (v+w)ε2,3) du dv dw.

=

∫
{0≤w≤s,0≤w≤t}

ϕ(sε1,2+ tε2,3) ds dt dw

=

∫
(R+)2

inf(s, t)ϕ(sε1,2+ tε2,3) ds dt.

Hence the support of E3 is the angle defined by the rays generated by ε1,2 and ε2,3

with density, if x = sε1,2+ tε2,3, f (x)= inf(s, t).
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(α1, α2, α3)(α2, α1, α3)

(α3, α1, α2)

(α3, α2, α1) (α2, α3, α1)

(α1, α3, α2)

ε12

ε23 ε13

Figure 1. Heckman’s measure, n = 3. For α1 > α2 > α3, the
support of the measure Mα is the convex hull of the six points σ(α)
(σ ∈S3). The density of Mα is affine linear in the three trapezia
(trapezoids) around the rim and in the intervening triangles, and
constant in the central triangle.

4. The radial part of the convolution product of two orbital measures

Recall that να,β denotes the radial part of the convolution product µα ∗µβ . (The
convolution is with respect to Hn(F).) By Proposition 2.1, the measure να,β is
determined by the relation∫

Rn
En(z, t)να,β (dt)= En(z, α)En(z, β).

Theorem 4.1. Assume that F= C, the eigenvalues α1, . . . , αn are distinct, and the
eigenvalues β1, . . . , βn are distinct as well. The radial part να,β is given by

να,β =
1
n!

1
δn!

Vn(x) Mα ∗ ηβ =
1
n!

1
δn!

Vn(x) ηα ∗Mβ,

or

να,β =
1
n!

Vn(x)
Vn(α)

∑
σ∈Sn

ε(σ )δσ(α) ∗Mβ .
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The map (α, β) 7→ να,β extends continuously as a map Rn
×Rn

→M1
c(R

n).

Here the convolutions are with respect to Rn . The measure να,β is a Sn-invariant
probability measure on Rn . Observe that

να,0 = να =
1
n!

∑
σ∈Sn

δσ(α).

Theorem 4.1 is related to Theorem 3.4 in [Dooley et al. 1993] and to Theorem 2.1
in [Graczyk and Sawyer 2002]. A similar result, but slightly different, is given in
[Rösler 2003, p.2436].

Proof. Define ν = Vn(x) Mα ∗ ηβ and let us compute

I (z)=
∫

Rn
En(z, x)ν (dx).

The measure Mα is symmetric and ηβ is skew symmetric, therefore M = Mα ∗ ηβ

is skew symmetric as is its Fourier–Laplace transform M̂ . We obtain

I (z)=
δn!

Vn(z)

∫
Rn

det(ezi x j )1≤i, j≤n M (dx)

=
δn!

Vn(z)

∑
σ∈Sn

ε(σ )

∫
Rn

e(σ (z)|x)M (dx)

=
δn!

Vn(z)

∑
σ∈Sn

ε(σ )M̂(σ (z))=
δn!

Vn(z)
n!M̂(z).

Since

M̂(z)= M̂α(z)η̂β(z)= En(z, α)
δn!

Vn(β)
det(eziβ j )1≤i, j≤n,

we obtain
I (z)= n!δn!E(z, α)E(z, β).

By Proposition 2.1 this proves the formula of Theorem 4.1. �

Recall that S(α, β) denotes the support of the measure να,β . The Sn-invariant
compact set S(α, β)⊂Rn is the set of possible systems of eigenvalues for C= A+B,
if α1, . . . , αn are the eigenvalues of A and β1, . . . , βn the eigenvalues of B.

Corollary 4.2. (i) We have the following inclusion:

S(α, β)⊂
⋃
σ∈Sn

(σ (α)+C(β)).

(ii) If
min
i< j
(αi −α j )≥max

k,`
|βk −β`|,
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then:
S(α, β)∩Cn = α+C(β).

Recall that C(β) is the convex hull of the points σ(β) (σ ∈Sn), and Cn is the
chamber:

Cn = {t = (t1, . . . , tn) ∈ Rn
| t1 ≥ · · · ≥ tn}.

Part (i) is related to Lidskii’s theorem [1950] and can be equivalently written as a
system of inequalities ∑

k∈K

xk ≤
∑
i∈I

αi +
∑
j∈J

β j ,

with suitable triples {I, J, K }. See [Bhatia 2001, p.295; 1997, Theorem II.1.10].

Proof.

(a) The support of the measure ηα is the orbit of α under the action of Sn ,

supp(ηα)= {σ(α) | σ ∈Sn},

and, by Horn’s Theorem, the support of Heckman’s measure Mβ is

supp(Mβ)= q(Oβ)= C(β).

Statement (i) follows since

supp(ηα ∗Mβ)⊂ supp(ηα)+ supp(Mβ).

In general this is an inclusion and not an equality, because the measure ηα has
positive and negative parts, and cancellations are possible.

(b) Under the condition

min
i< j
(αi −α j ) >max

k,`
|βk −β`|,

the sets σ(α)+C(β) are disjoint and there is one of them in each chamber σ(Cn)

(σ ∈Sn). Hence no cancellation is possible. �

Theorem 4.1 can be extended as follows. For α, β, γ ∈ Rn , the radial part of
µα ∗µβ ∗µγ is given by

να,β,γ =
1
n!

1
δn!

Vn(x)ηα ∗Mβ ∗Mγ .

This generalizes to any finite convolution product. For α(1), . . . , α(k) ∈ Rn , the
radial part of µα(1) ∗ · · · ∗µα(k) is given by

να(1),...,α(k) =
1
n!

1
δn!

Vn(x)ηα(1) ∗Mα(2) ∗ · · · ∗Mα(k) .
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Example 4.3. n = 2 We use the same notation as in Example 3.4. We saw that

〈Mα, ϕ〉 =

∫ 1

0
ϕ((1− t)α+ tτ(α)) dt.

In this special case, with a := V2(α)= α1−α2, the measure ηα is

ηα =
1
a (δα − δτ(α)).

One can check the following formula for the Fourier–Laplace transform of ηα:

η̂α(z)= ez1+z2)(α1+α2)/2 1
a (e

a(z1−z2)/2− e−a(z1−z2)/2).

By Theorem 4.1,

να,β =
1
2 V2(x) Mα ∗ ηβ =

1
2 V2(x) ηα ∗Mβ .

Let us explicit the measure να,β by using the second expression:

〈να,β, ϕ〉 =
1

2a

∫ 1

0
(a+ (1− 2t)b)ϕ((1− t)(α+β)+ t (α+ τ(β))) dt

+
1

2a

∫ 1

0
(a− (1− 2t)b)ϕ((1− t)(τ (α)+β)+ t (τ (α)+ τ(β))) dt,

where b = V2(β) = β1 − β2. The support S(α, β) of να,β is the union of two
segments. If a < b, then

S(α, β)= [α+β, α+ τ(β)] ∪ [τ(α)+β, τ(α)+ τ(β)].

If a < b, there are some cancellations and one obtains

S(α, β)= [α+β, τ(α)+β] ∪ [α+ τ(β), τ (α)+ τ(β)],

and one checks the symmetry νβ,α = να,β .

5. The case of a rank-one matrix B

In this section we consider the special case of a rank-one matrix B. In such a case
β = (b, 0, . . . , 0) with b > 0 or β = (0, . . . , 0, b) with b < 0. We assume first that
β = (1, 0, . . . , 0). The orbit Oβ is the set of Hermitian matrices Y = (ui u j ), where
u = (u1, . . . , un) is a unit vector, u ∈ S(Fn). In case of F= R, the orbit Oβ can be
identified with S(Rn)/{+1,−1}n and, in case of F= C, with S(Cn)/Tn .

Recall that q denotes the projection q :Hn(F)→ Dn ' Rn . Then

q(Oβ)= {(|u1|
2, . . . , |un|

2) | u ∈ S(Fn)}
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α

α+β

ε =+1 ε =−1

Figure 2. Support S(α, β) of να,β , α = (3, 0,−3), β = (1, 0,−1).
The support is the union of the six hexagons.

is the simplex 6n =Conv(e1, . . . , en) contained in the hyperplane x1+· · ·+xn = 1.
The orbital measure µβ is the image of the normalized uniform measure on the
sphere S(Fn).

We assume that F= C for the rest of this section.

Proposition 5.1. Heckman’s measure Mβ = q(µβ) is the normalized uniform mea-
sure on the simplex Conv(e1, . . . , en), i.e., the normalized restriction to the simplex
6n of the Lebesgue measure of the hyperplane x1+ · · ·+ xn = 1.

Proof. The image of the normalized uniform measure on the sphere S(Cn) under
the map

S(Cn)→6n, u 7→ (|u1|
2, . . . , |un|

n),

is the normalized restriction to 6n of the Lebesgue measure on the hyperplane
x1+ · · ·+ xn = 1. �

Consider on the hyperplane x1+ · · ·+ xn = 1 the differential form

w = dx1 ∧ · · · ∧ dxn−1.

Then ∫
6n

w =
1

(n− 1)!
,
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α

α+β

ε =+1 ε =−1

Figure 3. Support S(α, β) of να,β , α = (3, 0,−3), β = (2, 0,−2).
The support is the union of the six hexagons.

and Heckman’s measure Mβ can be given by

〈Mβ, ϕ〉 = (n− 1)!
∫
6n

ϕ(x)w.

Whereas it will not be used in the sequel we give a formula for the Fourier–
Laplace transform of Heckman’s measure Mβ in this special case:

M̂β(z)=
∫

Rn
e(z|x)Mβ (dx)= (n− 1)!

1
Vn(z)

∣∣∣∣∣∣∣∣∣∣∣

ez1 · · · ezn

zn−2
1 · · · zn−2

n
...

...

z1 · · · zn

1 · · · 1

∣∣∣∣∣∣∣∣∣∣∣
.

(This formula can be obtained by using Theorem 4.1 in [Faraut 2015].)
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Recall that, for α= (α1, . . . , αn)∈Cn , να,β denotes the radial part of the measure
µα ∗µβ . The following result has been obtained by Frumkin and Goldberger [2006,
Theorem 6.1 and Theorem 6.7].

Theorem 5.2. Assume that β = (b, 0, . . . , 0) with b > 0.

(i) The support S(α, β) of να,β is given by

S(α, β)∩Cn ={x ∈Rn
| x1≥α1≥ · · ·≥ xn ≥αn, x1+· · ·+xn =α1+· · ·+αn+b}.

(ii) The measure να,β is absolutely continuous with respect to the Lebesgue mea-
sure of the hyperplane x1+ · · ·+ xn = α1+ · · ·+αn + b with the density

h(x)=
1
n

1
bn−1

1
Vn(α)

Vn(x).

(It is assumed that the Lebesgue measure on the hyperplane x1 + · · · + xn =

α1+ · · ·+αn + b is associated to the differential form w = dx1 ∧ · · · ∧ dxn−1.)
The inclusion

S(α, β)∩Cn ⊂{x ∈Rn
| x1≥α1≥ · · ·≥ xn ≥αn, x1+· · ·+xn =α1+· · ·+αn+b}.

can be found in [Horn and Johnson 1985, Theorem 4.3.4].
By Theorem 4.1, the density is given in the present case by

h(x)=
1
n

Vn(x)
Vn(α)

∑
σ∈Sn

ε(σ )
1

bn−1χ

(
x − δσ(α)

b

)
,

where χ is the indicatrix of the simplex 6n .
Let us comment how Theorem 5.2 is related to Theorem 4.1 and Corollary 4.2.

The conditions in (i) can be split in two parts:

(I) x1 ≥ α1, . . . , xn ≥ αn, x1+ · · ·+ xn = α1+ · · ·+αn + b.

(II) x2 ≤ α1, . . . , xn ≤ αn−1.

Let us introduce barycentric coordinates si :

xi = αi + bsi (i = 1, . . . , n).

Conditions (I) gives

s1 ≥ 0, . . . , sn ≥ 0, s1+ · · ·+ sn = 1,

which means that x ∈ α+ b6n . If

b ≤ αi−1−αi (i = 2, . . . , n),

then (I) implies (II). Therefore, in this case, S(α, β)∩Cn = α+ b6n .
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ε =+1 ε =−1

Figure 4. n = 3. Support S(α, β) of να,β with α = (3, 0,−3) and
β = (3, 0, 0) ∼ (2,−1,−1). The support is the union of the six
triangles.

The measure να,β does not change essentially if one replaces α = (α1, . . . , αn)

by (α1+ c, . . . , αn + c) and β = (β1, . . . , βn) by (β1+ d, . . . , βn + d) (c, d ∈ R).
We will write (α1+ c, . . . , αn + c)∼ (α1, . . . , αn). Hence in this section we have
considered the case where B has an eigenvalue of multiplicity n− 1 rather than
having rank one.

In general there are cancellations which should correspond to conditions (II).

6. Real symmetric matrices, n = 2

In the case of real symmetric matrices, we know explicitly Heckman’s measure
and the measure να,β only in case of n = 2. For α = (α1, α2), the orbit Oα is the
set of the matrices(

cos θ −sin θ
sin θ cos θ

)(
α1 0
0 α2

)(
cos θ sin θ
−sin θ cos θ

)
=

(
α1 cos2 θ +α2 sin2 θ (α1−α2) cos θ sin θ
(α1−α2) cos θ sin θ α1 sin2 θ +α2 cos2 θ

)
.
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ε =+1 ε =−1

Figure 5. n = 3. Support S(α, β) of να,β with α = (3, 0,−3) and
β = (6, 0, 0) ∼ (4,−2,−2). The support is the union of the six
large gray triangles, minus their six intersections.

As in the case of 2× 2 Hermitian matrices, the image of the orbit Oα under the
projection q :H2(R)→ D2 ' R2 is the segment [α, τ(α)]. The projection Mα of
the orbital measure µα is given by

〈Mα, ϕ〉 =
1

2π

∫ 2π

0
ϕ(α1 cos2 θ +α2 sin2 θ, α1 sin2 θ +α2 cos2 θ) dθ

=
1
π

∫ 1

0
ϕ((1− t)α+ tτ(α))

dt
√

t (1− t)
.

Proposition 6.1. Let J0 be the Bessel function of index 0. The Fourier–Laplace
transform of the orbital measure µα is given, if Z = diag(z1, z2), by

Fµα(iZ)= M̂α(iz)=
∫

R2
ei(z1x1+z2x2)Mα (dx)=e

1
2 (z1+z2)(α1+α2)J0

( 1
2(z1−z2)(α1−α2)

)
.
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Proof. By the previous formula

M̂α(i z)=
1
π

∫ 1

0
ei(z |(1−t)α+tτ(α)) dt

√
t (1− t)

.

Put t = 1
2(1− cos θ). Then

1− t = 1
2(1+ cos θ), dt = 1

2 sin θdθ,

and

(z | (1− tα+ tτ(α)))= 1
2(z1+ z2)(α1+α2)+

1
2(z1− z2)(α1−α2) cos θ.

We obtain

M̂α(i z)= 1
π

ei(z1+z2)(α1+α2)/2
∫ π

0
ei(z1−z2)(α1−α2) cos θ/2 dθ.

Recall the following integral formula for the Bessel function J0:

J0(ζ )=
1
π

∫ π

0
eiζ cos θdθ. �

We introduce the following notation: for α = (α1, α2), and β = (β1, β2),

τ = α1+α2+β1+β2, a = α1−α2, b = β1−β2.

If a, b, c are the three wedges of a triangle, we denote by 1(a, b, c) the area of
this triangle. Recall the classical formula

1(a, b, c)2 = p(p− a)(p− b)(p− c),

where p is half the perimeter of the triangle.

Theorem 6.2. The measure να,β is given by

〈να,β, ϕ〉 =
1

8π

∫ a+b

|a−b|
ϕ
( 1

2(τ + r)e1+
1
2(τ − r)e2

) 2rdr
1(a, b, r)

+
1

8π

∫ a+b

|a−b|
ϕ
( 1

2(τ − r)e1+
1
2(τ + r)e2

) 2r dr
1(a, b, r)

.

Proof. Recall the product formula for the Bessel function J0:

J0(ζa)J0(ζb)= 1
π

∫ π

0
J0(ζ

√
a2+ b2+ 2ab cos θ) dθ.

This can be written

J0(ζa)J0(ζb)=
1
π

∫ a+b

|a−b|
J0(ζr)

2r dr√
(2ab)2− (a2+ b2− r2)2

.
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Since

(2ab)2−(a2
+b2
−r2)2= (a+b+r)(a+b−r)(r+a−b)(r−a+b)=161(a, b, r)2,

it can also be written

J0(ζa)J0(ζb)= 1
2π

∫ a+b

|a−b|
J0(ζr)

r dr
1(a, b, r)

.

It follows that the function E2(z, α) satisfies the following product formula

E2(z, α)E2(z, β)=
1

2π

∫ a+b

|a−b|
E2(z, ρ)

r dr
1(a, b, r)

,

with ρ = (ρ1, ρ2), r = ρ1−ρ2. By Proposition 2.1, this establishes Theorem 6.2. �

Remarks

In the case of the space of real symmetric matrices Hn(R), with the action of
the orthogonal group O(n), for n ≥ 3, we don’t know any explicit formula for
Heckman’s measure, and for the measures να,β . This setting is natural, however
the problem is more difficult than in the case of the space of Hermitian matrices,
and one should not expect any explicit formula. See the recent paper [Coquereaux
and Zuber 2018]. However the supports should be the same as in the case of Hn(C)

with the action of the unitary group U (n), according to [Fulton 1998, p.265; 2000,
Section 10.7].

There should be an analogue of the results presented in this paper in case of
pseudo-Hermitian matrices. In this setting an analogue of Horn’s conjecture has
been established in [Foth 2010]. An analogue of Theorem 4.1 could probably be
obtained by using a formula for the Laplace transform of an orbital measure for the
action of the pseudounitary group U (p, q) on the space Hn(C

n) (n = p+ q). This
formula is due Ben Saïd and Ørsted [2005]. A related problem has been studied
by using this formula in [Faraut 2017].

More generally one could consider Horn’s problem for the adjoint action of a
compact Lie group on its Lie algebra. The Fourier transform of an orbital measure
is explicitly given by the Harish-Chandra integral formula [1957]. Heckman’s
paper [1982] is written in this framework. One can expect that there is an analogue
of Theorem 4.1 in this setting. In particular one can consider the action of the
orthogonal group on the space of real skew-symmetric matrices. See [Zuber 2018]
and, for a different problem, [Zubov 2016].

One observes some similarity between the results in [Frumkin and Goldberger
2006], stated in Theorem 5.2, and the classical Cauchy interlacing properties together
with Baryshnikov’s formula. See [Baryshnikov 2001; Olshanski 2013; Faraut
2015]. There should be an explanation.
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