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QUANTUM TRANSPORT IN A LOW-DENSITY PERIODIC POTENTIAL:
HOMOGENISATION VIA HOMOGENEOUS FLOWS

JORY GRIFFIN AND JENS MARKLOF

We show that the time evolution of a quantum wavepacket in a periodic potential converges in a combined
high-frequency/Boltzmann–Grad limit, up to second order in the coupling constant, to terms that are
compatible with the linear Boltzmann equation. This complements results of Eng and Erdős for low-
density random potentials, where convergence to the linear Boltzmann equation is proved in all orders. We
conjecture, however, that the linear Boltzmann equation fails in the periodic setting for terms of order 4
and higher. Our proof uses Floquet–Bloch theory, multivariable theta series and equidistribution theorems
for homogeneous flows. Compared with other scaling limits traditionally considered in homogenisation
theory, the Boltzmann–Grad limit requires control of the quantum dynamics for longer times, which are
inversely proportional to the total scattering cross-section of the single-site potential.
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1. Introduction

The analysis of wave transport in periodic media plays an important role in explaining numerous physical
phenomena, most notably in solid state physics, continuum mechanics and optics. A key challenge is
the derivation of macroscopic transport equations from the underlying microscopic laws, and to thus
describe effects on scales which are several orders of magnitude above the length scale given by the
period of the medium. Semiclassical analysis and homogenisation theory have produced a remarkable
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Figure 1. Illustration of a wavepacket at time t = 0 with wavelength h in a Zd -periodic
potential with interaction regions of diameter 2r . For small r , the classical mean-free
path length in this setting is of the order r1−d.

collection of results in scaling limits where the characteristic wavelength is either much larger than the
period (low-frequency homogenisation) or of the same or smaller order (high-frequency homogenisation);
see for example [Allaire and Piatnitski 2005; Benoit and Gloria 2017; Bensoussan et al. 1978; Birman and
Suslina 2003; Craster et al. 2010; Gérard 1991; Gérard et al. 1997; Harutyunyan et al. 2016; Markowich
et al. 1994; Panati et al. 2003].

Here we study the limit when the diameter 2r of the interaction region in each fundamental cell is signif-
icantly smaller than the period, and the wavelength h is comparable to the interaction region; see Figure 1.

Such a scaling, which is not traditionally discussed in high-frequency homogenisation, is motivated
by the desire to understand the Boltzmann–Grad limit of particle transport in crystals. This problem is
currently only understood (a) in the case of zero quasimomentum [Castella 1999; 2001; Castella and
Plagne 2002], (b) in the classical limit [Caglioti and Golse 2010; Marklof and Strömbergsson 2008; 2010;
2011a; 2011b], and (c) when the medium is random rather than periodic, in both the classical [Gallavotti
1969; Spohn 1978; Boldrighini et al. 1983] and quantum settings [Eng and Erdős 2005] (see also [Erdős
and Yau 2000; Spohn 1977] for the weak-coupling limit and [Bal et al. 1999; 2002; 2011] for related
models). In the random setting — classical and quantum — the limit transport equation is proved to be the
linear Boltzmann equation, as predicted in [Lorentz 1905].

The linear Boltzmann equation for a particle density f (t, x, y) at time t , where x denotes position and
y momentum, is given by

∂t f (t, x, y)+ y · ∇x f (t, x, y)= ρ(x)
∫

Rd
6( y, y′) [ f (t, x, y′)− f (t, x, y)] d y′, (1-1)

subject to initial data f (0, x, y)= a(x, y). The collision kernel 6( y, y′) is determined by the single-site
scattering potential, and can be interpreted as the rate of particles with velocity y being scattered to
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velocity y′ (or vice versa). The quantity ρ(x) denotes the macroscopic scatterer density at x, which for a
homogeneous medium means ρ(x) is constant. In the absence of scatterers ρ(x)= 0, and the solution of
(1-1) is f (t, x, y)= a(x− t y, y), which is consistent with free transport. In the case of a single scatterer,
classical and semiclassical scattering theory yields a linear Boltzmann equation with ρ(x)= δ(x) [Nier
1995]. See also [Nier 1996], in particular Section 7.2, for the case when ρ(x) is an infinite superposition
of point masses in dimension d = 1.

The principal result of the present work establishes convergence in the Boltzmann–Grad limit for the
quantum periodic setting, at least up to second order in the coupling constant. Perhaps surprisingly, and
unlike the classical case [Golse 2008], this limit is compatible with the linear Boltzmann equation. We
nevertheless conjecture that higher-order terms in the coupling constant are incompatible, and that in
particular the limit process does not satisfy the linear Boltzmann equation. A heuristic description of the
full limit process will be provided elsewhere [Griffin and Marklof ≥ 2019].

A technical step in this paper is to generalise the limit theorems for multivariable theta series, which
were employed in the proof of the Berry–Tabor conjecture for the Laplacian on tori with quasiperiodic
boundary conditions [Marklof 2002; 2003]. Crucial ingredients in the proofs of these statements are
equidistribution results for homogeneous flows against unbounded test functions, which require estimates
on the escape of mass into the cusp of the relevant homogeneous space. The results in [Marklof 2002;
2003] are based on Ratner’s measure classification theorem and are therefore ineffective. The recent
paper [Strömbergsson and Vishe 2018] provides effective rate-of-convergence estimates in this context
(we will not need these for the present study).

Given initial data f0 in the Schwartz class S(Rd) and scaling parameter h > 0, the quantum amplitude
f (t, x) at time t is given by the Schrödinger equation

i
h

2π
∂t f (t, x)= Hh,λ f (t, x), f (0, x)= f0(x), (1-2)

with quantum Hamiltonian

Hh,λ = Hh,0+ λOp(V ), Hh,0 =−
h2

8π2 1. (1-3)

Here 1 is the standard Laplacian in Rd, and Op(V ) denotes multiplication by the Zd -periodic potential

V (x)= Vr (x)=
∑

m∈Zd

W (r−1(x+m)), (1-4)

with a fixed single-site potential W. We will assume from here onwards that d ≥ 2 and that W ∈ S(Rd) is
real-valued.

We expect that our analysis can be extended to scatterer configurations where Zd is replaced by an
arbitrary Euclidean lattice L of full rank in Rd, and more generally to locally finite L-periodic point sets.
This requires, however, a substantial generalisation of the asymptotics discussed in Section 7, which are
based on limit theorems for the pair correlation of general positive definite quadratic forms. The latter
are currently understood, in the necessary scaling regime, only in dimension d = 2 [Eskin et al. 2005;
Margulis and Mohammadi 2011].
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The quantities r, λ > 0 are scaling parameters which we will refer to as the scattering radius and
coupling constant respectively. The operator Hh,λ can be realised as the Weyl quantisation of the
classical Hamiltonian H cl

λ (x, y)= 1
2‖ y‖2+λV (x). The solution of (1-2) can be represented as f (t, x)=

Uh,λ(t) f0(x) with
Uh,λ(t)= e(−Hh,λt/h), e(z) := e2π iz. (1-5)

To characterise the asymptotic behaviour of the quantum dynamics, it will be convenient to use the time
evolution of linear operators A(t) (“quantum observables”) given by the Heisenberg evolution

A(t)=Uh,λ(t) A Uh,λ(t)−1. (1-6)

We will use the L2 inner product

〈a, b〉 =
∫

Rd×Rd
a(x, y) b(x, y) dx d y, (1-7)

and the Hilbert–Schmidt inner product

〈A, B〉HS = Tr AB†. (1-8)

As is standard in semiclassics, we will measure momentum in units of h, and use the rescaling a(x, y) 7→
hd/2a(x, h y); the normalisation is chosen so that the L2-norm is preserved. In the classical picture of
a point particle moving through an infinite field of scatterers, the Boltzmann–Grad scaling limit is one in
which the radius of the scatterers is taken to zero, while space and time are simultaneously rescaled in order
to ensure the mean-free path length and mean-free flight time remain finite. The classical mean-free path
length scales like r1−d, and so we define the semiclassical Boltzmann–Grad scaling of a ∈ S(Rd

×Rd) by

Dr,ha(x, y)= rd(d−1)/2hd/2 a(rd−1x, h y), (1-9)

where again the normalisation is chosen so that Dr,h preserves the inner product (1-7). To ensure that the
mean-free flight time remains of constant order as r→ 0 we similarly rescale time by a factor of r1−d.

We denote by Op(a) the standard Weyl quantisation of a ∈ S(Rd
×Rd):

Op(a) f (x)=
∫

Rd×Rd
a
( 1

2(x+ x′), y
)

e((x− x′) · y) f (x′) dx′ d y, (1-10)

where f ∈ S(Rd). We furthermore define the corresponding scaled quantisation by Opr,h = Op ◦Dr,h ,
and set Oph = Op1,h .

Throughout this paper we will consider the scaling limit where the quantum wavelength is of the same
order as the scattering radius r ; i.e., h = h0r where h0 is a fixed constant. By a simple scaling argument,
we may assume without loss of generality that h0 = 1.

Conjecture 1.1. There exists a family of linear operators L(t) : L1(Rd
×Rd)→ L1(Rd

×Rd) such that

(i) for all a, b ∈ S(Rd
×Rd), A = Opr,h(a), B = Opr,h(b), λ > 0 and t > 0,

lim
h=r→0

〈A(tr1−d), B〉HS = 〈L(t)a, b〉, (1-11)

(ii) L(t)a(x, y) is in general not a solution of the linear Boltzmann equation.
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Section A in the appendix provides an interpretation of 〈A(tr1−d), B〉HS in terms of the phase-space
distribution of a solution f (t, x) of the Schrödinger equation (1-2) with initial condition

f0(x)= rd(d−1)/2φ(rd−1x) e( p · x/h) (1-12)

for φ ∈ S(Rd) and p ∈ Rd. A schematic drawing of the initial wavepacket f0 is given in Figure 1 (shown
is the positive real part of f0).

In the case of random (rather than periodic) scatterer configurations, [Eng and Erdős 2005] proves
convergence to a limit L(t)a(x, y), which in fact is a solution to the linear Boltzmann equation with the
standard quantum mechanical collision kernel

6( y, y′)= 8π2 δ(‖ y‖2−‖ y′‖2)|T ( y, y′)|2. (1-13)

Here T ( y, y′) is the kernel of the T -matrix in momentum representation. It is related to the quantum
scattering cross-section by the formula (see [Nier 1995, Appendix A])

σ( y, y′)= 4π2
‖ y‖d−3

|T ( y, y′)|2. (1-14)

The Born approximation for the T -matrix yields Fermi’s golden rule,

62( y, y′)= 8π2 δ(‖ y‖2−‖ y′‖2)|Ŵ ( y− y′)|2, (1-15)

where Ŵ is the Fourier transform of the single-site potential W.
We will use a perturbative approach to provide evidence for Conjecture 1.1: The present paper

establishes convergence up to second order in the coupling constant λ, where all terms are consistent
with the linear Boltzmann equation. Based on this analysis, we develop in [Griffin and Marklof ≥ 2019]
a heuristic model for higher-order terms, some of which do not match the linear Boltzmann equation;
this provides support for the second assertion of Conjecture 1.1. To formulate the main theorem of the
present paper, consider the formal expansion

L(t)∼
∞∑

n=0

Ln(t)λn, (1-16)

and define the linear operators L0, L1 and L2 acting on functions in S(Rd
×Rd) by

L0(t)a(x, y)= a(x− t y, y), L1(t)a(x, y)= 0, (1-17)

L2(t)a(x, y)=
∫ t

0

∫
Rd
62( y, y′)[a(x− s y− (t − s) y′, y′)− a(x− t y, y)] d y′ ds. (1-18)

Relations (1-16)–(1-18) are consistent with L(t) generating solutions of the linear Boltzmann equation
with ρ(x)= 1.

Our main result is as follows.

Theorem 1.2. Let t > 0 and a, b ∈ S(Rd
×Rd), A = Opr,h(a), B = Opr,h(b). Then there exist linear

operators A(r)0 (t), A(r)1 (t), A(r)2 (t) such that for h = r ∈ (0, 1]

〈A(tr1−d), B〉HS =

2∑
n=0

〈A(r)n (tr1−d), B〉HS λ
n
+

6∑
n=3

O(r−nd/2λn) (1-19)
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and
lim

h=r→0
〈A(r)n (tr1−d), B〉HS = 〈Ln(t)a, b〉 (n = 0, 1, 2). (1-20)

The notation f (x)= O(g(x)) means “there is a positive constant C such that | f (x)| ≤ C |g(x)|.” We
will also use f (x)� g(x) synonymously, and subscript Oε or�ε to highlight the dependence of the
implied constant C = Cε on a parameter ε.

The key point here is to view the first sum on the right-hand side of (1-19) as the first three terms
of a formal power series expansion in λ, which according to (1-20) each converge to the corresponding
terms of the conjectured limit (1-16). The second sum in (1-19) provides an error estimate that allows an
interpretation beyond a formal power series, but this is only of secondary interest.

We will actually prove a stronger result than Theorem 1.2. For a given quasimomentum α ∈ [0, 1)d,
consider the Bloch functions ϕαm(x)= e((m+α) · x), m ∈ Zd, and define the projection 5α acting on
f ∈ S(Rd) by

5α f (x)=
∑

m∈Zd

〈 f, ϕαm〉 ϕ
α
m(x), (1-21)

with inner product

〈 f, g〉 =
∫

Rd
f (x) g(x) dx. (1-22)

Note that, by Poisson summation,

5α f (x)=
∑

m∈Zd

e(−m ·α) f (x+m), (1-23)

and hence by integrating over α ∈ [0, 1)d one regains f (x). We will refer to 5α as a Bloch projection
and α as a Bloch vector or quasimomentum. Instead of (1-19) we consider now

〈5αA(tr1−d), B〉HS. (1-24)

As we will see, the behaviour of (1-24) in the limit h = r→ 0 depends on the number-theoretic properties
of α. We call a vector α= (α1, . . . , αd)∈Rd Diophantine of type κ if there exists a constant C>0 such that

max
j

∣∣∣∣αj −
m j

q

∣∣∣∣> C
qκ

(1-25)

for all m1, . . . ,md , q ∈ Z, q > 0. The smallest possible value for κ is κ = 1+ 1
d . In this case α is called

badly approximable.

Theorem 1.3. Suppose α is Diophantine of type κ < (d − 1)/(d − 2) and the components of (1, tα) are
linearly independent over Q. Let t > 0 and a, b ∈ S(Rd

×Rd), A = Opr,h(a), B = Opr,h(b). Then there
exist linear operators A(r,α)0 (t), A(r,α)1 (t), A(r,α)2 (t) such that for h = r ∈ (0, 1]

〈5αA(tr1−d), B〉HS =

2∑
n=0

〈A(r,α)n (tr1−d), B〉HS λ
n
+

6∑
n=3

O(r−nd/2λn) (1-26)

and
lim

h=r→0
〈A(r,α)n (tr1−d), B〉HS = 〈Ln(t)a, b〉 (n = 0, 1, 2). (1-27)
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Since the set of Diophantine α ∈ [0, 1)d has full Lebesgue measure, Theorem 1.2 may be viewed as
an averaged (and thus weaker) version of Theorem 1.3. The convergence in (1-27) is however highly
nonuniform in α, and the derivation of Theorem 1.2 from Theorem 1.3 requires nontrivial dominated
convergence estimates.

In his PhD thesis [Griffin 2017], the first author established a version of Theorem 1.3 for the small-
scatter problem on the torus Td

=Rd/Zd with quasiperiodic boundary conditions f (x+m)= e(m·α) f (x)
(m ∈ Zd) for observables that do not depend on position x. This in particular complements results in
[Castella 1999; Castella and Plagne 2002] where α = 0, and furthermore provides a discussion of the
expansion terms leading to a failure of the linear Boltzmann equation. The key observation in those
papers is that due to the large mean degeneracy of the spectrum of the Laplacian on the torus Td, the
semiclassical Boltzmann–Grad limit diverges; a different normalisation then yields a nonuniversal limit,
which in particular is not consistent with the linear Boltzmann equation. It is interesting to note that
adding a suitably chosen damping term allows one to recover the linear Boltzmann equation even in this
singular case [Castella 2001; 2002]. The small-scatterer problem in rectangular domains (Sinai billiards)
has also been investigated in the context of quantum chaos; here the smooth potential is replaced by a
disc with Dirichlet boundary conditions [Berry 1981; Dahlqvist and Vattay 1998].

This paper is organised as follows. Sections 2 and 3 provide basic background and notation on Weyl
calculus in momentum representation and Floquet–Bloch theory. Section 4 uses the Duhamel principle to
obtain a perturbation series in λ. We then apply the Boltzmann–Grad scaling in Section 5. The zeroth-
and first-order terms are elementary, and are calculated in Section 6. Terms of second order require
equidistribution results for horocycles (Section 7) and mean value theorems for theta functions (Section 8),
which build on the papers [Marklof 2002; 2003]. The second-order terms are computed in Section 9.
The estimates of the error term in Theorem 1.3 require analogous results for higher-dimensional theta
functions (Section 10) and are presented in Section 11. The proof of Theorem 1.3 is given at the end of
Section 11. Section 12 concludes with the proof of Theorem 1.2.

2. Momentum representation

We have so far represented quantum wave amplitudes f in the position representation. It will in fact be
more convenient to work with its Fourier transform f̂ , which represents the wave amplitude as a function
of the quantum particle’s momentum. Set e(x)= exp(2π ix), and define the Fourier transform f̂ = F f
of f by

f̂ ( y)= F f ( y)=
∫

Rd
e(− y · x) f (x) dx. (2-1)

The Fourier transform of a linear operator A on L2(Rd) is then naturally defined by

Â = F AF−1. (2-2)

Explicitly, the corresponding Schwartz kernel satisfies

Â( y, y′)=
∫

R2d
A(x, x′)e(−x · y+ x′ · y′) dx dx′. (2-3)
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The Schwartz kernel of the Fourier transform of Op(a) is given by

Ôp(a)( y, y′)=
∫

Rd
a
(
x, 1

2( y+ y′)
)

e(−x · ( y− y′)) dx

= ã
(

y− y′, 1
2( y+ y′)

)
, (2-4)

where ã denotes the Fourier transform of a in the first variable only; i.e.,

ã(η, y)=
∫

Rd
a(x, y) e(−x · η) dx. (2-5)

The definition given above extends to larger function spaces by standard arguments [Folland 1989].
Two notable special cases occur when a is a function exclusively of either x or y. In the first case
when a = a(x) we have Ôp(a)( y, y′) = â( y− y′), and in the second case when a = a( y) we obtain
Ôp(a)( y, y′)= a( y) δ0( y− y′). The choice a = L0(t)V in (2-4) yields for instance

Ôp(L0(t)V )( y, y′)= rd
∑

m∈Zd

Ŵ (r m)e
(
−

1
2 tm · ( y+ y′)

)
δm( y− y′), (2-6)

where δm denotes the Dirac delta mass at the point m.
The quantisations of the Hamilton functions H cl

0 and H cl
λ are denoted by H0 = Op H cl

0 =−
1

8π21 and
Hλ = Op H cl

λ = H0+ λOp V respectively. The Schrödinger equation for the time evolution of the wave
amplitude f (t, x) can then be written (in units where Planck’s constant is 1)

i
2π ∂t f (t, x)= Hλ f (t, x), f (0, x)= f0(x), (2-7)

which has the solution

f (t, x)=Uλ(t) f0(x), Uλ(t) := e(−Hλt). (2-8)

The relation to the corresponding operators in the Introduction is

Hh,λ = h2 Hλ/h2, Uh,λ(t)=Uλ/h2(ht). (2-9)

It will be more convenient to work with Uλ(t) in what follows, and then later appeal to (2-9).
Since H cl

0 is a quadratic polynomial, we have the exact Egorov property,

U0(t)Op(a)U0(−t)= Op(L0(t)a). (2-10)

In momentum representation the kernel of the operator Ĥ0 takes the form

Ĥ0( y, y′)= 1
2‖ y‖2δ0( y− y′) (2-11)

and thus also

Û0(t)( y, y′)= e
(
−

1
2 t‖ y‖2

)
δ0( y− y′). (2-12)

3. Bloch projections

As is standard in the study of periodic potentials, we use the fact that any solution to our Schrödinger equa-
tion can be decomposed into quasiperiodic functions parametrised by quasimomentum α ∈ Td

= Rd/Zd
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(Floquet–Bloch decomposition). For f ∈ S(Rd) the function ψ(x)=5α f (x) satisfies, for every k ∈ Zd,

ψ(x+ k)= e(k ·α)ψ(x). (3-1)

We denote by Hα the Hilbert space of functions that satisfy the quasiperiodicity condition (3-1) and have
finite L2-norm with respect to the inner product

〈ψ, ϕ〉α =

∫
Td
ψ(x) ϕ(x) dx. (3-2)

We define the corresponding Hilbert–Schmidt product for linear operators from L2(Rd) to Hα by

〈A, B〉HS,α = Tr AB†
=

∫
Td

(∫
Rd

A(x, x′)B(x, x′) dx′
)

dx. (3-3)

Lemma 3.1. If f, g ∈ S(Rd), then 5α f,5αg ∈Hα ∩C∞(Rd) and

〈5α f, g〉 = 〈 f,5αg〉 = 〈5α f,5αg〉α =
∑

m∈Zd

f̂ (m+α)ĝ(m+α). (3-4)

Proof. We have by (1-23)

〈5α f,5αg〉α =
∑

m∈Zd

e(m ·α)
∫

Td
(5α f )(x) g(x+m) dx. (3-5)

Using the invariance (3-1) of 5α f , we see that the summation and integration can be combined to an
integral over Rd which equals 〈5α f, g〉. The final identity follows directly from the definition (1-21),
which yields

〈5α f, g〉 =
∑

m∈Zd

〈 f, ϕαm〉 〈ϕ
α
m, g〉 =

∑
m∈Zd

f̂ (m+α)ĝ(m+α), (3-6)

concluding the proof. �

Note that for the Fourier transform,

5̂α f ( y)=
∑

m∈Zd

f (m+α) δm+α( y). (3-7)

Lemma 3.2. If A, B have Schwartz kernel in S(Rd
×Rd), then5αA,5αB are linear operators L2(Rd)→

Hα, and
〈5αA, B〉HS = 〈A,5αB〉HS = 〈5αA,5αB〉HS,α

=

∑
m∈Zd

∫
Rd

Â(m+α, y)B̂(m+α, y) d y. (3-8)

Proof. This is analogous to the proof of Lemma 3.1. By (1-21), we have

[5αB](x, x′)=
∑

m∈Zd

e(−m ·α)B(x+m, x′), (3-9)
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and so

〈5αA,5αB〉HS,α =
∑

m∈Zd

e(m ·α)
∫

Td

(∫
Rd
[5αA](x, x′) B(x+m, x′) dx′

)
dx

=

∫
Rd

(∫
Rd
[5αA](x, x′) B(x, x′) dx′

)
dx = 〈5αA, B〉HS, (3-10)

where we have used the identity [5αA](x + m, x′) = e(m · α)[5αA](x, x′); see (3-1). The proof of
〈A,5αB〉HS = 〈5αA,5αB〉HS,α is analogous. Finally, in view of (2-3) and (3-7) we have

[5̂αA]( y, y′)=
∑

m∈Zd

δm+α( y) Â(m+α, y′), (3-11)

which yields

〈5αA, B〉HS =

∫
R2d

∑
m∈Zd

δm+α( y) Â(m+α, y′)B̂( y, y′) d y d y′

=

∑
m∈Zd

∫
Rd

Â(m+α, y)B̂(m+α, y) d y, (3-12)

completing the proof. �

We denote by 1α the standard Laplacian acting on Hα, and set

Hα
λ = Hα

0 + λOp(V ), Uα
λ (t)= e(−Hα

λ t). (3-13)

Lemma 3.3. For f ∈ S(Rd),

5αUλ(t) f =Uα
λ (t)5α f. (3-14)

Proof. We have the commutation relations

5αH0 = Hα
0 5α, 5α Op(V )= Op(V )5α. (3-15)

Consider the time derivative of the left-hand side of (3-14),

∂t5αUλ(t) f =−2π i5α(H0+ λOp(V ))Uλ(t) f

=−2π i(Hα
0 + λOp(V ))5αUλ(t) f. (3-16)

Thus the left-hand side of (3-14) is the unique solution to

∂t g(t, y)=−2π i Hα
λ g(t, y) (3-17)

with initial condition g(0, y) :=5α f ( y). The right-hand side of (3-14) solves the same PDE, and the
proof is complete. �

4. Duhamel’s principle

Duhamel’s principle provides an explicit expansion of the solution in terms of the coupling constant λ. By
truncating the expansion at order 2, we will be left with theta functions that, in a certain scaling limit, can
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be treated with the tools of homogeneous dynamics. The explicit error terms can be handled separately.
Our first aim is to work out the time evolution of unscaled observables,

Uλ(t)Op(a)Uλ(−t), (4-1)

perturbatively in λ. We first study the problem in the interaction picture; i.e., consider

Uλ(t)U0(−t)Op(a)U0(t)Uλ(−t). (4-2)

Note that in view of the Egorov property (2-10) this is equivalent to the original problem upon replacing
a by L0(t)a. We define the operators K (t) and R(t) for t ∈ R by

K (t)=U0(t)Op(V )U0(−t) and R(t)=Uλ(t)U0(−t). (4-3)

Furthermore, for s = (s1, . . . , sn) and `≤ n we denote by K`,n(s) the product

K`,n(s)= K (s`) · · · K (sn). (4-4)

Then

〈5αUλ(t)U0(−t)Op(a)U0(t)Uλ(−t),Op(b)〉HS = 〈5αR(t)Op(a)R(t)−1,Op(b)〉HS. (4-5)

Duhamel’s principle asserts that

R(t)= I − 2π iλ
∫ t

0
R(s)K (s) ds, (4-6)

and iterating this expression N times yields

R(t)=
N∑

n=0

λn Rn(t)+ λN+1 RN+1,E(t), (4-7)

where R0(t)= I and

Rn(t)= (−2π i)n
∫

0<s1<···<sn<t
K1,n(s) ds (n ≥ 1). (4-8)

The error term is similarly given by

RN+1,E(t)= (−2π i)N+1
∫

0<s1<···<sN+1<t
R(s1)K1,N+1(s) ds. (4-9)

The inverse of R(t) can be calculated by taking the Hermitian conjugate. It is given by

R(t)−1
=

N∑
n=0

λn R−n (t)+ λ
N+1 R−N+1,E(t), (4-10)

where R−0 (t)= I,

R−n (t)= (2π i)n
∫

0<sn<···<s1<t
K1,n(s) ds (n ≥ 1), (4-11)
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and the error term is

R−N+1,E(t)= (2π i)N+1
∫

0<sN+1<···<s1<t
K1,N+1(s)R(sN+1)

−1 ds. (4-12)

We have also used the fact that Op(V )= Op(V )† (since V is real-valued) and thus K (t)= K (t)†. Our
methods will permit explicit calculation of the terms in this expansion up to order 2, and so specializing
to the case N = 2 the expansion takes the following form

〈5αUλ(t)U0(−t)Op(a)U0(t)Uλ(−t),Op(b)〉HS =

6∑
n=0

λn Qn(t, a, b), (4-13)

with the main terms Q0 to Q2 given by

Q0(t, a, b)= 〈5α Op(a),Op(b)〉HS,

Q1(t, a, b)= 〈5αR1(t)Op(a),Op(b)〉HS+〈5α Op(a)R−1 (t),Op(b)〉HS,

Q2(t, a, b)= 〈5αR2(t)Op(a),Op(b)〉HS+〈5αR1(t)Op(a)R−1 (t),Op(b)〉HS

+〈5α Op(a)R−2 (t),Op(b)〉HS.

(4-14)

The error terms Q3 through Q6 are given by

Q3(t, a, b)= 〈5αR3,E(t)Op(a),Op(b)〉HS+〈5αR2(t)Op(a)R−1 (t),Op(b)〉HS

+〈5αR1(t)Op(a)R−2 (t),Op(b)〉HS+〈5α Op(a)R−3,E(t),Op(b)〉HS,

Q4(t, a, b)= 〈5αR3,E(t)Op(a)R−1 (t),Op(b)〉HS

+〈5αR2(t)Op(a)R−2 (t),Op(b)〉HS+〈5αR1(t)Op(a)R−3,E(t),Op(b)〉HS,

Q5(t, a, b)= 〈5αR3,E(t)Op(a)R−2 (t),Op(b)〉HS+〈5αR2(t)Op(a)R−3,E(t),Op(b)〉HS,

Q6(t, a, b)= 〈5αR3,E(t)Op(a)R−3,E(t),Op(b)〉HS.

(4-15)

We will treat these error terms in the following way. First of all, Lemma 4.1 shows that all of the
Q j can be bounded above by quantities which are independent of Uλ(t), and depend only on the free
evolution U0(t). Then after rescaling, the resulting quantities, which we denote by J`,n , can be treated
with similar techniques to those used in the computation of the limit of the second-order terms.

Define

J`,n(t, a)= (2π)n
∫

0<s1<···<s`<t
0<sn<···<s`+1<t

‖5αK1,`(s)Op(a)K`+1,n(s)‖HS,α ds. (4-16)

Lemma 4.1. For a, b ∈ S(Rd),

|〈5αR`(t)Op(a)R−n−`(t),Op(b)〉HS| ≤ J`,n(t, a) ‖5α Op(b)‖HS,α,

|〈5αR`(t)Op(a)R−n−`,E(t),Op(b)〉HS| ≤ J`,n(t, a) ‖5α Op(b)‖HS,α,

|〈5αR`,E(t)Op(a)R−n−`(t),Op(b)〉HS| ≤ J`,n(t, a) ‖5α Op(b)‖HS,α,

|〈5αR`,E(t)Op(a)R−n−`,E(t),Op(b)〉HS| ≤ J`,n(t, a) ‖5α Op(b)‖HS,α.

(4-17)
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Proof. For the first bound, note that by Lemma 3.2 and direct computation we have

|〈5αR`(t)Op(a)R−n−`(t),Op(b)〉HS|

= |〈5αR`(t)Op(a)R−n−`(t),5α Op(b)〉HS,α|

= (2π)n
∣∣∣∣∫ 0<s1<···<s`<t

0<sn<···<s`+1<t

〈5αK1,`(s)Op(a)K`+1,n(s),5α Op(b)〉HS,α ds
∣∣∣∣

≤ (2π)n
∫

0<s1<···<s`<t
0<sn<···<s`+1<t

|〈5αK1,`(s)Op(a)K`+1,n(s),5α Op(b)〉HS,α| ds. (4-18)

The bound then follows by an application of the Cauchy–Schwarz inequality. For the second bound we
similarly have

〈5αR`(t)Op(a)R−n−`,E(t),Op(b)〉HS

≤ (2π)n
∫

0<s1<···<s`<t
0<sn<···<s`+1<t

|〈5αK1,`(s)Op(a)K`+1,n(s)R(sn)
−1,5α Op(b)〉HS,α| ds. (4-19)

The result then follows by applying Cauchy–Schwarz and using that R(sn) is unitary. For the third bound
we have

〈5αR`,E(t)Op(a)R−n−`(t),Op(b)〉HS

≤ (2π)n
∫

0<s1<···<s`<t
0<sn<···<s`+1<t

|〈5αR(s1)K1,`(s)Op(a)K`+1,n(s),5α Op(b)〉HS,α| ds. (4-20)

This time the bound follows by first applying Lemma 3.3, then the Cauchy–Schwarz inequality and finally
using the unitarity of R(s). The last bound follows by combining the arguments for the second and third
bounds. �

Let us introduce the shorthand

T`,n( y)=
{∏n

j=` e
(
−

1
2(sj+1− sj )‖ y−mj‖

2
)
Ŵ (r(mj+1−mj )) (l ≤ n),

1 (l > n).
(4-21)

Lemma 4.2. The kernel of K̂`,n(s)= FK`,n(s)F−1 is explicitly given by

[K̂`,n(s)]( y, y′)

= r (n−`+1)d
∑

m`,...,mn∈Zd

e
(
−

1
2 s`‖ y‖2

)
Ŵ (r m`)T`,n−1( y)e

( 1
2 sn‖ y−mn‖

2)δmn ( y− y′). (4-22)

Proof. We have

K̂`,n(s) f ( y)= K̂ (s`) · · · K̂ (sn) f ( y)

= FU0(s`)Op(V )U0(s`+1− s`) · · ·U0(sn − sn−1)Op(V )U0(−sn)F−1 f ( y), (4-23)

and

FU0(s)Op(V )F−1 f ( y)= rde
(
−

1
2 s‖ y‖2

) ∑
m∈Zd

Ŵ (r m) f ( y−m). (4-24)
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By iterating we thus see

K̂`,n(s) f ( y)= K̂ (s`) · · · K̂ (sn) f ( y)

= r (n−`+1)de
(
−

1
2 s`‖ y‖2

)
×

∑
m`,...,mn∈Zd

Ŵ (r m`)e
(
−

1
2(s`+1−s`)‖ y−m`‖

2)Ŵ (r m`+1)

×e
(
−

1
2(s`+2−s`+1)‖ y−m`−m`+1‖

2)Ŵ (r m`+2)

×·· ·×e
(
−

1
2(sn−sn−1)‖ y−m`−·· ·−mn−1‖

2)Ŵ (r mn)

×e
( 1

2 sn‖ y−m`−·· ·−mn‖
2) f ( y−m`−·· ·−mn). (4-25)

We then make the variable substitutions mj = m̃j −
∑ j−1

i=` mi for j = `+ 1, . . . , n. Note that this gives
y−m`−· · ·−mj = y− m̃j and also mj = m̃j − m̃j−1. Inserting these new variables, dropping the tildes,
and using the definition of T`,n yields the result. �

5. The Boltzmann–Grad limit

Recall the semiclassical Boltzmann–Grad scaling (1-9) given by

Dr,ha(x, y)= rd(d−1)/2hd/2 a(rd−1x, h y). (5-1)

Performing the Fourier transform in the x-variable yields the expression

D̃r,h ã(η, y)= ˜(Dr,ha)(η, y)= r−d(d−1)/2hd/2 ã(r1−dη, h y), (5-2)

and thus after quantizing the rescaled observables we see

Ôp(Dr,ha)( y, y′)= r−d(d−1)/2hd/2 ã
(
r1−d( y− y′), h

2 ( y+ y′)
)
. (5-3)

Note that after this rescaling we have the relation

Dr,h L0(t)a(x, y)= rd(d−1)/2hd/2 L0(t)a(rd−1x, h y)

= rd(d−1)/2hd/2 a(rd−1x− th y, h y)

= Dr,ha(x− thr1−d y, y)

= L0(thr1−d)Dr,ha(x, y) (5-4)

and so the Egorov property (2-10) becomes

U0(thr1−d)Op(Dr,ha)U0(−thr1−d)= Op(Dr,h L0(t)a). (5-5)

Given a linear operator A on L2(Rd) with Schwartz kernel in S(Rd
×Rd), we define the partial trace

Trα A =
∑

m∈Zd

Â(m+α,m+α), (5-6)
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and note that in view of Lemma 3.2, 〈5αA, B〉HS = Trα AB†. Let us furthermore define I`,n , implicitly
dependent on r and h, by

I`,n(s)=


Trα[Op(Dr,ha)Op(Dr,hb)] (`= n = 0),
Trα[K1,`(s)Op(Dr,ha)K`+1,n(s)Op(Dr,hb)] (1≤ ` < n),
Trα[K1,n(s)Op(Dr,ha)Op(Dr,hb)] (0< `= n),
Trα[Op(Dr,ha)K1,n(s)Op(Dr,hb)] (`= 0< n).

(5-7)

In view of (4-14), we have for n = 0, 1, 2

Qn(t, Dr,ha, Dr,h b̄)= (2π i)n
n∑
`=0

(−1)`
∫

0<s1<···<s`<t
0<sn<···<s`+1<t

I`,n(s) ds. (5-8)

(We work with b̄ rather than b to simplify the notation in the calculations that follow.) In other words, the
I`,n are precisely the expressions that appear in the expansion of

〈5αUλ(t)U0(−t)Op(Dr,ha)U0(t)Uλ(−t),Op(Dr,h b̄)〉HS; (5-9)

see (4-13).
Let us write down the I`,n explicitly. For 1≤ `< n, we show in Section B in the appendix that one has

I`,n(s)= rndhd
∫

Rd

∑
m1,...,mn

e
(
−

1
2 s1‖mn+α‖

2)Ŵ (r(mn−m1))T −1,`−1(α)e
( 1

2 s`‖m`+α‖
2)

×ã
(
−η,h

(
m`+α+

1
2rd−1η

))
e
(
−

1
2 s`+1‖m`+α+rd−1η‖2

)
×Ŵ (r(m`−m`+1))T −`+1,n−1(α+rd−1η)e

( 1
2 sn‖mn+α+rd−1η‖2

)
×b̃
(
η,h

(
mn+α+

1
2rd−1η

))
dη+O(r∞), (5-10)

with the definition

T −`,n( y)=
{∏n

j=` e
( 1

2 (sj − sj+1)‖ y+mj‖
2
)
Ŵ (r(mj −mj+1)) (`≤ n),

1 (` > n).
(5-11)

The symbol O(r∞) is a shorthand for “Oβ(rβ) for any β ≥ 1.” It follows more immediately from the
definition of K`,n that for `= n

In,n(s)= rndhd
∫

Rd

∑
m1,...,mn∈Zd

e
(
−

1
2 s1‖mn +α‖

2)Ŵ (r(mn −m1))

× T −1,n−1(α)e
( 1

2 sn‖mn +α‖
2)ã(−η, h(mn +α+

1
2rd−1η)

)
× b̃

(
η, h

(
mn +α+

1
2rd−1η

))
dη+ O(r∞), (5-12)

and for `= 0

I0,n(s)

= rndhd
∫

Rd

∑
m1,...,mn∈Zd

ã
(
−η,h

(
mn+α+

1
2rd−1η

))
×e
(
−

1
2 s1‖mn+α+rd−1η‖2

)
Ŵ (r(mn−m1))T −1,n−1(α+rd−1η)

×e
( 1

2 sn‖mn+α+rd−1η‖2
)
b̃
(
η,h

(
mn+α+

1
2rd−1η

))
dη+O(r∞). (5-13)
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6. Orders 0 and 1

The asymptotics for zeroth- and first-order terms follows from the Poisson summation formula.

Lemma 6.1. I0,0 =

∫
Rd×Rd

a(x, y)b(x, y) dxd y+ O(h∞). (6-1)

Proof. We have (by Lemma 3.2)

I0,0 = hd
∑

m∈Zd

∫
Rd

ã
(
−η, h

(
m+α+ 1

2rd−1η
))

b̃(η, h
(
m+α+ 1

2rd−1η
)
) dη. (6-2)

Since ã and b̃ are in the Schwartz class, applying Poisson summation in m gives

I0,0 =

∫
Rd×Rd

ã(−η, y)b̃(η, y) dη d y+ O(h∞)

=

∫
Rd×Rd

a(x, y)b(x, y) dx d y+ O(h∞), (6-3)

completing the proof. �

Recall that the mean-free flight time is of the order of r1−d, and that according to (2-9) we should
consider time in units of h. This suggests the rescaling t→ hr1−d t , and thus, by the Egorov property
(5-5), we obtain for the propagated symbol

Trα[U0(thr1−d)Op(Dr,ha)U0(−thr1−d)Op(Dr,hb)]

= Trα[Op(Dr,h L0(t)a)Op(Dr,hb)]

=

∫
Rd×Rd

(L0(t)a)(x, y)b(x, y) dx d y+ O(h∞)

=

∫
Rd×Rd

a(x− t y, y)b(x, y) dx d y+ O(h∞) (6-4)

uniformly for all t in a fixed compact interval. It is worth noting that this is precisely the answer one
would expect: at order 0 the potential does not appear, which means the solution simply displays free
evolution. We see this is true by virtue of the fact that the initial density has simply been translated in
position space for time t with momentum y.

Lemma 6.2. I0,1(s1)− I1,1(s1)= O(rdh∞+ r∞). (6-5)

Proof. By (5-12),

I1,1(s1)= rdhd Ŵ (0)
∑

m∈Zd

∫
Rd

ã
(
−η, h

(
m+α+ 1

2rd−1η
))

b̃
(
η, h

(
m+α+ 1

2rd−1η
))

dη+ O(r∞)

= rd Ŵ (0)
∫

Rd×Rd
ã(−η, y)b̃(η, y) dη d y+ O(rdh∞+ r∞), (6-6)
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again by Poisson summation. Similarly, using (5-13),

I0,1(s1)= rndhd Ŵ (0)
∑

m1∈Zd

∫
Rd

ã
(
−η, h

(
m1+α+

1
2rd−1η

))
b̃
(
η, h

(
m1+α+

1
2rd−1η

))
dη+ O(r∞)

= rd Ŵ (0)
∫

Rd×Rd
ã(−η, y)b̃(η, y) dη d y+ O(rdh∞+ r∞), (6-7)

completing the proof. �

Indeed, in the expansion (5-8) the terms I1,1(s1) and I0,1(s1) appear with opposite sign and therefore
cancel up to an error O(rdh∞+ r∞). The total error term after integrating over s1 is thus obtained by
multiplying this by the integration range of size hr1−d t .

7. Equidistribution of horocycles

At second order we will use the fact that the I`,n can be written as functions on some noncompact,
finite-volume manifold. Specifically, consider the semidirect product group G = SL(2,R)nR2d with
multiplication law

(M, ξ)(M ′, ξ ′)= (M M ′, ξ +Mξ ′), (7-1)

where M,M ′ ∈ SL(2,R) and ξ , ξ ′ ∈Rd
×Rd ; the action of SL(2,R) on Rd

×Rd is defined canonically as

Mξ =
(

ax+ b y
cx+ d y

)
, M =

(
a b
c d

)
, ξ =

(
x
y

)
, (7-2)

where x, y ∈ Rd. A convenient parametrisation of SL(2,R) can be obtained by means of the Iwasawa
decomposition

M = n−(u)8− log v R(φ), (7-3)

with

n−(u)=
(

1 u
0 1

)
, 8t

=

(
e−t/2 0

0 et/2

)
, R(φ)=

(
cosφ − sinφ
sinφ cosφ

)
. (7-4)

This decomposition is unique for τ = u+ iv ∈ H, φ ∈ [0, 2π), where H denotes the upper half-plane
H = {τ ∈ C : Im τ > 0}. We will use the notation M = (τ, φ) and (M, ξ) = (τ, φ, ξ) interchangeably.
With this, we have for instance n−(u)8−2 log r

= (u+ ir2, 0) and(
1,
(

0
y

))
n−(u)8−2 log r

=

(
u+ ir2, 0,

(
0
y

))
. (7-5)

Throughout this section, let 0 be a subgroup of SL(2,Z)n
( 1

2 Z
)2d of finite index. The Haar measure

on G induces a G-invariant measure on 0\G, which will be denoted by µ. Since 0 is a lattice in G, we
have (by definition) 0< µ(0\G) <∞.

Proposition 7.1. Fix y ∈ Rd
\Qd so that the components of (1, t y) are linearly independent over Q. Let

w :R→R be piecewise continuous with compact support. Let F : 0\G×R→R be bounded continuous,



588 JORY GRIFFIN AND JENS MARKLOF

and Fr be a sequence of continuous, uniformly bounded functions 0\G ×R→ R such that Fr → F0

uniformly on compacta as r→ 0. Then, for σ ≥ 0, we have

lim
r→0

rσ
∫

R

Fr

((
u+ ir2, 0,

(
0
y

))
, rσu

)
w(rσu) du =

1
µ(0\G)

∫
0\G

∫
R

F0(g, u) w(u) du dµ(g). (7-6)

Proof. The proof of Theorem 5.1 in [Marklof 2002] tells us that for F : 0\G→ R bounded continuous,
we have

lim
r→0

rσ
∫

R

F
((

u+ ir2, 0,
(

0
y

)))
w(rσu) du =

1
µ(0\G)

∫
0\G

F dµ
∫

R

w(u) du. (7-7)

The claim now follows from the same argument as [Marklof and Strömbergsson 2010, Theorem 5.3]. �

We define the subgroup 0∞ by

0∞ =

{(
1 m
0 1

)
: m ∈ Z

}
⊂ SL(2,Z) (7-8)

and for γ =
(a

c
b
d

)
use the notation

vγ := Im(γ τ)=
v

|cτ + d|2
, yγ := cx+ d y. (7-9)

Then, with χR the characteristic function of [R,∞)we define the characteristic function X R :H→R≥0 by

X R(τ )=
∑

γ∈(0∞∪−0∞)\SL(2,Z)

χR(vγ ). (7-10)

Note that by construction X R is SL(2,Z)-invariant. For f : R→ R≥0 of rapid decay at ±∞ and β ∈ R,
the function 9β

R, f : G→ R≥0 is defined by

9
β

R, f (τ, ξ)=
∑

γ∈0∞\SL(2,Z)

∑
m∈Zd

f (( yγ +m)v1/2
γ ) vβd/2

γ χR(vγ ), (7-11)

and for convenience when β = 1 we write 9R, f := 9
1
R, f . The function 9β

R, f is left-invariant under
SL(2,Z)n

( 1
2 Z
)2d. Both X R and 9β

R, f can thus be viewed as functions on G and, since 0 is a finite-index
subgroup of SL(2,Z)n

( 1
2 Z
)2d, are also left 0-invariant.

Proposition 7.2 [Marklof 2002, Proposition 6.4]. Let y be Diophantine of type κ , w : R→ R piecewise
continuous with compact support, and 0< ε < 1 and 0< ε′ < 1/(κ − 1). Then, for every R ≥ 1,

lim sup
r→0

rd−2
∫
|u|>r2−ε

9R, f

(
u+ ir2,

(
0
y

))
w(rd−2u) du�ε,ε′ R−(1/(κ−1)−d+2)/2

+ R−ε
′/2. (7-12)

Note that the term R−ε
′/2 is only relevant for d = 2. The expression vanishes as R → ∞ if κ <

(d − 1)/(d − 2). The following generalisation to β < 1 holds. Note the range of integration is now over
all u ∈ R.
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Proposition 7.3. Let 0 ≤ β < 1, y be Diophantine of type κ , w : R→ R piecewise continuous with
compact support. Then, for every R ≥ 1,

lim sup
r→0

rd−2
∫

R

9
β

R, f

(
u+ ir2,

(
0
y

))
w(rd−2u) du� R−(1/(κ−1)−βd+2)/2

+ R(β−1)d/2. (7-13)

The right-hand side vanishes as R→∞ if and only if

κ <

{
∞ (β ≤ 2/d),
(βd − 1)/(βd − 2) (β > 2/d).

(7-14)

In practice, we want both Propositions 7.2 and 7.3 to hold simultaneously. We do this by taking
κ < (d− 1)/(d− 2) and use the fact that for 2/d ≤ β < 1 we have (βd− 1)/(βd− 2) > (d− 1)/(d− 2).

Proof. Writing τ = u+ iv and v = r2 we have the explicit representation

9
β

R, f

(
τ,

(
0
y

))
= 2

∑
m∈Zd

f
(

m
v1/2

|τ |

)
vβd/2

|τ |βd χR

(
v

|τ |2

)

+ 2
∑

(c,d)∈Z2

gcd(c,d)=1
c>0,d 6=0

∑
m∈Zd

f
(
(d y+m)

v1/2

|cτ + d|

)
vβd/2

|cτ + d|βd χR

(
v

|cτ + d|2

)
. (7-15)

For the first term we make the substitution u = vt in the integral, which yields

2vd/2−1
∫

R

w(vd/2−1u)
∑

m∈Zd

f
(

m
v1/2

|τ |

)
vβd/2

|τ |βd χR

(
v

|τ |2

)
du

= 2v(1−β)d/2
∫

R

w(vd/2t)
(1+ t2)βd/2

∑
m∈Zd

f
(

m
v1/2(1+ t2)1/2

)
χR

(
1

v(1+ t2)

)
dt. (7-16)

Under the assumption that 0< β < 1 we have

v(1−β)d/2

(1+ t2)βd/2 χR

(
1

v(1+ t2)

)
≤

R(β−1)d/2

(1+ t2)d/2
χR

(
1

v(1+ t2)

)
(7-17)

and thus obtain the bound

lim sup
v→0

2vd/2−1
∫

R

w(vd/2−1u)
∑

m∈Zd

f
(

m
v1/2

|τ |

)
vβd/2

|τ |βd χR

(
v

|τ |2

)
du

≤ 2R(β−1)d/2w(0) f (0)
∫

R

dt
(1+ t2)d/2

+ O(R−∞). (7-18)

For the second term, using

vβd/2

|cτ + d|βd χR

(
v

|cτ + d|2

)
≤

vd/2

|cτ + d|d
R(β−1)d/2χR

(
v

|cτ + d|2

)
, (7-19)
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we see that∑
(c,d)∈Z2

gcd(c,d)=1
c>0,d 6=0

∑
m∈Zd

vd/2−1
∫

R

f
(
(d y+m)

v1/2

|cτ + d|

)
vβd/2

|cτ + d|βd χR

(
v

|cτ + d|2

)
w(vd/2−1u) du (7-20)

is bounded above by

R(β−1)d/2
∑

(c,d)∈Z2

gcd(c,d)=1
c>0,d 6=0

∑
m∈Zd

vd/2−1
∫

R

f
(
(d y+m)

v1/2

|cτ+d|

)
vd/2

|cτ+d|d
χR

(
v

|cτ+d|2

)
w(vd/2−1u)du. (7-21)

This reduces the problem to the same calculation as in the proof of Proposition 7.2, which yields that
(7-21) is bounded above by

R(β−1)d/2(R−(1/(κ−1)−d+2)/2
+ 1)= R−(1/(κ−1)−βd+2)/2

+ R((β−1)d)/2, (7-22)

completing the proof. �

Fix a compact interval A⊂R. We say F :0\G×R→C is dominated by9R, f on 0\G× A if there are
positive constants L , R0 such that |F((τ, φ, ξ), u′)|X R(τ )≤ L(1+9R, f (τ, φ, ξ)) for all (τ, φ, ξ) ∈ G,
u′ ∈ A and R ≥ R0. A sequence of functions Fr : 0\G ×R→ C is uniformly dominated if L , R0 are
independent of r .

Proposition 7.4. Assume y is Diophantine of type κ < (d − 1)/(d − 2) with the components of (1, t y)
linearly independent over Q. Let w : R → R be piecewise continuous with compact support. Let
F0 : 0\G ×R→ R be continuous and dominated by 9R, f on 0\G × suppw. Let Fr be a sequence of
continuous functions 0\G×R→ R uniformly dominated by 9R, f on 0\G× suppw such that Fr → F0

uniformly on compacta as r→ 0. Then for any 0< ε < 2 we have

lim
r→0

rd−2
∫
|u|>r2−ε

Fr

((
u+ ir2, 0,

(
0
y

))
, rd−2u

)
w(rd−2u) du

=
1

µ(0\G)

∫
R

∫
0\G

F0(g, u) w(u) dµ(g) du. (7-23)

Proof. (This follows the proof of [Marklof 2002, Theorem 6.8/Corollary 6.10].) We may assume without
loss of generality that Fr and w are real-valued and nonnegative. Set

Jr,R((τ, φ, ξ), u′)= Fr ((τ, φ, ξ), u′)(1− X R(τ )). (7-24)

Then Jr,R is bounded and thus∫
|u|>r2−ε

Jr,R

((
u+ ir2, 0,

(
0
y

))
, rd−2u

)
w(rd−2u) du

=

∫
R

Jr,R

((
u+ ir2, 0,

(
0
y

))
, rd−2u

)
w(rd−2u) du+ O(r2−ε). (7-25)
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By Proposition 7.1, which (by a standard probabilistic argument) extends to functions such as Jr,R

whose points of discontinuity are contained in a set of µ-measure zero (alternatively simply smooth the
characteristic function χR to make Jr,R continuous),

lim
r→0

rd−2
∫

R

Jr,R

((
u+ ir2, 0,

(
0
y

))
, rd−2u

)
w(rd−2u) du

=
1

µ(0\G)

∫
R

∫
0\G

J0,R(g, u′)w(u′) dµ(g) du′. (7-26)

Furthermore, F0((τ, φ, ξ), u′)X R(τ )≤ L X R(τ )+ L9R, f (τ, ξ) for large R, and hence∫
R

∫
0\G

F0((τ, φ, ξ), u′)X R(τ )w(u′) dµ du′ ≤
∫

R

w(u′) du′
∫
0\G

(L X R + L9R, f ) dµ� R−1
; (7-27)

see [Marklof 2002, §6.2]. Combining this with the result for J0,R yields∫
R

∫
0\G

J0,R(g, u′)w(u′) dµ(g) du′ =
∫

R

∫
0\G

F0(g, u′)w(u′) dµ(g) du′+ O(R−1). (7-28)

In summary, we have shown thus far that

lim inf
r→0

rd−2
∫
|u|>r2−ε

Fr

((
u+ ir2, 0,

(
0
y

))
, rd−2u

)
w(rd−2u) du

≥ lim
r→0

rd−2
∫
|u|>r2−ε

Jr,R

((
u+ ir2, 0,

(
0
y

))
, rd−2u

)
w(rd−2u) du

=
1

µ(0\G)

∫
R

∫
0\G

F0(g, u′) w(u′) dµ(g) du′+ O(R−1) (7-29)

for every R ≥ R0. For the upper bound we use that

Fr ((τ, φ, ξ), u′)≤ Fr ((τ, φ, ξ), u′)(1− X R(τ ))+ L X R(τ )+ L9R, f (τ, ξ). (7-30)

We proceed as above for the first two terms, and apply Proposition 7.2 to the third to obtain

lim sup
r→0

rd−2
∫
|u|>r2−ε

Fr

((
u+ ir2, 0,

(
0
y

))
, rd−2u

)
w(rd−2u) du

≤
1

µ(0\G)

∫
R

∫
0\G

F0(g, u′) dµ(g)du′+ O(R−(1/(κ−1)−d+2)/2
+ R−ε

′/2) (7-31)

for every R ≥ R0. �

8. Mean value theorems for theta functions

For f ∈ S(Rd
×Rd) and φ ∈ R, define fφ by

fφ( y1, y2)=


f ( y1, y2) (φ = 0 mod 2π),
f (− y1,− y2) (φ = π mod 2π),∫
R2d Gφ( y1, y2, x1, x2) f (x1, x2) dx1 dx2 (φ 6= 0 mod π),

(8-1)
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where

Gφ( y1, y2, x1, x2)= | sinφ|−d e
( 1

2(‖ y1‖
2
+‖x1‖

2
−‖ y2‖

2
−‖x2‖

2) cosφ− y1 · x1+ y2 · x2

sinφ

)
. (8-2)

Lemma 8.1. If f ∈ S(Rd
×Rd) then fφ ∈ S(Rd

×Rd).

Proof. If φ = 0 mod π then the result is immediate. For fixed φ 6= 0 mod π , define

g(x1, x2)= e
( 1

2(‖x1‖
2
−‖x2‖

2) cosφ
sinφ

)
f (x1, x2) (8-3)

and its Fourier transform

I ( y1, y2)= | sinφ|−d
∫

R2d
g(x1, x2) e

(
− y1 · x1+ y2 · x2

sinφ

)
dx1 dx2. (8-4)

Note that

fφ( y1, y2)= e
( 1

2(‖ y1‖
2
−‖ y2‖

2) cosφ
sinφ

)
I ( y1, y2). (8-5)

Now f ∈ S(Rd
×Rd) implies g ∈ S(Rd

×Rd) (since all derivatives of the exponential factor in (8-3) grow
at most polynomially), which implies I ∈ S(Rd

×Rd) (since the Fourier transform preserves Schwartz
class; use integration by parts), which in turn implies fφ ∈ S(Rd

×Rd) (by the first argument). �

The following lemma provides rapid decay that is uniform in φ.

Lemma 8.2. If f ∈ S(Rd
×Rd), then for all multi-indices β1,β2 ∈ Zd

≥0 and for every T > 1

sup
y1, y2,φ

(1+‖ y1‖)
T (1+‖ y2‖)

T
|∂
β1
y1 ∂

β2
y2 fφ( y1, y2)|<∞. (8-6)

Proof. The proof of Lemma 8.1 shows that

sup
y1, y2,φ∈I

(1+‖ y1‖)
T (1+‖ y2‖)

T
|∂
β1
y1 ∂

β2
y2 fφ( y1, y2)|<∞ (8-7)

for any closed interval I not containing φ = 0 mod π . As in the proof of [Marklof 2003, Lemma 4.3],
we represent fφ+π/2 =

∫
R2d Gφ( y1, y2, x1, x2) fπ/2(x1, x2) dx1 dx2 using the Fourier transform fπ/2 of f .

Since fπ/2 ∈ S(Rd
×Rd), we see that (8-7) holds for any closed interval not containing φ = π

2 mod π .
Both cases taken together, this shows that (8-7) holds in fact for every closed interval I, and so in particular
for I = [0, 2π ]. This proves the claim in view of the 2π -periodicity of fφ . �

We define the theta function 2 f : G 7→ C by

2 f

(
u+ iv, φ,

(
x
y

))
= vd/2

∑
m1,m2∈Zd

fφ(v1/2(m1− y), v1/2(m2− y))

× e
( 1

2 u(‖m1− y‖2−‖m2− y‖2)+ x · (m1−m2)
)
. (8-8)

Since fφ ∈ S(Rd
×Rd) we have that 2 f ∈ C∞(G). Let

0 =

{((
a b
c d

)
,

(
abs
cds

)
+m

)
:

(
a b
c d

)
∈ SL(2,Z), m ∈ Z2d

}
⊂ G, (8-9)
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with s =
(1

2 ,
1
2 , . . . ,

1
2

)
∈ Rd. Then 0 is of finite index in SL(2,Z)n

( 1
2 Z
)2d, and 2 f is left 0 invariant;

see [Marklof 2003, Proposition 4.9]. That is, 2 f ∈ C∞(0\G).

Proposition 8.3. Let f ∈ S(Rd
×Rd). Then

2 f (u+ iv, φ, ξ)= vd/2
∑

m∈Zd

fφ((m− y) v1/2, (m− y) v1/2)+ O(v−∞) (8-10)

uniformly for all (u+ iv, φ, ξ) ∈ G with v > 1
2 .

Proof. See [Marklof 2003, Proposition 4.10]. �

Corollary 8.4. Let f ∈ S(Rd
×Rd); then for all T > 1 we have that 2 f is dominated by 9R, f̄ for

f̄ (x)= (1+‖x‖)−2T . (8-11)

Proof. This follows from Proposition 8.3 and Lemma 8.2 (with β1 = β2 = 0). �

Proposition 8.5. Assume y is Diophantine of type κ < (d − 1)/(d − 2) with the components of (1, t y)
linearly independent over Q. Let w : R→ R be piecewise continuous, continuous at 0, with compact
support. Then

lim
r→0

rd−2
∫

R

2 f

(
u+ ir2, 0,

(
0
y

))
w(rd−2u) du

= 2w(0)
∫

Rd×Rd
f ( y1, y2) δ(‖ y1‖

2
−‖ y2‖

2) d y1 d y2+

∫
Rd

f ( y1, y1) d y1

∫
R

w(u) du. (8-12)

Proof. Fix 0< ε < 1, and split the integration over u into the regions |u|< r2−ε and |u|> r2−ε . In the
first region, the proof of [Marklof 2002, Lemma 7.3] shows that

rd−2
∫
|u|<r2−ε

2 f

(
u+ ir2, 0,

(
0
y

))
w(rd−2 u) du

= r−2
∫
|u|<r2−ε

(∫
Rd×Rd

f ( y1, y2)e( 1
2(‖ y1‖

2
−‖ y2‖

2)r−2u) d y1d y2

)
w(rd−2u) du+ o(1)

= 2w(0)
∫

Rd×Rd
f ( y1, y2) δ(‖ y1‖

2
−‖ y2‖

2) d y1 d y2+ o(1). (8-13)

Since 2 f is dominated by 9R, f , for the region |u|> r2−ε we can apply Proposition 7.4 and note that the
limit can be written as

1
µ(0\G)

∫
0\G

2 f dµ
∫

R

w(u) du =
∫

Rd
f ( y1, y1) d y1

∫
R

w(u) du; (8-14)

see [Marklof 2002, Lemma 7.2]. �

We will now deal with f that depend continuously on additional parameters u ∈ R, η ∈ Rd. We
denote by S̃ the class of functions f ∈ C(Rd

×Rd
×R×Rd) with the property that for every multi-index
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β1,β2 ∈Zd
≥0 the derivative ∂β1

y1 ∂
β2
y2 f ( y1, y2, u, η) (a) exists, (b) is continuous (in all variables), and (c) is

rapidly decaying, i.e.,

sup
y1, y2,u,η

(1+‖ y1‖)
T (1+‖ y2‖)

T (1+ |u|)T (1+‖η‖)T |∂β1
y1 ∂

β2
y2 f ( y1, y2, u, η)|<∞ (8-15)

for every T > 1. For f ∈ S̃ we define fφ ∈ S̃ in analogy with (8-1) by

fφ( y1, y2, u, η)=


f ( y1, y2, u, η) (φ = 0 mod 2π),
f (− y1,− y2, u, η) (φ = π mod 2π),∫
R2d Gφ( y1, y2, x1, x2) f (x1, x2, u, η) dx1 dx2 (φ 6= 0 mod π).

(8-16)

The fact that fφ ∈ S̃ follows from the same argument as in Lemma 8.1. We also have the following.

Lemma 8.6. If f ∈ S̃, then for all multi-indices β1,β2 ∈ Zd
≥0 and every T > 1

sup
y1, y2,u,η,φ

(1+‖ y1‖)
T (1+‖ y2‖)

T (1+ |u|)T (1+‖η‖)T |∂β1
y1 ∂

β2
y2 fφ( y1, y2, u, η)|<∞. (8-17)

Proof. This is analogous to the proof of Lemma 8.2. �

Given f ∈ S̃, we define the theta function

2 f (g, u, η)=2 f ( · ,u,η)(g), (8-18)

with2 f ( · ,u,η) as defined in (8-8) (with u, η fixed). In view of Lemma 8.6, we have2 f ∈C(0\G×R×Rd).
We further define

Fr (g, u)=
∫

Rd
2 f

(
g
(

1,
(

0
1
2rdη

))
, u, η

)
dη. (8-19)

Proposition 8.7. Let f ∈ S̃. Then

Fr (u+ iv, φ, ξ , u′)= vd/2
∑

m∈Zd

∫
Rd

fφ(v1/2(m− y), v1/2(m− y), u′, η) dη+O(rd)+O(v−∞) (8-20)

uniformly for all (u+ iv, φ, ξ) ∈ G, u′ ∈ R, with v > 1
2 and r < 1.

Proof. Note that

(u+ iv, φ, ξ)
(

1,
(

0
1
2rdη

))
=

(
u+ iv, φ,

(
x+ xτ,φ,η
y+ yτ,φ,η

))
, (8-21)

where
xτ,φ,η =− 1

2v
1/2rdη sinφ+ 1

2 uv−1/2rdη cosφ,

yτ,φ,η = 1
2v
−1/2rdη cosφ.

(8-22)

We thus have

Fr (u+iv, φ, ξ , u′)=
∫

Rd
vd/2

∑
m1,m2∈Zd

fφ(v1/2(m1− y− yτ,φ,η), v1/2(m2− y− yτ,φ,η), u′, η)

×e
( 1

2 u(‖m1− y− yτ,φ,η‖2−‖m2− y− yτ,φ,η‖2)
)

×e((x+xτ,φ,η)·(m1−m2)) dη. (8-23)
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Choose m ∈ Zd such that m ∈
[
−

1
2 ,

1
2

)d
+ y+ yτ,φ,η. Then, for any T ≥ 1 and for all m1 6= m,

fφ
(
v1/2(m1− y− yτ,φ,η), v1/2(m2− y− yτ,φ,η), u′, η

)
= OT

(
v−T (1+‖m1‖

−2T )(1+‖m2‖
−2T )(1+‖η‖−2T )

)
. (8-24)

The same is true for m2 6= m. Therefore

Fr (u+ iv, φ, ξ , u′)

= vd/2
∑

m∈Zd

∫
Rd

fφ(v1/2(m− y− yτ,φ,η), v1/2(m− y− yτ,φ,η), u′, η) dη+ O(v−∞). (8-25)

The result follows from applying Taylor’s theorem and using Lemma 8.6 to conclude that the error term
is small uniformly in u′ and φ. �

Lemma 8.8. Fix T > d. Then:

(1) The sequence (Fr )r of continuous functions 0\G×R→ C is uniformly dominated by 9R, f̄ , where
f̄ ( y)= (1+‖ y‖)−2T .

(2) Fr → F0 uniformly on compacta.

Proof. The set of (u+ iv, φ, ξ) ∈ G with v > 1
2 contains a fundamental domain of 0 in G. Therefore, by

Proposition 8.7 we have for r < 1 that

Fr (u+ iv, φ, ξ , u′)� 1+ vd/2
∑

m∈Zd

∫
Rd

fφ((m− y) v1/2, (m− y) v1/2, u′, η) dη

� 1+ vd/2
∑

m∈Zd

f̄ ((m− y)v1/2)

∫
Rd
(1+‖η‖)−T dη

� 1+9R, f̄ (τ, ξ). (8-26)

The first result is thus proved. The second result follows from the continuity of 2 f and Lemma 8.6. �

Proposition 8.9. Let f ∈ S̃, and assume y is Diophantine of type κ < (d−1)/(d−2) with the components
of (1, t y) linearly independent over Q. Let w : R→ R be piecewise continuous, continuous at 0, with
compact support. Then

lim
r→0

rd−2
∫

R

Fr

((
u+ ir2, 0,

(
0
y

))
, rd−2u

)
w(rd−2u) du

= 2w(0)
∫
(Rd )3

f ( y1, y2, 0, η) δ(‖ y1‖
2
−‖ y2‖

2) d y1 d y2 dη

+

∫
Rd×R×Rd

f ( y1, y1, u, η) w(u) d y1 du dη. (8-27)

Proof. This is analogous to the proof of Proposition 8.5. �
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9. Order 2

In this section we show how the terms at order λ2 can be written as averages over theta functions of the
form (8-19). We assume throughout this section that α is Diophantine of type κ < (d − 1)/(d − 2) with
the components of (1, tα) linearly independent over Q.

The cases ` = 2 and ` = 0. The cases ` = 0 and 2 are similar and we treat them together. First, from
(5-12) we have that I2,2 can be written

I2,2(s1,s2)= r2dhd
∑

m1,m2∈Zd

∫
Rd
|Ŵ (r(m2−m1))|

2e
( 1

2 (s2−s1)(‖m2+α‖
2
−‖m1+α‖

2)
)

×ã
(
−η,h

(
m2+α+

1
2rd−1η

))
b̃
(
η,h

(
m2+α+

1
2rd−1η

))
dη+O(r∞), (9-1)

which we express as

I2,2(s1, s2)

= r2dhd
∑

m1,m2∈Zd

∫
Rd
|Ŵ (r(m2−m1))|

2e
(
−

1
2(s2−s1)rd−1(m2−m1) ·η

)
×e
( 1

2 (s2−s1)
(
‖m2+α+

1
2rd−1η‖2−‖m1+α+

1
2rd−1η‖2

))
× ã

(
−η, h

(
m2+α+

1
2rd−1η

))
b̃
(
η, h

(
m2+α+

1
2rd−1η

))
dη+O(r∞). (9-2)

In the same way we can see from (5-13) that I0,2 can be written

I0,2(s1, s2)

= r2dhd
∑

m1,m2∈Zd

∫
Rd

ã
(
−η, h

(
m2+α+

1
2rd−1η

))
e
(
−

1
2 s1‖m2+α+rd−1η‖2

)
Ŵ (r(m2−m1))

×e
(
−

1
2 (s2−s1)‖m1+α+rd−1η‖2

)
Ŵ (r(m1−m2))

×e
( 1

2 s2‖m2+α+rd−1η‖2
)
b̃
(
η, h

(
m2+α+

1
2rd−1η

))
dη+O(r∞), (9-3)

which we express as

I0,2(s1, s2)

= r2dhd
∑

m1,m2∈Zd

∫
Rd
|Ŵ (r(m2−m1))|

2e
( 1

2 (s2−s1)rd−1(m2−m1) ·η
)

×e
( 1

2 (s2−s1)
(
‖m2+α+

1
2rd−1η‖2−‖m1+α+

1
2rd−1η‖2

))
× ã

(
−η, h

(
m2+α+

1
2rd−1η

))
b̃
(
η, h

(
m2+α+

1
2rd−1η

))
dη+O(r∞). (9-4)

We can then combine these two terms in the following way: First define I+,2 as

I+,2(s1, s2)= r2dhd
∑

m1,m2∈Zd

∫
Rd
|Ŵ (r(m2−m1))|

2e
(
−

1
2 |s2−s1|rd−1(m2−m1)·η

)
×e
(1

2 (s2−s1)
(
‖m2+α+

1
2rd−1η‖2−‖m1+α+

1
2rd−1η‖2

))
×ã
(
−η, h

(
m2+α+

1
2rd−1η

))
b̃
(
η, h

(
m2+α+

1
2rd−1η

))
dη (9-5)

and note that

I+,2(s1, s2)=

{
I2,2(s1, s2)+ O(r∞) if s1 ≤ s2,
I0,2(s1, s2)+ O(r∞) if s1 ≥ s2.

(9-6)
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Therefore, after inserting the integration over s1 and s2 we obtain∫
0<s1<s2<hr1−d t

I2,2(s1, s2) ds1 ds2+

∫
0<s2<s1<hr1−d t

I0,2(s1, s2) ds1 ds2

=

∫ hr1−d t

0

∫ hr1−d t

0
I+,2(s1, s2) ds1 ds2+ O(r∞). (9-7)

Note that we measure time in units of hr1−d as in the treatment of the zeroth-order term.

Lemma 9.1. Let I+,2 be defined as above and set h = r . Then,∫ hr1−d t

0

∫ hr1−d t

0
I+,2(s1, s2) ds1 ds2 = rd+2

∫ r2−d t

−r2−d t
Fr

((
u+ ir2, 0,

(
0
−α

))
, rd−2u

)
du, (9-8)

with Fr as defined in (8-19), with the choice

f ( y1, y2, u, η)= e
( 1

2(u+ |u|) ( y2− y1) · η
)
(t − |u|)χ[−t,t](u)|Ŵ ( y2− y1)|

2 ã(η, y2)b̃(−η, y2). (9-9)

Proof. In the case h = r the left-hand side of (9-8) reads (after the variable substitution η 7→ −η)

r3d
∫ r2−d t

0

∫ r2−d t

0

∫
Rd

∑
m1,m2∈Zd

|Ŵ (r(m2−m1))|
2e
( 1

2 |s2−s1|rd−1(m2−m1)·η
)

×e
( 1

2 (s2−s1)
(
‖m2+α−

1
2rd−1η‖2−‖m1+α−

1
2rd−1η‖2

))
×ã
(
η,r

(
m2+α−

1
2rd−1η

))
b̃
(
−η,r

(
m2+α−

1
2rd−1η

))
dηds1 ds2. (9-10)

We then use the relation ∫ t

0

∫ t

0
f (s2− s1) ds1 ds2 =

∫ t

−t
(t − |u|) f (u) du (9-11)

to rewrite the above as

r2d+2
∫ r2−d t

−r2−d t

∫
Rd

∑
m1,m2∈Zd

|Ŵ (r(m2−m1))|
2e
( 1

2 |u|r
d−1(m2−m1)·η

)
×(t−rd−2

|u|) e
( 1

2 u
(
‖m1+α−

1
2rd−1η‖2−‖m2+α−

1
2rd−1η‖2

))
×ã
(
η, r

(
m2+α−

1
2rd−1η

))
b̃
(
−η, r

(
m2+α−

1
2rd−1η

))
dη du

= rd+2
∫ r2−d t

−r2−d t

∫
Rd
2 f

((
u+ir2, 0,

( 1
2 urd−1η

−α+ 1
2rd−1η

))
, rd−2u, η

)
dη du, (9-12)

with f as in (9-9). Noting that(
u+ ir2, 0,

( 1
2 urd−1η

−α+ 1
2rd−1η

))
=

(
u+ ir2, 0,

(
0
−α

))(
i, 0,

(
0

1
2rdη

))
, (9-13)

the result follows. �

Note that in view of (2-9) we should consider the rescaling of the coupling constant λ→ λh−2, or
equivalently of the potential itself W → h−2W. At second order the potential appears as |Ŵ |2, and so we
must rescale our terms by a factor of h−4.
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Proposition 9.2. Let I+,2 be defined as above. Then

lim
h=r→0

h−4
∫ hr1−d t

0

∫ hr1−d t

0
I+,2(s1, s2) ds1 ds2

= 2t
∫
(Rd )3
|Ŵ ( y2− y1)|

2 a(x, y2)b(x, y2) δ(‖ y1‖
2
−‖ y2‖

2) dx d y1 d y2

+ t2
|Ŵ (0)|2

∫
Rd×Rd

a(x, y) b(x, y) dx d y. (9-14)

Proof. By Proposition 8.9 and Lemma 9.1 we have that the limit in (9-14) is given by

2
∫
(Rd )3

f ( y1, y2, 0, η) δ(‖ y1‖
2
−‖ y2‖

2) d y1d y2 dη+
∫ t

−t

∫
Rd×Rd

f ( y, y, u, η) d y dη du. (9-15)

We have for the first term

2
∫
(Rd )3

f ( y1, y2, 0, η) δ(‖ y1‖
2
−‖ y2‖

2) d y1 d y2 dη

= 2t
∫
(Rd )3
|Ŵ ( y2− y1)|

2 ã(η, y2)b̃(−η, y2) δ(‖ y1‖
2
−‖ y2‖

2) d y1 d y2 dη

= 2t
∫
(Rd )3
|Ŵ ( y2− y1)|

2 a(x, y2)b(x, y2) δ(‖ y1‖
2
−‖ y2‖

2) dx d y1 d y2. (9-16)

Similarly for the second term we obtain∫ t

−t

∫
Rd×Rd

f ( y, y, u, η) d y dη du =
∫ t

−t
(t − |u|)

∫
Rd×Rd

|Ŵ (0)|2 ã(η, y)b̃(−η, y) d y dη du

= t2
|Ŵ (0)|2

∫
Rd×Rd

a(x, y) b(x, y) dx d y, (9-17)

completing the proof. �

The case `= 1.

Lemma 9.3. For h = r ,∫ hr1−d t

0

∫ hr1−d t

0
I1,2(s1, s2) ds1 ds2= rd+2

∫ r2−d t

−r2−d t
Fr

((
u+ir2, 0,

(
0−α

))
, rd−2u

)
du+O(r∞), (9-18)

with Fr as defined in (8-19), where

f ( y1, y2, u, η)=
1
2

(∫ 2t−|u|

|u|
e
( 1

2(u− u′)η · ( y2− y1)
)

du′
)
χ[−t,t](u)

× |Ŵ ( y1− y2)|
2 ã(η, y1) b̃(−η, y2). (9-19)

Proof. As before, we start from (5-10). For I1,2 this yields the explicit formula

I1,2(s1, s2)

= r2dhd
∑

m1,m2∈Zd

∫
Rd

e
(
−

1
2 s1‖m2+α‖

2)Ŵ (r(m2−m1))e
(1

2 s1‖m1+α‖
2)ã(−η, h

(
m1+α+

1
2rd−1η

))
×e
(
−

1
2 s2‖m1+α+rd−1η‖2

)
Ŵ (r(m1−m2))e

( 1
2 s2‖m2+α+rd−1η‖2

)
×b̃
(
η, h

(
m2+α+

1
2rd−1η

))
dη+O(r∞). (9-20)
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We then note that we can write

s1‖m1+α‖
2
− s2‖m1+α+ rd−1η‖2

= (s1− s2)
∥∥m1+α+

1
2rd−1η

∥∥2
− (s1+ s2)rd−1η · (m1+α)−

1
4 s1r2d−2

‖η‖2− 3
4 s2r2d−2

‖η‖2 (9-21)

and similarly

−s1‖m2+α‖
2
+ s2‖m2+α+ rd−1η‖2

= (s2− s1)
∥∥m2+α+

1
2rd−1η

∥∥2
+ (s1+ s2)rd−1η · (m2+α)+

1
4 s1r2d−2

‖η‖2+ 3
4 s2r2d−2

‖η‖2. (9-22)

We then insert these expressions into the exponential and make the variable substitutions s1− s2 = u1,
s1+ s2 = u2, and η 7→ −η to obtain

1
2rd+2hd

∫ hr1−d t

−hr1−d t

(∫ 2hr−1t−rd−2
|u1|

rd−2|u1|

∑
m1,m2∈Zd

∫
Rd
|Ŵ (r(m2−m1))|

2e
(
−

1
2 u2 r η · (m2−m1)

)
× e

( 1
2 u1

(
‖m1+α−

1
2rd−1η‖2−‖m2+α−

1
2rd−1η‖2

))
× ã

(
η, h

(
m1+α−

1
2rd−1η

))
× b̃

(
−η, h

(
m2+α−

1
2rd−1η

))
du2

)
du1

= rd+2
∫ r2−d t

−r2−d t

∫
Rd
2 f

((
u1+ ir2, 0,

( 1
2 u1rd−1η

−α+ 1
2rd−1η

))
, rd−2u1, η

)
dη du1, (9-23)

with f as in (9-19). The statement follows from (9-13). �

Proposition 9.4.

lim
h=r→0

h−4
∫ hr1−d t

0

∫ hr1−d t

0
I1,2(s1, s2) ds1 ds2

= 2
∫ t

0

∫
(Rd )3
|Ŵ ( y2− y1)|

2 δ(‖ y1‖
2
−‖ y2‖

2)a(x− s( y2− y1), y1) b(x, y2) d y1 d y2 dx ds

+ t2
|Ŵ (0)|2

∫
Rd×Rd

a(x, y) b(x, y) dx d y. (9-24)

Proof. By Proposition 8.9 and Lemma 9.3 we have that the limit in (9-24) is the sum of two terms. The
first one can be written

2
∫
(Rd )3

f ( y1, y2, 0, η) δ(‖ y1‖
2
−‖ y2‖

2) d y1 d y2 dη

= 2
∫
(Rd )3
|Ŵ ( y2− y1)|

2 ã(η, y1)b̃(−η, y2) δ(‖ y1‖
2
−‖ y2‖

2)

(∫ t

0
e(−u′η ·( y2− y1))du′

)
d y1 d y2 dη

= 2
∫ t

0

∫
(Rd )3
|Ŵ ( y2− y1)|

2a(x−s( y2− y1), y1) b(x, y2)δ(‖ y1‖
2
−‖ y2‖

2) d y1 d y2 dx ds. (9-25)
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The second term takes the form

1
2

∫ t

−t

∫
Rd×Rd

f ( y, y, u, η) d y dη du′ du =
∫ t

−t
(t − |u|)

∫
Rd×Rd

|Ŵ (0)|2 ã(η, y)b̃(−η, y) d y dη du

= t2
|Ŵ (0)|2

∫
Rd×Rd

a(x, y) b(x, y) dx d y. (9-26)

This completes the proof. �

Thus, combining Ij,2 for j = 0, 1, 2 yields the following limiting expression for the second-order
terms.

Corollary 9.5.

lim
h=r→0

h−4
[
−

∫ hr1−d t

0

∫ s2

0
I2,2(s1, s2) ds1 ds2

+

∫ hr1−d t

0

∫ hr1−d t

0
I1,2(s1, s2) ds1 ds2−

∫ hr1−d t

0

∫ hr1−d t

s2

I0,2(s1, s2) ds1 ds2

]
= 2

∫ t

0

∫
(Rd )3
|Ŵ ( y2− y1)|

2δ(‖ y1‖
2
−‖ y2‖

2)

×[a(x− s( y2− y1), y1)− a(x, y2)] b(x, y2) d y1d y2 dx ds. (9-27)

Now replacing a by the time-evolved symbol L0(t)a yields, in place of (9-27),

2
∫ t

0

∫
(Rd )3
|Ŵ ( y2− y1)|

2 δ(‖ y1‖
2
−‖ y2‖

2)

×[a(x− (t − s) y1− s y2, y1)− a(x− t y2, y2)] b(x, y2) dx d y1 d y2 ds. (9-28)

10. Higher-order theta functions

In order to prove bounds on the error terms (4-15) in the Duhamel expansion we will need to define
higher-order theta functions, that is, generalisations of the theta function given in (8-8) that live on the
product space (0\G)k. Specifically, for f ∈ S(Rd×k

×Rd×k), we denote by 2(k)f : (0\G)
k
→ C the theta

function

2
(k)
f (τ ,φ,4)

= det(v)d/2
∑

M,M ′∈Zd×k

fφ((M−Y)v1/2, (M ′−Y)v1/2)

×e
(
Tr[12

t(M−Y)(M−Y)u− 1
2

t(M ′−Y)(M ′−Y)u+ t(M−M ′)X]
)
, (10-1)

or more explicitly,

2
(k)
f (τ ,φ,4)=

∑
m1,...,mk∈Zd

m′1,...,m
′

k∈Zd

fφ(v
1/2
1 (m1− y1), . . . ,v

1/2
k (mk− yk),v

1/2
1 (m′1− y1), . . . ,v

1/2
k (m′k− yk))

×

k∏
j=1

v
d/2
j e

(1
2 u j (‖mj− yj‖

2
−‖m′j− yj‖

2)+xj ·(mj−m′j )
)
, (10-2)
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where we use the natural notation

τ = u+ iv, u = diag(u1, . . . , uk), u j ∈ R,

v = diag(v1, . . . , vk), vj ∈ R>0, φ = (φ1, . . . , φk) ∈ [0, 2π)k,

4= (ξ 1, . . . , ξ k)=

((
x1

y1

)
, . . . ,

(
xk

yk

))
∈ R2d×k,

X = (x1, . . . , xk) ∈ Rd×k, Y = ( y1, . . . , yk) ∈ Rd×k,

M = (m1, . . . ,mk) ∈ Zd×k

(10-3)

and

fφ(Y ,Y ′)=
∫

Rd×k×Rd×k
Gφ(Y ,Y ′, Z, Z′) f (Z, Z′) dZ dZ′, (10-4)

with

Gφ(Y ,Y ′, Z, Z′)=
k∏

j=1

|sinφj |
−de

( 1
2(‖ yj‖

2
+‖z j‖

2
−‖ y′j‖

2
−‖z′j‖

2)cosφj− yj ·z j+ y′j ·z
′

j

sinφj

)
. (10-5)

For φ = 0 mod π we define fφ by generalising (8-16) in the analogous way. In the special case where
f =

∏k
j=1 f j , with f j ∈ S(Rd

× Rd), the function 2(k)f becomes the product of k independent theta
functions of the form (8-8). In a similar vein as earlier, we wish to consider a generalisation of this theta
function in which the function f is allowed to depend directly on u ∈ Rk and some new parameters
η ∈ Rd and ω ∈ R.

We denote by S̃k the class of functions f ∈ C(Rd×k
×Rd×k

×Rk
×Rd

×R) with the property that for
every multi-index β1,β2 ∈ Zd×k

≥0 , the derivative

∂
β1
Y1
∂
β2
Y2

f (Y1,Y2, u, η, ω)

(a) exists, (b) is continuous (in all variables), and (c) is rapidly decaying, i.e.,

sup
Y1,Y2,u,η,ω

(1+‖Y1‖)
T (1+‖Y2‖)

T (1+|u|)T (1+‖η‖)T (1+|ω|)T |∂β1
Y1
∂
β2
Y2

f (Y1,Y2, u, η, ω)|<∞ (10-6)

for every T > 1.
We then consider the test function f = f (Y ,Y ′, u, η, ω) in S̃k and set

2
(k)
f (g, u, η, ω) :=2(k)f ( · ,u,η,ω)(g). (10-7)

We now proceed to state some results in direct analogy with Section 8.

Lemma 10.1 (cf. Lemma 8.6). If f ∈ S̃k , then for all multi-indices β1,β2 ∈ Zd×k
≥0 and every T > 1

sup
Y1,Y2,u,η,ω,φ

(1+‖Y1‖)
T (1+‖Y2‖)

T (1+ |u|)T

× (1+‖η‖)T (1+ |ω|)T |∂β1
Y1
∂
β2
Y2

fφ(Y1,Y2, u, η, ω)|<∞. (10-8)

Proof. The proof is analogous to those of Lemmas 8.2 and 8.6. �



602 JORY GRIFFIN AND JENS MARKLOF

Now, let us use the shorthand

zk(η) :=

((
1,
(

0
1
2η

))
, . . . ,

(
1,
(

0
1
2η

)))
∈ Gk,

and further define

Fk,β
r (g, u) :=

∫
R

∣∣∣∣∫
Rd
2
(k)
f (g zk(rdη), u, η, ω) dη

∣∣∣∣β dω. (10-9)

Proposition 10.2 (cf. Proposition 8.7). Let 0< β < 1 and f ∈ S̃k . Then,

Fk,β
r (u+iv,φ,4,u′)

=det(v)βd/2
∑

M∈Zd×k

∫
R

∣∣∣∣∫
Rd

fφ((M−Y)v1/2, (M−Y)v1/2,u′,η,ω)dη
∣∣∣∣βdω+O(rd)+

k∑
j=1

O(v−∞j ) (10-10)

uniformly for all (u+ iv,φ,4) ∈ (0\G)k, u′ ∈ Rk with vj >
1
2 for all j and r < 1.

Proof. The proof is analogous to that of Proposition 8.7. �

Recall the definitions of 9β

R, f and f̄ in (7-11) and (8-11).

Lemma 10.3. Fix T > d. Then:

(1) There is a constant C such that for all r < 1

|Fk,β
r (τ ,φ,4, u′)|< C

k∏
j=1

(1+9β

1/2, f̄
(τj , ξ j )). (10-11)

(2) Fk,β
r → Fk,β

0 uniformly on compacta.

Proof. The proof is analogous to that of Lemma 8.8 with Lemma 10.1 in place of Lemma 8.6. �

In the following, we denote by Ik the k× k identity matrix.

Proposition 10.4. Let 0 < β < 1 and f ∈ S̃k . Assume for j = 1, . . . , k that yj is Diophantine of type
κ < (d − 1)/(d − 2) with the components of (1, t yj ) linearly independent over Q. Let w : Rk

→ R be
bounded with compact support. Then,

lim sup
r→0

r k(d−2)
∫

Rk
Fk,β

r

(
u+ ir2 Ik, 0,

(
0
Y

)
, rd−2u

)
w(rd−2u) du <∞. (10-12)

Proof. Applying Lemma 10.3 yields

lim sup
r→0

r k(d−2)
∫

Rk
Fk,β

r

(
u+ ir2 Ik, 0,

(
0
Y

)
, rd−2u

)
w(rd−2u) du

< C lim sup
r→0

r k(d−2)
∫

Rk

[ k∏
j=1

(
1+9β

1/2, f̄

(
u j + ir2 Ik,

(
0
yj

)))]
w(rd−2u) du. (10-13)
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The function w has compact support, so fix L such that the cube (−L , L)k contains the support of w,
and denote by χL the characteristic function of the interval (−L , L). We can then bound the above
expression by

C sup |w| lim sup
r→0

k∏
j=1

(
rd−2

∫
R

(
1+9β

1/2, f̄

(
u j + ir2 Ik,

(
0
yj

)))
χL(rd−2u j ) du j

)
. (10-14)

The result then follows by applying Proposition 7.3. �

11. Error terms

In this section we prove upper bounds on the error terms (4-15) in the semiclassical Boltzmann–Grad
scaling, i.e., for Qn(hr1−d t, Dr,ha, Dr,hb), where relevant cases are n = 3, 4, 5, 6. Lemma 4.1 tells us
that

|Qn(hr1−d t, Dr,ha, Dr,hb)| ≤
3∑

`=n−3

J`,n(hr1−d t, Dr,ha) ‖5α Opr,h(b)‖HS,α. (11-1)

The term ‖5α Opr,h(b)‖HS,α has a uniform upper bound; see Lemma 6.1. Hence the key is to estimate
(recall (4-16) and Lemma 3.2)

J`,n(hr1−d t,Dr,ha)

=(2π)n
∫

0<s1<···<s`<thr1−d

0<sn<···<s`+1<thr1−d

(
Trα[K1,`(s)†K1,`(s)Opr,h(a)K`+1,n(s)K`+1,n(s)† Opr,h(ā)]

)1/2 ds. (11-2)

A straightforward computation (see Section C in the appendix) yields the expression

Trα[K1,`(s)†K1,`(s)Opr,h(a)K`+1,n(s)K`+1,n(s)† Opr,h(ā)]

= r2ndhd
∑

m0,m1,...,mn∈Zd

m′1,...,m
′
n∈Zd

1[m′n −mn +m`−m′` = 0]

×

∫
Rd

Ŵ (r(m0−m1))T −1,`−1(α)e
( 1

2 s`(‖m`+α‖
2
−‖m′`+α‖

2)
)

× Ŵ (r(m′1−m0))T −1,`−1(α)ã
(
η, h

(
m`+α−

1
2rd−1η

))
× Ŵ (r(m`−m`+1))T −`+1,n−1(α− rd−1η)

× e
( 1

2 s`+1(‖m′`+α− rd−1η‖2−‖m`+α− rd−1η‖2)
)

× Ŵ (r(m′`+1−m′`))T
−

`+1,n−1(α− rd−1η)

× ˜̄a
(
−η, h

(
m′`+α−

1
2rd−1η

))
dη+ O(r∞), (11-3)

where

T −`,n( y)=
{∏n

j=` e
( 1

2 (sj − sj+1)‖ y+mj‖
2
)
Ŵ (r(mj −mj+1)) (l ≤ n),

1 (l > n),

T −`,n( y)=
{∏n

j=` e
( 1

2 (sj+1− sj )‖ y+m′j‖
2
)
Ŵ (r(m′j+1−m′j )) (l ≤ n),

1 (l > n).

(11-4)
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Let us focus on the exponential factors in (11-3); they are(`−1∏
j=1

e
(1

2 (sj − sj+1)(‖mj +α‖
2
−‖m′j +α‖

2)
))

× e
( 1

2 s`(‖m`+α‖
2
−‖m′`+α‖

2)
)
e
( 1

2 s`+1(‖m′`+α− rd−1η‖2−‖m`+α− rd−1η‖2)
)

×

( n−1∏
j=`+1

e
( 1

2 (sj − sj+1)(‖mj +α− rd−1η‖2−‖m′j +α− rd−1η‖2)
))
.

(11-5)

We write the above as(`−1∏
j=1

e
(1

2 (sj−sj+1)
(
‖mj+α−

1
2rd−1η‖2−‖m′j+α−

1
2rd−1η‖2+rd−1(mj−m′j )·η

)))
×e
( 1

2 (s`−s`+1)
(
‖m`+α−

1
2rd−1η‖2−‖m′`+α−

1
2rd−1η‖2

))
e
(1

2 (s`+s`+1)rd−1η·(m`−m′`)
)

×

( n−1∏
j=`+1

e
( 1

2 (sj−sj+1)
(
‖mj+α−

1
2rd−1η‖2−‖m′j+α−

1
2rd−1η‖2−rd−1(mj−m′j )·η

)))
. (11-6)

Note that this product of exponentials is independent of the variables m0, mn and m′n , and so the entire
dependence on these variables is in the product of Ŵ -terms. In (11-3) we can therefore separately evaluate
the threefold sum∑

m0,mn,m′n
m′n−mn+m`−m′`=0

Ŵ (r(m0−m1))Ŵ (r(m′1−m0))Ŵ (r(mn−1−mn)) Ŵ (r(m′n −m′n−1)), (11-7)

which is equal to∑
m0,mn

Ŵ (r(m0−m1))Ŵ (r(m′1−m0))Ŵ (r(mn−1−mn))Ŵ (r(mn +m′`−m`−m′n−1)). (11-8)

Applying the Poisson summation formula to the sums over m0 and mn yields

r−2d
∑
k0,kn

∫∫
R2d

Ŵ ( y0− r m1)Ŵ (r m′1− y0)Ŵ (r mn−1− yn)

× Ŵ ( yn + r(m′`−m`−m′n−1))e(r
−1k0 · y0+ r−1kn · yn) d y0 d yn. (11-9)

Since W ∈ S(Rd), we have for any T1, T2 ≥ 1 that (11-9) equals

r−2dW(r(m′1−m1))W(r(m′`−m`+mn−1−m′n−1))

+ OT
(
r T1(1+ r‖m1−m′1‖)

−T2(1+ r‖m′`−m`+mn−1−m′n−1‖)
−T2
)
, (11-10)

with
W(t)=

∫
Rd

Ŵ (t − y)Ŵ ( y) d y. (11-11)

The error term in (11-10), after applying the remaining mj -sums, yields therefore a total contribution
of order O(r∞) for h = r ∈ (0, 1]. In order to write (11-3) as a higher-order theta function, we change
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variable by the linear map A : Rn
→ Rn , s 7→ ω = As, given by

ωj = sj − sj+1 ( j = 1, . . . , n− 1), ωn = s`+ s`+1. (11-12)

The corresponding determinant equals 2, and hence A is invertible. Let

Q= {s ∈ Rn
: 0< s1 < · · ·< s` < 1, 0< sn < · · ·< s`+1 < 1}. (11-13)

Then, for h = r and ω = (u, ω) ∈ Rn−1
×R,

J`,n(hr1−d t, Dr,ha)

= (2π)n rnd/2
∫

Rn−1

∫
R

1(rd−2(u, ω)∈ AQ)

×

∣∣∣∣∫
Rd
2
(n−1)
f∗

(
gr (u,α) zn−1(rdη), rd−2u, η, rd−2ω

)
dη
∣∣∣∣1/2 dω du+O(r∞), (11-14)

with

gr (u,α)=
(

u+ ir2 Ik, 0,
((

0
−α

)
, . . . ,

(
0
−α

)))
∈ Gn−1,

and 2(k)f∗ as in (10-7) with k = n− 1 and test function

f∗(Y ,Y ′, u, η, ω)=W( y′1− y1)W( y′`− y`+ yn−1− y′n−1)

×

(n−2∏
j=1

Ŵ ( yj − yj+1)Ŵ ( y′j+1− y′j )
)

ã(η, y`) ¯̃a(−η, y′`)

×

( n−1∏
j=`+1

e(−u j ( yj − y′j ) · η)
)

e
( 1

2(ω− u`)η · ( y`− y′`)
)
, (11-15)

where Y ,Y ′ ∈ Rd×(n−1) are given by

Y = ( y1, . . . , yn−1), Y ′ = ( y′1, . . . , y′n−1). (11-16)

In order to apply the results in Section 10, we however require f∗ to be continuous and compactly
supported in u, and rapidly decaying in ω. To achieve this, note that we can find f with precisely these
properties by setting

f (Y ,Y ′, u, η, ω)= (ι(u, ω))2 f∗(Y ,Y ′, u, η, ω), (11-17)

with ι :Rn
→R≥0 smooth and compactly supported such that ι(u, ω)> (2π)n on the domain of integration.

We then have, instead of (11-14),

J`,n(hr1−d t,Dr,ha)

≤ rnd/2
∫

Rn−1

∫
R

1(rd−2(u,ω)∈ AQ)

×

∣∣∣∣∫
Rd
2
(n−1)
f

(
gr (u,α) zn−1(rdη),rd−2u,η,rd−2ω

)
dη
∣∣∣∣1/2 dωdu+O(r∞), (11-18)
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and thus after the variable substitution ω 7→ r2−dω,

J`,n(hr1−d t, Dr,ha)

≤ rnd/2r2−d
∫

Rn−1
w(rd−2u)

×

∫
R

∣∣∣∣∫
Rd
2
(n−1)
f

(
gr (u,α) zn−1(rdη), rd−2u, η, ω

)
dη
∣∣∣∣1/2 dω du+ O(r∞), (11-19)

with

w(u)= sup
ω∈R

1((u, ω) ∈ AQ), (11-20)

which is bounded and has compact support.

Lemma 11.1. Under the assumptions of Theorem 1.3, for h = r < 1,

J`,n(hr1−d t, Dr,ha)= O(r−nd/2+2n). (11-21)

Proof. For Fk,β
r as in (10-9), we have∫
R

∣∣∣∣∫
Rd
2
(n−1)
f

(
g zn−1(rdη), rd−2u, η, ω

)
dη
∣∣∣∣1/2 dω = Fn−1,1/2

r (g, rd−2u). (11-22)

Thus, applying Proposition 10.4 we see that the right-hand side of (11-19) is bounded above by a constant
times

rnd/2
× r2−d

× r−(n−1)(d−2)
= r−nd/2+2n, (11-23)

completing the proof. �

Proof of Theorem 1.3. We recall the rescaling of t and λ in (2-9). The existence of the operators
A(r,α)n (tr1−d) follows from the Duhamel expansion in (4-13). The error term follows from Lemmas 4.1
and 11.1, remembering that λ should be rescaled λ 7→ λ/h2 as in (2-9). Finally, the convergence of
the operators A(r,α)n (tr1−d) in the limit r → 0 is proved by combining Lemma 6.1, Lemma 6.2 and
Corollary 9.5. �

12. Averages over α

In this section we give the analogous results required to prove Theorem 1.2. First recall that Proposition 7.1
tells us that for y ∈ Rd

\Qd with the components of (1, t y) linearly independent, and (Fr )r≥0 a sequence
of uniformly bounded, continuous functions we have

lim
r→0

rσ
∫

R

Fr

((
u+ ir2, 0,

(
0
y

))
, rσu

)
w(rσu) du =

1
µ(0\G)

∫
0\G

∫
R

F(g, u) w(u) du dµ(g). (12-1)

Note that since the Fr are uniformly bounded and continuous, and w ∈ L1(R), the integral over u is
bounded uniformly in r and y. Since the statement (12-1) holds for a full measure set of y ∈ [0, 1)d, one
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can apply dominated convergence to conclude

lim
r→0

rσ
∫
[0,1)d

∫
R

Fr

((
u+ ir2, 0,

(
0
y

)))
, rσu) w(rσu) du d y

=
1

µ(0\G)

∫
0\G

∫
R

F(g, u) w(u) du dµ(g). (12-2)

Thus we now just need to consider the case of unbounded test functions. It follows from (7-15) that∫
y∈[0,1)d

9
β

R, f

(
τ,

(
0
y

))
d y = 2

∑
m∈Zd

f
(

m
v1/2

|τ |

)
vβd/2

|τ |βd χR

(
v

|τ |2

)

+ 2
∫

Rd
f ( y) d y

∑
(c,d)∈Z2

gcd(c,d)=1
c>0,d 6=0

v(β−1)d/2

|cτ + d|(β−1)d χR

(
v

|cτ + d|2

)
. (12-3)

Since for 0≤ β ≤ 1
v(β−1)d/2

|cτ + d|(β−1)d ≤ R(β−1)d/2, (12-4)

we have∫
y∈[0,1)d

9
β

R, f

(
τ,

(
0
y

))
d y≤2

∑
m∈Zd

f
(

m
v1/2

|τ |

)
vβd/2

|τ |βd χR

(
v

|τ |2

)
+R(β−1)d/2 X R(τ )

∫
Rd

f ( y)d y. (12-5)

This allows us to prove the following y-averaged versions of Propositions 7.2 and 7.3.

Proposition 12.1. Let w : R→ R be piecewise continuous with compact support, and 0< ε < 1. Then,
for every R ≥ 1,

lim sup
r→0

rd−2
∫
|u|>r2−ε

∫
[0,1)d

9R, f

(
u+ ir2,

(
0
y

))
w(rd−2u) d y du� R−1. (12-6)

Proof. When β = 1, the first term in the right-hand side of (12-5) vanishes as v→ 0; see [Marklof 2002,
§6.6.1]. By the equidistribution of closed horocycles and the fact that X R is bounded and piecewise
constant, we have for R ≥ 1 that

lim
r→0

rd−2
∫

R

X R(u+ ir2) w(rd−2u) du =
3
π

∫
R

w(x) dx
∫

SL(2,R)\H
X R(u+ iv)

du dv
v2

=
3
π

∫
R

w(x) dx
∫
∞

R

dv
v2 =

3
πR

∫
R

w(x) dx, (12-7)

completing the proof. �

Proposition 12.2. Let w : R→ R be piecewise continuous with compact support, and 0≤ β < 1. Then,
for every R ≥ 1,

lim sup
r→0

rd−2
∫

R

∫
[0,1)d

9
β

R, f

(
u+ ir2,

(
0
y

))
w(rd−2u) d y du� R(β−1)d/2. (12-8)
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Proof. The first term in the right-hand side of (12-5) has already been estimated in the proof of
Proposition 7.3. For the remaining terms the statement now follows from the observation that X R

is a bounded function. �

Proof of Theorem 1.2. The convergence of the operators A(r)n (r1−d t) follows in the cases n = 0, 1 directly
from the calculations in Section 6 for fixed α. Using Proposition 12.1 one can prove an α-averaged version
of Proposition 8.9, and hence prove the convergence of A(r)2 (r1−d t) as in Corollary 9.5, with y=−α. All
that remains is the bound on the error terms. One first proves the α-averaged version of Proposition 10.4,
with yj =−α, by using Proposition 12.2. The remaining analysis proceeds identically to Section 11. �

Appendix

A. The following proposition explains how Conjecture 1.1 and Theorem 1.2 yield information on the
phase-space distribution of the wavepacket f ( p)(t)=Uh,λ(t) f ( p)

0 with an initial wavepacket f ( p)
0 of the

form (see Figure 1)
f ( p)
0 (x)= rd(d−1)/2φ(rd−1x) e( p · x/h), (A-1)

where φ ∈ S(Rd) is assumed to have unit L2-norm, and p ∈ Rd.
We use the shorthand

A(t)=Uh,λ(t)Opr,h(a)Uh,λ(t)−1, B = Opr,h(b). (A-2)

Proposition A.1. Let f ( p)
0 , f ( p)(t) be as above, w ∈ S(Rd) and b ∈ S(Rd

×Rd ). Set

a(x, y)= |φ(x)|2w( y). (A-3)
Then

r−d(d−1)/2h−d/2
∫

Rd
〈 f ( p)(t), B f ( p)(t)〉w( p) d p= 〈A(t), B〉HS+ O(rd−1h) (A-4)

uniformly in r, h, t > 0.

(The prefactor r−d(d−1)/2h−d/2 in (A-4) compensates for the L2-normalisation of B = Opr,h(b) in
(1-9), which is not suitable in the present setting.)

Proof. Consider the linear operator F ( p)
r,h : L

2(Rd)→ L2(Rd) with Schwartz kernel

F ( p)
r,h (x, x′)= f ( p)

0 (x) f ( p)
0 (x′)= rd(d−1)φ(rd−1x) φ(rd−1x′) e( p · (x− x′)/h). (A-5)

Using the Fourier transform ŵ of w yields

Fr,h(x, x′)=
∫

F ( p)
r,h (x, x′)w( p) d p= rd(d−1)φ(rd−1x) φ(rd−1x′) ŵ((x′− x)/h) (A-6)

and by Taylor’s theorem we have

φ(rd−1x) = φ
( 1

2rd−1(x+ x′)
)
+ Rr,h(x, x′), (A-7)

with remainder

Rr,h(x, x′)= 1
2rd−1

∫ 1

0
(x− x′) · ∇φ

( 1
2rd−1((x+ x′)+ s(x− x′))

)
ds. (A-8)
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We can express this term in the form

Rr,h(x, x′)= 1
2rd−1h Sb

(1
2rd−1(x+ x′), (x− x′)/h

)
, b = 1

2rd−1h, (A-9)

with

Sb(x, y)=
∫ 1

0
y · ∇φ(x+ sb y) ds. (A-10)

Now

Fr,h(x, x′)= rd(d−1)∣∣φ( 1
2rd−1(x+ x′)

)∣∣2 ŵ((x′− x)/h)+ Er,h(x, x′), (A-11)

with

Er,h(x, x′)=rd(d−1)ŵ((x′−x)/h)
{
φ
( 1

2rd−1(x+x′)
)
Rr,h(x′, x)

+Rr,h(x, x′)φ
( 1

2rd−1(x+x′)
)
+Rr,h(x, x′)Rr,h(x′, x)

}
. (A-12)

On account of (A-9),

Er,h(x, x′)= r (d+1)(d−1)h Wb
( 1

2rd−1(x+ x′), (x− x′)/h
)
, b = 1

2rd−1h, (A-13)

with

Wb(x, y)= 1
2ŵ( y){φ(x)Sb(x,− y)+ Sb(x, y)φ(x)+ b Sb(x, y)Sb(x,− y))}. (A-14)

We rewrite (A-11) as

Fr,h(x, x′)= rd(d−1)hd
∫

Rd

∣∣φ( 1
2rd−1(x+ x′)

)∣∣2w(h y) e((x− x′) · y) d y+ Er,h(x, x′), (A-15)

and so, for a as in (A-3),

Fr,h = rd(d−1)/2hd/2 Opr,h(a)+ Er,h . (A-16)

We conclude

r−d(d−1)/2h−d/2
∫

Rd
〈 f ( p)(t), B f ( p)(t)〉w( p) d p

= r−d(d−1)/2h−d/2
〈Uh,λ(t)Fr,hUh,λ(t)−1, B〉HS

= 〈Uh,λ(t)Opr,h(a)Uh,λ(t)−1, B〉HS+ O(rd−1h), (A-17)

where the error term follows from the upper bounds

|〈Uh,λ(t)Er,hUh,λ(t)−1, B〉HS| ≤ ‖Er,h‖HS‖B‖HS, (A-18)

and

‖Er,h‖HS = r (d+1)(d−1)h
(∫

Rd×Rd

∣∣Wb
(1

2rd−1(x+ x′), (x− x′)/h
)∣∣2 dx dx′

)1/2

= r (1+d/2)(d−1)hd/2+1
(∫

Rd×Rd
|Wb(x, y)|2 dx d y

)1/2

, (A-19)
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with

lim
b→0

∫
Rd×Rd

|Wb(x, y)|2 dx d y =
∫

Rd×Rd
|W0(x, y)|2 dx d y <∞. (A-20)

This completes the proof. �

B. In this section we compute the expression (5-10) for I`,n . Recall that

[K̂`,n(s)]( y, y′)

= r (n−`+1)d
∑

m`,...,mn∈Zd

e
(
−

1
2 s`‖ y‖2

)
Ŵ (r m`)T`,n−1( y)e

( 1
2 sn‖ y−mn‖

2)δmn ( y− y′). (B-1)

Hence we have for 1≤ `≤ n− 1 that

I`,n(s)= Trα[K1,`(s)Op(Dr,ha)K`+1,n(s)Op(Dr,hb)]

= rndr−d(d−1)hd
∫

Rd

∑
m0,...,mn

e
(
−

1
2 s1‖m0+α‖

2)Ŵ (r m1)T1,`−1(m0+α)e
(1

2 s`‖m0+α−m`‖
2)

×ã
(
r1−d(m0+α−m`−η),

h
2 (m0+α−m`+η)

)
×e
(
−

1
2 s`+1‖η‖

2)Ŵ (r m`+1)T`+1,n−1(η)e
( 1

2 sn‖η−mn‖
2)

×b̃
(
r1−d(η−mn−m0−α),

h
2 (η−mn+m0+α)

)
dη. (B-2)

We then make the variable substitution η→ rd−1η+m0+α−m` so that ã has first argument −η. This
leaves b̃ with first argument η− r1−d(mn +m`), and, by the rapid decay of ã and b̃, the leading-order
terms come from when mn +m` = 0, and we incur an error of order r∞. We thus have

I`,n(s)= rndhd
∫

Rd

∑
m0,...,mn

1[mn+m` = 0]

×e
(
−

1
2 s1‖m0+α‖

2)Ŵ (r m1)T1,`−1(m0+α)e
( 1

2 s`‖m0+α−m`‖
2)

×ã
(
−η, h

(
m0+α−m`+

1
2rd−1η

))
e
(
−

1
2 s`+1‖m0+α−m`+rd−1η‖2

)
×Ŵ (r m`+1)T`+1,n−1(m0+α+rd−1η−m`)e

( 1
2 sn‖m0+α+rd−1η‖2

)
×b̃
(
η, h

(
m0+α+

1
2rd−1η

))
dη+O(r∞). (B-3)

Finally, we make the substitutions mj → m0 − mj for j = 1, . . . , ` followed by mj → m` − mj for
j = `+ 1, . . . , n to obtain

I`,n(s)= rndhd
∫

Rd

∑
m0,...,mn

1[mn = m0]

× e
(
−

1
2 s1‖m0+α‖

2)Ŵ (r(m0−m1))T −1,`−1(α)e
( 1

2 s`‖m`+α‖
2)

× ã
(
−η, h

(
m`+α+

1
2rd−1η

))
e
(
−

1
2 s`+1‖m`+α+ rd−1η‖2

)
× Ŵ (r(m`−m`+1))T −`+1,n−1(α+ rd−1η)e

( 1
2 sn‖m0+α+ rd−1η‖2

)
× b̃

(
η, h

(
m0+α+

1
2rd−1η

))
dη+ O(r∞). (B-4)

This proves (5-10).
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C. This section establishes relation (11-3), which is needed in the analysis of J`,n(t, a). First we compute
the kernel of K̂ †

`,n = FK †
`,nF

−1. By taking the complex conjugate and switching y and y′ in (4-22), we
obtain

[K̂`,n(s)†]( y, y′)= r (n−`+1)d
∑

m′`,...,m′n∈Zd

e
( 1

2 s`‖ y+m′n‖
2)Ŵ (−r m′`)

× T `,n−1( y+m′n)e
(
−

1
2 sn‖ y‖2

)
δm′n ( y′− y), (C-1)

where

T `,n( y)=
n∏

j=`

e
( 1

2 (sj+1− sj )‖ y−m′j‖
2)Ŵ (r(m′j −m′j+1)). (C-2)

Thus, using the formulae for the kernels of K̂`,n , K̂ †
`,n and Ôpr,h we have

[K̂`,n(s)† K̂`,n(s) Ôpr,h(a)]( y, y′)

= r2(n−`+1)d
∑

m`,...,mn∈Zd

∑
m′`,...,m′n∈Zd

e
( 1

2 s`‖ y+m′n‖
2)Ŵ (−r m′`)T `,n−1( y+m′n)e

(
−

1
2 sn‖ y‖2

)
×e
(
−

1
2 s`‖ y+m′n‖

2)Ŵ (r m`)T`,n−1( y+m′n)e
( 1

2 sn‖ y+m′n−mn‖
2)

×ã
(
r1−d( y−mn+m′n− y′), h

2 ( y−mn+m′n+ y′)
)
, (C-3)

and similarly

[K̂`,n(s)K̂`,n(s)† Ôpr,h(a)]( y, y′)

= r2(n−`+1)d
∑

m`,...,mn∈Zd

∑
m′`,...,m′n∈Zd

e
(
−

1
2 s`‖ y‖2

)
Ŵ (r m`)T`,n−1( y)e

(1
2 sn‖ y−mn‖

2)
×e
( 1

2 s`‖ y−mn+m′n‖
2)Ŵ (−r m′`)

×T `,n−1( y−mn+m′n)e
(
−

1
2 sn‖ y−mn‖

2)
×ã
(
r1−d( y+m′n−mn− y′), h

2 ( y+m′n−mn+ y′)
)
. (C-4)

Combining these yields explicitly

Trα[K1,`(s)†K1,`(s) Opr,h(a)K`+1,n(s)K`+1,n(s)† Opr,h(ā)]

= r2nd−d(d−1)hd
∑

m0,m1,...,mn∈Zd

m′1,...,m
′
n∈Zd

∫
Rd

Ŵ (r m1)T1,`−1(m0+m′`+α)e
( 1

2 s`‖m0+m′`−m`+α‖
2)

×Ŵ (−r m′1)T 1,`−1(m0+m′`+α)e
(
−

1
2 s`‖m0+α‖

2)
×ã
(
r1−d(m0+m′`−m`+α− y), h

2 (m0+m′`−m`+α+ y)
)

×e
(
−

1
2 s`+1‖ y‖2

)
Ŵ (r m`+1)T`+1,n−1( y)

×e
( 1

2 s`+1‖ y+m′n−mn‖
2)Ŵ (−r m′`+1)T `+1,n−1( y+m′n−mn)

×˜̄a
(
r1−d( y+m′n−mn−m0−α),

h
2 ( y+m′n−mn+m0+α)

)
d y. (C-5)

Now we make the substitution y= rd−1η+m0+α+m′`−m` so that the first argument of ã becomes −η.
Now ˜̄a has first argument η+r1−d(m′n−mn+m′`−m`), and hence (using the rapid decay of ã) we have
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that m′n −mn +m′`−m` = 0. This yields the expression

Trα[K1,`(s)†K1,`(s) Opr,h(a) K`+1,n(s)K`+1,n(s)† Opr,h(ā)]

= r2ndhd
∑

m0,m1,...,mn∈Zd

m′1,...,m
′
n∈Zd

1[m′n −mn +m′`−m` = 0]

×

∫
Rd

Ŵ (r m1)T1,`−1(m0+m′`+α)e
( 1

2 s`‖m0+m′`−m`+α‖
2)

× Ŵ (−r m′1)T 1,`−1(m0+m′`+α)e
(
−

1
2 s`‖m0+α‖

2)
× ã

(
−η, h

(
m0+m′`−m`+α+

1
2rd−1η

))
× e

(
−

1
2 s`+1‖rd−1η+m0+α+m′`−m`‖

2)Ŵ (r m`+1)

× T`+1,n−1(rd−1η+m0+α+m′`−m`)

× e
( 1

2 s`+1‖rd−1η+m0+α‖
2)Ŵ (−r m′`+1)

× T `+1,n−1(rd−1η+m0+α)

× ˜̄a
(
η, h

(
m0+α+

1
2rd−1η

))
dη+ O(r∞). (C-6)

We then make the substitution m0→m0−m′`, followed by the substitutions mj→m0−mj for j=1, . . . , `
and mj → m`−mj for j = `+ 1, . . . , n as well as the analogous substitutions for the m′j . This yields
the simpler expression

Trα[K1,`(s)†K1,`(s) Opr,h(a) K`+1,n(s)K`+1,n(s)† Opr,h(ā)]

= r2ndhd
∑

m0,m1,...,mn∈Zd

m′1,...,m
′
n∈Zd

1[m′n−mn+m`−m′` = 0]

×

∫
Rd

Ŵ (r(m0−m1))T −1,`−1(α)e
( 1

2 s`(‖m`+α‖
2
−‖m′`+α‖

2)
)

× Ŵ (r(m′1−m0))T −1,`−1(α)ã
(
−η, h

(
m`+α+

1
2rd−1η

))
× Ŵ (r(m`−m`+1))T −`+1,n−1(r

d−1η+α)

×e
( 1

2 s`+1(‖rd−1η+m′`+α‖
2
−‖rd−1η+α+m`‖

2)
)

× Ŵ (r(m′`+1−m′`))T
−

`+1,n−1(r
d−1η+α)

× ˜̄a
(
η, h

(
m′`+α+

1
2rd−1η

))
dη+O(r∞). (C-7)

This yields (11-3) after substituting η→−η.
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[Eng and Erdős 2005] D. Eng and L. Erdős, “The linear Boltzmann equation as the low density limit of a random Schrödinger
equation”, Rev. Math. Phys. 17:6 (2005), 669–743. MR Zbl
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