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We develop a theory of the Klein–Gordon equation on curved spacetimes. Our main tool is the method of
(nonautonomous) evolution equations on Hilbert spaces. This approach allows us to treat low regularity
of the metric, of the electromagnetic potential and of the scalar potential. Our main goal is a construction
of various kinds of propagators needed in quantum field theory.
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1. Introduction

We consider the Klein–Gordon operator on a Lorentzian manifold (M, g) minimally coupled to an
electromagnetic potential A and with a scalar potential Y . In local coordinates it can be written as

K :=�A+ Y = |g|−1/2(Dµ− Aµ)|g|1/2gµν(Dν − Aν)+ Y, (1-1)

where |g| = |det[gµν]| and Dµ =−i∂µ. As in our recent work [Dereziński and Siemssen 2018], we are
interested in inverses and bisolutions of the Klein–Gordon operator K .
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Heuristically, they are defined as follows:

• An operator G is a bisolution of K if it satisfies

K G = 0 and G K = 0.

• An operator G is an inverse of K if it satisfies

K G = 1 and G K = 1.

To make these statements rigorous, one needs to specify the spaces between which these operators act,
making sure that the composition of K and G is well-defined. Often, G can be understood as an operator
from C∞c (M) to C∞(M).

The Klein–Gordon operator has several distinguished inverses and bisolutions. They are known by
many names, e.g., “propagator” or “two-point function”. Inverses are often also called “Green’s functions”.

The most well-known propagators are probably the forward (retarded) propagator G∨ and the backward
(advanced) propagator G∧. Their difference GPJ

:= G∨ −G∧ is sometimes called the Pauli–Jordan
propagator, which is the name we use. In the literature one can also find other names, such as “commutator
function” or “causal propagator”.1 These three propagators are important in the Cauchy problem of the
classical theory. Therefore, we will call them jointly classical propagators. It is well known that on
globally hyperbolic spacetimes the classical propagators exist and are unique.

In quantum field theory, one needs also other propagators: two inverses, the Feynman propagator GF

and the anti-Feynman propagator GF, as well as the positive- and negative-frequency bisolutions G(±).
We will call them jointly nonclassical propagators. A positive-frequency bisolution yields the two-point
function of a vacuum state — a pure quasifree state whose Gelfand–Naimark–Segal (GNS) representation
yields a Hilbert space for the quantum field theory. The integral kernel of the Feynman propagator
coincides with the expectation value of time-ordered products of quantum fields. It is used to evaluate
Feynman diagrams.

The analysis of the Klein–Gordon equation is especially simple if the spacetime is stationary and the
Hamiltonian is positive. On the mathematical side, if in addition the Hamiltonian is bounded away from
zero (the “positive-mass case”), we have a natural Hilbert space structure for the Cauchy data. The most
obvious choice is the so-called energy Hilbert space. It is also natural to consider a whole scale of Hilbert
spaces, which includes the energy space. The generator of the dynamics is self-adjoint on all of these
spaces. Thus the functional analytic setting for stationary spacetimes in the “positive-mass case” is rather
clean and simple. If we assume that the Hamiltonian is only positive, without a positive lower bound,
(the “zero-mass case”), then the functional-analytic setup becomes slightly more technically involved, but
the general picture remains the same.

1We try to use as much as possible the terminology from classic textbooks on quantum field theory. For instance, “Pauli–
Jordan function” is the name used for GPJ already in [Bogoliubov and Shirkov 1980]. The same authors call GF the “causal
Green’s function”, since the choice of GF for the evaluation of Feynman diagrams expresses causality in quantum field theory.
Therefore, using the name “causal propagator” for GPJ clashes with the traditional terminology and, we believe, should be
discouraged.
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On the physical side, on a stationary spacetime with a positive Hamiltonian, it is clear how to define the
nonclassical propagators. The positive- and negative-frequency bisolutions, as well as the Feynman and
anti-Feynman propagators, are constructed from the spectral projections of the generator of the dynamics.
These constructions, at least implicitly, can be found in various works devoted to quantum field theory on
curved spacetimes. In a systematic way the static case has been worked out recently in [Dereziński and
Siemssen 2018]; see also [Dereziński and Gérard 2013, Chapter 18]. In [Dereziński and Siemssen 2018],
we assumed in addition the “positive-mass condition”, and the results of that paper can be easily generalized
to stationary spacetimes (using, e.g., the stationary special case of Sections 2.1 and 2.2 as a starting point).

The positivity of the Hamiltonian plays an important role in the construction of nonclassical propagators.
This is related to the fact that nonpositive Hamiltonians lead to problems in quantum field theory, which
are often collectively called the Klein paradox. The original paper by Klein involved fermions and the
Dirac equation with a large step potential causing spontaneous pair creation. One can easily resolve
the fermionic Klein paradox in the second quantized theory. Splitting the Hilbert space into the particle
and antiparticle subspaces and applying second quantization makes the quantum Hamiltonian positive
definite. The corresponding problem for bosons is much more serious. If the classical Hamiltonian is
not positive, it will not become positive by quantization. Besides, in this case there is no positive scalar
product preserved by the evolution, as is the case for Dirac fermions. This typically leads to the so-called
superradiance. In mathematical terms it means that the scattering operator has a norm greater than 1, or
it does not exist at all because the norm of the evolution grows all the time.

This paper is devoted to the study of the Klein–Gordon equation on rather general (possibly, nonsta-
tionary) spacetimes. We construct both the classical propagators and certain families of nonclassical
propagators. Let us first describe the basic steps of our construction of the classical propagators:

(1) We assume that there is a manifold 6 such that the spacetime M is diffeomorphic to R×6. This
diffeomorphism provides a global time function t whose level sets 6t are assumed to be spacelike. It also
defines a flow whose generator ∂t is assumed to be timelike.

(2) We rewrite the Klein–Gordon equation as a (nonautonomous) first-order equation for the Cauchy data
on 6t . Thus the generator of the evolution can be written as a 2× 2 matrix.

(3) We make various assumptions on the metric, electromagnetic and scalar potentials. The assumptions on
their regularity are rather weak; however, they are global in spacetime. We assume that the positive-mass
condition holds for all times; that is, all instantaneous Hamiltonians have a strictly positive lower bound.

(4) We apply functional-analytic methods from the theory of nonautonomous evolution equations, as
developed in [Kato 1970]. Note that, unlike in [Dereziński and Siemssen 2018], in the nonstationary case
we do not have a unique distinguished energy space. Instead, we have a whole time-dependent family of
instantaneous-energy Hilbert spaces describing the Cauchy data at each time. Under the assumptions
we impose, these spaces can be identified with one another. They have a variable scalar product, but a
common topology — thus the Cauchy data at each time belong to a single Hilbertizable space.

(5) The Pauli–Jordan propagator essentially coincides with one of the matrix elements of the evolution
operator. One can then write down the forward and backward propagators by inserting the Heaviside
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function in the appropriate places. Thus if one uses the method of evolution equations, the Pauli–Jordan
propagator becomes the central object, whereas in typical approaches found in the literature, e.g., [Bär et al.
2007], the forward and backward propagators are obtained first and then used to define the Pauli–Jordan
propagator. We find this (trivial) observation curious.

The assumptions of our paper, in particular their global character and the positive-mass assumptions,
are adapted to the needs of nonclassical propagators, which are our main interest. However, if one is
interested only in classical propagators, some of these assumptions can be relaxed.

When the Hamiltonian is merely bounded from below, we can reduce the problem to the positive-mass
case by a perturbation argument. Then one can construct the evolution, and hence also the classical
propagators. We remark about this fact at the end of Section 5.

Another point that can be relaxed are the global assumptions. We know that the propagation of
solutions to the Klein–Gordon equation has finite speed — this can be proven independently under a weak
assumption on the regularity; see, e.g., Appendix E. Therefore, to construct the evolution, it is sufficient
to have local information about our system. We do not discuss this point further in our paper.

As already stated above, our main interest is the nonclassical propagators. Unfortunately, in the
nonstationary case it is not obvious how to define them. The most popular view on this subject says that
instead of a single positive-frequency bisolution one should consider a whole class of bisolutions locally
similar to the Minkowski two-point function, known as Hadamard states. There exists considerable
literature about them; in particular we would like to mention [Radzikowski 1996; Kay and Wald 1991].
Properties of Hadamard states play a central role in most formulations of perturbation theory and
renormalization on curved spacetimes; see, e.g., [Hollands and Wald 2001; 2002]. Moreover, the
expectation value of time-ordered fields in every Hadamard state is the integral kernel of an inverse of K
and can be viewed as a possible generalization of the usual Feynman propagator to the generic case.

One of possibilities is to use spectral projections of the generator of the evolution at a fixed instance of
time, as we describe in Section 8. This allows us to define instantaneous positive- and negative-frequency
bisolutions, which yield the so-called instantaneous vacua. One also has the corresponding instantaneous
Feynman inverses.

One can criticize these propagators on physical grounds. Not only do they depend on an arbitrary and
unphysical choice of a preferred time, but it is folklore knowledge that they are generally not Hadamard
states. In a forthcoming article we will show, using methods from our formalism, that an instantaneous
positive-frequency bisolution yields a Hadamard state if the Klein–Gordon operator K is infinitesimally
stationary at the Cauchy surface where the positive/negative-frequency splitting was performed.

Spacetimes that become asymptotically stationary in the past and the future form a class that in our
opinion is especially natural from the point of view of quantum field theory and scattering theory. For
such spacetimes one can define positive/negative-frequency bisolutions corresponding to the asymptotic
past and future; see Section 9. We can call them in/out-positive/negative-frequency bisolutions. One can
argue that the corresponding in-vacuum yields the representation of incoming states (prepared in the
experiment) and the corresponding out-vacuum gives the representation of final observables (measured in
the experiment). Therefore, the in- and out-states are not only distinguished, they also have a clear and



AN EVOLUTION EQUATION APPROACH TO THE KLEIN–GORDON OPERATOR ON CURVED SPACETIME 219

important physical meaning. If the spacetime becomes stationary sufficiently fast, it can be shown that
the states thus defined are Hadamard [Gérard and Wrochna 2017].

As we described above, and is well known, spacetimes with asymptotically stationary past and future
possess two pairs of distinguished and physically well-motivated propagators: the in/out-positive/negative-
frequency bisolution. It is perhaps less known that a large class of such spacetimes possesses another
pair of natural and physically motivated propagators: the so-called canonical Feynman and anti-Feynman
propagators (inverses). The Feynman propagator appears naturally when we evaluate Feynman diagrams.
A study of these propagators will be presented in a forthcoming article, where the formalism and results
of the present paper will play an important role.

Let us mention that the canonical Feynman and anti-Feynman propagators are related to the intriguing
and poorly understood question about the self-adjointness of the Klein–Gordon operator. It is easy to
see that the Klein–Gordon operator is Hermitian; however, the existence of a distinguished self-adjoint
extension seems to be difficult to prove and is known only in special cases: in the static case [Dereziński
and Siemssen 2018] and (since very recently) for a class of asymptotically Minkowskian spaces [Vasy
2017]. Note that heuristically the canonical Feynman or anti-Feynman propagator is the boundary value
at zero from above or below, respectively, of the resolvent of the Klein–Gordon operator. One could also
argue that the adjective canonical is not needed for both propagators, that they should simply be called
the Feynman and anti-Feynman propagators.

Let us compare our work with the literature. The construction of classical propagators is described
in numerous sources. Typically, one shows first the well-posedness of the Cauchy problem. Then the
existence of the classical propagators and their properties easily follow; see, e.g., [Kay 1978; Dimock and
Kay 1982], and also the more recent works [Drago and Gérard 2017; Gérard and Wrochna 2014; Gérard
et al. 2017]. Standard methods include the Hadamard parametrix method [Bär et al. 2007; Friedlander
1975] and energy estimates obtained via the divergence theorem. Another popular method relies on the
factorization of the Klein–Gordon operator into the product of first-order scalar operators (see, e.g., the
treatment of [Hörmander 1985], which also covers n-th order hyperbolic equations). A brief history of
the Cauchy problem for hyperbolic equations with references to various approaches can be found in
[Hörmander 1985, Notes to Chapter XXIII].

In our opinion, the method of evolution equations used in this paper provides a natural and powerful
approach to analyze the Klein–Gordon equation on curved spacetimes, especially concerning questions
relevant to quantum field theory. Therefore, we were greatly surprised that it is difficult to find a treatment
of this problem similar to ours in the existing literature. We are only aware of one more publication where
the methods of evolution equations have been applied to the problem at hand in the nonstationary case: in
[Furlani 1997] the evolution is constructed under quite restrictive assumptions, namely, assuming that
Cauchy surfaces are compact and have a decreasing volume along a finite time-interval. The treatment
of some papers, such as [Dimock and Kay 1982; Kay 1978; Gérard et al. 2017; Gérard and Wrochna
2014], may also resemble our method. However, in almost all papers that we know, the existence of the
evolution is taken for granted, is given by the local theory, and is not constructed within the formalism of
evolution equations on some Banach spaces.
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The literature devoted to classical propagators on curved spacetimes usually does not use a global
functional-analytic setting. As we discussed above, from the point of view of classical propagators, the
method of our paper seems to impose unnecessary limitations, because of the global assumptions on the
spacetime. However, to define and study nonclassical propagators, some kind of global assumptions are
usually indispensable.

Most authors do not consider low-regularity situations; for an exception we refer to [Sanchez and
Vickers 2018]. For example, the propagators are typically understood from C∞c (M) to C∞(M). As far as
we know, the constructions found in the literature require more stringent regularity assumptions than ours.

Throughout our paper we impose rather weak assumptions on the regularity of various objects (the met-
ric, electromagnetic potential and the scalar potential). Nevertheless, we did not write this work with any
particular nonregular examples in mind, even though low regularity is present in some interesting physical
applications (e.g., boundaries of astrophysical objects, shock waves) and singularities appear generically
in solutions of the Einstein equation. Instead, the main reason for the chosen approach is our conviction
that weak assumptions play an important theoretical role, because they impose a certain discipline on
a mathematical theory, forcing us to find better arguments and a more natural setting for the problem.

We think that our approach is rather natural and direct if one wants to treat the simplest examples of
spacetimes (from the point of view of quantum field theory) such as local perturbations of Minkowski
spacetime and cosmological spacetimes. However, it is also flexible enough to treat some less obvious
examples, such as certain nonglobally hyperbolic spacetimes, including spacetimes with boundaries,
provided we impose appropriate boundary conditions. This includes for example compactifications of
anti-de Sitter spacetime with appropriate conditions on its timelike boundary (see [Dappiaggi et al. 2018a;
2018b] for a recent discussion of boundary conditions on anti-de Sitter spacetime and spacetimes with a
timelike boundary).

Finally, let us remark that Kato’s theory of nonautonomous evolution equations has also been success-
fully applied in the context of quantum field theory for the Dirac equation on curved spacetimes; see,
e.g., [Häfner 2009; Nicolas 2002]. The Dirac equation is simpler in this respect than the Klein–Gordon
equation. For the Dirac equation there exists a natural Hilbert space. For the (nonstationary) Klein–Gordon
equation no such choice exists: one is forced to work with a family of Hilbertizable spaces. Studying
the evolution for the Klein–Gordon equation in time-dependent families of Hilbert spaces has also been
fruitful in the context of spherical gravitational collapse (i.e., in static Schwarzschild spacetime with
time-dependent boundary conditions); see [Bachelot 1999].

1.1. Notation and conventions. Throughout this paper we adopt essentially the same notation and
conventions as in [Dereziński and Siemssen 2018] but for the convenience of the reader we repeat the
relevant conventions. We also introduce some new notation.

Suppose that T is an operator on a Banach space X . We denote by Dom T its domain and by Ran T
its range. For its spectrum we write sp T and for the resolvent set rs T.

Suppose that T is an operator on a Hilbert space H with inner product ( · | · ). If T is positive, i.e.,
(u | T u)≥ 0, we write T ≥ 0. If also Ker T = {0}, then we write T > 0.

A useful function is the so-called “Japanese bracket”, defined as 〈T 〉 := (1+ |T |2)1/2.



AN EVOLUTION EQUATION APPROACH TO THE KLEIN–GORDON OPERATOR ON CURVED SPACETIME 221

A topological vector space X is called Hilbertizable if there exists a scalar product on X that determines
its topology and makes it into a Hilbert space. Clearly, two scalar products determine the topology of X
if and only if they are equivalent.

The p-times continuously differentiable X -valued functions on a manifold M are denoted by C p(M;X );
if X = C, we simply write C p(M). Sets of compactly supported or bounded functions are indicated by a
subscript “c” or “b”.

AC(R) denotes the set of absolutely continuous functions, i.e., functions whose distributional derivative
belongs to L1

loc(R). AC1(R) denotes the set of functions whose distributional derivative belongs to AC(R).
When calculating integrals, we denote by

∫
′ the “Cauchy principal value” at infinity, e.g.,∫

′

iR
f (t) dt = lim

R→∞

∫ iR

−iR
f (t) dt.

Observe that we pass to infinity symmetrically in the lower and upper integration limits.
Suppose we fix a positive density γ on M. The space L2(M, γ ) of square-integrable functions on M is

then defined as the completion of C∞c (M) with respect to the scalar product

(u | v)γ :=
∫

M
ū v γ, u, v ∈ C∞c (M).

If g is the metric tensor g on M (of any signature), then we set |g| := |det[gµν]|. M is then equipped
with a canonical density |g|1/2. Sometimes it is however convenient to fix a density γ independent of the
metric tensor.

Often it is convenient to use the formalism of (complexified) half-densities on M. If γ is a positive
density on M, then γ 1/2 is a half-density. The canonical example for a half-density on a pseudo-Riemannian
manifold is |g|1/4. Since the integral over a density on a manifold is well-defined, half-densities come
equipped with a natural L2-structure

(ũ | ṽ)=
∫

M

¯̃u ṽ, ũ, ṽ ∈ C∞c (�
1/2 M).

We denote by L2(�1/2 M) the completion of C∞c (�
1/2 M) with respect to the corresponding norm. Note

that if we fix an everywhere-positive density γ , then

L2(M, γ ) 3 u 7→ ũ := uγ 1/2
∈ L2(�1/2 M)

is the natural unitary identification of the L2-space in the scalar formalism and in the half-density
formalism.

The operator D =−i∂ acts naturally on scalars, and Dγ
= γ 1/2 Dγ−1/2 acts naturally on half-densities.

In our paper we generally prefer to use the half-density formalism rather than the scalar formalism. The
Klein–Gordon operator K is presented in (1-1) in the scalar formalism. Transformed to the half-density
formalism it is

K 1
2
:= |g|1/4K |g|−1/4

= |g|−1/4(Dµ− Aµ)|g|1/2gµν(Dν − Aν)|g|−1/4
+ Y. (1-2)

In what follows we drop the subscript 1
2 from K1/2 and by K we will mean (1-2).
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2. Assumptions and setting

2.1. 1 + 3 splitting. We consider smooth manifolds M and 6 such that there exists a (fixed) diffeo-
morphism R×6→ M. This means that we have a distinguished time function t on M, and the leaves
6t = {t}×6 provide a foliation of M with a family of diffeomorphisms εt :6→6t ⊂ M. We define
the time vector field

∂t :=
d
dt
εt .

Note that dt · ∂t = 1.
We assume that M is equipped with a continuous Lorentzian metric g; i.e., (M, g) is a spacetime. The

restriction of g to the tangent space of 6t defines a time-dependent family of metrics on 6, denoted by
g6(t) := ε∗t g. We make the assumption that all g6(t) are Riemannian, or, equivalently, that the covector dt
is everywhere timelike. This assumption allows us to define the lapse function α:

1
α2 := −g−1(dt, dt) > 0.

Note that at this moment we do not assume that the vector ∂t is everywhere timelike, which is equivalent to

g6(β, β) < α2. (2-1)

This assumption will be forced on us later on by Assumption (1.b). The part of ∂t orthogonal to the leaves
of the foliation is the shift vector

β := ∂t +α
2g−1(dt, · ).

The inverse metric can now be written as

g−1
=−

1
α2 (∂t −β)⊗ (∂t −β)+ g−1

6 . (2-2)

In coordinates, we have

gµν dxµ dxν =−α2 dt2
+ g6,i j (dx i

+β i dt)(dx j
+β j dt),

gµν∂µ∂ν =−
1
α2 (∂t −β

i∂i )
2
+ gi j

6∂i∂j .

The generic notation for a point of M will be (t, Ex). We often suppress the spatial dependence of
objects defined on M ; e.g., we identify f (t)= f (t, · ) for some function f on M. Sometimes we also
suppress the time-dependence, but it should be kept in mind that the central quantities considered here,
the metric g, the electromagnetic potential A and the scalar potential Y, generically are time-dependent.
Sometimes we denote derivatives with respect to t (i.e., the action of the vector field ∂t ) by a dot.

2.2. Klein–Gordon operator. The main object of our paper is the Klein–Gordon operator (1-2). Instead
of the operator K on L2(M), it is more convenient to work with the operator

K̃ := αKα.
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With the inverse metric expressed as (2-2), it can be written as

K̃ =−γ−1/2(Dt−Diβ
i
+V )γ (Dt−β

j Dj+V )γ−1/2
+γ−1/2(Di−Ai )α

2γ gi j
6 (Dj−Aj )γ

−1/2
+α2Y

=−(Dt+W ∗)(Dt+W )+L ,

where we introduce
γ := α−2

|g|1/2 = α−1
|g6|1/2,

V := −A0+ Aiβ
i ,

W := β i Di + V − 1
2γ
−1(Dtγ −β

i Diγ ),

L := D A,γ ∗
i g̃i j

6 D A,γ
j + Ỹ ,

and we use the shorthands
g̃i j
6 (t) := α(t)

2gi j
6 (t),

Ỹ (t) := α(t)2Y (t),

D A,γ (t) := γ (t)1/2(D− A(t))γ (t)−1/2.

Clearly, propagators for K̃ induce corresponding propagators for K .

2.3. First-order formalism. For each t ∈ R, we (formally) define

B(t) :=
(

W (t) 1
L(t) W (t)∗

)
.

Setting u1(t)= u(t) and u2(t)=−(Dt +W (t))u(t), we find that

(∂t + iB(t))
(

u1(t)
u2(t)

)
= 0

if and only if u is a (weak) solution of the Klein–Gordon equation K̃ u = 0. Therefore we occasionally
call ∂t + iB(t) the first-order Klein–Gordon operator. The half-densities u1(t) and u2(t) may be called
the Cauchy data for u at time t .

2.4. Assumptions local in time.

Assumption 1. We suppose that the following assumptions hold:

(1.a) For all t ∈ R, L(t) extends to a positive invertible self-adjoint operator on L2(�1/26) (denoted by
the same symbol).

(1.b) There exists a ∈ C(R) such that a(t) < 1 and ‖W (t)L(t)−1/2
‖ ≤ a(t).

(1.c) There exists a positive C ∈ L1
loc(R) such that for all |t − s| ≤ 1

‖L(t)−1/2(L(t)− L(s))L(t)−1/2
‖+ 2‖(W (t)−W (s))L(t)−1/2

‖ ≤

∣∣∣∣∫ t

s
C(r) dr

∣∣∣∣, (2-3)

where we place the absolute value on the right-hand side to account for the arbitrary order of t and s.
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(1.d) t 7→ α(t)±1 are norm-continuous on L(s)−1/2L2(�1/26) for any s ∈ R, and t 7→ α̇(t) is norm-
continuous on L2(�1/26).

A few remarks about these assumptions are in order:
First, Assumption (1.a) can always be realized if γ (t)−1∂iγ (t), Ai (t) ∈ L2

loc(6), g̃i j (t) ∈ L∞loc(6) and
Ỹ (t) ∈ L1

loc(6) such that Ỹ (t) is bounded from below by a positive constant. In that case L(t) can be
understood as the form

(u | L(t) v)=
∫
6

(
(D A,γ

i (t) u) g̃i j
6 (t) (D

A,γ
j (t) v)+ ū Ỹ (t) v

)
,

on its (natural) maximal form domain Dom L(t)1/2 ⊃ C∞c (�
1/26) (but it is not generally clear if

C∞c (�
1/26) is a form core). This form then defines a self-adjoint operator in the usual way. The details of

this construction are given in Appendix A; its main aspects can be found in [Kato 1966, Theorem VI.2.6].
Next, Assumption (1.b) means that ‖W (t)L(t)−1/2

‖< 1. Thus the electrostatic potential V (t) together
with the variation of the metric expressed by γ (t)−1γ̇ (t) and the shift vector β cannot be too big compared
to L(t). This has to be true already on the level of the principal symbols of W and L . Therefore, for each
x = (t, Ex) ∈ M and p ∈ T ∗

Ex 6t , we need to have

|βk(x)pk(g̃
i j
6 (x)pi pj )

−1/2
|< 1.

This is equivalent to
g̃6,i jβ

iβ j < 1, (2-4)

where g̃6,i j = α−2g6,i j is the inverse of g̃i j
6 , and consequently (2-4) is equivalent to (2-1). Thus

Assumption (1.b) implies that ∂t is timelike. This excludes, e.g., the ergosphere region of Kerr spacetime
in stationary coordinates — in such a case one needs to switch to the nonstationary corotating coordinates.

Together, Assumptions (1.a) and (1.b) guarantee that the Hamiltonian is positive and has a positive lower
bound (the “positive-mass assumption”). The positivity of the Hamiltonian and its positive lower bound
have two aspects. First, they are essentially necessary if we want to construct nonclassical propagators.
Second, this assumption helps us to introduce a natural family of Hilbertizable spaces, which are used
in the analysis of the evolution. (A similar analysis would be possible with a positive Hamiltonian, but
without a positive lower bound; however there would be some additional technical problems).

Nevertheless, as far as the derivation of the evolution and the classical propagators is concerned,
Assumption (1.a) can be relaxed. In fact, for the existence of the evolution it is sufficient that there exists a
constant b> 0 such that these assumptions are satisfied by L(t)+b; see also Corollary 5.5. In this case in
general we do not have a positive Hamiltonian and our analysis of nonclassical propagators does not apply.

Among other things, Assumption (1.c) guarantees that for any t, s there exists c(t, s) > 0 such that

L(t)≤ c(t, s)L(s). (2-5)

Therefore, for δ ∈ [−1, 1] we can define the Hilbertizable spaces

Kδ := L(t)−δ/2L2(�1/26),

where the Hilbertian structures on the right-hand side are equivalent for different t because of (2-5).
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Finally, Assumption (1.d) implies the norm-continuity of t 7→ α(t)±1 on Kδ for δ ∈ [−1, 1]. Indeed,
by this assumption, t 7→ α(t)±1 are norm-continuous on K1/2, hence by duality also on K−1/2, and then
we can interpolate using, e.g., the Heinz–Kato inequality (Theorem D.1).

While it should be obvious how Assumptions (1.a), (1.b) and (1.d) can be realized in an example, As-
sumption (1.c) is slightly less obvious. Therefore in Appendix B we briefly explain how Assumption (1.c)
can follow from more concrete assumptions on the metric, the vector potential and the scalar potential.

2.5. Assumptions global in time. While we always require that Assumption 1 holds, the following
additional assumptions are only imposed when we derive asymptotic properties of propagators.

Assumption 2. (2.a) L(t) is uniformly bounded away from zero.

(2.b) There exists a < 1 such that ‖W (t)L(t)−1/2
‖ ≤ a for all t .

(2.c) There exists a positive C ∈ L1(R) such that for all t, s ∈ R

‖L(t)−1/2(L(t)− L(s))L(t)−1/2
‖+ 2‖(W (t)−W (s))L(t)−1/2

‖ ≤

∣∣∣∣∫ t

s
C(r) dr

∣∣∣∣,
where we place the absolute value on the right-hand side to account for the arbitrary order of t and s.

(2.d) t 7→ α(t)±1 are uniformly bounded on K1 and t 7→ α̇ is uniformly bounded on K0.

Note that, by the same argument as for Assumption (1.d), one can show that Assumption (2.d) implies
the uniform boundedness of t 7→ α(t)±1 on Kδ for δ ∈ [−1, 1].

3. The energy space and the dynamical space

We will occasionally use the Hilbert space

H := L2(�1/26)⊕ L2(�1/26)= K0
⊕K0,

with the canonical inner product also denoted by ( · | · ) and the corresponding norm ‖ · ‖.
The Hilbert space H plays only an auxiliary role in our work. More important are the Hilbertizable

spaces Hλ, λ ∈ [−1, 1], defined as

Hλ := K(λ+1)/2
⊕K(λ−1)/2. (3-1)

Note that for any t
Hλ = (L(t)⊕ L(t))−λ/4H0, λ ∈ [−1, 1]. (3-2)

We will treat the space H0 as the central element of the family (3-2), identifying H0 with H∗0, the antidual
of H0 (the space of bounded antilinear functionals on H0). Then we have a natural identification of H−λ
with H∗λ.

The central role in this work is played by the energy space, the dynamical space and the antidual of
the energy space:

Hen :=H1 = (L(t)−1/2
⊕1)H= H0(t)−1/2H, (3-3a)

Hdyn :=H0 = (L(t)−1/4
⊕ L(t)1/4)H, (3-3b)

H∗en :=H−1 = (1⊕ L(t)1/2)H= (Q H0(t)Q)1/2H, (3-3c)
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where we set

H0(t) := L(t)⊕ 1=

(
L(t) 0

0 1

)
,

and we also used the charge form

(u | Qv) := (u1 | v2)+ (u2 | v1), Q :=
(

0 1
1 0

)
.

It is evident that the charge form is bounded on H. More importantly, it is also bounded on Hdyn (but,
e.g., not on Hen).

Note that
Im (u | Qv)= 1

2i
((u | Qv)− (v | Qu))

is a symplectic form on Hdyn. Therefore, the formalism based on the charge form is equivalent to the
symplectic formalism, commonly used in the literature.

4. Instantaneous energy spaces and instantaneous dynamical spaces

An important role in our paper is played by the instantaneous Hamiltonian, defined formally for each t as

H(t)= Q B(t)= B(t)∗Q.

One can rigorously define H(t) as a form-bounded perturbation of H0(t):

Proposition 4.1. The operator

H(t) :=
(

L(t) W (t)∗

W (t) 1

)
is self-adjoint on H with the form domain Hen. We have

(1− a(t))H0(t)≤ H(t)≤ (1+ a(t))H0(t), (4-1)

where 0≤ a(t) < 1 was introduced in Assumption (1.b).

Proof. We show only the right-hand side of the inequality (4-1). Set u =
( u1

u2

)
. Using the Cauchy–Schwarz

inequality and Assumption (1.b), we find

(u | H(t) u)≤ ‖L(t)1/2u1‖
2
+‖u2‖

2
+ 2‖W (t) u1‖‖u2‖

≤ ‖L(t)1/2u1‖
2
+‖u2‖

2
+ 2a(t)‖L(t)1/2u1‖‖u2‖

≤ (1+ a(t))(‖L(t)1/2u1‖
2
+‖u2‖

2)

= (1+ a(t))(u | H0(t) u). �

We define for each time t ∈ R the (instantaneous) energy scalar products given by

(u | v)en,t := (u | H(t)v)

on Hen. By (4-1) the scalar product ( · | · )en,t is compatible with the topology of Hen. We call the resulting
Hilbert space the instantaneous energy space at t and denote it by Hen,t .
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Similarly, we can also define the operator Q H(t)−1 Q. We find that its form domain is H∗en. Indeed,

(1+ a(t))−1 Q H0(t)−1 Q ≤ Q H(t)−1 Q ≤ (1− a(t))−1 Q H0(t)−1 Q. (4-2)

Then we define for each t the scalar product

(u | v)en∗,t := (u | Q H(t)−1 Qv)

and note that it is compatible with the topology of H∗en; we denote the resulting Hilbert space by H∗en,t .
The central operator in this work is B(t). In the next section we construct the evolution generated

by B(t), solving the first-order Klein–Gordon equation.

Proposition 4.2. Considered as an operator on H∗en,t with domain Hen,

B(t) :=
(

W (t) 1
L(t) W (t)∗

)
is self-adjoint and 0 is in its resolvent set.

Proof. For notational simplicity, we drop the time-dependence of B(t) and the other objects.
First note that, by definition, H0(t)−1/2

= (L(t)−1/2
⊕ 1) maps H to Hen, and (Q H0(t)Q)−1/2

=

(1⊕ L(t)−1/2) maps H∗en to H. Now, to check that B(t) is well-defined, we calculate(
1 0
0 L−1/2

)(
W 1
L W ∗

)(
L−1/2 0

0 1

)
=

(
W L−1/2 1

1 L−1/2W ∗

)
,

which is bounded by Assumption (1.b).
Next, we show that 0 ∈ rs B, and consequently also that B is closed. We rewrite B as

B =
(

1 0
W ∗ 1

)(
0 1

L −W ∗W 0

)(
1 0
W 1

)
and check that B−1 is bounded from H∗en to Hen:(

L1/2 0
0 1

)
B−1

(
1 0
0 L1/2

)
=

(
1 0

−L−1/2W ∗ 1

)(
0 (1−L−1/2W ∗W L−1/2)−1

1 0

)(
1 0

−W L−1/2 1

)
,

where the first and last factors on the right-hand side are bounded by Assumption (1.b), and

1− L−1/2W ∗W L−1/2

is invertible because ‖L−1/2W ∗W L−1/2
‖< 1, also by Assumption (1.b).

Finally, we check that B is Hermitian on H∗en. We calculate

(Q H Q)−1 B−1
= (B Q H Q)−1

= (Q H Q H Q)−1
= (Q H Q B∗)−1

= B∗−1(Q H Q)−1. �

We can now define for each time t ∈ R a whole scale of Hilbert spaces

Hλ,t := |B(t)|−(1+λ)/2H∗en,t , λ ∈ R,
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with scalar products
(u | v)λ,t := (u | |B(t)|1+λv)en∗,t , u, v ∈Hλ,t .

Above we performed the polar decomposition with respect to the Hilbert space H∗en,t , where we have

|B(t)| =
√

B(t)2 =
√

Q H(t)Q H(t).

It follows from its definition, that B(t) extends/restricts to a self-adjoint operator on each of the
spaces Hλ,t . When B(t) is interpreted as an operator on Hλ,t , its domain is Hλ+2,t .

Clearly the scales Hλ,t contain H∗en,t = H−1,t . They also contain the (instantaneous) energy spaces
Hen,t =H1,t , because a short calculation shows H(t)= Q H(t)−1 Q|B(t)|2. Furthermore, we define the
(instantaneous) dynamical spaces

Hdyn,t :=H0,t ,

which are treated as the central spaces in these scales. Note that Hdyn,t is the form domain of B(t). We
identify H∗0,t with H0,t , and hence H∗λ,t is identified with H−λ,t . Thus we obtain the rigged Hilbert space
setting

Hen,t ⊂Hdyn,t ⊂H∗en,t .

Proposition 4.3. In the sense of Hilbertizable spaces, we have

Hλ,t =Hλ, λ ∈ [−1, 1], (4-3)

thus justifying our notation. In particular,

Hen,t =Hen, Hdyn,t =Hdyn, H∗en,t =H∗en.

Proof. It follows from (4-1) and (4-2) that Hen,t =Hen and H∗en,t =H∗en. Since both L(t)1/2⊕ L(t)1/2

and |B| can be understood as invertible bounded operators from Hen to H∗en, there exists c > 1 such that

c−1
‖(L(t)⊕ L(t))1/2u‖en∗ ≤ ‖|B(t)|u‖en∗ ≤ c‖(L(t)⊕ L(t))1/2u‖en∗ .

By interpolation (e.g., using the Heinz–Kato inequality, Theorem D.1),

c−δ‖(L(t)⊕ L(t))δ/2u‖en∗ ≤ ‖|B(t)|δu‖en∗ ≤ cδ‖(L(t)⊕ L(t))δ/2u‖en∗

for δ ∈ [0, 1]. It follows that the norms for Hλ and Hλ,t with λ ∈ [−1, 1] are equivalent and thus (4-3)
follows. �

Note that for |λ|> 1 the spaces Hλ,t may depend on t and do not have to coincide with Hλ.

5. Evolution

In the last section we laid the foundations for an application of the theory of nonautonomous evolution
equations to the situation at hand, i.e., the first-order Klein–Gordon equation

∂t u(t)+ iB(t)u(t)= 0.
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Autonomous evolution equations (viz., with a time-independent generator) possess a well-understood
theory in terms of the theory of strongly continuous semigroups and groups. The theory for nonautonomous
evolution equations is significantly more complicated and subtle. In Appendix C we discuss the relevant
results based on [Kato 1970].

Here we apply Theorem C.10 to the operator B(t) on the spaces

Xt =H∗en,t and Yt =Hen,t . (5-1)

For this purpose, we need to check whether the conditions (a)–(c) of Theorem C.10 hold. The self-
adjointness condition (c) is clearly true; see Section 3. The next proposition implies that condition (b), a
continuity condition on the norms of the Hilbert spaces Hen,t and H∗en,t , holds:

Proposition 5.1. Let C ∈ L1
loc(R) as in Assumption (1.c), a(t) ∈ C(R) as in Assumption (1.b) and

|t − s| ≤ 1 with t ≥ s. Set
cs,t := sup

τ∈[s,t]
(1− a(τ ))−1.

Then, for λ ∈ [−1, 1],

‖u‖λ,t exp
(
−cs,t

∫ t

s
C(τ ) dτ

)
≤ ‖u‖λ,s ≤ ‖u‖λ,t exp

(
cs,t

∫ t

s
C(τ ) dτ

)
. (5-2)

Proof. First we show (5-2) for λ= 1, i.e., for the energy space.
By Assumption (1.c), we have

‖(L(t)−1/2
⊕1)(H(s)− H(t))(L(t)−1/2

⊕ 1)‖

≤ ‖L(t)−1/2(L(s)− L(t))L(t)−1/2
‖+ 2‖(W (s)−W (t))L(t)−1/2

‖

≤

∫ t

s
C(τ ) dτ. (5-3)

Equation (4-1) then implies
‖H(t)−1/2(L(t)⊕ 1)H(t)−1/2

‖ ≤ cs,t . (5-4)

Putting together (5-3) and (5-4), we obtain

‖H(t)−1/2(H(s)− H(t))H(t)−1/2
‖ ≤ cs,t

∫ t

s
C(τ ) dτ.

Consequently we have ∣∣‖u‖2en,s −‖u‖
2
en,t

∣∣≤ ‖u‖2en,t

(
cs,t

∫ t

s
C(τ ) dτ

)
.

Therefore

‖u‖2en,s ≤ ‖u‖
2
en,t

(
1+ cs,t

∫ t

s
C(τ ) dτ

)
≤ ‖u‖2en,t exp

(
cs,t

∫ t

s
C(τ ) dτ

)
and, exchanging the roles of t and s, we can similarly derive

‖u‖2en,s ≥ ‖u‖
2
en,t exp

(
−cs,t

∫ t

s
C(τ ) dτ

)
,

so that the inequality (5-2) for λ= 1 follows.
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For λ=−1 the inequality follows by duality. Using interpolation, we can then extend the inequality to
the remaining values of λ. �

To show that condition (a) of Theorem C.10 holds, we only need to show the norm-continuity of
t 7→ B(t); the remaining statements are obvious.

Proposition 5.2. With C ∈ L1
loc(R) as in Assumption (1.c), cs,t as in (4-1) and |t − s| ≤ 1,

‖(B(s)− B(t))u‖en∗,t ≤ ‖u‖en,t

∣∣∣∣cs,t

∫ t

s
C(τ ) dτ

∣∣∣∣,
where we place the absolute value on the right-hand side because t ≥ s or t ≤ s. In particular, t 7→ B(t)
is norm-continuous as an operator from Hen,t to H∗en,t .

Proof. We reduce the problem to the inequalities

‖(1⊕ L(t)−1/2)(B(s)− B(t))(L(t)−1/2
⊕1)‖ = ‖Q(L(t)−1/2

⊕1)Q(B(s)− B(t))(L(t)−1/2
⊕1)‖

≤ ‖(L(t)−1/2
⊕ 1)(H(s)− H(t))(L(t)−1/2

⊕1)‖

≤

∣∣∣∣∫ t

s
C(τ ) dτ

∣∣∣∣
and proceed much as in the proof of Proposition 5.1. Since the integral is continuous, the required
norm-continuity follows. �

It follows that we can globally define an evolution for B(t):

Theorem 5.3. There exists a unique, strongly continuous family of bounded operators {U (t, s)}s,t∈R

on H∗en, the evolution generated by B(t), with the following properties:

(i) For all r, s, t ∈ R, we have the identities

U (t, t)= 1, U (t, r)U (r, s)=U (t, s). (5-5)

(ii) For λ∈ [−1, 1], U (t, s)Hλ⊂Hλ, (t, s) 7→U (t, s) is strongly Hλ-continuous and satisfies the bounds

‖U (t, r)‖λ,s ≤ exp
(

2cr,t

∫ t

r
C(τ ) dτ

)
, (5-6a)

‖U (r, t)‖λ,s ≤ exp
(

2cr,t

∫ t

r
C(τ ) dτ

)
, (5-6b)

with C, c as in Proposition 5.1 and r ≤ s ≤ t , where |t − r | ≤ 1.

(iii) For all u ∈Hen, U (t, s)u is continuously differentiable in s, t ∈ R with respect to the strong topology
of H∗en and it satisfies

i∂tU (t, s)u = B(t)U (t, s)u, (5-7a)

−i∂sU (t, s)u =U (t, s)B(s)u. (5-7b)
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Proof. Propositions 5.1 and 5.2 as well as the results of Section 3 show that Theorem C.10 can be applied
to our operator B(t), understood as an operator from Hen to H∗en (or, equivalently, as a form on Hdyn

with form domain Hen). We thus obtain for every sufficiently small compact interval I ⊂ R an evolution
U (t, s) with the properties (i)–(iv) of Theorem C.10. In particular, we have for r, t ∈ I and r ≤ s ≤ t

‖U (t, r)‖en,s ≤ exp
(

2cr,t

∫ t

r
C(τ ) dτ

)
,

‖U (t, r)‖en∗,s ≤ exp
(

2cr,t

∫ t

r
C(τ ) dτ

)
.

The same bounds also hold for ‖U (r, t)‖en,s and ‖U (r, t)‖en∗,s . By interpolation we find (5-6).
We cover R by compact intervals. Using the identity (5-5), we thereby define the evolution U (t, s) on

the whole real axis by gluing. For finite s, t , it has the properties (i)–(iv) of Theorem C.10. �

Equation (5-6) states that U (t, s) is bounded for finite t, s. To obtain stronger results later, we can
choose more stringent assumptions:

Corollary 5.4. If Assumption (2.c) holds, and we set C1(t) := 2(1− a)−1C(t), then

‖U (t, s)‖λ,r ≤ exp
(∫

R

C1(τ ) dτ
)

for all r, s, t ∈ R and any λ ∈ [−1, 1].

In Assumption (1.a) we supposed that L(t) is positive and invertible. Actually, the main results of this
section remain true if L(t) is only bounded from below:

Corollary 5.5. Instead of Assumption 1, suppose that there exists a constant b> 0 such that Assumption 1
holds for L(t)+ b. Then Theorem 5.3 holds with respect to the scale of Hilbert spaces and constants
obtained from L(t)+ b, and with the bounds (5-6) replaced by

‖U (t, r)‖λ,s ≤ exp
(

2cr,t

∫ t

r
C(τ ) dτ + (t − r)b‖(L(s)+ b)−1/2

‖

)
,

‖U (r, t)‖λ,s ≤ exp
(

2cr,t

∫ t

r
C(τ ) dτ + (t − r)b‖(L(s)+ b)−1/2

‖

)
.

Proof. Replacing L(t) in B(t) by L(t)+ b, we obtain a new operator

Bb(t)= B(t)+
(

0 0
b 0

)
.

We also replace L(t) by L(t)+ b in all definitions concerning the Hilbert and Hilbertizable spaces that
we need. According to Theorem 5.3, Bb(t) has an evolution Ub(t, s) with the properties stated in the
theorem. Note that

( 0
b

0
0

)
is a bounded operator on H∗en. Indeed, this follows from the boundedness of(

1 0
0 L−1/2

)(
0 0
b 0

)(
1 0
0 L1/2

)
=

(
0 0

L−1/2b 0

)
on H. Since B(t) is a bounded perturbation of Bb(t), we can apply Theorem C.11 to find the evolution
for B(t). �
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Remark 5.6. Our choice of spaces (5-1) to prove Theorem 5.3 is natural, especially given our low-
regularity setup. Under more restrictive assumptions on the smoothness and boundedness of coefficients
of the Klein–Gordon operator K , other spaces in the scale Hλ,t , λ ∈ R, could be used. This would lead
to improved regularity results of the type U (t, s)Hλ ⊂Hλ and continuous differentiability of U (t, s)Hλ

in Hλ−2.

Remark 5.7. In the stationary case, i.e., if B does not depend on time, there exist distinguished Hilbert
spaces Hλ and the evolution family U (t, s) simplifies to a unitary group U (t − s)=U (t, s) on Hλ.

6. Solutions of the Klein–Gordon equation

Solutions of the Klein–Gordon equation are closely related to solutions of the first-order Klein–Gordon
equation.

Let us introduce the projection onto the second component:

π2

(
u1

u2

)
:= u2.

We also define embeddings

ι2u :=
(

0
u

)
, ρu :=

(
u

−(Dt +W )u

)
.

A formal calculation then shows that2

K̃ =−iπ2(∂t + iB)ρ and K =−iα−1π2(∂t + iB)ρα−1. (6-1)

Therefore, if K u = f or, equivalently, K̃ ũ = f̃ with ũ = α−1u, f̃ = α f , then

−i(∂t + iB)ρũ = ι2 f̃ .

The projection π2 and the embeddings ρ, ι2, which relate solutions of the Klein–Gordon equation and
the first-order Klein–Gordon equation, can be understood between various spaces. It follows from the
definition of Hλ in (3-1) that, for λ ∈ [−1, 1],

π2 :Hλ→ K(λ−1)/2, (6-2a)

π2 Q :Hλ→ K(λ+1)/2, (6-2b)

ι2 : K(λ−1)/2
→Hλ. (6-2c)

These projections and embeddings already allow us to easily prove an existence and uniqueness result
regarding solutions of the Klein–Gordon equation with Cauchy data in the energy space:

Theorem 6.1. Let s ∈ R,
( u1(s)

u2(s)

)
∈Hen and f ∈ L1

loc(R;K
0). Set(

ũ1(s)
ũ2(s)

)
= α(s)−1

(
u1(s)
u2(s)

)
and f̃ = α f.

2Note that there is a sign error in the corresponding equation in [Dereziński and Siemssen 2018] which also affects the
definition of the associated propagators.
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Then u = αũ, with

ũ(t)= π2 QU (t, s)
(

ũ1(s)
ũ2(s)

)
+ i

∫ t

s
π2 QU (t, r)ι2 f̃ (r) dr,

is the unique solution of K u = f such that

u ∈ C(R;K1)∩C1(R;K0) and ρũ(s)=
(

ũ1(s)
ũ2(s)

)
. (6-3)

Proof. We have the following special cases of (6-2):

ι2 : K0
→Hen, (6-4a)

π2 Q :Hen→ K1, (6-4b)

π2 Q :H∗en→ K0. (6-4c)

By (6-4a), (6-4b) and Assumption (1.d), u belongs to C(R;K1). By (6-4a), (6-4c) and Assumption (1.d),
∂t u belongs to C(R;K0). Hence the first part of (6-3) is true. The second part of (6-3) is obvious.

Set (
ũ1(t)
ũ2(t)

)
=U (t, s)

(
ũ1(s)
ũ2(s)

)
+ i

∫ t

s
U (t, r)ι2 f̃ (r) dr. (6-5)

Differentiating (6-5) we obtain

i∂t

(
ũ1(t)
ũ2(t)

)
= B(t)

(
ũ1(t)
ũ2(t)

)
− ι2 f̃ (t). (6-6)

Clearly, ũ(t)= ũ1(t). The first component of (6-6) yields ũ2(t)=−(Dt +W (t))ũ1(t). Hence

ρũ(t)=
(

ũ1(t)
ũ2(t)

)
. (6-7)

The second component of (6-6) and then insertion of (6-7) yield

f̃ (t)=−iπ2(∂t + iB)
(

ũ1(t)
ũ2(t)

)
=−iπ2(∂t + iB)ρũ(t)= K̃ ũ(t),

whence we have shown that ũ solves K̃ ũ = f̃ and thus K u = f .
Uniqueness of the solution follows from the uniqueness of the evolution U (t, s), and the linearity of

K , ρ by the standard argument: if u, u′ satisfy

K u = K u′ = f and ρũ(s)= ρũ′(s)=
(

ũ1(s)
ũ2(s)

)
,

where ũ′ = α−1u′, then K (u− u′)= 0, ρ(ũ− ũ′)(s)= 0 and thus u = u′. �

It is well known that solutions of the Klein–Gordon equation propagate slower than the speed of light.
The method of evolution equations together with the freedom of the choice of the time-variable provide
a rather obvious heuristic argument for the propagation at a finite speed. However, when one tries to
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convert this argument into a rigorous proof, technical problems appear which make such a proof difficult
to formulate.

In the literature the finiteness of the speed of propagation is usually shown for the Klein–Gordon
equation with smooth coefficients. In Appendix E, in particular in Theorem E.1, we show that solu-
tions of the Klein–Gordon propagate at a finite speed also in a low-regularity setup typical for our
paper.

7. Classical propagators

Having constructed the evolution for B(t) in Section 5, it is not difficult to find the classical propagators
for the first-order Klein–Gordon operator ∂t + iB. To wit, the Pauli–Jordan propagator EPJ and the
forward/backward propagator E∨/∧ are given by the integral kernels

EPJ(t, s) :=U (t, s), (7-1a)

E∨(t, s) := θ(t − s)U (t, s), (7-1b)

E∧(t, s) := −θ(s− t)U (t, s), (7-1c)

where θ denotes the Heaviside step function, via

(E • f )(t)=
∫

R

E •(t, s) f (s) ds. (7-2)

Theorem 7.1. Let λ ∈ [−1, 1]:

(i) The classical propagators EPJ and E∨/∧ are well-defined between the spaces

E • : L1
c(R;Hλ)→ C(R;Hλ),

E • : L1
c(R;Hen)→ C1(R;H∗en).

(ii) The forward and backward propagators E∨/∧ are well-defined between the spaces

E∨/∧ : L1
loc(I ;Hλ)→ C(I ;Hλ),

E∨/∧ : L1
loc(I ;Hen)→ C1(I ;H∗en),

where I = [a,+∞[ or ]−∞, a], respectively, for some a ∈ R.

(iii) If Assumption 2 is satisfied, the classical propagators EPJ and E∨/∧ are bounded between the spaces

E • : L1(R;Hλ)→ Cb(R;Hλ),

E • : L1(R;Hen)→ C1
b(R;H

∗

en).

(iv) EPJ is a bisolution of ∂t + iB:

(∂t + iB)EPJ f = 0, f ∈ L1
c(R;Hen), (7-3)

EPJ(∂t + iB) f = 0, f ∈ L1
c(R;Hen)∩ACc(R;H∗en). (7-4)
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(v) E∨/∧ are the unique inverses of ∂t + iB such that

(∂t + iB)E∨/∧ f = f, f ∈ L1
loc(I,Hen), (7-5)

E∨/∧(∂t + iB) f = f, f ∈ L1
loc(I ;Hen)∩AC(I,H∗en), (7-6)

with I = [a,+∞[ or ]−∞, a], respectively, for some a ∈ R.

(vi) The relation EPJ
= E∨− E∧ holds.

Proof. Parts (i)–(iii) follow from the properties of the evolution U (t, s) (see Theorem 5.3 and Corollary 5.4)
and the definition of the kernels (7-1).

Consider next (iv) and (v). We first need to check that the products contained in these properties are
well-defined. Indeed, by (i), the maps

E • : L1
c(R;Hen)→ C(R;Hen)∩C1(R;H∗en), (7-7a)

(∂t + iB) : C(R;Hen)∩C1(R;H∗en)→ C(R;H∗en), (7-7b)

are well-defined, which shows that (7-3) and (7-5) make sense. Similarly, by (i), we have

(∂t + iB) : L1
c(R;Hen)∩ACc(R;H∗en)→ L1

c(R;H
∗

en), (7-8a)

E • : L1
c(R;H

∗

en)→ C(R;H∗en), (7-8b)

and hence the products in (7-4) and (7-6) make sense. Then we show (7-3)–(7-6) using (7-2) and (5-7).
For (7-4) and (7-6) we also need to apply an integration by parts. �

We can also state an L2 version of Theorem 7.1(iii):

Theorem 7.2. Let s > 1
2 and λ ∈ [−1, 1]. If Assumption 2 is satisfied, the classical propagators EPJ and

E∨/∧ are bounded between the spaces

E • : 〈t〉−s L2(R;Hλ)→ 〈t〉s L2(R;Hλ),

E • : 〈t〉−s L2(R;Hen)→ 〈t〉s〈∂t 〉
−1L2(R;H∗en).

Proof. We use the embeddings

〈t〉−s L2(R;X )⊂ L1(R;X ) and 〈t〉s L2(R;X )⊃ Cb(R;X )

for any Banach space X and s > 1
2 . �

The classical propagators for the first-order Klein–Gordon operator can also be understood between
various spaces other than those considered in Theorems 7.1 and 7.2, but our choices are quite natural.
At the same time, this setup leads to an almost straightforward derivation of the propagators for the
Klein–Gordon operator K .

Since ∂t + iB and K are related via (6-1), also the propagators of these operators are closely related.
At least formally, it can be shown that if E • is a propagator for ∂t + iB, then iπ2 QE •ι2 is a propagator
for K̃ , and hence

G• = iαπ2 QE •ι2α (7-9)
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is a propagator for the Klein–Gordon operator K . As we shall see now, this is indeed true if the domain
of G• is carefully chosen:

Theorem 7.3. Let δ ∈ [0, 1]:

(i) The classical propagators GPJ and G∨/∧ are well-defined between the spaces

G• : L1
c(R;K

−δ)→ C(R;K1−δ), (7-10)

G• : L1
c(R;K

0)→ C1(R;K0). (7-11)

(ii) The forward and backward propagators G∨/∧ are well-defined between the spaces

G∨/∧ : L1
loc(I ;K

−δ)→ C(I ;K1−δ),

G∨/∧ : L1
loc(I ;K

0)→ C1(I ;K0),

where I = [a,+∞[ or ]−∞, a], respectively, for some a ∈ R.

(iii) If Assumption 2 is satisfied, the classical propagators GPJ and G∨/∧ are bounded between the spaces

G• : L1(R;K−δ)→ Cb(R;K1−δ),

G• : L1(R;K0)→ C1
b(R;K

0).

(iv) GPJ is a bisolution of K :

K GPJ f = 0, f ∈ L1
c(R;K

0), (7-12)

GPJK f = 0, f ∈ L1
c(R;K

1)∩ACc(R;K0)∩AC1
c(R;K

−1). (7-13)

(v) G∨/∧ are the unique inverses of K such that

K G∨/∧ f = f, f ∈ L1
loc(I ;K

0), (7-14)

G∨/∧K f = f, f ∈ L1
loc(I ;K

1)∩AC(R;K0)∩AC1(I ;K−1), (7-15)

with I = [a,+∞[ or ]−∞, a], respectively, for some a ∈ R.

(vi) The relation GPJ
= G∨−G∧ holds.

Proof. These results are a direct consequence of Theorem 7.1. In (i)–(iii) we used (6-2) and Assump-
tion (1.d).

Let us check that the products in (iv) and (v) are well-defined. From the definition of ρ we can read
off that

ρ : C(R;K1)∩C1(R;K0)→ C(R;Hen),

ρ : L1
c(R;K

1)∩ACc(R;K0)→ L1
c(R;Hen),

ρ : ACc(R;K0)∩AC1
c(R;K

−1)→ ACc(R;H∗en).

Then, by (i) and also using (7-7), we have

G• : L1
c(R;K

0)→ C(R;K1)∩C1(R;K0),

K : C(R;K1)∩C1(R;K0)→ C−1(R;K0)∩C(R;K−1),



AN EVOLUTION EQUATION APPROACH TO THE KLEIN–GORDON OPERATOR ON CURVED SPACETIME 237

where C−1(R) denotes the space of distributional derivatives of continuous functions. This shows
that (7-12) and (7-14) make sense. Similarly, by (i) and (7-8), we have

K : L1
c(R;K

1)∩ACc(R;K0)∩AC1
c(R;K

−1)→ L1
c(R;K

−1),

G• : L1
c(R;K

−1)→ C(R;K0),

and hence the products in (7-13) and (7-15) make sense. �

Here is an L2 version of Theorem 7.3(iii):

Theorem 7.4. Let s> 1
2 . If Assumption 2 is satisfied, the classical propagators GPJ and G∨/∧ are bounded

between the spaces
G• : 〈t〉−s L2(�1/2 M)→ 〈t〉s L(t)−1/2L2(�1/2 M), (7-16a)

G• : 〈t〉−s L2(�1/2 M)→ 〈t〉s〈∂t 〉
−1L2(�1/2 M). (7-16b)

Proof. By (7-10), for δ ∈ [0, 1] we have

G• : 〈t〉−s L2(R;K−δ)→ 〈t〉s L2(R;K1−δ). (7-17)
Setting δ = 0 we obtain

G• : 〈t〉−s L2(R;K0)→ 〈t〉s L(t)−1/2L2(R;K0). (7-18)

But L2(R;K0)= L2(R; L2(�1/26)) and L2(�1/2 M) can naturally be identified, which proves (7-16a).
It follows from (7-11) that

G• : 〈t〉−s L2(R;K0)→ 〈t〉s〈∂t 〉
−1L2(R;K0).

This yields (7-16b). �

Observe that in other approaches, e.g., [Bär et al. 2007], the retarded and advanced propagators are
the central objects and the Pauli–Jordan propagator is defined as their difference. Here, instead, the
Pauli–Jordan propagator follows immediately from the evolution U (t, s) and should be seen as the central
object, while the retarded and advanced propagators are derived objects.

Using the Pauli–Jordan propagator GPJ, we can associate to every sufficiently regular compactly
supported function a solution of the homogeneous Klein–Gordon equation. In fact, as the following
proposition shows, also the converse is true.

Proposition 7.5. Suppose that u ∈ L1
loc(R;K

1)∩AC(R;K)∩AC1(R;K−1) satisfies K u = 0. Then there
exists a (nonunique) f ∈ L1

c(R;K−1) such that u = GPJ f .

Proof. Choose any r, s ∈ R, r < s, and χ ∈ C∞(M) such that χ(t) = 0 for t < r , 0 ≤ χ(t) ≤ 1 for
r ≤ t ≤ s and χ(t)= 1 for t > s. Clearly,

0= K u = Kχu− K (χ − 1)u

and thus supp(Kχu) ⊂ [r, s] ×6. Besides, Kχu ∈ L1
c(R;K−1). Therefore, we can act with GPJ on

Kχu, obtaining
GPJKχu = G∨Kχu−G∧K (χ − 1)u = u.

That is, f = Kχu is the desired function. �
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Our construction of the classical propagators starts from the propagators for the first-order Klein–
Gordon operator; i.e., given E •, we derive G• using (7-9). If, instead, G• is provided, then E • can be
derived:

(i) If G• is an inverse of K then

E • =−i
(

−α−1G•α−1(Dt+W ∗) α−1G•α−1

1+(Dt+W )α−1G•α−1(Dt+W ∗) −(Dt+W )α−1G•α−1

)
is (formally) an inverse of (∂t + iB).

(ii) If G• is a bisolution of K then

E • =−i
(
−α−1G•α−1(Dt+W ∗) α−1G•α−1

(Dt+W )α−1G•α−1(Dt+W ∗) −(Dt+W )α−1G•α−1

)
is (formally) a bisolution of (∂t + iB).

Note the subtle difference in the formulas for inverses and bisolutions. No such difference appears in (7-9),
which yields G• given E •.

8. Instantaneous nonclassical propagators

Consider an arbitrary reference time τ . According to Proposition 4.2, B(τ ) is a self-adjoint operator
on H∗en,τ . Therefore we can use the functional calculus to define the projections onto the positive and
negative parts of the spectrum of B(τ ):

5(±)
τ := 1[0,∞[(±B(τ )). (8-1)

Zero is in the resolvent set of B(τ ), and therefore the projections in (8-1) are complementary.

Proposition 8.1. 5(±)
τ restrict to complementary projections on Hλ for λ ∈ [−1, 1], and have the

following properties:

(i) 5(±)
τ B(τ )= B(τ )5(±)

τ .

(ii) 5(+)
τ −5

(−)
τ = sgn B(τ ).

(iii) sp(±5(±)
τ B(τ ))⊂ ]0,∞[.

(iv) 5(±)
τ are self-adjoint with respect to Hλ,τ .

Moreover, the projections 5(±)
τ split Hλ,τ into subspaces of positive and negative charge (with respect

to the charge form Q):

Proposition 8.2. ±(u | Q5(±)
τ u)=±(5(±)

τ u | Qu)=±(5(±)
τ u | Q5(±)

τ u)≥ 0 (8-2)

for all u ∈Hλ with λ ∈ [−1, 1].

Proof. The proof is the same as that of [Dereziński and Siemssen 2018, Proposition 6.3]. �
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The projections 5(±)
τ can be used to define instantaneous positive/negative-frequency bisolutions E (±)τ ,

given by their integral kernels as

E (±)τ (t, s) := ±U (t, τ )5(±)
τ U (τ, s). (8-3)

Using step functions, we then define the kernels of the instantaneous Feynman and anti-Feynman inverses
of ∂t + iB:

EF
τ (t, s) := θ(t − s)E (+)τ (t, s)+ θ(s− t)E (−)τ (t, s),

EF
τ (t, s) := −θ(t − s)E (−)τ (t, s)− θ(s− t)E (+)τ (t, s).

It is easy to see that these kernels can also be expressed using the retarded and advanced propagators:

EF
τ (t, s)= E∧(t, s)+ E (+)τ (t, s)= E∨(t, s)+ E (−)τ (t, s), (8-4a)

EF
τ (t, s)= E∨(t, s)− E (+)τ (t, s)= E∧(t, s)− E (−)τ (t, s). (8-4b)

As before, these kernels define the corresponding propagators via (7-2):

Theorem 8.3. Let λ ∈ [−1, 1]:

(i) The instantaneous nonclassical propagators E (±)τ and EF/F
τ are well-defined between the spaces

E •τ : L
1
c(R;Hλ)→ C(R;Hλ),

E •τ : L
1
c(R;Hen)→ C1(R;H∗en).

(ii) If Assumption 2 is satisfied, E (±)τ and EF/F
τ are bounded between the spaces

E •τ : L
1(R;Hλ)→ Cb(R;Hλ),

E •τ : L
1(R;Hen)→ C1

b(R;H
∗

en).

(iii) E (±)τ are bisolutions of ∂t + iB:

(∂t + iB)E (±)τ f = 0, f ∈ L1
c(R;Hen),

E (±)τ (∂t + iB) f = 0, f ∈ L1
c(R;Hen)∩ACc(R;H∗en).

(iv) EF/F
τ are inverses of ∂t + iB:

(∂t + iB)EF/F
τ f = f, f ∈ L1

c(R;Hen),

EF/F
τ (∂t + iB) f = f, f ∈ L1

c(R;Hen)∩ACc(R;H∗en).

(v) The instantaneous nonclassical propagators satisfy the relations

EF
τ = E∧+ E (+)τ = E∨+ E (−)τ , EF

τ + EF
τ = E∨+ E∧, E (+)τ − E (−)τ = EPJ,

EF
τ = E∨− E (+)τ = E∧− E (−)τ , EF

τ − EF
τ = E (+)τ + E (−)τ .

Proof. The various properties of the nonclassical propagators can be shown along the same lines as in
Theorem 7.1 so we will omit the proofs. Property (v) in particular follows from (8-4) and its linear
combinations. �



240 JAN DEREZIŃSKI AND DANIEL SIEMSSEN

As for the classical propagators, we can also find an L2 version of Theorem 8.3(ii):

Theorem 8.4. Let s>1
2 and λ ∈ [−1, 1]. If Assumption 2 is satisfied, the instantaneous nonclassical

propagators E (±)τ and EF/F
τ are bounded between the spaces

E •τ : 〈t〉
−s L2(R;Hλ)→ 〈t〉s L2(R;Hλ),

E •τ : 〈t〉
−s L2(R;Hen)→ 〈t〉s〈∂t 〉

−1L2(R;H∗en).

Similarly to (7-9), we define the instantaneous nonclassical propagators G(±)
τ and GF/F

τ for the Klein–
Gordon operator K by

G(±)
τ := απ2 QE (±)τ ι2α, GF/F

τ := iαπ2 QEF/F
τ ι2α.

Note the absence of the complex unit in the definition of G(±)
τ so that G(±)

τ define positive forms; see
property (vi) below.

Analogously to Theorem 7.3, we find:

Theorem 8.5. Let δ ∈ [−1, 1]:

(i) The instantaneous nonclassical propagators G(±)
τ and GF/F

τ are well-defined between the spaces

G•τ : L
1
c(R;K

−δ)→ C(R;K1−δ),

G•τ : L
1
c(R;K

0)→ C1(R;K0).

(ii) If Assumption 2 is satisfied, G(±)
τ and GF/F

τ are bounded between the spaces

G•τ : L
1(R;K−δ)→ Cb(R;K1−δ),

G•τ : L
1(R;K0)→ C1

b(R;K
0).

(iii) G(±)
τ are bisolutions of K :

K G(±)
τ f = 0, f ∈ L1

c(R;K
0),

G(±)
τ K f = 0, f ∈ L1

c(R;K
1)∩ACc(R;K0)∩AC1

c(R;K
−1).

(iv) GF/F
τ are inverses of K :

K GF/F
τ f = f, f ∈ L1

c(R;K
0),

GF/F
τ K f = f, f ∈ L1

c(R;K
1)∩ACc(R;K0)∩AC1

c(R;K
−1).

(v) The instantaneous nonclassical propagators satisfy the relations:

GF
τ = G∧+ iG(+)

τ = G∨+ iG(−)
τ , GF

τ +GF
τ = G∨+G∧, G(+)

τ −G(−)
τ =−iGPJ,

GF
τ = G∨− iG(+)

τ = G∧− iG(−)
τ , GF

τ −GF
τ = iG(+)

τ + iG(−)
τ .

(vi) The instantaneous positive/negative-frequency bisolutions are positive:

( f |G(±)
τ f )=

∫
M

f̄ G(±)
τ f ≥ 0

for f ∈ L1
c(R;K0).
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Proof. We only show (vi); the remaining properties follow from corresponding properties of E •τ in
Theorem 8.3 and can be shown as in Theorem 7.3. For (vi), we note that

( f |G(±)
τ f )=

∫∫
(ι2 f̃ (t) | QE (±)τ (t, s)ι2 f̃ (s)) ds dt

= (ũ(τ ) | Q5(±)
τ ũ(τ ))≥ 0

by Proposition 8.2, where we set

f̃ = α f and ũ(τ )=
∫

U (τ, t) f̃ (t) dt ∈Hen. �

The L2 version of Theorem 8.5(ii) is:

Theorem 8.6. Let s > 1
2 . If Assumption 2 is satisfied, the instantaneous nonclassical propagators G(±)

τ

and GF/F
τ are bounded between the spaces

G•τ : 〈t〉
−s L2(�1/2 M)→ 〈t〉s L(t)−1/2L2(�1/2 M),

G•τ : 〈t〉
−s L2(�1/2 M)→ 〈t〉s〈∂t 〉

−1L2(�1/2 M).

In the static case, the nonclassical propagators defined above do not depend on τ . They are the natural
propagators to consider in that situation; see also our earlier work [Dereziński and Siemssen 2018].

In the nonstatic case, however, the instantaneous nonclassical propagators just defined have deficiencies
from the physical point of view; see, e.g., [Fulling 1979]. First of all, their definition hinges on the
arbitrary choice of a fixed instance of time and, even more seriously, on the choice of a time function.
Secondly, instantaneous positive-frequency bisolutions usually do not satisfy the microlocal spectrum
condition of [Radzikowski 1996] (in other words, they do not define Hadamard states).

Nevertheless, the situation improves if the Klein–Gordon operator is infinitesimally static at the time
when the positive/negative-frequency splitting is performed. In a forthcoming article we will show (using
methods of evolution equations) that the corresponding instantaneous positive-frequency bisolutions,
which we define in the following section, satisfy then the microlocal spectrum condition of [Radzikowski
1996].

9. Asymptotic nonclassical propagators

Throughout this section we assume that Assumption 2 is satisfied. It follows, in particular, that B(t)
converges to B(±∞) as t → ±∞ in norm as an operator from Hen to H∗en. We define the out/in-
positive/negative-frequency projections

5
(±)
+ := 1[0,∞[(±B(+∞)),

5
(±)
− := 1[0,∞[(±B(−∞)).

Theorem 9.1. The strong limits
5
(±)
+ (t) := s-lim

τ→+∞
U (t, τ )5(±)

+ U (τ, t), (9-1a)

5
(±)
− (t) := s-lim

τ→−∞
U (t, τ )5(±)

− U (τ, t) (9-1b)
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exist as bounded operators on Hλ with λ ∈ [−1, 1]. They satisfy the obvious analogs of Propositions 8.1
and 8.2. Additionally,

U (s, t)5(±)
+ (t)U (t, s)=5(±)

+ (s), (9-2)

U (s, t)5(±)
− (t)U (t, s)=5(±)

− (s). (9-3)

Proof. We only prove the theorem for (9-1a) because the proof for (9-1b) is the same. We have

U (t, r)5(±)
+ U (r, t)=U (t, r)ei(t−r)B(+∞)5

(±)
+ ei(r−t)B(+∞)U (r, t).

We analyze separately the limit r →+∞ of the operators left and right of the projection. Since both
operators are bounded on Hλ,τ , λ ∈ [−1, 1], uniformly in t, r for arbitrary τ ∈ R, it is sufficient to show
the convergence on Hen with respect to the norm on H∗en,τ .

We may assume that r > t . For u ∈Hen we have

U (t, r)ei(t−r)B(+∞)u = u+
∫ r

t
∂s(U (t, s)ei(t−s)B(+∞))u ds

= u− i
∫ r

t
U (t, s)(B(s)− B(+∞))ei(t−s)B(+∞)u ds,

by the fundamental theorem of calculus and Theorem 5.3(iii). Taking the norm of this expression in H∗en,τ ,
we find

‖U (t, r)ei(t−r)B(+∞)u− u‖en∗,τ ≤ C‖u‖en,τ

∫ r

t

∥∥(1⊕ L(τ )−1/2)(B(s)− B(+∞))(L(τ )−1/2
⊕ 1)

∥∥ ds,

since U (t, s) is uniformly bounded on H∗en,τ .
It follows from the proof of Proposition 5.2 that

‖(1⊕ L(τ )−1/2)(B(s)− B(+∞))(L(τ )−1/2
⊕ 1)‖

is uniformly bounded. Therefore,

‖U (t, r)ei(t−r)B(+∞)u− u‖en∗,τ → 0

as t, r→+∞ and the desired convergence follows.
The proof for U (t, r)ei(t−r)B(+∞) is essentially the same. The main difference is that we use the

uniform boundedness of U (t, s) on Hen,τ . �

We also define
E (±)+ (t, s) := ±U (t, τ )5(±)

+ (τ )U (τ, s), (9-4)

E (±)− (t, s) := ±U (t, τ )5(±)
− (τ )U (τ, s). (9-5)

Clearly, the definitions above do not depend on τ .
The kernels E (±)± (t, s) yield the positive/negative-frequency bisolutions at future and past infinity. They

are often called out and in, or jointly asymptotic. Moreover, we may use them together with the advanced
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and retarded propagators to define corresponding asymptotic Feynman and anti-Feynman propagators:

EF
±
= E∧+ E (+)± = E∨+ E (−)± ,

EF
±
= E∨− E (+)± = E∧− E (−)± .

As before, the propagators E •
±

for ∂t + iB induce the corresponding propagators G•
±

for K . Obviously,
the asymptotic nonclassical propagators defined here have analogs to Theorems 8.3 and 8.5; we only have
to replace occurrences of τ with ±.

The asymptotic propagators defined above have various advantages over the instantaneous ones of the
previous section. For one, they do not depend on an arbitrarily chosen instant of time. Under rather broad
assumptions one can show that they even do not depend on the choice of the time function, but only on the
spacetime itself. Finally, as recently discussed in [Gérard and Wrochna 2017], if the spacetime becomes
asymptotically static sufficiently fast, they satisfy the microlocal spectrum condition of [Radzikowski
1996].

Appendix A: Second-order differential operators

Consider a manifold 6. Every second-order Hermitian differential operator on L2(�1/26) can locally be
written as

L = Di gi j (x)Dj − Ai (x)Di − Di Ai (x)+ Y0(x), (A-1)

where gi j
= g j i, Y0 and Ai are real-valued.

L can be often rewritten in the form

L = (Di − Ai )gi j (Dj − Aj )+ Y1. (A-2)

This is possible in particular if gi j is everywhere nondegenerate, viz., g determines a (pseudo-)Riemannian
structure on M. Then (A-2) holds with

Ai := gi j A j , Y1 := Y0− Ai gi j A j ,

where gi j denotes the inverse of gi j.
Let γ be an everywhere nonzero function. Then the operator L can be rewritten as

L = γ−1/2(Di − Ai )γ gi j (Dj − Aj )γ
−1/2
+ Yγ , (A-3)

where
Yγ := Y − 1

2(Di gi jγ−1(Djγ ))−
1
4 gi jγ−2(Diγ )(Djγ ).

In particular, if we set γ := |g|1/2, where |g| := |det[gi j ]| is the canonical density induced by the metric,
and Y := Y|g|1/2 , then (A-3) yields the geometric form of the operator L:

L = |g|−1/4(Di − Ai )|g|1/2gi j (Dj − Aj )|g|−1/4
+ Y. (A-4)

If g is a metric tensor, A a 1-form, and Y a scalar, then the right-hand side of (A-4) transforms covariantly
and L is well-defined as a differential operator acting on half-densities. We can rewrite (A-4) using the
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Levi-Civita derivative ∇ for g as

L = gi j (i∇i + Ai )(i∇j + Aj )+ Y. (A-5)

Note that in (A-5) the right ∇ acts on half-densities and the left ∇ acts on half-densitized covectors.
If the metric is Riemannian, the differential part of the operator (A-4) can be called a (magnetic)

Laplace–Beltrami operator, and the full operator can be called a (magnetic) Schrödinger operator. If
the metric is Lorentzian, the differential part of the operator (A-4) can be called an (electromagnetic)
d’Alembertian, and the full operator can be called an (electromagnetic) Klein–Gordon operator.

It is however sometimes convenient to consider a density γ independent of the metric tensor g, i.e., to
work with (A-3) instead of (A-4). Using the derivative

D A,γ
:= γ 1/2(D− A)γ−1/2, (A-6)

L can be written as a quadratic form on half-densities:

(u | Lv)=
∫
6

((D A,γ
i u)gi j (D A,γ

j v)+ ū Yγ v). (A-7)

Assumption 3. In the remaining part of this appendix we assume that g is a Riemannian metric. We also
assume that γ−1∂iγ , Ai ∈ L2

loc(6), gi j
∈ L∞loc(6) and Yγ ∈ L1

loc(6) such that Yγ ≥ C for some C ∈ R.

We will see that under the above assumption L can be understood as a self-adjoint operator on L2(�1/26)

in at least two natural ways. First we reinterpret (A-7) by introducing the form

lmx[u, v] =
∫
6

((D A,γ
i u)gi j (D A,γ

j v)+ ū Yγ v) (A-8)

on its maximal form domain

dom lmx = {u ∈ L2(�1/26) | D A,γ u ∈ L2(�1/2T ∗6, g), Y 1/2
γ u ∈ L2(�1/26)}.

Here we denote by L2(�1/2T ∗6, g) the completion of C∞c (�
1/2T ∗6) with respect to the norm given by

u 7→
(∫

6

ūi gi j u j

)1/2

.

We remark that C∞c (�
1/26)⊂ dom lmx.

The following is a standard proof and has been adapted from [Leinfelder and Simader 1981, Lemma 1].

Lemma A.1. The form lmx is closed and Hermitian. It defines a unique self-adjoint operator Lmx on

Dom Lmx = {v ∈ dom lmx | |lmx[u, v]| ≤ Cv‖u‖ for all u ∈ L2(�1/26)}

satisfying

(u | Lmxv)= lmx[u, v]

for u ∈ dom lmx and v ∈ Dom Lmx. Moreover, dom lmx = Dom L1/2
mx .
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Proof. Suppose that {un} ⊂ dom lmx is a Cauchy sequence with respect to the norm

dom lmx 3 u 7→ (lmx[u, u] + (1−C)‖u‖2)1/2.

Then there exist u, v ∈ L2(�1/26) and w ∈ L2(�1/2T ∗6, g) such that

un→ u, Y 1/2
γ un→ v in L2(�1/26)

and
D A,γ un→ w in L2(�1/2T ∗6, g).

Moreover, Y 1/2
γ un→ Y 1/2

γ u and D A,γ un→ D A,γ u weakly, and thus v = Y 1/2
γ u and w = D A,γ u because

v,w must coincide with the weak limits. It follows that lmx is a closed form (and manifestly Hermitian).
Therefore, by the first representation theorem [Kato 1966, Theorem VI.2.6], lmx defines a unique self-
adjoint operator with the stated properties. �

An alternative to lmx is the form lmn given by the completion of the form (A-8) on C∞c (�
1/26), and

the corresponding operator Lmn. lmn may have a strictly smaller domain than lmx because of boundary
effects. If lmn = lmx, then C∞c (�

1/26) is a core of lmx. Note that for 6 = R3 with the Euclidean metric
this is known to be true; see, e.g., [Leinfelder and Simader 1981].

Certainly the setting considered in this appendix is not the most general possible. For example, the
assumption that Y is bounded from below can certainly be relaxed.

Appendix B: Concrete assumptions

The objective of this appendix is to elucidate how Assumption (1.c) may be realized in practice. Recall
that (6, g̃6(t)) is a family of Riemannian manifolds, γ (t) > 0 are densities on 6, A(t) are real-valued
1-forms and Ỹ (t) are real-valued scalar potentials. For simplicity, we write g̃ for g̃6 . As in Assumption 3
in Appendix A, we assume that γ−1(t)∂iγ (t), Ai (t) ∈ L2

loc(6), g̃i j
∈ L∞loc(6), and Ỹ ∈ L1

loc(6) is
bounded from below.

Let us recall the definition of the operators W (t) and L(t) on L2(�1/26):

W (t) := β(t)i Di + V (t)− 1
2γ (t)

−1(Dtγ (t)−β(t)i Diγ (t)),

(u | L(t) v) :=
∫
6

(
(D A,γ

i (t) u) g̃i j (t) (D A,γ
j (t) v)+ ū Ỹ (t) v

)
, (B-1)

where L(t) is interpreted, say, as the maximal operator given by (B-1), as in Appendix A. Assumption (1.c)
now says that there exists a positive C ∈ L1

loc(R) such that for all |t − s| ≤ 1

‖L(t)−1/2(L(t)− L(s))L(t)−1/2
‖+ 2‖(W (t)−W (s))L(t)−1/2

‖ ≤

∣∣∣∣∫ t

s
C(r) dr

∣∣∣∣ (B-2)

for some C ∈ L1
loc(R).

We also introduce the family of norms

‖X‖t =
(∫

6

g̃i j (t) X i X j

)1/2

for half-densitized 1-forms X on 6.
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Proposition B.1. Suppose that there are positive CY ,Cg,CW ∈ L1
loc(R), CA,Cγ ∈ L2

loc(R) such that for
all |t − s| ≤ 1

‖L(t)−1/2∂s Ỹ (s)L(t)−1/2
‖ ≤ CY (s),

‖∂s W (s)L(t)−1/2
‖ ≤ CW (s),

‖∂s A(s)L(t)−1/2
‖t ≤ CA(s),

‖∂sγ (s)−1 dγ (s)L(t)−1/2
‖t ≤ Cγ (s),

|∂s g̃i j (s)X i X j | ≤ Cg(s)g̃i j (t)X i X j , X ∈ C(T ∗6).

Then (B-2) holds and thus Assumption (1.c) is true.

Proof. To avoid notational clutter within this proof, we simply write Di for D A,γ
i . Clearly, the assumptions

of the proposition imply

‖L(t)−1/2(Ỹ (t)− Ỹ (s))L(t)−1/2
‖ ≤

∣∣∣∣∫ t

s
CY (r) dr

∣∣∣∣, (B-3a)

‖(W (t)−W (s))L(t)−1/2
‖ ≤

∣∣∣∣∫ t

s
CW (r) dr

∣∣∣∣, (B-3b)

‖(A(t)− A(s))L(t)−1/2
‖t ≤

∣∣∣∣∫ t

s
CA(r) dr

∣∣∣∣, (B-3c)

‖(γ (t)−1 dγ (t)− γ (s)−1 dγ (s))L(t)−1/2
‖t ≤

∣∣∣∣∫ t

s
Cγ (r) dr

∣∣∣∣, (B-3d)

|g̃i j (t)X i X j − g̃i j (s)X i X j | ≤

∣∣∣∣∫ t

s
Cg(r) dr

∣∣∣∣ g̃i j (t)X i X j . (B-3e)

We compute

(u | (L(t)− L(s))u)

=

∫
6

g̃i j (t)
(
(Di (t)u)(Dj (t)u− Dj (s)u)+ (Di (t)u− Di (s)u)(Dj (t)u)

− (Di (t)u− Di (s)u)(Dj (t)u− Dj (s)u)
)

+

∫
6

(g̃i j (t)− g̃i j (s))
(
(Di (t)u)(Dj (t)u)− (Di (t)u)(Dj (t)u− Dj (s)u)

− (Di (t)u− Di (s)u)(Dj (t)u)+ (Di (t)u− Di (s)u)(Dj (t)u− Dj (s)u)
)

+

∫
6

(Ỹ (t)− Ỹ (s))|u|2,

where
Di (t)− Di (s)=−Ai (t)+ Ai (s)+

i
2
γ (t)−1∂iγ (t)−

i
2
γ (s)−1∂iγ (s).

Estimating each term separately using (B-3), we find

|(u | (L(t)− L(s))u)| ≤ C̃(t, s)(u | L(t)u),

where

C̃(t, s)= 2
∣∣∣∣∫ t

s
CD(r) dr

∣∣∣∣+ ∣∣∣∣∫ t

s
CD(r) dr

∣∣∣∣2+ ∣∣∣∣∫ t

s
Cg(r) dr

∣∣∣∣(1+
∣∣∣∣∫ t

s
CD(r) dr

∣∣∣∣)2

+

∣∣∣∣∫ t

s
CY (r) dr

∣∣∣∣,
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with CD = CA+Cγ /2. After two applications of∣∣∣∣∫ t

s
CD(r) dr

∣∣∣∣2 ≤ |t − s|
∣∣∣∣∫ t

s
CD(r)2 dr

∣∣∣∣≤ ∣∣∣∣∫ t

s
CD(r)2 dr

∣∣∣∣,
which is a simple consequence of the Cauchy–Schwarz inequality, we obtain

C̃(t, s)≤
∣∣∣∣∫ t

s
(c(t)(2CD +C2

D)+Cγ +Cg) dr
∣∣∣∣,

where c(t) := 1+
∫ t+1

t−1 Cg(r) dr . Thus Assumption (1.c) is true with C(t)= C̃(t)+CW (t). �

The inequalities (B-3) in the last proposition were stated with respect to L(t). For a more convenient
criterion, fix a (time-independent) Riemannian metric g0 on 6 and set γ0 := |g0|

1/2. Consider the
operator L0 defined by the form

(u | L0v) :=

∫
6

(
(Dγ0

i u)gi j
0 (t)(D

γ0
j v)+ ū v

)
.

Proposition B.2. Assume that there exists a positive Cg ∈ C(R) such that

g̃i j (t)X i X j ≥ Cg(t)g
i j
0 X i X j . (B-4)

Further, suppose that there exist ε0 ∈ C(R), ε0(t) ∈ ]0, 1[, and a positive C0 ∈ C(R) such that

ε0(t)γ 2
0 γ (t)

−2(∂iγ
−1
0 γ (t)) g̃i j (t) (∂jγ

−1
0 γ (t))+ Ỹ (t)≥ C0(t). (B-5)

Then there exists a positive C ∈ C(R) such that L0 satisfies the inequality

‖L(t)1/2u‖ ≥ C(t)‖L1/2
0 |u|‖, u ∈ Dom L(t)1/2. (B-6)

Proof. Let ε(t) := (1− 4ε0(t))−1, so that ε0(t)= 1
4(1− ε(t)

−1). Then

(u | L(t)u)

≥

∫
6

(
−(Dγ

i (t)|u|)g̃
i j (t)(Dγ

j (t)|u|)+ Ỹ (t) |u|2
)

≥

∫
6

(ε(t)− 1)(Dγ0
i |u|)g̃

i j (t)(Dγ0
j |u|)+

∫
6

(
ε0(t)γ 2

0 γ (t)
−2(∂iγ

−1
0 γ (t))g̃i j (t)(∂jγ

−1
0 γ (t))+ Ỹ (t)

)
|u|2

≥min
(
Cg(t)(1− ε(t)),C0(t)

)
(|u| | L0|u|).

In the first step we used the diamagnetic inequality

|(∂x − iV (x)) f (x)| ≥ |∂x | f (x)||

almost everywhere for real V and f such that (∂x − iV ) f exists almost everywhere. In the second step
we used the Cauchy–Schwarz inequality. �

We can apply the preceding proposition to restate Proposition B.1 using L0 instead of L(t). For this
purpose we introduce another norm on half-densitized 1-forms:

‖X‖ =
(∫

6

gi j
0 X i X j

)1/2

.
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Proposition B.3. In addition to (B-4) and (B-5) we suppose that for some Cg ∈ C(R)

g̃i j (t)X i X j ≤ Cg(t)g
i j
0 X i X j , X ∈ C(T ∗6).

Moreover, we assume that there are positive CY,0,Cg,0,CW,0 ∈ L1
loc(R), CA,0,Cγ,0 ∈ L2

loc(R) such that
for all t ∈ R

‖L−1/2
0 |∂t Ỹ (t)|L

−1/2
0 ‖ ≤ CY,0(t),

‖∂t W (t)L−1/2
0 ‖ ≤ CW,0(t),

‖∂t A(t)L−1/2
0 ‖ ≤ CA,0(t),

‖∂tγ (t)−1 dγ (t)L−1/2
0 ‖ ≤ Cγ,0(t),

|∂t g̃i j (t)X i X j | ≤ Cg,0(t)g
i j
0 X i X j , X ∈ C(T ∗6).

Then Assumption (1.c) is true.

Appendix C: Nonautonomous evolution equations

To make this paper more self-contained, we explain in this appendix relevant aspects of the theory of
linear evolution equations. We are more general than strictly necessary for the purposes of this paper, but
in anticipation of our upcoming work this generality could be useful. The results stated in this appendix
can be found in similar form in [Kato 1970] and in the monographs [Pazy 1983; Tanabe 1997]. We also
wish to refer to the appendix of [Bach and Bru 2016], which uses slightly different assumptions that
essentially coincide with ours for the Hilbertian case. Finally, we would like to mention [Schmid and
Griesemer 2017] which also discusses the theory of nonautonomous evolution equations on uniformly
convex Banach spaces.

Let X be a Banach space. We recall that a linear operator A on X is the generator of a strongly
continuous (one-parameter) semigroup [0,∞[ 3 t 7→ et A if and only if A is densely defined, closed and
there exist constants M ≥ 1, β ∈ R such that its resolvent satisfies

‖(A− λ)−n
‖ ≤ M(λ−β)−n, λ > β, n = 1, 2, . . . . (C-1)

Then we have ‖et A
‖ ≤ Meβt and say that et A is a semigroup of type (M, β). If both A and −A generate

strongly continuous semigroups, they generate a strongly continuous (one-parameter) group R 3 t 7→ et A.
If

‖(A− λ)−1
‖ ≤ (λ−β)−1, λ > β, (C-2)

then (C-1) is true with M = 1. Thus ‖et A
‖ ≤ Meβt, so that et (A−β) is a semigroup of contractions.

Let Y be another Banach space which is densely and continuously embedded in X .

Definition C.1. By the part of A on Y we mean the operator Ã, which is the restriction of A to the
domain

Dom( Ã) := {y ∈ Dom(A)∩Y | Ay ∈ Y}.

Definition C.2. Y is called A-admissible if the semigroup et A, t ∈ [0,∞[, leaves Y invariant and its
restriction to Y is a strongly continuous semigroup on Y .
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In the following we consider a family {A(t)}t∈[0,T ] of generators of a strongly continuous semigroup.
We chose the interval [0, T ] for convenience and definiteness; the generalization to other intervals is
straightforward.

Definition C.3. The family {A(t)}t∈[0,T ] is called stable with stability constants M ≥ 1, β ∈ R, if∥∥∥∥ k∏
j=1

(A(tj )− λ)
−1
∥∥∥∥≤ M(λ−β)−k, λ > β,

for all finite sequences 0 ≤ t1 ≤ t2 ≤ · · · ≤ tk ≤ T, k = 1, 2, . . . . Here and below such products are
time-ordered (viz., factors with a larger tj are to the left of factors with a smaller tj ).

Proposition C.4. If {A(t)}t∈[0,T ] is stable with stability constants M, β, then∥∥∥∥ k∏
j=1

eµj A(tj )

∥∥∥∥≤ Meβ(µ1+···+µk), µj ≥ 0.

Proof. The proof is straightforward; see, e.g., [Tanabe 1997, Proposition 7.3]. �

The following simple generalization of [Kato 1970, Proposition 3.4] gives a criterion for the stability
using an assumption of the form (C-2) for a time-dependent norm:

Proposition C.5. For each t ∈ [0, T ], let ‖ · ‖t be an equivalent norm on X and C ∈ L1
[0, T ] positive

such that

‖u‖s ≤ ‖u‖t exp
∣∣∣∣∫ t

s
C(r) dr

∣∣∣∣, u ∈ X , s, t ∈ [0, T ]. (C-3)

If {A(t)} satisfies
‖(A(t)− λ)−1

‖t ≤ (λ−β)
−1, λ > β, (C-4)

for all t ∈ [0, T ], then for any s ∈ [0, T ]∥∥∥∥ k∏
j=1

(A(tj )− λ)
−1
∥∥∥∥

s
≤ (λ−β)−k exp

(∫ T

0
2C(r) dr

)
, t1 ≤ s ≤ tk,

for every finite sequence 0≤ t1 ≤ t2 ≤ · · · ≤ tk ≤ T.

Proof. Repeated application of (C-3) and (C-4) yields∥∥∥∥ k∏
j=1

(A(tj )− λ)
−1u

∥∥∥∥
tk

≤ (λ−β)−1
∥∥∥∥k−1∏

j=1

(A(tj )− λ)
−1u

∥∥∥∥
tk

≤ (λ−β)−1 exp
(∫ tk

tk−1

C(r) dr
)∥∥∥∥k−1∏

j=1

(A(tj )− λ)
−1u

∥∥∥∥
tk−1

...

≤ (λ−β)−k exp
(∫ tk

t1
C(r) dr

)
‖u‖t1 .

Applying (C-3) twice more (for s and tk , as well as s and t1), we obtain the desired result. �



250 JAN DEREZIŃSKI AND DANIEL SIEMSSEN

Let us start with a rather general theorem on the construction of evolution operators; see also [Kato
1970, Theorem 4.1; Tanabe 1997, Theorem 7.1]. Note that the properties of the evolution operator
described in this theorem are rather modest.

Theorem C.6. Assume that:

(a) {A(t)}t∈[0,T ] is stable with constants M, β.

(b) Y is A(t)-admissible for each t , and the part Ã(t) of A(t) in Y is stable with constants M̃, β̃.

(c) Y ⊂ Dom A(t) so that A(t) ∈ B(Y,X ) for each t , and t 7→ A(t) is norm-continuous in the norm of
B(Y,X ).

Then there exists a unique family of bounded operators {U (t, s)}0≤s≤t≤T , on X , called the evolution
(operator) generated by A(t), with the following properties:

(i) For all 0≤ r ≤ s ≤ t ≤ T, we have the identities

U (t, t)= 1, U (t, s)U (s, r)=U (t, r).

(ii) (t, s) 7→U (t, s) is strongly X -continuous and ‖U (t, s)‖X ≤ Meβ(t−s).

(iii) For all y ∈ Y and 0≤ s ≤ t ≤ T,

∂+t U (t, s)y|t=s = A(s)y, (C-5a)

−∂sU (t, s)y =U (t, s)A(s)y, (C-5b)

where the right derivative ∂+t and the derivative ∂s (right derivative if s = 0 and left derivative if
s = t) are in the strong topology of X .

Proof. We approximate A(t) by step functions: Set

An(t)= A(T btn/T c/n),

where b · c denotes the floor function, viz., rounding to the integral part. Since t 7→ A(t) is norm-continuous
in the norm of B(Y,X ), we have

‖An(t)− A(t)‖B(Y,X )→ 0 as n→∞ (C-6)

uniformly in t . It follows immediately that also An(t) and Ãn(t) are stable with constants M, β and M̃, β̃,
respectively.

Corresponding to An(t) we construct approximating evolution operators Un(t, s) by setting

Un(t, s)= e(t−s)An(s)

if s, t belong to the closure of an interval where An is constant, and by imposing the relation

Un(t, s)=Un(t, r)Un(r, s)

to determine Un(t, s) for other values of s, t . Clearly, Un(t, t) = 1 and (t, s) 7→ Un(t, s) is strongly
X -continuous. We also have

‖Un(t, s)‖X ≤ Meβ(t−s), ‖Un(t, s)‖Y ≤ M̃eβ̃(t−s) (C-7)
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by Proposition C.4, and Un(t, s)Y⊂Y because Y is A(t)-admissible. Furthermore, because Y⊂Dom A(t)
we have for y ∈ Y

∂tUn(t, s)y = An(t)Un(t, s)y,

∂sUn(t, s)y =−Un(t, s)An(s)y,

for any t or s, respectively, that is not on the boundary of an interval where An is constant.
Next we show that Un(t, s) converges to U (t, s) strongly in X uniformly in s, t : By the fundamental

theorem of calculus, we have

Un(t, r)y−Um(t, r)y =
∫ t

r
Un(t, s)(An(s)− Am(s))Um(s, r)y ds.

Applying (C-7), we thus obtain

‖Un(t, r)y−Um(t, r)y‖X ≤ M M̃eγ (t−r)
‖y‖Y

∫ t

r
‖An(s)− Am(s)‖B(Y,X ) ds,

where γ =max(β, β̃). Therefore it follows from (C-6) that Un(t, s)y converges in the strong topology of
X uniformly in s, t . Since Y is dense in X and Un(t, s) is uniformly bounded in n, Un(t, s) converges
strongly in X and we set

U (t, s)= s-lim
n→∞

Un(t, s).

It is immediate that the properties (i) and (ii) follow from the corresponding properties for Un(t, s).
Finally, we show uniqueness and (iii): If {V (t, s)}0≤s≤t≤T satisfies (i)–(iii) for a stable family of

operators {A′(t)}t∈[0,T ] with the same stability constants, then we apply the fundamental theorem of
calculus to find

Un(t, s)y− V (t, s)y =
∫ t

s
Un(t, r)(An(r)− A′(r))V (r, s)y dr,

and therefore

‖Un(t, s)y− V (t, s)y‖X ≤ M M̃eγ (t−s)
‖y‖Y

∫ t

s
‖An(r)− A′(r)‖B(Y,X ) dr. (C-8)

If we set A′(t)= A(t) and let n→∞, we thus find that U (t, s)y = V (t, s)y and by density U (t, s)=
V (t, s) on the whole of X . We conclude that U (t, s) is unique.

Now, in (C-8), we set A′(t)= A(τ )= const for τ ∈ [0, T ], divide by t − s and let n→∞ to obtain

(t − s)−1
‖U (t, s)y− e(t−s)A(τ )y‖X ≤ (t − s)−1 M M̃eγ (t−s)

‖y‖Y

∫ t

s
‖An(r)− A(τ )‖B(Y,X ) dr.

On the one hand, for τ = s, we find (C-5a) in the limit t→ s. On the other hand, setting τ = t and letting
t→ s, we find

∂−s U (t, s)y|s=t =−A(t)y. (C-9)

To find (C-5b), we check the right and left derivative separately. Applying (C-5a) and (C-9), we obtain

∂+s U (t, s)y = s-lim
h↘0

h−1(U (t, s+ h)y−U (t, s)y)

=U (t, s+ h) s-lim
h↘0

h−1(y−U (s+ h, s)y)=−U (t, s)A(s)y, (C-10a)
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∂−s U (t, s)y = s-lim
h↘0

h−1(U (t, s)y−U (t, s− h)y)

=U (t, s) s-lim
h↘0

h−1(y−U (s, s− h)y)=−U (t, s)A(s)y. (C-10b)

Therefore we have completed the proof also for (iii). �

We say that a Banach space Y possesses a predual if there exists a Banach space Y∗ such that Y is
the dual of Y∗. Having fixed a predual Y∗, we can equip Y with the so-called weak* topology, which is
generated by the seminorms y 7→ |ξ(y)|, where ξ ∈ Y∗. Note in particular that every reflexive Banach
space possesses a unique predual (namely, its dual). For reflexive Banach spaces the weak* convergence
clearly coincides with the weak convergence.

For Banach spaces possessing a predual one can slightly improve the previous theorem; see also [Kato
1970, Theorem 5.1].

Theorem C.7. In addition to the assumptions of Theorem C.6, assume that:

(d) Y possesses a predual.

Then, in addition to (i)–(iii), the evolution {U (t, s)}0≤s≤t≤T has the following properties:

(iv) U (t, s)Y ⊂ Y , (t, s) 7→U (t, s) is weakly* continuous and

‖U (t, r)‖Y ≤ M̃eβ̃(t−s), 0≤ r ≤ s ≤ t ≤ T . (C-11)

Proof. Note that for fixed s, t ∈ [0, T ] and y ∈ Y , Un(t, s)y is a uniformly bounded sequence in Y , and
thus, by the Banach–Alaoglu theorem, it contains a weakly* convergent subsequence. Moreover, by our
previous results, Un(t, s)y→U (t, s)y in X . But U (t, s)y must be equal to the weak* limit, and thus lie
in Y; i.e., U (t, s)Y ⊂ Y . The inequality then follows from (C-7).

Now, let (tj )j , (sj )j be sequences with tj→ t , sj→ s and y ∈Y . Recall that U (tj , sj )y→U (t, s)y in X
because (t, s) 7→U (t, s) is X -strongly continuous. By the Banach–Alaoglu theorem, since U (tj , sj ) is
uniformly bounded, U (tj , sj )y contains a weakly* convergent subsequence. The weak* limit of U (tj , sj )y
is thus U (t, s)y and must lie in Y . In other words, U (t, s) is weakly* continuous on Y . �

We recall that a normed space is called uniformly convex if for every ε>0 and unit vectors ‖x‖=‖y‖=1
there exists δ > 0 such that

‖x − y‖ ≥ ε =⇒

∥∥∥∥ x + y
2

∥∥∥∥≤ 1− δ.

We note that all uniformly convex Banach spaces are reflexive. Additionally, on uniformly convex
Banach spaces, ‖xn‖ → ‖x‖ and the weak convergence xn ⇀ x implies the strong convergence. All
Hilbert spaces are uniformly convex.

If we assume that the Banach space Y is uniformly convex, stronger results about the evolution can be
derived. They are described in the following theorem, which is a part of [Kato 1970, Theorem 5.2]:

Theorem C.8. In addition to the assumptions of Theorem C.6, assume that:

(d′) Y is uniformly convex.
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(e) For every t there exist on Y an equivalent norm ‖ · ‖Y,t as well as a positive C ∈ L1
[0, T ] such that

‖y‖Y,s ≤ ‖y‖Y,t exp
∣∣∣∣∫ t

s
C(r) dr

∣∣∣∣, s, t ∈ [0, T ]. (C-12)

Additionally, there exists β̃ ∈ R such that

‖( Ã(t)− λ)−1
‖Y,t ≤ (λ− β̃)

−1, λ > β̃,

for all t ∈ [0, T ].

Then, in addition to (i)–(iii), the evolution {U (t, s)}0≤s≤t≤T has the following property, which is an
improved version of (iv):

(iv′) U (t, s) preserves Y , is Y-strongly continuous in s for fixed t and Y-strongly right-continuous in t
for fixed s, and

‖U (t, r)‖Y,s ≤ exp
(∫ t

r
(β̃ + 2C(τ )) dτ

)
, 0≤ r ≤ s ≤ t ≤ T . (C-13)

Proof. Since Y is uniformly convex, it is also reflexive, and thus Theorem C.7(iv) holds. Then we use
Propositions C.4 and C.5 to find (C-13).

Let us prove the strong continuity. By (iv), for any y ∈ Y we have w-limt,r→s U (t, r)y→ y. Using
this, and then the bound (C-13), we obtain

‖y‖ ≤ lim inf
r,t→s

‖U (t, r)y‖Y,s ≤ lim sup
r,t→s

‖U (t, r)y‖Y,s

≤ lim sup
r,t→s

exp
(∫ t

r
(β̃ + 2C(τ )) dτ

)
‖y‖ = ‖y‖.

Hence, limr,t→s ‖U (t, r)y‖Y,s = ‖y‖. But Y is uniformly convex, so this implies

lim
r,t→s

U (t, r)y = y.

Let 0≤ s ≤ s ′ ≤ t ≤ T and y ∈ Y . Then

‖U (t, s ′)y−U (t, s)y‖Y ≤ ‖U (t, s ′)‖Y‖y−U (s ′, s)y‖Y→ 0

as s ′→ s or s→ s ′. Similarly, for 0≤ s ≤ t ≤ t ′ ≤ T we find

‖U (t ′, s)y−U (t, s)y‖Y ≤ ‖(U (t ′, t)−1)U (t, s)y‖Y→ 0

as t ′→ t . �

In the previous theorem we still had to distinguish between the t- and s-properties of U (t, s). If the
reversed operator −A(T − t) also satisfies the assumptions of the theorems above, this distinction can be
dropped; see also [Kato 1970, Remark 5.3]:

Theorem C.9. Suppose that both {A(t)}t∈[0,T ] and the reversed family {−A(T − t)}t∈[0,T ] satisfy the
assumptions of Theorems C.6 and C.8. Then the unique family of bounded operators {U (t, s)}s,t∈R

described in the previous theorems satisfies the following improved versions of (i), (iii), and (iv′):
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(i′) For all r, s, t ∈ [0, T ], we have the identities

U (t, t)= 1, U (t, s)U (s, r)=U (t, r).

(iii′) For all y ∈ Y and s, t ∈ [0, T ],
∂tU (t, s)y = A(t)U (t, s)y, (C-14a)

−∂sU (t, s)y =U (t, s)A(s)y, (C-14b)

where the derivatives (right/left derivatives at the boundaries of [0, T ]) are in the strong topology
of X .

(iv′′) (t, s) 7→U (t, s) preserves Y , is Y-strongly continuous and satisfies (C-13).

Proof. Denote the evolution for {A(t)}t∈[0,T ] by U (t, s) and the evolution for {−A(T − t)}t∈[0,T ] by
V (t, s). For 0≤ s ≤ t ≤ T, we define

U (s, t)= V (T − s, T − t).

From the approximations Un(t, s) and Vn(t, s), it is easy to see that

U (t, s)U (s, t)= 1

for s, t ∈ R. This proves (i′).
It is clear that

∂tU (t, s)y|t=s = A(s)y,

−∂sU (t, s)y =U (t, s)A(s)y

for s, t ∈ [0, T ]. Then we can proceed as in (C-10) to find also

∂tU (t, s)y = A(t)U (t, s)y.

Finally, the strong continuity of U (t, s) follows from (iv′) applied to both U (t, s) and V (t, s), which
implies, in particular, that U (t, s) is strongly right- and left-continuous in t for fixed s. �

Theorem C.9 implies the following; see also [Yajima 2011, Theorem 3.2]:

Theorem C.10. Let X and Y be Hilbert spaces such that Y is densely and continuously embedded in X .
Let I ⊂ R be a compact interval, and {A(t)}t∈I a family of densely defined, closed operators on X .
Suppose that the following is satisfied:

(a) Y ⊂ Dom A(t) so that A(t) ∈ B(Y,X ) and t 7→ A(t) is norm-continuous in the norm of B(Y,X ).

(b) For every t ∈ I , there exist on X and Y Hilbert structures ( · | · )X ,t and ( · | · )Y,t , which are equivalent
to the original ones and for a positive C ∈ L1(I ) and all s, t ∈ I

‖x‖X ,s ≤ ‖x‖X ,t exp
∣∣∣∣∫ t

s
C(r) dr

∣∣∣∣,
‖y‖Y,s ≤ ‖y‖Y,t exp

∣∣∣∣∫ t

s
C(r) dr

∣∣∣∣.
Denote the corresponding Hilbert spaces by Xt and Yt .
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(c) A(t) is self-adjoint with respect to Xt and the part Ã(t) of A(t) in Yt is self-adjoint in Yt .

Then there exists a unique family of bounded operators {U (t, s)}s,t∈I , in X , called the evolution (operator)
generated by A(t), with the following properties:

(i) For all r, s, t ∈ I , we have the identities

U (t, t)= 1, U (t, s)U (s, r)=U (t, r).

(ii) U (t, s) is X -strongly continuous and

‖U (t, s)‖X ,s ≤ exp
∣∣∣∣∫ t

s
2C(r) dr

∣∣∣∣, s, t ∈ I.

(iii) For all y ∈ Y and s, t ∈ I ,
i∂tU (t, s)y = A(t)U (t, s)y,

−i∂sU (t, s)y =U (t, s)A(s)y,

where the derivatives (right/left derivatives at the boundaries of I ) are in the strong topology of X .

(iv) U (t, s)Y ⊂ Y , U (t, s) is Y-strongly continuous and

‖U (t, s)‖Y,s ≤ exp
∣∣∣∣∫ t

s
2C(r) dr

∣∣∣∣, s, t ∈ I.

The following perturbation theorem is essentially [Kato 1966, Theorem 4.5]. We leave the proof as an
exercise to the reader.

Theorem C.11. Suppose that {A(t)}t∈[0,T ] satisfies the assumptions of Theorem C.6. Let {B(t)}t∈[0,T ]
be a family of bounded operators in X such that t 7→ B(t) is strongly continuous with respect to X and
K = supt‖B(t)‖X . Then there exists a unique evolution V (t, s) for {A(t)+ B(t)}t∈[0,T ] satisfying the
properties (i)–(iii), but with the estimate

‖V (t, s)‖ ≤ Me(β+K M)(t−s).

Suppose that {A(t)}t∈[0,T ] also satisfies the stronger assumptions of Theorem C.7, C.8 or C.9, and
{B(t)}t∈[0,T ] preserves Y and its part {B̃(t)}t∈[0,T ] in Y is bounded in Y with K̃ = supt‖B(t)‖Y . Then the
evolution V (t, s) satisfies the corresponding stronger properties, where the estimate (C-11) needs to be
multiplied by eK̃ M̃(t−s), and the estimate (C-13) by eK̃ (t−s).

The evolution V (t, s) in the theorem above is given symbolically by

V =U +U ∗ B ∗U +U ∗ B ∗U ∗ B ∗U + · · · ,

where ∗ B ∗ denotes a Volterra-type convolution with “density” B(t). For example,

(U ∗ B ∗U )(t, r)=
∫ t

r
U (t, s)B(s)U (s, r) ds.
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Appendix D: Heinz–Kato inequality

We recall the Heinz–Kato inequality [Heinz 1951; Kato 1961], which is an elementary but very useful
result for the interpolation of operators:

Theorem D.1. Suppose that A, B are positive operators on Hilbert spaces X , Y , respectively. If T is a
bounded operator from X to Y such that T (Dom A)⊂ Dom B and

‖T x‖ ≤ C0‖x‖, ‖BT x‖ ≤ C1‖Ax‖,

for x ∈ Dom A, then

‖BλT x‖ ≤ Cλ
0 C1−λ

1 ‖Aλx‖, λ ∈ [0, 1]. (D-1)

Appendix E: Finite speed of propagation

In this appendix we prove the finite speed of propagation for solutions of the Klein–Gordon equation
with coefficients of low regularity.

In this section we prefer to work with the Klein–Gordon equation in the scalar formalism, given
by (1-1), which can be locally written as

K u := −gµν(∇µ− iAµ)(∇ν − iAν)u+ Y u, (E-1)

with pseudo-Riemannian metric g and the corresponding Levi-Civita derivative ∇, vector potential A,
and scalar potential Y. Our standing assumptions in this appendix are as follows:

Assumption 4. M = R×6 is equipped with a continuous Lorentzian metric g =−α2 dt2
+ g6 , where

α > 0 and g6 are continuous, and g6 restricts to a family of Riemannian metrics on 6. (Recall that every
globally hyperbolic spacetime can be brought into this form [Bernal and Sánchez 2005].) We assume that
Aµ(t) ∈ L∞loc(6) for all t , and Aµ, Ȧµ, Y ∈ L∞loc(M). Moreover, in every compact neighborhood U ⊂ M
there is Cg > 0 such that

|ġµνXµXν | ≤ Cg|gµνXµXν |

almost everywhere in U for all covectors X .

Under these assumption we will show the following theorem on the finite speed of propagation:

Theorem E.1. If u ∈ C1(R; L2
loc(6)) with ∂i u ∈ C(R; L2

loc(6)) and K u ∈ L2
loc(M), then

supp u ⊂ J
(
supp K u ∪ {t}×(supp u(t)∪ supp u̇(t))

)
for any t ∈ R. That is, u is supported in the causal shadow of the union of K u and of the support of its
Cauchy data on {t}×6.

Equation (E-1) can be obtained via the Euler–Lagrange equations from the Lagrangian density

L[u] := −|g|1/2
(
((∂µ+ iAµ)ū)gµν((∂ν − iAν)u)+ Y |u|2

)
.
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To the Lagrangian density L we can associate the momentum flux density

Pµ[u] := −δµ0 L[u] +
∂L[u]
∂(∂µū)

∂t ū+
∂L[u]
∂(∂µu)

∂t u.

If the action for L is invariant under infinitesimal time-translations, Noether’s theorem says that the
momentum flux is conserved. If the action is not time-translation invariant, P is in general not conserved,
but it is still a useful quantity.

The energy density E =P0 obtained from L is not necessarily positive. Therefore, for technical reasons
it will be convenient to replace L with the modified Lagrangian density

L̃[u] := −|g|1/2
(
((∂µ+ iAµ)ū)gµν((∂ν − iAν)u)− (1+α−2 A2

0)|u|
2),

denoting the corresponding momentum flux density by P̃. Using the special form of the metric, we find
the energy density

Ẽ[u] := P̃ 0
[u] = |g|1/2

(
α−2
|u̇|2+ ((∂i + iAi )ū)g

i j
6 ((∂j − iAj )u)+ |u|2

)
and the spatial momentum flux density

P̃ i
[u] = P i

[u] = −|g|1/2
(
˙̄ugi j
6 ((∂j − iAj )u)+ u̇gi j

6 ((∂j + iAj )ū)
)
.

Below we will integrate ∂µP̃
µ over a region which is delimited by two constant-time surfaces and the

backward lightcone of a point as described in Figure 1. To rewrite this integral as an integral over the
boundary of said region via Stokes’ theorem, it is useful to assume that ∂ J±g (�) is a Lipschitz topological
hypersurface; see [Beem et al. 1996, Theorem 3.9]. Here we denote by J±g (�) the causal future (+) or
causal past (−) of�, i.e., the set of points which can be reached from� by future-directed or, respectively,
past-directed causal curves with respect to the metric g. Moreover, we write Jg(�)= J+g (�)∪ J−g (�).

If g is not smooth (or at least C2), it is not guaranteed that ∂ J±g (�) is a Lipschitz topological
hypersurface. However, we can approximate g by smooth metrics:

If a Lorentzian metric ĝ has strictly larger lightcones than g, i.e., each nonvanishing g-causal vector
Xµ (gµνXµXν

≤ 0) is ĝ-timelike (ĝµνXµXν < 0), then we write

ĝ � g.

As shown in [Chruściel and Grant 2012, Proposition 1.2], there always exists a smooth Lorentzian metric ĝ
with strictly larger lightcones which approximates g arbitrarily well.

Proposition E.2. Let ĝ � g be smooth and consider the situation depicted in Figure 1. Then there exists
C > 0 such that

eC(s−t)
∫

Kt

Ẽ[u](t)≤
∫

Ks

Ẽ[u](s)+
∫
�

|g|1/2|K u|2 (E-2)

for all u ∈ C1(R; L2
loc(6)) with ∂i u ∈ C(R; L2

loc(6)) and K u ∈ L2
loc(M).
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�

6s
Ks

6t
Kt

3

x

Figure 1. The truncated cone given by the backward lightcone J−ĝ (x) of a point, and two
constant-time surfaces6t ={t}×6 and6s (with t > s). We write Kt = J−ĝ (x)∩({t}×6)
and Ks for the caps, and 3= ∂ J−ĝ (x)∩ ([s, t]×6) for the mantle of the truncated cone
�= J−ĝ (x)∩ ([s, t]×6).

Proof. We derive

∂µP̃
µ
[u] = −∂t L̃[u]+

(
∂µ
∂L̃[u]
∂(∂µū)

)
˙̄u+

∂L̃
∂(∂µū)

∂µ∂t ū+
(
∂µ

∂L̃
∂(∂µu)

)
u̇+

∂L̃[u]
∂(∂µu)

∂µ∂t u

=−∂t L̃[u]+
(
|g|1/2 K̃ u+

∂L̃[u]
∂ ū

)
˙̄u+

∂L̃[u]
∂(∂µū)

∂t∂µū+
(
|g|1/2 K̃ u+

∂L̃[u]
∂u

)
u̇+

∂L̃[u]
∂(∂µu)

∂t∂µu

=−2|g|1/2 Re( ˙̄uK̃ u)−
∂L̃[u]
∂gµν

ġµν−
∂L̃[u]
∂Aµ

Ȧµ−
∂L̃[u]
∂|g|

∂t |g|

= |g|1/2
(
2 Re( ˙̄uK̃ u)+((∂µ+iAµ)ū)ġµν((∂ν−iAν)u)−2α−3α̇A2

0|u|
2

−2 Im(ū Ȧµgµν(∂ν−iAν)u)+2α−2 A0 Ȧ0|u|2− 1
2 |g|

−1(∂t |g|)L̃[u]
)
.

where, in the second step, we used the Euler–Lagrange equations with

K̃ = K − Y + 1+α−2 A2
0

being the Klein–Gordon operator associated to L̃. Estimating each term separately using our assumptions
and the Cauchy–Schwarz inequality yields

∂µP̃
µ
[u] ≤ |g|1/2

(
|K u|2+C1α

−2
|u̇|2+C2((∂i + iAi )ū)g

i j
6 ((∂j + iAj )u)+C3|u|2

)
for C1,C2,C3 > 0 which do not depend on u. Therefore we find∫

�

∂µP̃
µ
[u] ≤

∫
�

(|g|1/2|K u|2+C Ẽ[u]) (E-3)

for some constant C > 0.
By Stokes’ theorem,∫

�

∂µP̃
µ
[u] =

∫
∂�

nµP̃
µ
[u] =

∫
Kt

Ẽ[u](t)−
∫

Ks

Ẽ[u](s)+
∫
3

nµP̃
µ
[u], (E-4)
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where n is the outward-directed normal field to ∂�. For any future-directed causal covector field ξ (i.e.,
gµνξµξν ≤ 0 and ξ0 ≥ 0) with |Eξ | = (gi j

6ξiξj )
1/2,

ξµP̃
µ
[u] = ξ0Ẽ[u] − 2|g|1/2 Re(ξi ˙̄ugi j

6 (∂j − iAj )u)

≥ ξ0Ẽ[u] − |g|1/2α|Eξ |
(
α−2
|u̇|2+ ((∂i + iAi )ū)g

i j
6 ((∂j − iAj )u)

)
≥ (ξ0−α|Eξ |)Ẽ[u] ≥ 0

almost everywhere. Consequently, we can estimate the last term in (E-4) as
∫
3

nµP̃
µ
≥ 0.

Combining (E-3) and (E-4), we obtain∫
Kt

Ẽ[u](t)−
∫

Ks

Ẽ[u](s)≤
∫ t

s

(∫
Kr

(|g|1/2|K u(r)|2+C Ẽ[u](r))
)

dr,

and thus (E-2) by Grönwall’s inequality. �

Now, using the proposition above, we can show the finite speed of propagation:

Theorem E.3. If u ∈ C1(R; L2
loc(6)) with ∂i u ∈ C(R; L2

loc(6)) and K u ∈ L2
loc(M), then

supp u ∩M± ⊂ J±g
(
(supp K u ∩M±)∪ {t}×(supp u(t)∪ supp u̇(t))

)
,

supp u ⊂ Jg
(
supp K u ∪ {t}×(supp u(t)∪ supp u̇(t))

) (E-5)

for any t ∈ R, where M+ = [t,+∞[×6 and M− = ]−∞, t]×6.

Proof. Note that, as a subset of 6, we have supp Ẽ[u](t)= supp u(t)∪ supp u̇(t). We show that u(x)= 0
for any

x ∈ M \ J+ĝ ((supp K u ∩M+)∪ {t}× supp Ẽ[u](t))

by an application of Proposition E.2 for all smooth ĝ � g. For any such x , J−ĝ (x) does not intersect
(supp K u ∩ M+)∪ {t}× supp Ẽ[u](t). Proposition E.2 now shows that u vanishes in J−ĝ (x)∩ M+ and
thus also at x .

We have thus shown that

supp u ∩M± ⊂ J±ĝ
(
(supp K u ∩M±)∪ {t}×(supp u(t)∪ supp u̇(t))

)
for all smooth ĝ � g. It follows that (E-5) holds, because a vector is g-causal if and only if it is ĝ-timelike
for all smooth ĝ � g by [Chruściel and Grant 2012, Proposition 1.5] and therefore

J±g (�)=
⋂
ĝ�g

J±ĝ (�), �⊂ M.

The embedding for J− follows by time reversal and the remaining embedding by the union of the
embeddings for J+ and J−. �
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