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The mean square discrepancy in the circle problem

Steven M. Gonek and Alex Iosevich

We study the mean square of the error term in the Gauss circle problem. A heuristic argument based
on the consideration of off-diagonal terms in the mean square of the relevant Voronoi-type summation
formula leads to a precise conjecture for the mean square of this discrepancy.

1. Introduction

Let r(n) denote the number of representations of the integer n as a sum of two squares of integers and
let

P(x)=
∑
n≤x

′

r(n)−πx + 1, (1-1)

where the prime superscript on the summation means that r(x) is counted with weight 1
2 if x is an integer.

Finding the best estimate of the discrepancy P(x) is known as Gauss’ circle problem. It is trivial that
P(x)� x1/2, and it is conjectured that P(x)� x1/4+ε, where here and throughout ε denotes a small
positive number that may be different at each occurrence. In the opposite direction, G. H. Hardy [1915;
1916b] proved that P(x)=�+(x1/4) and P(x)=�−((x log x)1/4), and this has been improved slightly by
a number of mathematicians; for example, see [Soundararajan 2003]. Here the notation f (x)=�+(g(x))
means there is a sequence of real numbers xn→∞ and a positive constant c such that f (xn)≥ c|g(xn)|

for all n. Similarly, f (x)=�−(g(x)) means there is a sequence xn→∞ and a positive constant c such
that f (xn)≤−c|g(xn)| for all n.

In spite of more than a century of effort, for example, by Sierpiński [1906], van der Corput [1923],
Kolesnik [1985], Iwaniec and Mozzochi [1988], and Huxley [2003], Gauss’s circle problem has resisted
solution. In an attempt to understand it better, mathematicians have considered several variants of the
problem that exploit the fact that the average of P(x) is easier to analyze. For example, there has been
considerable interest in the mean square of the discrepancy∫ X

0
P(x)2 dx .

It is known that ∫ X

0
P(x)2 dx = C X3/2

+ Q(X), (1-2)
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where

C =
1

3π2

∞∑
n=1

r2(n)
n3/2 =

16
3π2

ζQ(i)
( 3

2

)2

ζ(3)
(1+ 2−3/2)−1

= 1.69396 . . . (1-3)

and Q(X) is a function that is o(X3/2). H. Cramér [1922] proved that Q(X)� X5/4+ε, E. Landau [1923]
that Q(X)� X1+ε, A. Walfisz [1927] that Q(X)� X log3 X , and I. Kátai [1965] that Q(X)� X log2 X ;
see also the work of E. Preissmann [1988] for another proof. W. G. Nowak [2004] proved the estimate

Q(X)� X (log X)3/2 log log X,

and Y.-K. Lau and K.-M. Tsang [2009] proved that

Q(X)� X log X log log X, (1-4)

the best estimate to date of which we are aware.
Our goal here is to conjecture a precise formula for Q(X). We will then use this to determine how

large and how small Q(X) can be, and to uncover a previously unobserved phenomenon described below.

Conjecture. There is a constant 0< ϑ < 1 such that as X→∞,

Q(X)= C(X)X − X + O(Xϑ), (1-5)
where

C(X)= lim
N→∞

1
2π3

∑
1≤m,n≤N

r(n)r(m) cos(2π(
√

m+
√

n)
√

X)
(mn)3/4(

√
m+
√

n)
.

That is, ∫ X

0
P(x)2 dx = C X3/2

+C(X)X − X + O(Xϑ), (1-6)

where C is given by (1-3).

The phenomenon referred to above is the presence of the slowly oscillating function C(X) in (1-6).
This points to why it is so difficult to determine the exact size of Q(X). A. Ivić [1996; 2001] has shown
that the Laplace transform of P(x)2 is∫

∞

0
P(x)2e−x/T dx = 1

4

(T
π

)3/2 ∞∑
n=1

r2(n)n−3/2
− T + O(T 2/3+ε).

Comparing this with (1-6), we see that the Laplace transform does not “see” the oscillating term C(X).
It is not obvious that the limit defining C(X) exists. We prove this in:

Proposition 1. For X ≥ 0, N ≥ 1 let

CN (X)=
1

2π3

∑
1≤m,n≤N

r(n)r(m) cos(2π(
√

m+
√

n)
√

X)
(mn)3/4(

√
m+
√

n)
. (1-7)

Then for X ≥ 1,
C(X)= lim

N→∞
CN (X)

exists. Moreover, for X ≥ 1 we have

|C(X)−CN (X)| �
X log N

N 1/4 . (1-8)
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In Section 9 we shall use Proposition 1 to prove:

Theorem 2. As X→∞,

|C(X)| ≤
(16
π
+ o(1)

)
log X. (1-9)

Hence, if the Conjecture is true,

|Q(X)| ≤
(16
π
+ o(1)

)
X log X. (1-10)

The upper bound (1-10) suggests that (1-4) is too large by a factor of at least log log X . However, we
suspect that even (1-10) is larger than the true upper bound. It is possible that the lower bound for Q(X)
provided by the next theorem is closer to the actual upper bound.

Theorem 3. We have

lim sup
X→∞

C(X)
log log X

≥
1

2π
.

Hence, if the Conjecture is true, then

Q(X)=�+(X log log X). (1-11)

In view of the Conjecture one might ask whether one can model CN (X) by the sum

1
2π3

∑
m,n≤N

r(n)r(m) cos(2πXm,n)

(mn)3/4(
√

m+
√

n)
(X4
≤ N ≤ X A),

where the Xm,n are independent identically distributed random variables. This would be reasonable
if the approximately N 2/2 numbers {

√
m +
√

n}m≤n≤N were linearly independent over the rationals.
Using estimates of H. L. Montgomery and A. Odlyzko [1988] for large deviations of sums of random
variables, one could then show that this sum is likely to be no larger than O(log log X). Unfortunately,
the numbers {

√
m+
√

n}m≤n are highly linearly dependent over the rationals in the sense that a relatively
sparse subset of these numbers spans the set. For example, the 2N − 1 numbers

√
n+
√

2,
√

n+
√

3
(n = 1, 2, . . . , N ) allow us to write an arbitrary one of the approximately N 2 elements

√
k +
√

l as
(
√

k+
√

2)+ (
√

l +
√

3)− (
√

2+
√

3). Thus, such a model might not be very accurate.
Our method may also be applied to other well-known problems. For example, it may be used to

conjecture a formula for the term F(X) in∫ X

0
1(x)2 dx =

X3/2

6π2

∞∑
n=1

d(n)2

n3/2 + F(X), (1-12)

the mean square of the error term in the Dirichlet divisor problem, where

1(x)=
∑
n≤x

′

d(n)− x(log x + 2γ − 1)− 1
4 ,

d(n) =
∑

d|n 1, and γ is Euler’s constant. This will be the subject of a forthcoming paper by the first
author and Dr. Fan Ge. The important feature shared by the circle and divisor problems that makes our
method applicable is, of course, the existence of a Voronoi-type summation formula for their error terms.
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2. Proof of Proposition 1

Before proving Proposition 1, we gather several formulae and a lemma.
Hardy [1916a] proved that for x > 0

P(x)= x1/2
∞∑

n=1

r(n)
n1/2 J1(2π

√
nx), (2-1)

where J1 is a Bessel function of the first kind. Using the approximation

J1(u)=
( 2
πu

)1/2(
cos
(

u− 3π
4

)
−

3
8u

sin
(

u− 3π
4

))
+ O(u−5/2), (2-2)

valid for u ≥ 1, we deduce that

P(x)=
x1/4

π

∞∑
n=1

r(n)
n3/4 cos

(
2π
√

nx − 3π
4

)
−

3x−1/4

16π2

∞∑
n=1

r(n)
n5/4 sin

(
2π
√

nx − 3π
4

)
+ O(x−3/4) (2-3)

for x ≥ 1. From this we obtain

P1(x) :=
∫ x

0
P(u) du =

x3/4

π2

∞∑
n=1

r(n)
n5/4 sin

(
2π
√

nx − 3π
4

)
+ O(x1/4) (2-4)

for x ≥ 1. Note that
P1(x)� x3/4 (2-5)

for x ≥ 1 follows immediately from this.

Lemma 4. Let 1≤ A < B and let 0< ε < 1. Then uniformly for x ≥ 1 and for y real,∑
A≤k≤B

r(k)
k3/4 cos(x

√
k+ y)�

x2

A1/2 +
1

A1/4 + xε−1/2 min
(

x
A1/2‖(x/2π)2‖

, log
B
A

)
. (2-6)

The implied constant depends at most on ε.

Proof. Denote the left-hand side of (2-6) by S. Then by (1-1) we may write

S = π
∫ B

A
u−3/4 cos(x

√
u+ y) du+

∫ B

A−
u−3/4 cos(x

√
u+ y) d P(u)= S1+ S2.

Now

S1 =
2π
x

∫ B

A
u−1/4 d(sin(x

√
u+ y))

=
2π sin(x

√
u+ y)

xu1/4

∣∣∣∣B
A
+
π

2x

∫ B

A

sin(x
√

u+ y)
u5/4 du� A−1/4x−1.

Using P(u)� u1/2, we see that

S2 =
P(u) cos(x

√
u+ y)

u3/4

∣∣∣∣B
A−
+

∫ B

A

P(u)
u7/4

( 3
4 cos(x

√
u+ y)+ 1

2 x
√

u sin(x
√

u+ y)
)

du

=
x
2

∫ B

A−

P(u)
u5/4 sin(x

√
u+ y) du+ O(A−1/4).
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Thus, for x ≥ 1, we have

S =
x
2

∫ B

A−

P(u)
u5/4 sin(x

√
u+ y) du+ O(A−1/4).

Let P1(u) be as in (2-4). Then by (2-5)

S =
x
2

∫ B

A−

sin(x
√

u+ y)
u5/4 d P1(u)+ O(A−1/4)

=
x
2

(
P1(u)

sin(x
√

u+ y)
u5/4

∣∣∣∣B
A−
+

∫ B

A
P1(u)

( 5
4 sin(x

√
u+ y)

u9/4 −
x
2

cos(x
√

u+ y)
u7/4

)
du
)
+ O(A−1/4)

=−

(
x
2

)2 ∫ B

A
P1(u)

cos(x
√

u+ y)
u7/4 du+ O(x A−1/2)+ O(A−1/4).

Next we insert the formula for P1(x) from (2-4) into the last integral. The O(u1/4) term in (2-4) con-
tributes O(x2/A1/2), so we obtain

S =−
x2

4π2

∞∑
n=1

r(n)
n5/4

∫ B

A

sin
(
2π
√

nu− 3π
4

)
cos(x

√
u+ y)

u
du+ O(x2 A−1/2)+ O(A−1/4).

Writing the numerator in the integrand as a sum of two sines, we have

S =−
x2

8π2

∞∑
n=1

r(n)
n5/4 (I1(n)+ I2(n))+ O(x2 A−1/2)+ O(A−1/4), (2-7)

where

I1(n)=
∫ B

A
u−1 sin

(
(x + 2π

√
n)
√

u+ y− 3π
4

)
du,

I2(n)=
∫ B

A
u−1 sin

(
(−x + 2π

√
n)
√

u− y− 3π
4

)
du.

Integration by parts shows that

I1(n)�
1

A1/2(x + 2π
√

n)
,

I2(n)�
1

A1/2|x − 2π
√

n|
.

We also trivially have I2(n)� log B/A. It follows that

x2
∞∑

n=1

r(n)I1(n)
n5/4 �

x
A1/2

and

x2
∞∑

n=1

r(n)I2(n)
n5/4 � x2

∞∑
n=1

r(n)
n5/4 min

(
1

A1/2|x − 2π
√

n|
, log

B
A

)
.
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The terms in the last sum with n ≤ 1
2(x/2π)

2 or n > 2(x/2π)2 contribute

�
x2

A1/2

( ∑
n≤ 1

2 (x/2π)
2

+

∑
n>2(x/2π)2

)
r(n)(x + 2π

√
n)

n5/4|x2− 4π2n|

�
x2

A1/2

(
1
x

∑
n≤ 1

2 (x/2π)
2

r(n)
n5/4 +

∑
n>2(x/2π)2

r(n)
n7/4

)

�
x2

A1/2 (x
−1
+ x−3/2 log x)�

x
A1/2 .

The remaining terms give

�
x2

A1/2

∑
1
2 (x/2π)

2<n≤2(x/2π)2

n 6=[(x/2π)2], [(x/2π)2]+1

r(n)
n5/4

x
|(x/2π)2− n|

+ xε−1/2 min
(

x
A1/2‖(x/2π)2‖

, log
B
A

)

�
x1/2+ε

A1/2 + xε−1/2 min
(

x
A1/2‖(x/2π)2‖

, log
B
A

)
.

Thus, from (2-7) we conclude that

S�
x2

A1/2 +
1

A1/4 + xε−1/2 min
(

x
A1/2‖(x/2π)2‖

, log
B
A

)
.

This completes the proof of Lemma 4. �

We now prove Proposition 1. By definition

CN (X)=
1

4π3

∑
m≤N

r(m)2 cos(4π
√

X
√

m)
m2 +

1
π3

∑
1≤m<n≤N

r(m) r(n) cos(2π
√

X(
√

m+
√

n))
(mn)3/4 (

√
m+
√

n)
.

The second sum on the right equals∑
1<n≤N

r(n)n−5/4
∑

1≤m≤n−1

r(m) cos(2π
√

X(
√

m+
√

n))
m3/4(1+

√
m/n)

.

Thus, for M > N we have

|CM(X)−CN (X)| ≤
∑

N<m≤M

r(m)2

m2 +
∑

N<n≤M

r(n)
n5/4

∣∣∣∣ ∑
1≤m≤n−1

r(m) cos(2π
√

X(
√

m+
√

n))
m3/4(1+

√
m/n)

∣∣∣∣.
By partial summation, the sum over m within absolute values equals

Sn−1

1+
√
(n− 1)/n

+

∑
1≤m≤n−2

Sm

(
1

1+
√

m/n
−

1
1+
√
(m+ 1)/n

)
,

where

Sm = Sm(n)=
∑

1≤k≤m

r(k) cos(2π
√

X(
√

k+
√

n))
k3/4 .
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Thus, for X ≥ 1 we have∑
1≤m≤n−1

r(m) cos(2π
√

X(
√

m+
√

n))
m3/4(1+

√
m/n)

� max
1≤m≤n−1

|Sm(n)| ·
(

1
1+
√
(n− 1)/n

+

∑
1≤m≤n−2

(
1

1+
√

m/n
−

1
1+
√
(m+ 1)/n

))
≤ max

1≤m≤n−1
|Sm(n)|.

Now by Lemma 4 with x = 2π
√

X , y = 2π
√

nX , A = 1, and B = m− 1, we see that

Sm(n)�ε X + X ε−1/4 log m

for any 0< ε < 1. Therefore, since r(n)� d(n), we find that for M > N,

|CM(X)−CN (X)| �
∑

N<m≤M

r(m)2

m2 +
∑

N<n≤M

r(n)
n5/4

∣∣∣∣ ∑
1≤m≤n−1

r(m) cos(2π
√

X(
√

m+
√

n))
m3/4(1+

√
m/n)

∣∣∣∣
�ε

(log N )3

N
+

∑
N<n≤M

d(n)
n5/4

(
X +

log n
X1/4−ε

)

�ε

(log N )3

N
+

X log N
N 1/4 +

(log N )2

N 1/4 X1/4−ε �
X (log N )

N 1/4 .

In the last inequality, we have taken ε = 1
8 , which allows us to make the implied constant absolute. It

now follows from Cauchy’s criterion that limN→∞ CN (X) exists as N →∞. The second assertion of
Proposition 1 follows immediately from the last inequality.

3. Beginning of the argument

To avoid technical difficulties, we shall estimate

I(X)=
∫ X

X/2
P(x)2 dx

rather than ∫ X

0
P(x)2 dx,

and then add the results for (X/2, X ], (X/4, X/2], (X/8, X/4] . . . . Hardy [1916a] proved that

P(x)= x1/2
∞∑

n=1

r(n)
n1/2 J1(2π

√
nx) (x > 0), (3-1)

where

J1(y)=
1
π

∫ π

0
cos(nx − y sin x) dx

is a Bessel function of the first kind. To estimate I(X) we use a truncated version of (3-1) due to Ivić
[1996], which we state as:



270 STEVEN M. GONEK AND ALEX IOSEVICH

Lemma 5. Let X ≥ 2 and X ≤ N ≤ X A with A > 1. For x > 0 define R(x, N ) by

P(x)= x1/2
∑
n≤N

r(n)
n1/2 J1(2π

√
nx)+ R(x, N ). (3-2)

Then for X/2≤ x ≤ X and any ε > 0, we have

R(x, N )�

{
xε always,( x

N

)1/2 xε

‖x‖
+ x3/4

( x
N

)1/2
+

( x
N

)1/4
if x 6∈ Z.

If we take X/2≤ x ≤ X and impose the condition that X4
≤ N ≤ X A in Lemma 5, then

R(x, N )�min
{

xε,
( x

N

)1/2 xε

‖x‖
+

( x
N

)1/4}
and we easily see that ∫ X

X/2
|R(x, N )|2 dx � X3/2+εN−1/2.

From (1-2) and the known bounds for Q(X), the mean square of the main term in (3-2) over [X/2, X ] is
O(X3/2). Thus, by the Cauchy–Schwarz inequality the contribution of the cross term to the mean square
of (3-2) is O(X3/2+ε/2 N−1/4). Thus, if N ≥ X4,

I(X)=
∫ X

X/2

(
x1/2

∑
n≤N

r(n)
n1/2 J1(2π

√
nx)
)2

dx + O(X1/2+ε).

Of course, if we take N even larger, the error term will be smaller.
Next we use the approximation

J1(u)=
( 2
πu

)1/2(
cos
(

u− 3π
4

)
−

3
8u

sin
(

u− 3π
4

))
+ O(u−5/2), (3-3)

which is valid for u ≥ 1, and find that

I(X)=
1
π2

∫ X

X/2

(
x1/4

∑
n≤N

r(n)
n3/4 cos

(
2π
√

nx − 3π
4

)
−

3
16πx1/4

∑
n≤N

r(n)
n5/4 sin

(
2π
√

nx − 3π
4

)
+ O

(
1

x3/4

∑
n≤N

r(n)
n7/4

))2

dx + O(X1/2+ε)

=
1
π2

∫ X

X/2
(A1(x)− A2(x)+ A3(x))2 dx + O(X1/2+ε). (3-4)

The sums in A2(x) and A3(x) are O(1) uniformly in N and x so∫ X

X/2
A2(x)2 dx � X1/2 and

∫ X

X/2
A3(x)2 dx � X−1/2.

By (1-2) we therefore have ∫ X

X/2
A1(x)2 dx � X3/2.
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From these estimates and the Cauchy–Schwarz inequality we now have

I(X)=
1
π2

∫ X

X/2
A1(x)2− 2A1(x)A2(x) dx + O(X1/2+ε). (3-5)

Note that if we were to apply the Cauchy–Schwarz inequality to the integral of A1(x)A2(x), we would
obtain the estimate O(X) for this term, which is the expected size of the lowest-order term in our main
term. By isolating this term and treating it with a little more care, we shall show that it is in fact
O(X1/2 log X).

The sums in the definitions of A1(x) and A2(x) contain trigonometric rather than Bessel functions.
This makes it convenient to again work with integrals over [0, X ] rather than [X/2, X ], and then to take
the difference of the results for [0, X ] and [0, X/2] at the end of the argument. To proceed we use the
identity

cos a cos b =< 1
2 [exp(i(a− b))+ exp(i(a+ b))]

and obtain

1
π2

∫ X

0
A1(x)2 dx =<

1
2π2

∑
m,n≤N

r(n)r(m)
(mn)3/4

∫ X

0
x1/2 exp(2π i

√
x(
√

n−
√

m)) dx

+<
i

2π2

∑
m,n≤N

r(n)r(m)
(mn)3/4

∫ X

0
x1/2 exp(2π i

√
x(
√

n+
√

m)) dx

= I(X)+ J(X). (3-6)

When y 6= 0, a substitution and two integrations by parts shows that∫ X

0
x1/2 exp(2π iy

√
x) dx = e2π iy

√
X
(

X
iπy
+

√
X

π2 y2 −
1

i2π3 y3

)
+

1
i2π3 y3 .

When y = 0 the integral equals 2
3 X3/2 trivially. Thus

I(X)=
X3/2

3π2

∑
n≤N

r(n)2

n3/2 +
1

2π2

∑
m 6=n≤N

r(n)r(m)
(mn)3/4

iX (
√

m−
√

n),

J(X)=
1

2π2

∑
m,n≤N

r(n)r(m)
(mn)3/4

jX (
√

m+
√

n),

where

iX (y)=
X sin(2πy

√
X)

πy
+

√
X cos(2πy

√
X)

π2 y2 −
sin(2πy

√
X)

2π3 y3 ,

jX (y)=
X cos(2πy

√
X)

πy
−

√
X sin(2πy

√
X)

π2 y2 +
1− cos(2πy

√
X)

2π3 y3 .

(3-7)

Similarly, using

cos a sin b =−= 1
2 [exp(i(a− b))− exp(i(a+ b))],
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we obtain

1
π2

∫ X

0
A1(x)A2(x) dx =−=

3
32π3

∑
m,n≤N

r(n)r(m)
n3/4m5/4

∫ X

0
exp(2π i

√
x(
√

n−
√

m)) dx

+=
3i

32π3

∑
m,n≤N

r(n)r(m)
n3/4m5/4

∫ X

0
exp(2π i

√
x(
√

n+
√

m)) dx

= K(X)+L(X). (3-8)

When y 6= 0, ∫ X

0
exp(2π iy

√
x) dx = e2π iy

√
X
(√

X
iπy
+

1
2π2 y2

)
−

1
2π2 y2 ,

whereas when y = 0 the integral equals X . Thus

K(X)=
3

32π3

∑
m 6=n≤N

r(n)r(m)
n3/4m5/4 kX (

√
n−
√

m),

L(X)=
3

32π3

∑
m,n≤N

r(n)r(m)
n3/4m5/4 lX (

√
n+
√

m),

where

kX (y)=

√
X cos(2πy

√
X)

πy
−

sin(2πy
√

X)
2π2 y2 ,

lX =

√
X sin(2πy

√
X)

πy
+

cos(2πy
√

X)− 1
2π2 y2 .

In Sections 4–7 we estimate I(X), J(X),K(X), and L(X). Our main terms come from I(X), which
also requires the lengthiest treatment.

4. Calculation of I(X)

We write

I(X)=
X3/2

3π2

∑
n≤N

r(n)2

n3/2 +
1

2π2

∑
m 6=n≤N

r(n)r(m)
(mn)3/4

iX (
√

m−
√

n)= ID+ IO. (4-1)

Setting

C =
1

3π2

∞∑
n=1

r(n)2

n3/2 ,

we see that since r(n)�ε nε for any ε > 0 and N ≥ X4,

ID = C X3/2
+ Oε(X3/2 N−1/2+ε)= C X3/2

+ O(1). (4-2)

To evaluate IO(X) we write m = n+ h and use the symmetry in m and n to see that

IO =
1
π2

∑
n<N

∑
1≤h≤N−n

r(n)r(n+ h)
(n(n+ h))3/4

iX (
√

n+ h−
√

n).
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We replace
√

n+ h−
√

n by the approximation h/(2
√

n), and replace n+ h by n in the denominator to
obtain

IO ≈
1
π2

∑
n<N

∑
1≤h≤N−n

r(n)r(n+ h)
n3/2 iX (h/(2

√
n)); (4-3)

here and below A ≈ B means that A = B+ E , with E an error term of order less than B. This is the first
place in the argument where we have abandoned rigor. F. Chamizo [1999, Corollary 5.3] has shown that∑

n≤x

r(n)r(n+ h)= c(h)x + E(x, h),

where

c(h)=
8(−1)h

h

(∑
d|h

(−1)dd
)

(4-4)

and
E(x, h)�ε x145/196+ε

uniformly for h ≤ x . This suggests that we may replace r(n)r(n+h) in (4-3) by c(h). We shall ignore the
error terms; in a rigorous analysis, these would swamp our expected main terms. However, it is plausible
to assume that the error terms for various h are independent and largely cancel one another. Supposing
this to be the case and replacing the sum over n by an integral, we find that

IO ≈
1
π2

∫ N

0

( ∞∑
h=1

c(h)iX (h/(2
√

u))
)

du
u3/2 .

From the definition of c(h) in (4-4) we see that

IO ≈
8
π2

∫ N

0

( ∞∑
h=1

(−1)h

h

(∑
d|h

(−1)dd
)

iX (h/(2
√

u))
)

du
u3/2

=
8
π2

∫ N

0

∞∑
k=1

∞∑
d=1

(−1)d(k+1)

k
iX (dk/(2

√
u))

du
u3/2 . (4-5)

By (3-7) the sum over d is
∞∑

d=1

(−1)d(k+1)iX (dk/(2
√

u))

=
2X
√

u
k

∞∑
d=1

(−1)d(k+1) sin(πdk
√

X/u)
πd

+
4u
√

X
k2

∞∑
d=1

(−1)d(k+1) cos(πdk
√

X/u)
π2d2

−
4u3/2

k3

∞∑
d=1

(−1)d(k+1) sin(πdk
√

X/u)
π3d3 .

Using (A-7) of the Appendix to express these sums in terms of Bernoulli polynomials, we find that if k
is odd, the right-hand side equals

−
2X
√

u
k

B1({k
√

X/4u})+
4u
√

X
k2 B2({k

√
X/4u})−

8u3/2

3k3 B3({k
√

X/4u}),
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and if k is even, it equals

−
2X
√

u
k

B1
({

k
√

X/4u+ 1
2

})
+

4u
√

X
k2 B2

({
k
√

X/4u+ 1
2

})
−

8u3/2

3k3 B3
({

k
√

X/4u+ 1
2

})
.

Inserting these into (4-5), we obtain

IO ≈
8
π2

∫ N

0

∞∑
k=1
k odd

(
−

2X
√

u
k2 B1({k

√
X/4u})+

4u
√

X
k3 B2({k

√
X/4u})−

8u3/2

3k4 B3({k
√

X/4u})
)

du
u3/2

+
8
π2

∫ N

0

∞∑
k=1

k even

(
−

2X
√

u
k2 B1({k

√
X/4u+ 1

2})+
4u
√

X
k3 B2

({
k
√

X/4u+ 1
2

})
−

8u3/2

3k4 B3
({

k
√

X/4u+ 1
2

})) du
u3/2

= IO,odd+ IO,even. (4-6)

In both integrals we make the substitution x = k
√

X/4u so that 2
√

u/k =
√

X/x and du/u3/2
=

−4 dx/(k
√

X). We then find that

IO,odd =
32X
π2

∞∑
k=1
k odd

1
k2

∫
∞

k
√

X/4N

(
−

B1({x})
x
+

B2({x})
x2 −

B3({x})
3x3

)
dx,

IO,even =
32X
π2

∞∑
k=1

k even

1
k2

∫
∞

k
√

X/4N

(
−

B1
({

x + 1
2

})
x

+
B2
({

x + 1
2

})
x2 −

B3
({

x + 1
2

})
3x3

)
dx .

4.1. Calculation of IO,odd. We have

IO,odd =
32X
π2

∞∑
k=1
k odd

1
k2

∫
∞

k
√

X/4N

(
−

B1({x})
x
+

B2({x})
x2 −

B3({x})
3x3

)
dx .

We split the sum over k into two sums according to whether k ≤ 2
√

N/X or
k > 2

√
N/X . For terms in the second sum we have∫

∞

k
√

X/4N

B j ({x})
x j dx � (k

√
X/4N )− j .

Hence, the contribution from the second sum is

� X
3∑

j=1

∑
k>2
√

N/X

1
k j+2 (N/X) j/2

� X3/2 N−1/2.

Thus

IO,odd =
32X
π2

∑
k≤2
√

N/X
k odd

1
k2

∫
∞

k
√

X/4N

(
−

B1({x})
x
+

B2({x})
x2 −

B3({x})
3x3

)
dx + O(X3/2 N−1/2).
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In the remaining sum k
√

X/4N ≤ 1 and we split the integral into two parts, one over [k
√

X/4N , 1]
and the other over [1,∞). By (A-6) of the Appendix the first integral is∫ 1

k
√

X/4N

( 1
2 − x

x
+

x2
− x + 1

6

x2 −
x3
−

3
2 x2
+

1
2 x

3x3

)
dx =− 1

3 + O(k
√

X/N ).

By Lemma 8∫
∞

1

(
−

B1({x})
x
+

B2({x})
x2 −

B3({x})
3x3

)
dx =−

( 1
2 log 2π−1

)
+
(
log 2π− 11

6

)
−

1
3

( 3
2 log 2π− 11

4

)
=

1
12 .

Hence

IO,odd =
32X
π2

∑
k≤2
√

N/X
k odd

1
k2

(
−

1
4 + O(k

√
X/N )

)
+ O(X3/2 N−1/2).

The contribution of the O-term in the sum is O(X3/2 N−1/2 log(N/X)). Hence

IO,odd =−
8X
π2

∑
k≤2
√

N/X
k odd

1
k2 + O(X3/2 N−1/2 log(N/X))

=−
8X
π2

∞∑
k=1
k odd

1
k2 + O(X3/2 N−1/2 log(N/X)). (4-7)

4.2. Calculation of IO,even. The treatment of IO,even is similar to that of IO,odd so we will skip some of
the details. We have

IO,even =
32X
π2

∞∑
k=1

k even

1
k2

∫
∞

k
√

X/4N

(
−

B1
({

x + 1
2

})
x

+
B2
({

x + 1
2

})
x2 −

B3
({

x + 1
2

})
3x3

)
dx .

Our first step is to split the sum over k according to whether k ≤
√

N/X or k >
√

N/X (note that the
division for odd k was at 2

√
N/X ). As before, the total contribution from the tail is X3/2 N−1/2. Thus,

IO,even=
32X
π2

∑
k≤
√

N/X
k even

1
k2

∫
∞

k
√

X/4N

(
−

B1
({

x + 1
2

})
x

+
B2
({

x + 1
2

})
x2 −

B3
({

x + 1
2

})
3x3

)
dx+O(X3/2 N−1/2).

Observe that for each k in the sum we have k
√

X/4N ≤ 1
2 . We may therefore split the integral over the

intervals
[
k
√

X/4N , 1
2

]
and

[ 1
2 ,∞

)
. By (A-6) the first integral equals

∫ 1/2

k
√

X/4N

(
−

x
x
+

(
x + 1

2

)2
−
(
x + 1

2

)
+

1
6

x2 −

(
x + 1

2

)3
−

3
2

(
x + 1

2

)2
+

1
2

(
x + 1

2

)
3x3

)
dx

=−

∫ 1/2

k
√

X/4N

1
3 dx =− 1

6 + O(k
√

X/N ).
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By Lemma 8∫
∞

1/2

(
−

B1
({

x + 1
2

})
x

+
B2
({

x + 1
2

})
x2 −

B3
({

x + 1
2

})
3x3

)
dx

=−
(
−

1
2 +

1
2 log 2

)
+
(
−

2
3 + log 2

)
−

1
3

(
−1+ 3

2 log 2
)
=

1
6 .

Hence,

IO,even =
32X
π2

∑
k≤
√

N/X
k even

1
k2

(
−

1
6 +

1
6 + O(k

√
X/N )

)
+ O(X3/2 N−1/2)

� X3/2 N−1/2 log(N/X). (4-8)

4.3. Completion of the calculation of I(X). By (4-6), (4-7), and (4-8), we see that

IO =−
8X
π2

∞∑
k=1
k odd

1
k2 + O(X3/2 N−1/2 log(N/X)).

Combining this with (4-1) and (4-2), we see that

I(X)= C X3/2
−

8X
π2

∞∑
k=1
k odd

1
k2 + O(X3/2 N−1/2 log(N/X)),

where

C =
1

3π2

∞∑
n=1

r(n)2

n3/2 .

It is easy to see that
∞∑

k=1
k odd

1
k2 =

3
4
ζ(2)= π

2

8
.

Using this and the assumption that X4
≤ N ≤ X A, we find that

I(X)= C X3/2
− X + O(X1/2 log X). (4-9)

5. Calculation of J(X)

Our treatment of J(X) is easier. We have

J(X)=
1

2π2

∑
m,n≤N

r(n)r(m)
(mn)3/4

jX (
√

m+
√

n),

where

jX (y)=
X cos(2πy

√
X)

πy
−

√
X sin(2πy

√
X)

π2 y2 +
1− cos(2πy

√
X)

2π3 y3 .

The second and third terms of jX contribute

�

∑
m,n≤N

r(n)r(m)
(mn)3/4

( √
X

(
√

m+
√

n)2
+

1
(
√

m+
√

n)3

)
.
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Since (
√

m+
√

n)2 > 2
√

mn, this is

�
√

X
∑

m,n≤N

r(n)r(m)
(mn)5/4

+

∑
m,n≤N

r(n)r(m)
(mn)3/2

�
√

X .

Hence, recalling (1-7),

J(X)=
X

2π3

∑
m,n≤N

r(n)r(m)
(mn)3/4

cos(2π(
√

m+
√

n)
√

X)
(
√

m+
√

n)
+ O(X1/2)

= XCN (X)+ O(X1/2). (5-1)

6. Estimation of K(X)

We have

K(X)=
3

32π3

∑
m 6=n≤N

r(n)r(m)
n3/4m5/4 kX (

√
n−
√

m),

where

kX (y)=

√
X cos(2πy

√
X)

πy
−

sin(2πy
√

X)
2π2 y2 .

Thus

K(X)�
∑

m 6=n≤N

r(n)r(m)
n3/4m5/4

( √
X

|
√

n−
√

m|
+

1
(
√

n−
√

m)2

)
.

We split the sum over m and n according to whether m < n or m > n so that

K(X)�
(∑

n<N

∑
n<m≤N

+

∑
m<N

∑
m<n≤N

)
· · · = K1+ K2.

In K1 we write m = n+ h and further split the sum over h as

K1 =
∑
n<N

( ∑
1≤h≤n/2

+

∑
n/2<h≤N−n

)
r(n)r(n+ h)

n3/4(n+ h)5/4

( √
X

|
√

n+ h−
√

n|
+

1
(
√

n+ h−
√

n)2

)
= K11+ K12.

In K11 we use
√

n+ h−
√

n� h/
√

n and r(n)� nε and find for ε small enough that

K11�
∑
n<N

∑
1≤h≤n/2

r(n)r(n+ h)
n3/4(n+ h)5/4

(√
nX
h
+

n
h2

)

�
√

X
∑
n<N

1
n3/2−2ε

∑
1≤h≤n/2

1
h
+

∑
n<N

1
n1−2ε

∑
1≤h≤n/2

1
h2

�
√

X + N 2ε
�
√

X .
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In K12 we use the inequalities
√

n+ h−
√

n�
√

h, (n+ h)5/4� h5/4 and r(n)� nε and find that

K12�
∑
n<N

∑
n/2<h≤N−n

1
n3/4−εh5/4−ε

(√
X
h
+

1
h

)

�
√

X
∑
n<N

1
n3/4−ε

∑
n/2<h≤N−n

1
h7/4−ε +

∑
n<N

1
n3/4−ε

∑
n/2<h≤N−n

1
h9/4−ε

�
√

X
∑
n<N

1
n3/2−2ε +

∑
n<N

1
n2−2ε �

√
X .

Hence, K1 = K11+ K12 = O(
√

X).
We treat K2 in the same way and find that it is also O(

√
X). Thus

K(X)�
√

X .

7. Estimation of L(X)

We treat L(X) as we did the last two terms in J(X). We have

L(X)=
3

32π3

∑
m,n≤N

r(n)r(m)
n3/4m5/4 lX (

√
n+
√

m),

where

lX =

√
X sin(2πy

√
X)

πy
+

cos(2πy
√

X)− 1
2π2 y2 .

Using the inequality (
√

m+
√

n) > 2
√

mn, we find that

L(X)�
∑

m,n≤N

r(n)r(m)
n3/4m5/4

( √
X

(mn)1/4
+

1
(mn)1/2

)
�
√

X
∑
n≤N

r(n)
n

∑
m≤N

r(m)
m3/2 + 1

�
√

X log X.

8. Completion of the argument for the Conjecture

By (3-6), (4-9), and (5-1)

1
π2

∫ X

0
A1(x)2 dx = I(X)+ J(X)= C X3/2

− X +CN (X)+ O(X1/2+ε).

By (3-8) and the estimates of the last two sections

1
π2

∫ X

0
A1(x)A2(x) dx = K (X)+ L(X)�

√
X log X.
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It now follows from (3-5) that

I(X)=
∫ X

X/2
P(x)2 dx = C(X3/2

− (X/2)3/2)− X/2+ (CN (X)−CN (X/2))+ O(X1/2+ε),

where

C =
1

3π2

∞∑
n=1

r2(n)n−3/2.

We add this result (with the same value of N ∈ [X4, X A
]) for the intervals (X/2, X ], (X/4, X/2], . . . ,

(X/2r , X/2r−1
], where r = [3 log X/4 log 2]. Then

X1/4
≤

X
2r < 2X1/4.

Now (X1/4)3/2 = X3/8
� X1/2+ε , so

X/2r CN (X/2r )� X/2r log N � X1/2+ε .

Hence ∫ X

X/2r
P(x)2 dx = C X3/2

− X +CN (X)+ O(X1/2+ε). (8-1)

Finally, ∫ X/2r

0
P(x)2� (X/2r )3/2� X3/8,

so the integral on the left-hand side of (8-1) may be extended over the entire interval [0, X ]. This
completes the argument for the Conjecture.

9. Proof of Theorem 2

For N ≥ 1 and x ∈ R we have

CN (x2)=
1

2π3

∑
m,n≤N

r(n)r(m) cos(2π(
√

m+
√

n)x)
(mn)3/4(

√
m+
√

n)
.

Clearly

max
x∈R
|CN (x2)| = CN (0)=

1
2π3

∑
m,n≤N

r(n)r(m)
(mn)3/4(

√
m+
√

n)
. (9-1)

Lemma 6. For N ≥ 2 we have
2
π

log N + O(1)≤ CN (0)≤
4
π

log N + O(1).

Proof. Let ∑
n≤x

r(n)= πx + E(x),

where E(x)� x1/3. By Riemann–Stieltjes integration, for y < z we have∑
y<n≤z

r(n)
nσ
= π

z1−σ
− y1−σ

1− σ
+

E(u)
uσ

∣∣∣∣z
y
+ σ

∫ z

y

E(u)
u1+σ du.
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Here the case σ = 1 is interpreted as a limit. In particular,∑
n≤z

r(n)
n
= π log z+ O(1) (9-2)

and ∑
y<n≤z

r(n)
nσ
= π

z1−σ
− y1−σ

1− σ
+ O(max(y1/3−σ , z1/3−σ )). (9-3)

Using this and the symmetry in m and n in the double sum defining CN (x2), we find that

CN (0)=
1
π3

∑
1≤n<N

r(n)
n3/4

( ∑
n<m≤N

r(m)
m3/4(

√
m+
√

n)

)
+ O(1).

Now
1
2

∑
n<m≤N

r(m)
m5/4 ≤

∑
n<m≤N

r(m)
m3/4(

√
m+
√

n)
≤

∑
n<m≤N

r(m)
m5/4 ,

so by (9-3) we have

2πn−1/4
+ O(n−11/12)≤

∑
n<m≤N

r(m)
m3/4(

√
m+
√

n)
≤ 4πn−1/4

+ O(n−11/12).

Thus,

CN (0)≤
1
π3

∑
1≤n<N

r(n)
n3/4 (4πn−1/4

+ O(n−11/12))=
4
π

log N + O(1).

Similarly,

CN (0)≥
2
π

log N + O(1).

This completes the proof of the lemma. �

To prove Theorem 2, we note that by (1-8)

|C(X)| = |CN (X)| + O
(

X log N
N 1/4

)
.

Thus, by (9-1) and Lemma 6

|C(X)| ≤ 4
π

log N + O
(

X log N
N 1/4

)
+ O(1).

Taking N = X4 log X , say, we obtain

|C(X)| ≤
(16
π
+ o(1)

)
log X.

This proves the first assertion of Theorem 2. The second follows from this and the Conjecture.
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10. Proof of Theorem 3

We base the proof of Theorem 3 on a variant of a lemma of [Soundararajan 2003].
For each n= (m, n) ∈ Z2 let an and λn be nonnegative real numbers with the λn arranged in nonde-

creasing order. Assume that
∑

n an <∞ and set

F(x)=
∑

n
an cos(2πλnx).

Lemma 7. Let L ≥ 2 be an integer and let 3 ≥ 2 be a real number. Let M be a subset of the double
indices n for which λn ≤3/2, and let M be the cardinality of M. Then for any real number Y ≥ 2 there
exists an x such that Y/2≤ x ≤ (6L)M+1Y and

F(x)≥ 1
8

∑
n∈M

an−
1

L − 1

∑
n

λn≤3

an−
4

π23Y

∑
n

an. (10-1)

Proof. Let K (u)= (sinπu/πu)2 be Fejér’s kernel and let k(y)=max(0, 1−|y|) be its Fourier transform.
Then the Fourier transform of 3K (3u) is k(y/3)=max(0, 1− |y|/3). Consider the integral∫

∞

−∞

3K (3u)F(u+ x) du = 1
2

∑
n

an

∫
∞

−∞

3K (3u)(e2π iλn(x+u)
+ e−2π iλn(x+u)) du

=
1
2

∑
n

ane2π iλnx k(−λn/3)+
1
2

∑
n

ane−2π iλnx k(λn/3)

=

∑
n

an cos(2πλnx)k(λn/3),

where the last equality holds because k(−y)= k(y). Defining

G(x)=
∑

n
an cos(2πλnx)k(λn/3),

we may write this as ∫
∞

−∞

3K (3u)F(u+ x) du = G(x).

Since F,G, and K are real-valued functions, and K and 3 are nonnegative, we find next that

G(x)=
∫ Y/2

−Y/2
3K (3u)F(u+ x) du+

∫
|u|>Y/2

3K (3u)F(u+ x) du

≤ max
|u|≤Y/2

F(u+ x)
∫
∞

−∞

3K (3u) du+
∫
|u|>Y/2

1
π23u2 |F(u+ x)| du

≤ max
|u|≤Y/2

F(u+ x)+
4

π23Y

(∑
n

an

)
. (10-2)

Now let M be a subset of indices n with λn ≤ 3/2, and let M be its cardinality. By Dirichlet’s
theorem there is an x0 with Y ≤ x0 ≤ (6L)M Y such that ‖x0λn‖ ≤ 1/(6L) for each n ∈M. Consider∑

|l|≤L

G(x0 l)k(l/L)= 1
2

∑
n

ank(λn/3)
∑
|l|≤L

k(l/L) cos(2πλnx0 l).
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The sum over l equals
1
L

(
sin(πLλnx0)

sin(πλnx0)

)2

,

which is nonnegative. We may therefore drop any terms we wish to from the sum over n to obtain a
lower bound. Moreover, for each n ∈M, cos(2πλnx0 l)≥ cos(2πl/(6L))≥ cos(π/3)≥ 1

2 , so∑
|l|≤L

k(l/L) cos(2πλnx0 l)≥ 1
2

∑
|l|≤L

k(l/L)= L
2
.

Thus ∑
|l|≤L

G(x0 l)k(l/L)≥ L
4

∑
n∈M

ank(λn/3).

Since G(−x0 l)= G(x0 l), there is an 1≤ l0 ≤ L such that

G(0)+ 2G(x0 l0)
∑

1≤l≤L

k(l/L)≥ L
4

∑
n∈M

ank(λn/3).

The sum over l equals (L − 1)/2, so we see that for this l0

G(x0 l0)≥
1
4

∑
n∈M

ank(λn/3)−
1

L−1

∑
n

λn≤3

an.

From this and (10-2) we obtain

max
|u|≤Y/2

F(u+ x0 l0)≥
1
4

∑
n∈M

ank(λn/3)−
1

L−1

∑
n

λn≤3

an−
4

π23Y

∑
n

an.

Now M⊂ [0,3/2], so k(λn/3)≥
1
2 . Furthermore, for |u| ≤ Y/2 we have

x0 l0+ u ≥ Y − Y/2= Y/2,

x0 l0+ u ≤ (6L)M Y L + X/2≤ (6L)M+1Y.

Thus, there is an x with Y/2≤ x ≤ (6L)M+1Y such that

F(x)≥ 1
8

∑
n∈M

an−
1

L−1

∑
n

λn≤3

an−
4

π23Y

∑
n

an.

This completes the proof of Lemma 7. �

We now prove Theorem 3. Let

CN (X)=
1

2π3

∑
m,n≤N

r(n)r(m) cos(2π(
√

m+
√

n)
√

X)
(mn)3/4(

√
m+
√

n)

with X4
≤ N ≤ X A. We replace X by x2 and will first show that for all large Z , there exists an x with

Z1/2
≤ x ≤ Z3/2 such that

CN (x2)≥
( 8
π
+ o(1)

)
log log x . (10-3)

Since Z ≤ X ≤ Z3, we also need N ≥ (Z3)4 = Z12. We take N = [Z12(log Z)4].
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Write

CN (x2)=
1

2π3 F(x)=
1

2π3

∑
n

an cos(2πλnx),

with λn = λm,n =
√

m+
√

n, m, n ≤ N, and

an = am,n =
r(m)r(n)

(mn)3/4(
√

m+
√

n)
.

We apply Lemma 7 to F(x) with

M= {(m, n) : λm,n ≤3/2}

and 3 to be determined later. Observe that M = |M| � 34. If L , Y ≥ 2 with L an integer, then by
Lemma 7 there is an x with Y/2≤ x ≤ (6L)M+1Y such that∑
m,n≤N

r(m)r(n)
(mn)3/4(

√
m+
√

n)
cos(2π(

√
m+
√

n)x)

≥
1
8

∑
n∈M

r(m)r(n)
(mn)3/4(

√
m+
√

n)
−

1
L−1

∑
n

λm,n≤3

r(m)r(n)
(mn)3/4(

√
m+
√

n)

−
4

π23Y

∑
n

r(m)r(n)
(mn)3/4(

√
m+
√

n)
. (10-4)

By arguments similar to those in the proof of Lemma 6 we have∑
n

λm,n≤3

r(m)r(n)
(mn)3/4(

√
m+
√

n)
≤ 2

∑
√

n≤3−1

r(n)
n3/4

∑
√

n<
√

m≤3−
√

n

r(m)
m5/4 + O(1)

≤ 2
∑

n≤(3−1)2

r(n)
n3/4

∑
n<m≤(3−

√
n)2

r(m)
m5/4 + O(1)

≤ 8π
∑

n≤(3−1)2

r(n)
n
+ O(1)

≤ 16π2 log3+ O(1).

As in the last section, half of this, namely 8π2 log3+O(1), is a lower bound. Applying similar reasoning
to all three sums in (10-4), we find that there is an x such that Y/2≤ x ≤ (6L)M+1Y for which∑

m,n≤N

r(m)r(n)
(mn)3/4(

√
m+
√

n)
cos(2π(

√
m+
√

n)x)≥ π2 log3− O
(

log3
L

)
− O

(
log Y
3Y

)
.

We now choose Y = 2Z1/2, L = [log Z ]. Then

(6L)M+1
≤ exp(O(34 log log Z)).
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We need this to be at most Z/2, and it will be if we take 3= (log Z)1/4/(log log Z)2 with Z sufficiently
large. With these choices of the parameters, we see that there exists an x with Z1/2

≤ x ≤ Z3/2 such that

CN (x2)=
1

2π3

∑
m,n≤N

r(m)r(n)
(mn)3/4(

√
m+
√

n)
cos(2π(

√
m+
√

n)x)≥ (1+ o(1)) 1
2π

log log Z .

Recalling that X = x2, we find that there is an X ∈ [Z , Z3
] such that

CN (X)≥ (1+ o(1)) 1
2π

log log X.

Since N = [Z12(log Z)4] � X12 and Z ≥ X1/3, we see from (1-8) that

C(X)= CN (X)+ O
(

X log N
N 1/4

)
= CN (X)+ O(1). (10-5)

Theorem 3 now follows.

Appendix: Facts about Bernoulli polynomials

We collect the formulas we need about Bernoulli polynomials Bk(x) here. Appendix B of [Montgomery
and Vaughan 2007] is a convenient reference.

The first three Bernoulli polynomials are

B1(x)= x − 1
2 , B2(x)= x2

− x + 1
6 , and B3(x)= x3

−
3
2 x2
+

1
2 x . (A-6)

If we let {x} denote the fractional part of the real number x and replace x by {x} in B j , the resulting
functions are periodic with period 1. They therefore have Fourier series expansions, and these are given by

B j ({x})=−
j !

(2π i) j

∞∑
n=−∞

n 6=0

e2π inx

n j ( j = 1, 2, 3).

These hold for all real x , except in the case of B1 we need x 6∈Z. With this stipulation we immediately have
∞∑

n=1

sin(2πnx)
πn

=−B1({x})= 1
2 −{x},

∞∑
n=1

cos(2πnx)
π2n2 = B2({x})= {x}2−{x}+ 1

6 ,

∞∑
n=1

sin(2πnx)
π3n3 =

2
3 B3({x})= 2

3{x}
3
−{x}2+ 1

3{x}.

(A-7)

We collect the other formulas we need in:

Lemma 8. We have∫
∞

1

B1({x})
x

dx = 1
2 log 2π − 1,

∫
∞

1

B2({x})
x2 dx = log 2π − 11

6 ,∫
∞

1

B3({x})
x3 dx = 3

2 log 2π − 11
4 ,
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and ∫
∞

1/2

B1
({

x + 1
2

})
x

dx =− 1
2 +

1
2 log 2,

∫
∞

1/2

B2
({

x + 1
2

})
x2 dx =− 2

3 + log 2,∫
∞

1/2

B3
({

x + 1
2

})
x3 dx =−1+ 3

2 log 2.

Proof. From [Montgomery and Vaughan 2007, p. 503 and exercise 23 on p. 508],1 we find that∫
∞

1

B2({x})
x2 dx = log 2π − 11

6 . (A-8)

We integrate the left-hand side by parts and find that∫
∞

1

B2({x})
x2 dx =

B2({x})
−x

∣∣∣∣∞
1
+

∫
∞

1

B ′2({x})
x

dx .

Now B ′k(x)= k Bk−1(x) for k ≥ 1, see [Montgomery and Vaughan 2007, p. 495], and B2(0)= 1
6 by (A-6).

Hence, by (A-8), ∫
∞

1

B1({x})
x

dx = 1
2 log 2π − 1.

Similarly, we find that ∫
∞

1

B3({x})
x3 dx = 3

2

∫
∞

1

B2({x})
x2 dx = 3

2 log 2π − 11
4 .

This establishes the first three formulas of the lemma.
The second set of formulas can be treated in the same way. However, we have not found a ready

reference for the value of ∫
∞

1/2

B1
({

x + 1
2

})
x

dx =
∫
∞

1

B1({x})

x − 1
2

dx,

so we derive it from scratch.
By Riemann–Stieltjes integration∑

1≤n≤N

log
(
n−1

2

)
=

∫ N

1
log
(
x−1

2

)
dx+

∫ N

1−
log
(
x− 1

2

)
d
(
[x]−x+1

2

)
=
((

N−1
2

)
log
(
N− 1

2

)
−
(
N−1

2

))
−
(1

2 log 1
2−

1
2

)
+
(
[x]−x+1

2

)
log
(
x− 1

2

)∣∣N
1−−

∫ N

1

[x]−x+1
2

x− 1
2

dx

= N log
(
N−1

2

)
−N+1+

∫ N

1

B1({x})

x− 1
2

dx . (A-9)

1Note that B1(x) in exercise 23(a) should read B1({x}).
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On the other hand, ∑
1≤n≤N

log
(
n− 1

2

)
= log

( ∏
1≤n≤N

2n− 1
2

)
= log

(
(2N )!
22N N !

)
.

By Stirling’s formula, log n! = n log n− n+ 1
2 log 2πn+ O(1/n), so∑

1≤n≤N

log
(
n− 1

2

)
=
(
2N log2N−2N+1

2 log4πN
)
−2N log2−

(
N log N−N+1

2 log2πN
)
+O(1/N )

= N log N−N+1
2 log2+O(1/N ).

Combining this and (A-9) we obtain∫ N

1

B1({x})

x − 1
2

dx =
(
N log N − N + 1

2 log 2+ O(1/N )
)
−
(
N log

(
N − 1

2

)
− N + 1

)
= N log

N

N − 1
2

+
1
2 log 2− 1+ O(1/N ).

Letting N →∞, we deduce that∫
∞

1/2

B1
({

x + 1
2

})
x

dx =
∫
∞

1

B1({x})

x − 1
2

dx =− 1
2 +

1
2 log 2.

We now argue as above to find the value of the remaining two integrals. Integration by parts using
B ′j (x)= j B j−1(x) reveals that

∫
∞

1/2

B j
({

x + 1
2

})
x j dx =

B j ({1})2 j−1

( j − 1)
+

j
j − 1

∫
∞

1/2

B j−1
({

x + 1
2

})
x j−1 dx .

Thus, using (A-6) we find that∫
∞

1/2

B3
({

x + 1
2

})
x3 dx = 3

2

∫
∞

1/2

B2
({

x + 1
2

})
x2 dx,∫

∞

1/2

B2({x + 1
2})

x2 dx = 1
3 + 2

∫
∞

1/2

B1({x + 1
2})

x
dx

Thus, the B2 integral equals − 2
3 + log 2 and the B3 integral equals −1+ 3

2 log 2. This completes the proof
of the lemma. �
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