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In recent work with Lins and Nussbaum, the first author gave an algorithm that can
detect the existence of a positive eigenvector for order-preserving homogeneous
maps on the standard positive cone. The main goal of this paper is to determine
the minimum number of iterations this algorithm requires. It is known that this
number is equal to the illumination number of the unit ball Bv of the variation
norm, ‖x‖v := maxi xi −mini xi on V0 := {x ∈ Rn

: xn = 0}. In this paper we
show that the illumination number of Bv is equal to

( n
dn/2e

)
, and hence provide a

sharp lower bound for the running time of the algorithm.

1. Introduction

Classical Perron–Frobenius theory concerns the spectral properties of square non-
negative matrices. In recent decades this theory has been extended to a variety of
nonlinear maps that preserve a partial ordering induced by a cone (see [Lemmens
and Nussbaum 2012] for an up-to-date account).

Of particular interest are order-preserving homogeneous maps f : Rn
≥0→ Rn

≥0,
where

Rn
≥0 := {x ∈ Rn

: xi ≥ 0 for all i = 1, . . . , n}

is the standard positive cone. Recall that f : Rn
≥0 → Rn

≥0 is order-preserving
if f (x) ≤ f (y) whenever x ≤ y and x, y ∈ Rn

≥0. Here, w ≤ z if z − w ∈ Rn
≥0.

Furthermore, f is said to be homogeneous if f (λx) = λ f (x) for all λ ≥ 0 and
x ∈Rn

≥0. Such maps arise in mathematical biology [Nussbaum 1989; Schoen 1986]
and in optimal control and game theory [Bewley and Kohlberg 1976; Rosenberg
and Sorin 2001].
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It is known [Lemmens and Nussbaum 2012, Corollary 5.4.2] that if f : Rn
≥0→

Rn
≥0 is a continuous, order-preserving, homogeneous map, then there exists v ∈Rn

≥0
such that

f (v)= r( f )v,

where
r( f ) := lim

k→∞
‖ f k
‖

1/k
Rn
≥0

is the cone spectral radius of f and

‖g‖Rn
≥0
:= sup{‖g(x)‖ : x ∈ Rn

≥0 and ‖x‖ ≤ 1}.

Thus, as in the case of nonnegative matrices, continuous order-preserving homoge-
neous maps on Rn

≥0 have an eigenvector in the cone corresponding to the spectral
radius.

In many applications it is important to know if the map has a positive eigenvector,
i.e., an eigenvector that lies in the interior of Rn

≥0, that is, Rn
>0 := {x ∈ Rn

≥0 :

xi > 0 for i = 1, . . . , n}. This appears to be a much more subtle problem. There
exists a variety of sufficient conditions in the literature; see [Cavazos-Cadena
2012; Gaubert and Gunawardena 2004; Lemmens and Nussbaum 2012, Chapter 6;
Nussbaum 1988]. Recently, Lemmens, Lins and Nussbaum [Lemmens et al.≥ 2019,
§5] gave an algorithm that can confirm the existence of a positive eigenvector for
continuous, order-preserving, homogeneous maps f : Rn

≥0→ Rn
≥0. The main goal

of this paper is to determine the minimum number of iterations this algorithm needs
to perform.

2. Preliminaries

Given a set S in a finite-dimensional vector space V we write S◦ to denote the
interior of S, and we write ∂S to denote the boundary of S with respect to the norm
topology on V.

It is known that if f : Rn
≥0→ Rn

≥0 is an order-preserving homogeneous map and
there exists z ∈ Rn

>0 such that f (z) ∈ ∂Rn
≥0, then f (Rn

>0)⊂ ∂Rn
≥0; see [Lemmens

and Nussbaum 2012, Lemma 1.2.2]. Thus to analyse the existence of a positive
eigenvector one may as well consider order-preserving homogeneous maps f :
Rn
>0→ Rn

>0. Moreover, on Rn
>0 we have Hilbert’s metric dH , which is given by

dH (x, y) := log
(

max
i

xi

yi

)
− log

(
min

i

xi

yi

)
for x, y ∈ Rn

>0.

Note that dH is not a genuine metric, as dH (λx, µx) = 0 for all x ∈ Rn
>0 and

λ,µ > 0. In fact, dH (x, y)= 0 if and only if x = λy for some λ > 0. However, dH

is a metric on the set of rays in Rn
>0.



ON THE COMPLEXITY OF DETECTING POSITIVE EIGENVECTORS 143

If f :Rn
>0→Rn

>0 is order-preserving and homogeneous, then f is nonexpansive
under dH , i.e.,

dH ( f (x), f (y))≤ dH (x, y) for all x, y ∈ Rn
>0;

see for example [Lemmens and Nussbaum 2012, Proposition 2.1.1]. In particular,
order-preserving homogeneous maps f : Rn

>0 → Rn
>0 are continuous on Rn

>0.
Moreover, if x and y are eigenvectors of f : Rn

>0 → Rn
>0 with f (x) = λx and

f (y)= µy, then λ= µ; see [Lemmens and Nussbaum 2012, Corollary 5.2.2].
In [Lemmens et al. ≥ 2019, Theorem 5.1] the following necessary and sufficient

conditions were obtained for an order-preserving homogeneous map f :Rn
>0→Rn

>0
to have a nonempty set of eigenvectors, E( f ) := {x ∈ Rn

>0 : x eigenvector of f },
which is bounded under Hilbert’s metric.

Theorem 2.1. If f : Rn
>0→ Rn

>0 is an order-preserving homogeneous map, then
E( f ) is nonempty and bounded under dH if and only if for each nonempty proper
subset J of {1, . . . , n} there exists x J

∈ Rn
>0 such that

max
j∈J

f (x J ) j

x J
j

< min
j∈J c

f (x J ) j

x J
j

. (2-1)

Note that the assertion is trivial in the case n = 1, as each order-preserving
homogeneous map f : R>0→ R>0 has a nonempty bounded set of eigenvectors.
In case n ≥ 2, Theorem 2.1 yields the following simple algorithm for detecting
positive eigenvectors:

Algorithm 2.2. Let f : Rn
>0 → Rn

>0 be an order-preserving homogeneous map.
Repeat the following steps until every nonempty proper subset J of {1, . . . , n} has
been recorded:

Step 1 Randomly select x , with x1 = 1 and 0< x j < 1 for all j ∈ {2, . . . , n}, and
compute f (x) j/x j for all j ∈ {1, . . . , n}.

Step 2 Record all nonempty proper subsets J ⊂ {1, . . . , n} such that inequality
(2-1) holds.

So, if this algorithm halts, then f has an eigenvector in Rn
>0 and E( f ) is bounded

under Hilbert’s metric. If E( f ) is empty or unbounded under dH , then the algorithm
does not halt. This can happen even if the map is linear. Consider for example the
linear map x 7→ Ax on R2

>0, where

A =
[

1 1
0 1

]
,

which has no eigenvector in R2
>0. At present no algorithm is known that can decide

if an order-preserving homogeneous map on Rn
>0 has an empty or an unbounded
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set of eigenvectors. It is also unknown if there is an efficient way to generate the
vectors x in Step 1.

Note that a randomly chosen x in Step 1 can eliminate multiple subsets J in
Step 2. So, it is natural to ask for the least number of vectors required to fulfil the
2n
− 2 inequalities in (2-1). This number corresponds to the minimum number of

times the algorithm has to perform Steps 1 and 2. In this paper we show that one
needs at least (

n⌈ 1
2 n
⌉)

vectors and this lower bound is sharp. Here dae is the smallest integer n ≥ a.
Likewise we write bac to denote the largest integer n ≤ a.

3. Connection with the illumination number

Recall that given a compact convex set C with nonempty interior in V, a vector
v ∈ V illuminates z ∈ ∂C if z+ λv ∈ C◦ for all λ > 0 sufficiently small. A set S is
said to illuminate C if for each z ∈ ∂C there exists v ∈ S such that v illuminates z.
The minimal size of illuminating set for C is called the illumination number of C
and is denoted by i(C). There is a long-standing open conjecture which asserts that
i(C) ≤ 2n for every compact convex body in an n-dimensional vector space; see
[Boltyanski et al. 1997, Chapter VI] for further details. It is easy to show, see for
example [Lemmens et al. ≥ 2019, Lemma 4.1], that if S illuminates every extreme
point of C , then S illuminates C .

To proceed we need to discuss the connection between illumination numbers and
Theorem 2.1. Firstly, we note that if we let 60 := {x ∈Rn

>0 : xn = 1}, then (60, dH )

is a metric space. Given an order-preserving homogeneous map f : Rn
>0→ Rn

>0
we can consider the normalised map g f :60→60 given by

g f (x) :=
f (x)
f (x)n

for x ∈60.

The map g f is nonexpansive under dH on 60. Moreover, x ∈ 60 is a fixed point
of g f if and only if x is an eigenvector of f . Thus, if we let Fix(g f ) := {x ∈60 :

g f (x)= x}, then Fix(g f ) is nonempty and bounded in (60, dH ) if and only if E( f )
is nonempty and bounded in (Rn

>0, dH ).
It not hard to verify that the map Log :60→ V0 given by

Log(x) := (log x1, . . . , log xn) for x = (x1, . . . , xn) ∈60

is an isometry from (60, dH ) onto (V0, ‖ · ‖v), where V0 := {x ∈ Rn
: xn = 0} and

‖x‖v :=max
i

xi −min
i

xi

is the variation norm.
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It follows that the map h : V0→ V0 satisfying h◦Log=Log ◦g f is nonexpansive
under the variation norm, and Fix(h) is nonempty and bounded in (V0, ‖ ·‖v) if and
only if Fix(g f ) is nonempty and bounded in (60, dH ).

In [Lemmens et al. ≥ 2019, Theorem 3.4] the following result concerning fixed
point sets of nonexpansive maps on finite-dimensional normed spaces was proved.

Theorem 3.1. If h : V → V is a nonexpansive map on a finite-dimensional
normed space V, then Fix(h) is nonempty and bounded if and only if there exist
w1, . . . , wm

∈V such that { f (wi )−wi
: i =1, . . . ,m} illuminates the unit ball of V.

For n ≥ 2, the unit ball Bv of (V0, ‖ · ‖v) has 2n
− 2 extreme points, which are

given by

ext(Bv) :=
{
v I
+
:∅ 6= I ⊆ {1, . . . , n−1}

}
∪
{
v I
−
:∅ 6= I ⊆ {1, . . . , n−1}

}
, (3-1)

where (v I
+
)i = 1 if i ∈ I and 0 otherwise, and (v I

−
)i =−1 if i ∈ I and 0 otherwise.

See [Nussbaum 1994, §2] for details.
In [Lemmens et al. ≥ 2019] the equivalence in Theorem 2.1 was obtained by

using Theorem 3.1 and showing that there exists x1, . . . , xm
∈ Rn

>0 that fulfil the
2n
−2 inequalities in (2-1) if and only if there exist y1, . . . , ym

∈ V0 that illuminate
the 2n

− 2 extreme points of the unit ball Bv. Thus, i(Bv) provides a sharp lower
bound for the number of times one needs to repeat Steps 1 and 2 in Algorithm 2.2.
In the next section we show the following result concerning i(Bv):

Theorem 3.2. If Bv is the unit ball of (V0, ‖ · ‖v) and n ≥ 2, then

i(Bv)=

(
n⌈1
2 n
⌉).

4. Proof of Theorem 3.2

Note that the map (x1, . . . , xn) ∈ V0 7→ (x1, . . . , xn−1) ∈ Rn−1 is an isometry from
(V0, ‖ · ‖v) onto (Rn−1, ‖ · ‖H ), where

‖x‖H :=
(
max

i
xi
)
∨ 0−

(
min

i
xi
)
∧ 0.

Here a ∧ b := min(a, b) and a ∨ b := max(a, b). Note also that if BH is the unit
ball in (Rn−1, ‖ · ‖H ), then

ext(BH )=
(
{0, 1}n−1

∪ {0,−1}n−1)
\ {(0, . . . , 0)}

and
i(BH )= i(Bv).

For notational simplicity we work with BH instead of Bv.
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The two subsets

E+ := {0, 1}n−1
\ {(0, . . . , 0)} and E− := {0,−1}n−1

\ {(0, . . . , 0)}

of ext(BH ) play a key role in the argument. On ext(BH ) we have the usual partial
ordering x ≤ y if y− x ∈ Rn−1

≥0 , which gives rise to two finite partially ordered sets
(E+,≤) and (E−,≤).

Recall that subset A of a partially ordered set (P,�) is called an antichain if
x, y ∈A and x � y implies x = y. A chain C in (P,�) is a totally ordered subset
if for each x, y ∈ C we have that either x � y or y � x . The length of a chain C is
the number of distinct elements in C.

Lemma 4.1. Let A be an antichain in (E+,≤) or in (E−,≤). If x 6= y in A are
illuminated by v and w, respectively, then v 6= w.

Proof. Suppose that A is an antichain in (E+,≤) and x 6= y are in A. Then there
exist i 6= j such that 0= xi < yi = 1 and 0= y j < x j = 1. Now suppose by way of
contradiction that z illuminates x and y. So, ‖x + λz‖H < 1 and ‖y+ λz‖H < 1
for all λ > 0 sufficiently small. Suppose first that zi ≤ z j . Then for λ > 0 small,

1+ λz j = x j + λz j ≤ ‖x + λz‖H < 1,

and hence z j < 0. So, zi ≤ z j < 0. But then

1+ λ(z j − zi )= x j + λz j − λzi ≤ ‖x + λz‖H < 1,

which is impossible. On the other hand, if z j ≤ zi , then 1+ λzi ≤ ‖y+ λz‖H < 1,
so that z j ≤ zi < 0. But then

1+ λ(zi − z j )= yi + λzi − λz j ≤ ‖y+ λz‖H < 1,

which again is impossible. Thus, z cannot illuminate both x and y.
The argument for the case where A is an antichain in (E−,≤) is similar. �

Lemma 4.2. If x, y ∈ ext(BH ) are such that xi = 1 and yi =−1 for some i , then
one needs two distinct vectors to illuminate x and y.

Proof. Suppose w illuminates x and y. Then 1+λwi = xi +λwi ≤ ‖x+λw‖H < 1
for all λ> 0 sufficiently small, and hence wi < 0. But also 1−λwi =−(yi+λwi )≤

‖y+ λw‖H < 1 for all λ > 0 sufficiently small. This implies that wi > 0, which is
impossible. Thus, one needs at least two vectors to illuminate x and y. �

Corollary 4.3. If BH is the unit ball of (Rn−1, ‖ · ‖H ) and n ≥ 2, then

i(BH )≥

(
n⌈ 1
2 n
⌉).
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Proof. For 1≤ k,m≤ n−1 define the antichains A+(k) := {x ∈ E+ :
∑

i xi = k} and
A−(m) := {x ∈ E− :

∑
i xi =−m}. If n > 1 is odd, then we can take k := 1

2(n−1)
and m := 1

2(n+ 1) and conclude from Lemmas 4.1 and 4.2 that we need at least(
n− 1

1
2(n− 1)

)
+

(
n− 1

1
2(n+ 1)

)
=

(
n⌈ 1

2 n
⌉)

distinct vectors to illuminate the extreme points in A+(k)∪A−(m), as for each
x ∈A+(k) and y ∈A−(m) there exists an i such that xi = 1 and yi =−1.

Likewise if n > 1 is even, we can take k = m =
⌈ 1

2(n− 1)
⌉
, and deduce from

Lemmas 4.1 and 4.2 that we need at least(
n− 1⌈ 1

2(n− 1)
⌉)+( n− 1⌈1

2(n− 1)
⌉)= ( n− 1⌊ 1

2(n− 1)
⌋)+( n− 1⌈1

2(n− 1)
⌉)= ( n

1
2 n

)
distinct vectors to illuminate the extreme points in A+(k)∪A−(m). �

Lemma 4.4. If C is a chain in (E+,≤) or in (E−,≤), then there exists w that
illuminates each element of C.

Proof. Let C be a chain in (E+,≤) or in (E−,≤). We call a chain c1≤ c2≤ . . .≤ cm

in (E+,≤) or in (E−,≤) maximal if it has length n−1. The chain C is contained in
a maximal chain. As each coordinate permutation is an isometry of (Rn−1, ‖ · ‖H )

and the map x 7→−x is an isometry of (Rn−1, ‖ ·‖H ), we may assume without loss
of generality that C is contained in the maximal chain,

C∗ : (1, 0, 0, . . . , 0)≤ (1, 1, 0, . . . , 0)≤ · · · ≤ (1, 1, . . . , 1, 0)≤ (1, 1, 1, . . . , 1).

Let w ∈Rn−1 be such that w1 <w2 < · · ·<wn−1 < 0. Now if x is the k-th element
in the maximal chain and k < n− 1, then for all λ > 0 sufficiently small

‖x + λw‖H =
(
max

i
xi + λwi

)
∨ 0−

(
min

i
xi + λwi

)
∧ 0= 1+ λwk − λwk+1 < 1.

On the other hand, if x = (1, 1, . . . , 1), then clearly ‖x + λw‖H = 1+ λwn−1 < 1
for all λ > 0 small. Thus w illuminates each element of C∗ and we are done. �

To proceed we need to recall a few classical results in the combinatorics of finite
partially ordered sets; see [Jukna 2001, §9.1 and 9.2]. Firstly, we recall Dilworth’s
theorem, which says that if the maximum size of an antichain in a finite partially
ordered set (P,�) is r , then P can be partitioned into r disjoint chains. In the case
where the partially ordered set is ({0, 1}d ,≤), one can combine this result with
Sperner’s theorem, which says that the maximum size of an antichain in ({0, 1}d ,≤)
is
( d
dd/2e

)
. Thus, ({0, 1}d ,≤) can be partitioned into

( d
dd/2e

)
disjoint chains.

To obtain our result we need some more detailed information about the partitions.
In particular, we need a result by De Bruijn, Tengbergen, and Kruyswijk [de Bruijn
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et al. 1951] concerning symmetric chains; see also [Jukna 2001, Theorem 9.3]. A
chain x1

≤ · · · ≤ xk in ({0, 1}d ,≤) is said to be symmetric if

(a)
(∑d

j=1 xm
j

)
+ 1 =

∑d
j=1 xm+1

j for all 1 ≤ m < k, i.e., xm+1 is an immediate
successor of xm , and

(b)
∑d

j=1 xk
j = d −

∑d
j=1 x1

j .

Theorem 4.5 [de Bruijn et al. 1951]. The poset ({0, 1}d ,≤) can be partitioned into( d
dd/2e

)
disjoint symmetric chains.

Let us now prove the main result of the paper.

Proof of Theorem 3.2. First recall that by Corollary 4.3 it suffices to show that
i(BH ) ≤

( n
dn/2e

)
, as i(Bv) = i(BH ). In other words, we only need to show that

ext(BH ) can be illuminated by
( n
dn/2e

)
vectors.

There are two cases to consider: n ≥ 2 even, and n ≥ 2 odd.
Let us first consider the case where n ≥ 2 is even. By Dilworth’s theorem and

Sperner’s theorem we know that the partially ordered set ({0, 1}n−1,≤) can be
partitioned into

( n−1
d(n−1)/2e

)
disjoint chains. This implies that each of the partially

ordered sets (E+,≤) and (E−,≤) can be partitioned into
( n−1
d(n−1)/2e

)
disjoint chains.

It now follows from Lemma 4.4 that we need at most(
n− 1⌈ 1

2(n− 1)
⌉)+( n− 1⌈1

2(n− 1)
⌉)= ( n− 1⌊ 1

2(n− 1)
⌋)+( n− 1⌈1

2(n− 1)
⌉)= ( n

1
2 n

)
distinct vectors to illuminate ext(BH ). This implies that i(Bv)= i(BH )≤

( n
n/2

)
.

Now suppose n ≥ 2 is odd. By Theorem 4.5 we know that ({0, 1}n−1,≤) can be
partitioned into

( n−1
(n−1)/2

)
disjoint symmetric chains.

Let us consider such a symmetric chain decomposition, and let

Ak :=
{

x ∈ {0, 1}n−1
:
∑

i xi = k
}
,

which is an antichain of size
(n−1

k

)
. Each element of A(n+1)/2 is contained in a

distinct symmetric chain, and each of these chains contains an x ∈ {0, 1}n−1 with∑
i xi =

1
2(n − 1). Thus, the symmetric chain decomposition of ({0, 1}n−1,≤)

consists of (
n− 1

1
2(n+ 1)

)
chains containing a vector x with

∑
i xi =

1
2(n+ 1), and(

n− 1
1
2(n− 1)

)
−

(
n− 1

1
2(n+ 1)

)
chains consisting of a single vector x with

∑
i xi =

1
2(n− 1).
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By deleting (0, 0, . . . , 0) from {0, 1}n−1 we obtain a partition of (E+,≤) into
disjoint chains. Let S be the set of vectors x ∈ E+ which form a singleton chain
and

∑
i xi =

1
2(n− 1). So,

|S| =
(

n− 1
1
2(n− 1)

)
−

(
n− 1

1
2(n+ 1)

)
.

Now pair each x ∈ E+ with x ′ ∈ E−, where x ′i = 0 if xi = 1, and x ′i = −1 if
xi = 0. In this way we obtain a partition of (E−,≤) into disjoint chains with |S|
chains consisting of a single vector. In other words, for each x ∈ S we have that
x ′ ∈ E− forms a singleton chain in the chain decomposition of (E−,≤).

We know from Lemma 4.4 that we can illuminate the
( n−1
(n+1)/2

)
chains in (E+,≤)

containing a vector x with
∑

i xi =
1
2(n+1) using

( n−1
(n+1)/2

)
vectors. Likewise, we

can illuminate the corresponding
( n−1
(n+1)/2

)
chains in (E−,≤) with

( n−1
(n+1)/2

)
vectors.

So, it remains to illuminate the singleton chains in (E+,≤) and (E−,≤).
Note that if we can illuminate each pair {x, x ′}, with x ∈ S and x ′ the corre-

sponding vector in E−, by a single vector, then we need at most

2
(

n− 1
1
2(n+ 1)

)
+

(
n− 1

1
2(n− 1)

)
−

(
n− 1

1
2(n+ 1)

)
=

(
n− 1

1
2(n− 1)

)
+

(
n− 1

1
2(n+ 1)

)
=

(
n
d

1
2 ne

)
vectors to illuminate ext(BH ), and hence i(Bv)= i(BH )≤

( n
dn/2e

)
if n ≥ 2 is odd.

To see how this can be done we consider such a pair {x, x ′} with x ∈ S and let
I := {i : xi = 1} and J := {i : xi = 0}. So, I = {i : x ′i = 0} and J = {i : x ′i = −1}.
Now let w ∈ Rn−1 be such that wi < 0 for all i ∈ I and wi > 0 for all i ∈ J. Then
for all λ > 0 sufficiently small,

‖x + λw‖H =max
i∈I

(1+ λwi )− 0< 1

and
‖x ′+ λw‖H = 0−min

i∈J
(−1+ λwi ) < 1.

This shows that w illuminates x and x ′, which completes the proof. �
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