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Sign pattern matrices of order n that allow inertias in the set Sn are considered.
All sign patterns of order 3 (up to equivalence) that allow S3 are classified and
organized according to their associated directed graphs. Furthermore, a minimal
set of such matrices is found. Then, given a pattern of order n that allows Sn,
a construction is given that generates families of irreducible sign patterns of
order nC 1 that allow SnC1.

1. Introduction

The inertia of a real matrix A of order n is an ordered triple i.A/D .nC; n�; n0/ of
nonnegative integers summing to n, where nC; n�; n0 are the number of eigenvalues
of A with positive, negative, and zero real parts, respectively.

A sign pattern matrix is a matrix A of order n with entries in fC;�; 0g. The
set Q.A/ denotes the set of all real-valued matrices A with corresponding sign
pattern A. Alternatively, we say that A 2Q.A/ is a realization of A. If A is a sign
pattern of order n, then we say that A has inertia i.A/D fi.A/ WA 2Q.A/g.

In a dynamical system, the presence of a zero eigenvalue of the Jacobian matrix
at an equilibrium may signal onset of instability. Varying a parameter may move
eigenvalues from all having negative real parts to having a simple zero eigenvalue,
which then moves to have a positive real part, while the other eigenvalues maintain
negative real parts. Thus, the inertia begins at .0; n; 0/, and with parameter variation,
changes to .0; n� 1; 1/ and then finally to .1; n� 1; 0/.

With this motivation in mind, the inertia set Sn (for n� 2) is defined as

Sn D f.0; n; 0/; .0; n� 1; 1/; .1; n� 1; 0/g:

We are particularly interested in studying irreducible sign patterns that allow Sn,
i.e., Sn � i.An/.

Introduced in [Bodine et al. 2012], the refined inertia of a matrix A is the 4-tuple
ri.A/D .nC; n�; nz; 2np/, where nC; n� are defined as before, nz is the number
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of zero eigenvalues, and 2np is the number of nonzero pure imaginary eigenvalues.
Using the notation of refined inertia, SnDf.0;n;0;0/; .0;n�1;1;0/; .1;n�1;0;0/g.
Several results regarding other sets of refined inertias can be found in [Gao et al.
2016a; 2016b; Garnett et al. 2013; 2014]. Many similar techniques and ideas are
used in this paper.

For simplicity, we identify sign patterns up to equivalence. Any combination of
transposition, permutation similarity, and signature similarity leaves the eigenvalues
of a matrix unchanged. For our purposes, it is convenient to organize sign patterns
by their associated digraph. For AD Œ˛ij � (or a realization AD Œaij �) of order n,
its associated digraph D.A/ is a directed graph on n vertices where there is an arc
from vertex i to vertex j if and only if ˛ij ¤ 0. Two digraphs are equivalent if
and only if their associated zero-nonzero patterns are equivalent via transposition
and/or permutation similarity.

In order for a sign pattern A to be irreducible, the associated digraph D.A/ must
be strongly connected. A sign pattern A is sign singular if n0 > 0 for all A 2Q.A/
and is sign-nonsingular if n0D 0 for all A2Q.A/. Thus, in order for A to allow Sn,
A can neither be sign singular nor sign-nonsingular. In particular, this means that
the determinant expansion of A must have at least two nonzero terms. A nonzero
term in the determinant expansion of A corresponds to the existence of a generalized
n-cycle in the associated digraph D.A/ (that is, a disjoint collection of cycles that
use all n vertices of D.A/). Furthermore, any sign pattern A where i.A/D .0; n; 0/
must have at least one negative diagonal entry. Thus, for our purposes, we need
only consider strongly connected digraphs that contain at least one loop and at least
two generalized n-cycles.

For n D 2, there are two nonequivalent sign patterns that allow S2, namely�
�

�

�

�

�
and

�
�

C

�

C

�
(see [Olesky et al. 2013]). The first sign pattern requires S2.

The second pattern attains every possible spectrum allowed by a real matrix, and
such a pattern is called spectrally arbitrary. A sign pattern yA is a superpattern
of A if A can be obtained from yA by changing any number of nonzero entries
to 0. In [Berliner et al. 2018], sufficient conditions for a sign pattern and all of its
superpatterns to allow Sn are given. Suppose AD Œaij � is a real matrix of order n

having m � n nonzero entries and i.A/ D .0; n� 1; 1/. If the m nonzero entries
ai1;j1

; : : : ; aim;jm
are replaced by variables x1; : : : ;xm to obtain the matrix X, the

characteristic polynomial of X is

cX .z/D zn
Cp1zn�1

C � � �Cpn�1zCpn;

with coefficients p1; : : : ;pn depending on x1; : : : ;xm. The n�m Jacobian matrix J

of A has .i; j /-entry equal to @pi.x1; : : : ;xm/=@xj evaluated at .x1; : : : ;xm/ D

.ai1;j1
; : : : ; aim;jm

/: If J has rank n, then A allows a Jacobian matrix of full rank.
This definition, which uses a rectangular Jacobian matrix as in [Garnett and Shader
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2013], is equivalent to the determinantal property that A “allows a nonzero Jacobian”
as defined in [Cavers and Vander Meulen 2005]. The following theorem is proved
in [Berliner et al. 2018, Theorem 2.2].

Theorem 1.1. Let A be an n� n sign pattern that allows inertia .0; n� 1; 1/ and
let A 2Q.A/ with i.A/D .0; n� 1; 1/. If A allows a Jacobian matrix of full rank,
then every superpattern yA of A (including A itself ) allows Sn.

In Section 2, we classify all nonequivalent sign patterns of order 3 that allow S3.
In Section 3, we give a construction that, using a sign pattern of order m that
allows Sm, creates sign patterns of any order n>m that allow Sn. This construction
allows us to use the sign patterns of order 3 that allow S3 to create sign patterns of
order n> 3 that allow Sn.

2. Sign patterns allowing S3

In this section, we classify all sign patterns of order 3 that allow S3. First, we
may restrict our attention to sign patterns A whose associated digraph D.A/ is
strongly connected, has at least one loop, and contains two or more generalized 3-
cycles. Without loops included, there are only five nonequivalent strongly connected
digraphs of order 3, as shown in Figure 1. For these, we use the same digraph
labeling as in [Berliner et al. 2017] (up to equivalence). Adding loops in and
enforcing the generalized 3-cycle requirement, we then focus solely on sign patterns
associated with the looped digraphs described in Table 1 (again up to equivalence).

If A is a sign pattern of order 3 having a realization with inertia .0; 2; 1/ that
allows a Jacobian of full rank, then by Theorem 1.1 any superpattern of A will

1

23
D1

1

23
D2

1

23
D3

1

23
D4

1

23
D5

Figure 1. Strongly connected digraphs of order 3.

strongly connected digraph nonequivalent loop locations

D1 123
D2 13, 123
D3 1, 13, 123
D4 1, 12, 13, 123
D5 1, 13, 123

Table 1. Nonequivalent strongly connected digraphs with two or
more generalized 3-cycles.
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�
� C 0
0 � C
C 0 �

� �
C � 0
0 � �
� 0 �

� �
� � 0
� 0 �
0 C �

� �
� C 0
� 0 C
0 � C

� �
� � 0
� � �
0 � �

� �
� � 0
� � �
0 C C

�
�
� � 0
C C �
0 C �

� �
C � 0
C � �
0 � C

� �
� C 0
0 0 C
C � 0

� �
� C 0
0 0 C
� C �

� �
C C 0
0 0 �
C C �

� �
� � 0
C 0 C
C C 0

� �
C C 0
� � C
C C 0

�
Figure 2. S3-minimal sign patterns.

automatically allow S3. Thus, we will focus on S3-minimal sign patterns, i.e.,
patterns having a realization with inertia .0; 2; 1/ that allows a Jacobian of full rank
that are not superpatterns of a pattern having a realization with inertia .0; 2; 1/ that
allows a Jacobian of full rank.

Of the 200 nonequivalent sign patterns of order 3, 111 allow S3 and 13 of these
are S3-minimal sign patterns (see Figure 2). Of the S3-minimal sign patterns, two
have associated digraph D1, six are associated to D2, three are associated to D3,
and two are associated to D4. All other nonequivalent sign patterns of order 3 that
allow S3 are equivalent to a superpattern of one of these 13, and thus automatically
allow S3. These superpatterns can be found in Appendix A.

Below, we illustrate the method for one of the 13 S3-minimal sign patterns.

Example 2.1. The sign pattern A and a realization A 2 Q.A/ (with associated
digraph D2) are given by

AD

24� � 0

� 0 �

0 C �

35 and AD

24�1 �1 0

�a 0 �1

0 b �c

35 ;
with a; b; c > 0. Without loss of generality, one diagonal entry and two other entries
in the digraph associated with A (corresponding to a spanning tree) can be set equal
to ˙1. The characteristic polynomial of A is

cA.z/D z3
C .1C c/z2

C .bC c � a/zC .b� ac/:

In order to realize inertia .0; 2; 1/, we must have b D ac. If aD 1 and b D c D 2,
then i.A/D .0; 2; 1/, as desired. We now check if A allows a nonzero Jacobian.
We replace the nonzero entries of A with variables to get

XA D

24x1 x2 0

x3 0 x4

0 x5 x6

35 ;
which has characteristic polynomial

cXA
.z/D z3

� .x1Cx6/z
2
C .x1x6�x2x3�x4x5/zC .x1x4x5Cx2x3x6/:
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Calculating the Jacobian matrix of XA, we get

JXA
D

24 �1 0 0 0 0 �1

x6 �x3 �x2 �x5 �x4 x1

x4x5 x3x6 x2x6 x1x5 x1x4 x2x3

35 ;
which when evaluated at x1 D x2 D x3 D x4 D �1, x5 D 2, x6 D �2 has full
rank. By Theorem 1.1, A and all of its superpatterns allow S3.

The other 89 nonequivalent sign patterns do not allow S3. Several (57) of
these sign patterns do not allow S3 because they are sign-nonsingular and cannot
possibly allow the inertia .0; n� 1; 1/. These patterns, for n D 3, can be found
in Appendix B.1. The 32 remaining patterns (see Appendix B.2) are not sign-
nonsingular, but nonetheless do not allow inertia .0; 2; 1/ for other algebraic reasons.
Here, we illustrate the method for one of the sign patterns that is not sign-nonsingular
yet does not allow inertia .0; 2; 1/.

Example 2.2. The sign pattern A and a realization A 2 Q.A/ (with associated
digraph D3) are given by

AD

24� � 0

0 0 C

C C C

35 and AD

24�1 �1 0

0 0 1

a b c

35 ;
with a; b; c>0. Without loss of generality, one diagonal entry and two entries on the
3-cycle in the digraph associated with A can be set equal to ˙1. The characteristic
polynomial of A is

cA.z/D z3
C .1� c/z2

C .�b� c/zC .a� b/:

Since b; c > 0, it must be the case that �b � c < 0. However, in order to allow
inertia .0; 2; 1/, the quadratic and linear coefficients of cA.z/ must be able to be
simultaneously positive. Thus A does not allow S3.

3. The Jacobian and patterns of higher order

We begin with a sign pattern of order n that allows Sn and give a construction that
yields a sign pattern that allows SnC1. If A is a sign pattern of order n, we consider
the .nC1/� .nC1/ sign pattern

A� D

26664
0

A
:::

0

0 � � � 0 �

37775 :
Then, .nC; n�; n0/ 2 i.A/ if and only if .nC; n�C 1; n0/ 2 i.A�/. It follows that
A� allows SnC1 if and only if A allows Sn. An analogous result holds for nC if
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we create the .nC1/� .nC1/ sign pattern AC by replacing the lower-right corner
entry of A� by C.

Theorem 3.1. Let A and A� be defined as above, where A has at least n nonzero
entries. If A is a realization of A that allows a Jacobian of full rank for which
i.A/D .nC; n�; n0/, then there exists a realization B of A� that allows a Jacobian
of full rank and i.B/D .nC; 1C n�; n0/.

Proof. Let A be a realization of A that has inertia .nC; n�; n0/ and allows a Jacobian
of full rank. Then, replacing the m � n nonzero entries ai1;j1

; : : : ; aim;jm
of A

with variables x1; : : : ;xm, the characteristic polynomial is

pA.z/D zn
Cp1zn�1

C � � �Cpn�1zCpn;

where p1; : : : ;pn are functions of x1; : : : ;xm. Furthermore, we know the matrix
JXA
D Œ@pi=@xj � has full rank when evaluated at .x1; : : : ;xm/D.ai1;j1

; : : : ;aim;jm
/.

In order to obtain the Jacobian matrix for B, we replace the lower-right corner
entry with variable Ox and the other m entries with the same variables x1; : : : ;xm

as with A. Thus, we obtain the characteristic polynomial

pB.z/D pA.z/.z� Ox/D .z
n
Cp1zn�1

C � � �Cpn�1zCpn/.z� Ox/

D znC1
C .p1� Ox/z

n
C .p2� Oxp1/z

n�1
C � � �C .pn� Oxpn�1/z� Oxpn

and we have

JXB
D

26666666666664

@p1

@x1

� � �
@p1

@xm

�1

@p2

@x1

� Ox
@p1

@x1

� � �
@p2

@xm

� Ox
@p1

@xm

�p1

:::
:::

:::
@pn

@x1

� Ox
@pn�1

@x1

� � �
@pn

@xm

� Ox
@pn�1

@xm

�pn�1

� Ox
@pn

@x1

� � � � Ox
@pn

@xm

�pn

37777777777775
:

We sequentially perform n � 1 row operations on JXB
, where the i-th row

operation adds Ox times row i to row i C 1. The resulting matrix is

J D

26666666666664

@p1

@x1

� � �
@p1

@xm

�1

@p2

@x1

� � �
@p2

@xm

.�p1� Ox/

:::
:::

:::

@pn

@x1

� � �
@pn

@xm

.�pn�1� Oxpn�2�� � �� Ox
n�2p1� Ox

n�1/

0 � � � 0 .�pn� Oxpn�1�� � �� Ox
n�1p1� Ox

n/

37777777777775
;
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which has the same rank as JXB
. The leading principal n� n submatrix of J has

full rank. Furthermore, if we substitute the original values corresponding to the
entries of A, the .nC 1; nC 1/-entry is a degree-n real polynomial in Ox. Thus,
there must exist b > 0 such that, if Ox D�b, this entry is nonzero. Therefore, J has
rank nC 1 after this evaluation. Since i.A/D .nC; n�; n0/, it follows that

B D

26664
0

A
:::

0

0 � � � 0 �b

37775
is a realization of A� that allows a Jacobian of full rank and i.B/D .nC; 1Cn�; n0/.

�

Combining this result with Theorem 1.1, we obtain the following:

Corollary 3.2. Let A and A� be defined as above. If A allows Sn and has a
realization A that allows a Jacobian of full rank and i.A/D .0; n�1; 1/, then every
superpattern of A� (including A� itself ) allows SnC1.

Although A� is a reducible matrix, adding at least one additional nonzero entry
in the last row and last column of A� will yield irreducible patterns of order nC 1

that allow SnC1. We may repeatedly apply this construction to any matrix that
allows Sm to create large families of irreducible sign patterns that allow Sn for
n >m. Below is an example of a family created in such a way. In particular, all
S3-minimal sign patterns were found in Section 2, and all such patterns have a
realization A that allows a Jacobian of full rank for which i.A/D .0; 2; 1/. Thus,
many families may be created using these patterns as the starting point.

Example 3.3. Using the notation and results of [Berliner et al. 2018], the zero-
nonzero pattern 2664

� � 0 �

0 0 � 0

0 � 0 �

� 0 0 0

3775 ;
which corresponds to the digraph G16 with a loop at vertex 1, allows S4. In fact,
there is a corresponding sign pattern A that allows S4. The sign pattern A and a
realization A 2Q.A/ are given by

AD

2664
� C 0 �

0 0 C 0

0 � 0 C

C 0 0 0

3775 and AD

2664
�1 1 0 �a

0 0 1 0

0 �b 0 1

c 0 0 0

3775 ;
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with a; b; c > 0. Without loss of generality, one diagonal entry and two other entries
in the digraph associated with A (corresponding to a spanning tree) can be set equal
to ˙1. The characteristic polynomial of A is

cA.z/D z4
C z3

C .bC ac/z2
C bzC .abc � c/:

In order to realize inertia .0; 3; 1/, we must have c D abc. If aD b D c D 1, then
i.A/ D .0; 3; 1/, as desired. We now check if A allows a nonzero Jacobian. We
replace the nonzero entries of A with variables to get

XA D

2664
x1 x2 0 x3

0 0 x4 0

0 x5 0 x6

x7 0 0 0

3775 ;
which has characteristic polynomial

cXA
.z/D z4

�x1z3
� .x3x7Cx4x5/z

2
C .x1x4x5/z� .x2x4x6x7Cx3x4x5x7/:

Calculating the Jacobian matrix of XA, we get

JXA
D

2664
�1 0 0 0 0 0 0

0 0 �x7 �x5 �x4 0 �x3

x4x5 0 0 x1x5 x1x4 0 0

0 �x4x6x7 x4x5x7 x3x5x7�x2x6x7 x3x4x7 �x2x4x7 x3x4x5�x2x4x6

3775;
which when evaluated at x1 D x3 D x5 D �1, x2 D x4 D x6 D x7 D 1 has full
rank. By Corollary 3.2, any n� n sign pattern (n� 4) of the form26666666666666664

� C 0 � ˙ � � � � � � ˙

0 0 C 0 ˙
:::

0 � 0 C ˙
:::

C 0 0 0 ˙
:::

˙ ˙ ˙ ˙ �
: : :

:::
:::

: : :
: : :

: : :
:::

:::
: : :

: : : ˙

˙ � � � � � � � � � � � � � � � ˙ �

37777777777777775
allows Sn (where the ˙ entries may be any of C, �, or 0).

Appendix A: Nonequivalent superpatterns of S3-minimal sign patterns

The following sign patterns are the nonequivalent superpatterns of the S3-minimal
sign patterns in Figure 2. All sign patterns with associated digraph D1 that allow
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S3 are S3-minimal. Thus, the patterns here are organized into four groups corre-
sponding to their associated (loopless) digraph D2–D5. The use of the symbol ˙
indicates that a particular entry could be either � or C.

Sign patterns with associated digraph D2:�
� � 0
� � �
0 C �

� �
� C 0
� C C
0 C �

� �
� C 0
� � C
0 � C

� �
C � 0
C C �
0 C �

�
Sign patterns with associated digraph D3:�
� C 0
0 0 C
C � ˙

� �
� C 0
0 � C
˙ C �

� �
� C 0
0 ˙ C
C � �

� �
� C 0
0 C C
C � C

� �
C C 0
0 � �
C C ˙

� �
� � 0
0 C C
C C �

� �
� C 0
0 C �
C C �

� �
C � 0
0 � C
C C �

�
Sign patterns with associated digraph D4:�
� C 0
C 0 C
C � 0

� �
� C 0
� 0 �
� C 0

� �
� � 0
C 0 C
C C ˙

� �
� C 0
� 0 C
C C �

� �
� C 0
C 0 C
� C �

� �
� ˙ 0
� 0 C
� � C

� �
� C 0
� 0 �
� C ˙

� �
� C 0
C ˙ C
C � 0

�
�
� C 0
C � C
� C 0

� �
� C 0
� ˙ �
� C 0

� �
� � 0
C ˙ C
C C 0

� �
C C 0
C � �
C C 0

� �
C C 0
� � C
� � 0

� �
� ˙ 0
C � C
C C �

� �
� C 0
� ˙ C
C C �

� �
� C 0
C ˙ C
� C �

�
�
� C 0
� � �
� C �

� �
C � 0
C � C
C ˙ C

� �
C C 0
� � C
C C C

� �
C C 0
C C �
C C �

� �
C C 0
� C C
C C �

� �̇
� 0

C C �
C C �

� �
C � 0
C C C
C � �

� �
� � 0
C C C
C ˙ �

�
�
� � 0
C � ˙
C C C

� �
� C 0
C � �
C C C

� �
� ˙ 0
C � C
C � C

� �
� C 0
C � C
� C C

�
Sign patterns with associated digraph D5:�

� � ˙
C 0 C
C C 0

� �
� ˙ C
C 0 �
C C 0

� �
� � �
C 0 �
C C 0

� �
� � C
C 0 ˙
C C �

� �
� ˙ �
C 0 C
C C �

� �
� � C
� 0 C
C C �

�
�
� � C
C 0 C
� C �

� �
� � �
C 0 �
C C ˙

� �
� � ˙
C 0 C
C C C

� �
� C �
C 0 C
C ˙ C

� �
� ˙ C
C 0 �
C C C

� �
� � C
C 0 C
C � C

�
�
� ˙ C
C � C
C C �

� �
� � �
C � ˙
C C �

� �̇
� C

� � C
C C �

� �
� � C
C � �
C C �

� �
� � ˙
C C C
C C C

� �
� ˙ C
C C �
C C C

�
�
� � C
C C C
C � C

� �
� � �
C C �
C C C

� �
C � ˙
C � C
C C �

� �
C ˙ C
C � �
C C �

� �
C � C
C � C
� C �

� �
C � C
C � C
C � �

� �
C � �
C � �
C C �

�
Appendix B: Nonequivalent sign-nonsingular sign patterns

Here, we list all nonequivalent sign patterns of order 3 that do not allow S3. All of
these patterns do not allow inertia .0; 2; 1/.

B.1. Sign-nonsingular sign patterns. The following are the nonequivalent sign-
nonsingular sign patterns of order 3. Since all realizations of these patterns must be
invertible, these patterns do not allow S3 as their inertias cannot include .0; 2; 1/.
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The patterns here are organized into five groups corresponding to their associated
(loopless) digraph D1–D5.

Sign patterns with associated digraph D1:�
� � 0
0 � C
C 0 �

� �
� � 0
0 C �
� 0 C

� �
C C 0
0 � C
C 0 �

�
Sign patterns with associated digraph D2:�

� � 0
� 0 �
0 � �

� �
� C 0
� 0 C
0 � �

� �
� C 0
� 0 �
0 � C

� �
� � 0
� 0 C
0 � C

� �
C C 0
C � C
0 C C

�
�
� � 0
� C �
0 � �

� �
C C 0
� C C
0 C �

� �
� � 0
C � �
0 � C

� �
� � 0
C � �
0 C �

�
Sign patterns with associated digraph D3:�

� C 0
0 0 ˙
C C 0

� �
� C 0
0 0 ˙
C C �

� �
C � 0
0 0 C
C C �

� �
C C 0
0 0 C
C � �

� �
� C 0
0 0 ˙
C C C

�
�
� C 0
0 � �
C C �

� �
� C 0
0 C �
C C C

� �
C C 0
0 � C
� C C

� �
� C 0
0 C C
C C �

� �
C C 0
0 � C
C � �

�
Sign patterns with associated digraph D4:�
� C 0
C 0 ˙
C C 0

� �
� C 0
� 0 C
C C 0

� �
� C 0
� 0 C
� � 0

� �
� C 0
C 0 C
C C �

� �
� C 0
� 0 C
� � �

� �
� C 0
� 0 C
C C C

� �
� � 0
� 0 �
� C C

� �
� C 0
C � ˙
C C 0

�
�
� C 0
� ˙ C
C C 0

� �
� C 0
� ˙ C
� � 0

� �
� C 0
C C ˙
C C 0

� �
C � 0
C � C
C C 0

� �
C C 0
C � C
C � 0

� �
C C 0
C � C
� C 0

� �
C C 0
� � �
� C 0

� �
� C 0
� � C
� � �

�
�
C C 0
C � C
� C C

� �
C � 0
C C C
C C �

� �
� C 0
C C C
C C �

� �
� C 0
� � C
C C C

�
Sign patterns with associated digraph D5:�

� C C
C 0 C
C C 0

� �
� � C
C 0 C
C � 0

� �
� � C
C 0 C
� C 0

� �
� C C
C 0 C
C C �

� �
� � C
C 0 C
C � �

� �
� � C
C 0 C
� C C

� �
� C �
C 0 �
C C C

�
B.2. Other sign patterns that do not allow .0; 2 ; 1/. The following sign patterns
are not sign-nonsingular, but nevertheless do not allow inertia .0; 2; 1/. In the
characteristic polynomial of a realization, it can be shown that it is impossible for
the constant term to equal 0 when all of the other coefficients are positive. The
patterns are organized into five groups corresponding to their associated (loopless)
digraph D1–D5.

Sign pattern with associated digraph D1:�
� C 0
0 C C
C 0 C

�
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Sign patterns with associated digraph D2:�
� � 0
� 0 �
0 � C

� �
C C 0
C C C
0 ˙ �

� �
� � 0
� � �
0 � C

� �
C C 0
� � C
0 � C

�
Sign patterns with associated digraph D3:�

� � 0
0 0 C
C C 0

� �
C C 0
0 0 C
C C �

� �
� � 0
0 0 C
C C C

� �
� C 0
0 C C
˙ C C

� �
C C 0
0 � C
C ˙ C

� �
C C 0
0 � C
C C �

�
Sign patterns with associated digraph D4:�
� C 0
C 0 C
� C 0

� �
� C 0
C 0 C
˙ C C

� �
� C 0
C C C
� C 0

� �
C C 0
C � C
C C 0

� �̇
C 0

C � C
C C C

� �
C � 0
C � �
C C C

� �
C C 0
C C C
C ˙ �

� �
C C 0
C C C
� C �

�
Sign patterns with associated digraph D5:�

� � C
� 0 C
C C 0

� �
� C C
C 0 C
C C C

� �
� � C
� 0 C
C C C

� �
� C C
C C C
C C C

� �
� � C
� C C
˙ C C

� �
C C C
C � C
C C �

�
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