Fox coloring and the minimum number of colors

Mohamed Elhamdadi and Jeremy Kerr
Fox coloring and the minimum number of colors

Mohamed Elhamdadi and Jeremy Kerr
(Communicated by Kenneth S. Berenhaut)

We study Fox colorings of knots that are 13-colorable. We prove that any 13-colorable knot has a diagram that uses exactly five of the thirteen colors that are assigned to the arcs of the diagram. Due to an existing lower bound, this gives that the minimum number of colors of any 13-colorable knot is 5.

1. Introduction

Fox [1962] introduced a diagrammatic definition of colorability of a knot K by \mathbb{Z}_m (the integers modulo m). This notion of colorability is clearly one of the simplest invariants of knots. For a natural number m greater than 1, a diagram D of a knot K is m-colorable if at every crossing, the sum of the colors of the under-arcs is twice the color of the over-arc (modulo m), as in Figure 1.

It is well known [Fox 1962] that for a prime p, a knot K is p-colorable if and only if p divides the determinant of K. The problem of finding the minimum number of colors for p-colorable knots with p prime and less than or equal to 11 was studied in [Satoh 2009; Oshiro 2010; Lopes and Matias 2012; Hayashi et al. 2012]. For example, Satoh [2009] proved that any 5-colorable knot admits a nontrivially 5-colored diagram where the coloring assignment uses only four of the five available colors. For a prime p, let K be a p-colorable knot and let $C_p(K)$ denote the minimum number of colors among all diagrams of the knot K. In [Nakamura et al. 2013], it was proved that $C_p(K) \geq \lceil \log_2 p \rceil + 2$. This implies that in our case, $p = 13$, the minimum number of colors of 13-colorable knots is greater than or equal to 5. In fact, the goal of this article is to prove equality, that is, $C_{13}(K) = 5$.

2. Fox coloring and the minimum number of colors of 13-colorable knots

Notation. We use $\{a \mid b \mid c\}$ to denote a crossing, as in Figure 1, where a and c are the colors of the under-arcs, b is the color of the over-arc and $a + c \equiv 2b \mod 13$. When the crossing is of the type $\{c \mid c \mid c\}$ (trivial coloring), we will omit over- and under-crossings and draw the arcs crossing each other.

MSC2010: 57M25.
Keywords: knots, fox colorings, minimum number of colors.
Theorem 2.1. Any 13-colorable knot has a 13-colored diagram with exactly five colors. Thus, $C_{13}(K) = 5$ for any 13-colorable knot K.

Proof. We prove this theorem using eight lemmas. In each of the following lemmas we decrease the coloring scheme of the diagram by one color c. To accomplish this we first transform any crossings of the form $\{c|c|c\}$. That is, when c is both an over-arc and an under-arc, we remove c as an over-arc by transforming any crossings of the form $\{a|c|2c-a\}$, where $a \in \mathbb{Z}_{13} \setminus \{c\}$. Finally, we complete each lemma by removing c as an under-arc in a case-by-case method. In these under-arc cases we must consider when c connects two crossings of the same color and when c connects two crossings of different colors. □

Eliminating the color 12.

Lemma 2.2. Any 13-colorable knot has a 13-colored diagram D with no arc colored by 12.

Proof. Let $c = 12$. We first transform any crossing of the form $\{12|12|12\}$. If there is any such crossing, there is an adjacent crossing of the form $\{12|a|2a+1\}$ or $\{a|12|11-a\}$, where $a \in \mathbb{Z}_{13} \setminus \{12\}$. In either case, since $11 - a \neq 12$ and $2a + 1 \neq 12$ for any a in $\mathbb{Z}_{13} \setminus \{12\}$, we transform the diagram as in Figures 2 and 3.

Next, we remove 12 as an over-arc by transforming any crossings of the form $\{a|12|11-a\}$. Since $2a + 1 \neq 12$ and $3a + 2 \neq 12$ for any $a \in \mathbb{Z}_{13} \setminus \{12\}$, we transform the diagram as in Figure 4.
We complete the proof of the lemma by removing 12 as an under-arc in a case-by-case method. We first consider the case where 12 is an under-arc connecting two crossings of the form \(\{12|a|2a+1\} \). Since \(2a + 1 \neq 12 \), \(3a + 2 \neq 12 \), and \(4a + 3 \neq 12 \) for any \(a \in \mathbb{Z}_{13} \setminus \{12\} \), we transform the diagram as in Figure 5.

Now we consider the case where 12 is an under-arc connecting two crossings of the forms \(\{2a+1|a|12\} \) and \(\{12|2a+1|4a+3\} \). Since \(2a + 1 \neq 12 \) and \(3a + 2 \neq 12 \) for any \(a \in \mathbb{Z}_{13} \setminus \{12\} \), we transform the diagram as in Figure 6.

Lastly we consider the case where 12 is an under-arc connecting two crossings of the forms \(\{2a+1|a|12\} \) and \(\{12|b|2b+1\} \), where \(a \neq b \) and \(b \neq 2a + 1 \) for any \(a \) and \(b \) in \(\mathbb{Z}_{13} \setminus \{12\} \). Since \(2a - 2b - 1 \neq 12 \) and \(2a - b \neq 12 \) for any \(a \) and \(b \) in \(\mathbb{Z}_{13} \setminus \{12\} \) (from \(a \neq b \) and \(b \neq 2a + 1 \) respectively), we transform the diagram as in Figure 7. \(\square \)
Eliminating the color 11.

Lemma 2.3. Any 13-colorable knot has a 13-colored diagram D with no arc colored by 11 or 12.

Proof. Let $c = 11$. By the previous lemma we assume that no arc in D is colored by 12. We first transform any crossing of the form \{11|11|11\}. If there is any such crossing, there is an adjacent crossing of the form \{11|a|2a+2\} or \{a|11|9−a\}, where a is in $\mathbb{Z}_{13} \setminus \{11, 12\}$. If $a \neq 5, 10$, then $9 − a \neq 11, 12$ and $2a + 2 \neq 11, 12$ for any a in $\mathbb{Z}_{13} \setminus \{5, 10, 11, 12\}$, so we transform the diagram as in Figures 2 and 3.

If $a = 5$ as an under-arc, we transform the diagram as in Figure 8. Now, a cannot equal 5 as an over-arc, otherwise $2a + 2 = 12$, contradicting our assumption that no arc is colored by 12.
If $a = 10$ as an over-arc, we transform the diagram as in Figure 2. Similarly a cannot equal 10 as an under-arc, otherwise $9 - a = 12$, which is a contradiction.

Next, we remove 11 as an over-arc by transforming any crossings of the form \{a|11|9−a\}. Since $9 - a \neq 11, 12$, we have $a \neq 10$. Therefore if $a \neq 5, 7$ then $2a + 2 \neq 11, 12$ and $3a + 4 \neq 11, 12$ for any a in $\mathbb{Z}_{13} \setminus \{5, 7, 10, 11, 12\}$, and we transform the diagram as in Figure 4. If $a = 5$ or $a = 7$, we transform the diagram as in Figure 9.

We complete the proof of the lemma by removing 11 as an under-arc in a case-by-case method. We first consider the case where 11 is an under-arc connecting two crossings of the form \{11|a|2a+2\}. Since $2a + 2 \neq 11, 12$, we have $a \neq 5$. If $a \neq 7, 8$, then $3a + 4 \neq 11, 12$ and $4a + 6 \neq 11, 12$ for any a in $\mathbb{Z}_{13} \setminus \{5, 7, 8, 11, 12\}$, and we transform the diagram as in Figure 5. If $a = 7$, we transform the diagram as in Figure 9. If $a = 8$, we transform the diagram as in Figure 10.

Now we consider the case where 11 is an under-arc connecting two crossings of the forms \{2a+2|a|11\} and \{11|b|2b+2\}, where $a \neq b$ for any a and b in $\mathbb{Z}_{13} \setminus \{5, 11, 12\}$. (Note $a, b \neq 5$, otherwise $2a + 2 = 12$ or $2b + 2 = 12$.)
If \((a, b) \neq (0, 6), (6, 0), (3, 7), (7, 3)\) then either

\[2a - 2b - 2 \neq 11, 12 \quad \text{and} \quad 2a - b \neq 11, 12\]

or

\[2b - 2a - 2 \neq 11, 12 \quad \text{and} \quad 2b - a \neq 11, 12\]

for any \(a\) and \(b\) in \(\mathbb{Z}_{13} \setminus \{5, 11, 12\}\), and we transform the diagram as in Figure 12.

If \((a, b) = (0, 6)\), we transform the diagram as in Figure 13. A similar transformation works for the case \((a, b) = (6, 0)\).

If \((a, b) = (3, 7)\), we transform the diagram as in Figure 14. A similar transformation works for the case \((a, b) = (7, 3)\). \(\square\)
Eliminating the color 7.

Lemma 2.4. Any 13-colorable knot has a 13-colored diagram D with no arc colored by 7, 11, or 12.

Proof. Let $c = 7$. By the previous lemmas we assume that no arc in D is colored by 11 or 12. We first transform any crossing of the form $\{7|7|7\}$. If there is any such crossing, there is an adjacent crossing of the form $\{7|a|2a+6\}$ or $\{a|7|1-a\}$, where a is in $\mathbb{Z}_{13}\{7, 11, 12\}$. If $a \neq 2, 3, 9$ then $1-a \neq 7, 11, 12$ and $2a+6 \neq 7, 11, 12$ for any a in $\mathbb{Z}_{13}\{2, 3, 7, 9, 11, 12\}$, so we transform the diagram as in Figures 2 and 3.

If $a = 2$ as an over-arc, we transform the diagram as in Figure 2. Note a cannot equal 2 as an under-arc, otherwise $1-a = 12$, contradicting our assumption that no arc is colored by 12.

Now a cannot be 3 as an over-arc or an under-arc, otherwise $1-a = 11$ and $2a + 6 = 12$, contradicting our assumption that no arc is colored by 11 or 12. If $a = 9$ as an under-arc, we transform the diagram as in Figure 8. Note a cannot equal 9 as an over-arc, otherwise $2a + 6 = 11$, contradicting our assumption that no arc is colored by 11. Therefore any crossings of the form $\{7|7|7\}$ are removed.

Next, we remove 7 as an over-arc by transforming any crossings of the form $\{a|7|1-a\}$. Since $1-a \neq 7, 11, 12$, we have $a \neq 2, 3$. Therefore if $a \neq 0, 4, 9$ then $2a+6 \neq 7, 11, 12$ and $3a+12 \neq 7, 11, 12$ for any a in $\mathbb{Z}_{13}\{0, 2, 3, 4, 7, 9, 11, 12\}$, and we transform the diagram as in Figure 4. If $a = 0, 4, 9$, we transform the diagram as in Figure 9.
We complete the proof of the lemma by removing 7 as an under-arc in a case-by-case method. We first consider the case where 7 is an under-arc connecting two crossings of the form \(\{7 \mid a \mid 2a+6\} \). Since \(2a + 6 \neq 7, 11, 12 \), we have \(a \neq 3, 9 \).

If \(a \neq 0, 4, 5, 8 \) then \(3a + 12 \neq 7, 11, 12 \) and \(4a + 5 \neq 7, 11, 12 \) for any \(a \) in \(\mathbb{Z}_{13} \setminus \{0, 3, 4, 5, 7, 8, 9, 11, 12\} \), and we transform the diagram as in Figure 5. If \(a = 0 \), we transform the diagram as in Figure 15. If \(a = 4 \), we transform the diagram as in Figure 16. If \(a = 5 \), we transform the diagram as in Figure 17. If \(a = 8 \), we transform the diagram as in Figure 11.
Figure 17

Now we consider the case where 7 is an under-arc connecting two crossings of the forms \(\{2a + 6|a|7\}\) and \(\{7|b|2b + 6\}\), where \(a \neq b\) for any \(a\) and \(b\) in \(\mathbb{Z}_{13} \setminus \{3, 7, 9, 11, 12\}\). (Note \(a, b \neq 3, 9\), otherwise \(2a + 6 = 11, 12\) or \(2b + 6 = 11, 12\).) If

\[(a, b) \neq (0, 2), (2, 0), (0, 6), (6, 0), (1, 4), (4, 1), (4, 8), (8, 4)\]

then either

\[2a - 2b - 6 \neq 7, 11, 12\]
\[2a - b \neq 7, 11, 12\]

or

\[2b - 2a - 6 \neq 7, 11, 12\]
\[2b - a \neq 7, 11, 12\]

for any \(a\) and \(b\) in \(\mathbb{Z}_{13} \setminus \{3, 7, 9, 11, 12\}\), and we transform the diagram as in Figure 12.

If \((a, b) = (0, 2)\), we transform the diagram as in Figure 18. The case \((a, b) = (2, 0)\) is similar.
If \((a, b) = (0, 6)\), we transform the diagram as in Figure 19. The case \((a, b) = (6, 0)\) is similar.

If \((a, b) = (1, 4)\), we transform the diagram as in Figure 20. The case \((a, b) = (4, 1)\) is similar.

If \((a, b) = (4, 8)\), we transform the diagram as in following Figure 21. The case \((a, b) = (8, 4)\) is similar.

\(\square\)

Eliminating the color 8.

Lemma 2.5. Any 13-colorable knot has a 13-colored diagram \(D\) with no arc colored by 7, 8, 11, or 12.
Proof. Let $c = 8$. By the previous lemmas we assume that no arc in D is colored by $7, 11, or 12$. We first transform any crossing of the form $\{8|8|8\}$. If there is any such crossing, there is an adjacent crossing of the form $\{8|a|2a+5\}$ or $\{a|8|3-a\}$, where a is in $\mathbb{Z}_{13} \setminus \{7, 8, 11, 12\}$. If $a \neq 1, 3, 4, 5, 9, 10$ then $3-a \neq 7, 8, 11, 12$ and $2a + 5 \neq 7, 8, 11, 12$ for any a in $\mathbb{Z}_{13} \setminus \{1, 3, 4, 5, 7, 8, 9, 10, 11, 12\}$, so we transform the diagram as in Figures 2 and 3.

If $a = 4, 5, 9$ as an over-arc, we transform the diagram as in Figure 2. Note a cannot be $4, 5,$ or 9 as an under-arc, otherwise $3-a = 7, 11, 12$, contradicting our assumption that no arc is colored by $7, 11, or 12$. If $a = 1$ as an under-arc we transform the diagram as in Figure 8. Note a cannot be 1 as an over-arc, otherwise $2a + 5 = 7$, contradicting our assumption that no arc is colored by 7. If $a = 3$ as an under-arc, we transform the diagram as in Figure 8. Note a cannot be 3 as an over-arc, otherwise $2a + 5 = 11$, contradicting our assumption that no arc is colored by 11. If $a = 10$ as an under-arc, we transform the diagram as in Figure 8. Note a cannot be 10 as an over-arc, otherwise $2a + 5 = 12$, contradicting our assumption that no arc is colored by 12. Therefore any crossings of the form $\{8|8|8\}$ are removed.

Next, we remove 8 as an over-arc by transforming any crossings of the form $\{a|8|3-a\}$. Since $3-a \neq 7, 8, 11, 12$, we have $a \neq 4, 5, 9$. Therefore if $a \neq 1, 3, 10$ then $2a + 5 \neq 7, 8, 11, 12$ and $3a + 10 \neq 7, 8, 11, 12$ for any a in $\mathbb{Z}_{13} \setminus \{1, 3, 4, 5, 7, 8, 9, 10, 11, 12\}$, and we transform the diagram as in Figure 4. If $a = 1, 3$ or 10, we transform the diagram as in Figure 9.

We complete the proof of the lemma by removing 8 as an under-arc in a case-by-case method. We first consider the case where 8 is an under-arc connecting two crossings of the form $\{8|a|2a+5\}$. Since $2a + 5 \neq 7, 8, 11, 12$, we have $a \neq 1, 3, 10$. If $a \neq 5, 9$ then $3a + 10 \neq 7, 8, 11, 12$ and $4a + 2 \neq 7, 8, 11, 12$ for any a in $\mathbb{Z}_{13} \setminus \{1, 3, 5, 7, 8, 9, 10, 11, 12\}$, and we transform the diagram as in Figure 5. If $a = 5$, we transform the diagram as in Figure 22. If $a = 9$, we transform the diagram as in Figure 23.

Now we consider the case where 8 is an under-arc connecting two crossings of the forms $\{2a+5|a|8\}$ and $\{8|b|2b+5\}$, where $a \neq b$ for any a and b in $\mathbb{Z}_{13} \setminus \{1, 3, 7, 8, 10, 11, 12\}$. (Note $a, b \neq 1, 3, 10$, otherwise $2a + 5 = 7, 11, 12$ or $2b + 5 = 7, 11, 12$.) If $(a, b) \neq (0, 2), (2, 0), (0, 6), (6, 0), (2, 5), (5, 2)$ then either

$$2a - 2b - 5 \neq 7, 8, 11, 12 \quad \text{and} \quad 2a - b \neq 7, 8, 11, 12$$

or

$$2b - 2a - 5 \neq 7, 8, 11, 12 \quad \text{and} \quad 2b - a \neq 7, 8, 11, 12$$

for any a and b in $\mathbb{Z}_{13} \setminus \{1, 3, 7, 8, 10, 11, 12\}$, and we transform the diagram as in Figure 12.
If \((a, b) = (0, 2)\), we transform the diagram as in Figure 24. The case \((a, b) = (2, 0)\) is similar.

If \((a, b) = (0, 6)\), we transform the diagram as in Figure 25. The case \((a, b) = (6, 0)\) is similar.

If \((a, b) = (2, 5)\), we transform the diagram as in Figure 26. The case \((a, b) = (5, 2)\) is similar.

\[\square\]

Eliminating the color 6.

Lemma 2.6. Any 13-colorable knot has a 13-colored diagram \(D\) with no arc colored by 6, 7, 8, 11, or 12.
Proof. Let \(c = 6 \). By the previous lemmas we assume that no arc in \(D \) is colored by 7, 8, 11, or 12. We first transform any crossing of the form \(\{6|6|6\} \). If there is any such crossing, there is an adjacent crossing of the form \(\{6|a|2a+7\} \) or \(\{a|6|12-a\} \), where \(a \) is in \(\mathbb{Z}_{13} \setminus \{6, 7, 8, 11, 12\} \). With the exceptions of \(a = 0, 2, 9 \) as an over-arc (when \(2a + 7 = 7, 8, 11, 12 \)) and \(a = 0, 1, 4, 5 \) as an under-arc (when \(12 - a = 7, 8, 11, 12 \)), we transform the diagram as in Figures 2 and 3.

Now we must check when \(a = 0, 2, 9 \) as an under-arc. First and foremost \(a \) cannot equal 0 as an under-arc, otherwise \(12 - a = 12 \), contradicting our assumption that no arc is colored by 12. If \(a = 2, 9 \) as an under-arc, we transform the diagram as in Figure 8. Therefore any crossings of the form \(\{6|6|6\} \) are removed.

Next, we remove 6 as an over-arc by transforming any crossings of the form \(\{a|6|12-a\} \). Since \(12 - a \neq 6, 7, 8, 11, 12 \), we have \(a \neq 0, 1, 4, 5 \). With the exceptions of \(a = 2, 9 \) (when \(2a + 7 = 6, 7, 8, 11, 12 \) and \(3a + 1 = 6, 7, 8, 11, 12 \)),
we transform the diagram as in Figure 4. If \(a = 2 \) or \(a = 9 \), we transform the diagram as in Figure 9.

We complete the proof of the lemma by removing 6 as an under-arc in a case-by-case method. We first consider the case where 6 is an under-arc connecting two crossings of the form \(\{6|a|2a+7\} \). Since \(2a + 7 \neq 6, 7, 8, 11, 12 \), we have \(a \neq 0, 2, 9 \). If \(a \neq 1, 3, 4 \) then \(3a + 1 \neq 6, 7, 8, 11, 12 \) and \(4a + 8 \neq 6, 7, 8, 11, 12 \), so we transform the diagram as in Figure 5. If \(a = 1 \), we transform the diagram as in Figure 11. If \(a = 3 \), we transform the diagram as in Figures 27 and 28. If \(a = 4 \), we transform the diagram as in Figure 11.

Now we consider the case where 6 is an under-arc connecting two crossings of the forms \(\{2a+7|a|6\} \) and \(\{6|b|2b+7\} \), where \(a \neq b \) for any \(a \) and \(b \) in
Eliminating the color 1.

Lemma 2.7. Any 13-colorable knot has a 13-colored diagram D with no arc colored by 1, 6, 7, 8, 11, or 12.
We first consider the case where 1 is an under-arc connecting two crossings of the form $a \neq Z$. If there is any such crossing, there is an adjacent crossing of the form $\{1|a|2a+12\}$ or $\{a|1|2-a\}$, where a is in $\mathbb{Z}_{13} \setminus \{1, 6, 7, 8, 11, 12\}$. With the exceptions of $a = 0, 4, 10$ as an over-arc (when $2a + 12 = 6, 7, 8, 11, 12$) and $a = 3, 4, 9$ as an under-arc (when $2-a = 6, 7, 8, 11, 12$), we transform the diagram as in Figures 2 and 3.

Now we must check when $a = 0, 4, 10$ as an under-arc, we transform the diagram as in Figure 8. Therefore any crossings of the form $\{1|1|1\}$ are removed.

Next, we remove 1 as an over-arc by transforming any crossings of the form $\{a|1|2-a\}$. Since $2-a \neq 1, 6, 7, 8, 11, 12$, we have $a \neq 3, 4, 9$. With the exceptions of $a = 0, 10$ (when $2a + 12 = 1, 6, 7, 8, 11, 12$ and $3a + 11 = 1, 6, 7, 8, 11, 12$), we transform the diagram as in Figure 4. If $a = 0$ or $a = 10$, we transform the diagram as in Figure 9.

We complete the proof by removing 1 as an under-arc in a case-by-case method. We first consider the case where 1 is an under-arc connecting two crossings of the form $\{1|a|2a+12\}$. Since $2a + 12 \neq 1, 6, 7, 8, 11, 12$, we have $a \neq 0, 4, 10$. If $a \neq 3, 9$ then $3a + 11 \neq 1, 6, 7, 8, 11, 12$ and $4a + 10 \neq 1, 6, 7, 8, 11, 12$, so we transform the diagram as in Figure 5. If $a = 3$, we transform the diagram as in Figure 30. If $a = 9$, we transform the diagram as in Figure 31.

Now we consider the case where 1 is an under-arc connecting two crossings of the forms $\{2a+12|a|1\}$ and $\{1|b|2b+12\}$, where $a \neq b$ for any a and b in $\mathbb{Z}_{13} \setminus \{0, 1, 4, 6, 7, 8, 10, 11, 12\}$. (Note $a, b \neq 0, 4, 10$, otherwise $2a + 12 = 1, 6, 7, 8, 11, 12$ or $2b + 12 = 1, 6, 7, 8, 11, 12$.) If $(a, b) \neq (2, 5), (5, 2), (3, 5), (5, 3)$ then

Figure 30

Proof. Let $c = 1$. By the previous lemmas we assume that no arc in D is colored by 6, 7, 8, 11, or 12. We first transform any crossing of the form $\{1|1|1\}$. If there is any such crossing, there is an adjacent crossing of the form $\{1|a|2a+12\}$ or $\{a|1|2-a\}$, where a is in $\mathbb{Z}_{13} \setminus \{1, 6, 7, 8, 11, 12\}$. With the exceptions of $a = 0, 4, 10$ as an over-arc (when $2a + 12 = 6, 7, 8, 11, 12$) and $a = 3, 4, 9$ as an under-arc (when $2-a = 6, 7, 8, 11, 12$), we transform the diagram as in Figures 2 and 3.

Now we must check when $a = 0, 4, 10$ as an under-arc. We know a cannot be 4 as an under-arc, otherwise $2-a = 11$, contradicting our assumption that no arc is colored by 11. If $a = 0$ or $a = 10$ as an under-arc, we transform the diagram as in Figure 8. Therefore any crossings of the form $\{1|1|1\}$ are removed.

Next, we remove 1 as an over-arc by transforming any crossings of the form $\{a|1|2-a\}$. Since $2-a \neq 1, 6, 7, 8, 11, 12$, we have $a \neq 3, 4, 9$. With the exceptions of $a = 0, 10$ (when $2a + 12 = 1, 6, 7, 8, 11, 12$ and $3a + 11 = 1, 6, 7, 8, 11, 12$), we transform the diagram as in Figure 4. If $a = 0$ or $a = 10$, we transform the diagram as in Figure 9.

We complete the proof by removing 1 as an under-arc in a case-by-case method. We first consider the case where 1 is an under-arc connecting two crossings of the form $\{1|a|2a+12\}$. Since $2a + 12 \neq 1, 6, 7, 8, 11, 12$, we have $a \neq 0, 4, 10$. If $a \neq 3, 9$ then $3a + 11 \neq 1, 6, 7, 8, 11, 12$ and $4a + 10 \neq 1, 6, 7, 8, 11, 12$, so we transform the diagram as in Figure 5. If $a = 3$, we transform the diagram as in Figure 30. If $a = 9$, we transform the diagram as in Figure 31.

Now we consider the case where 1 is an under-arc connecting two crossings of the forms $\{2a+12|a|1\}$ and $\{1|b|2b+12\}$, where $a \neq b$ for any a and b in $\mathbb{Z}_{13} \setminus \{0, 1, 4, 6, 7, 8, 10, 11, 12\}$. (Note $a, b \neq 0, 4, 10$, otherwise $2a + 12 = 1, 6, 7, 8, 11, 12$ or $2b + 12 = 1, 6, 7, 8, 11, 12$.) If $(a, b) \neq (2, 5), (5, 2), (3, 5), (5, 3)$ then...
either

\[2a - 2b - 12 \neq 1, 6, 7, 8, 11, 12 \quad \text{and} \quad 2a - b \neq 1, 6, 7, 8, 11, 12 \]

or

\[2b - 2a - 12 \neq 1, 6, 7, 8, 11, 12 \quad \text{and} \quad 2b - a \neq 1, 6, 7, 8, 11, 12 \]

for any \(a \) and \(b \) in \(\mathbb{Z}_{13} \setminus \{0, 1, 4, 6, 7, 8, 10, 11, 12\} \), and we transform the diagram as in Figure 12.

- Figure 31
- Figure 32
- Figure 33
If \((a, b) = (2, 5)\), we transform the diagram as in Figure 32. The case \((a, b) = (5, 2)\) is similar.

If \((a, b) = (3, 5)\), we transform the diagram as in Figure 33. The case \((a, b) = (5, 3)\) is similar.

\[\square\]

Eliminating the color 10.

Lemma 2.8. Any 13-colorable knot has a 13-colored diagram \(D\) with no arc colored by 1, 6, 7, 8, 10, 11, or 12.

Proof. Let \(c = 10\). By the previous lemmas we assume that no arc in \(D\) is colored by 1, 6, 7, 8, 11, or 12. We first transform any crossing of the form \(\{10|10|10\}\). If there is any such crossing, there is an adjacent crossing of the form \(\{10|a|2a+3\}\) or \(\{a|10|7-a\}\), where \(a\) is in \(\mathbb{Z}_{13} \setminus \{1, 6, 7, 8, 10, 11, 12\}\). With the exceptions of \(a = 2, 4, 9\) as an over-arc (when \(2a+3 = 1, 6, 7, 8, 11, 12\)) and \(a = 0, 9\) as an under-arc (when \(7-a = 1, 6, 7, 8, 11, 12\)), we transform the diagram as in Figures 2 and 3.

Now we must check when \(a = 2, 4, 9\) as an under-arc. We know \(a\) cannot be 9 as an under-arc, otherwise \(7-a = 11\), contradicting our assumption that no arc is colored by 11. If \(a = 2\) or \(a = 4\) as an under-arc, we transform the diagram as in Figure 8. Therefore any crossings of the form \(\{10|10|10\}\) are removed.
Figure 35
Next, we remove 10 as an over-arc by transforming any crossings of the form \(\{a|10|7-a\} \). Since \(7-a \neq 1, 6, 7, 8, 10, 11, 12 \), we have \(a \neq 0, 9 \). With the exceptions of \(a = 2, 4, 5 \) (when \(2a + 3 = 1, 6, 7, 8, 10, 11, 12 \) and \(3a + 6 = 1, 6, 7, 8, 10, 11, 12 \)), we transform the diagram as in Figure 4. If \(a = 2 \), we transform the diagram as in Figure 34. If \(a = 4 \), we transform the diagram as in Figure 9. If \(a = 5 \), since \(7-a = 2 \), we transform the diagram similarly to Figure 34, i.e., \(a = 2 \).

We complete the proof by removing 10 as an under-arc in a case-by-case method. We first consider the case where 10 is an under-arc connecting two crossings of the
form \(\{10\mid a\mid 2a+3\}\). Since \(2a + 3 \neq 1, 6, 7, 8, 10, 11, 12\), we have \(a \neq 2, 4, 9\). So, we need to check \(a = 0, 3, 5\). If \(a = 0\), we transform the diagram as in Figure 35, and we shall refer to this transformation throughout Lemma 2.8. As such, two variations of this transformation are given in Figure 36. If \(a = 3\), we transform the diagram as in Figure 37. If \(a = 5\), we transform the diagram as in Figure 38. Note the center of \(a = 5\) as well as the six dashed boxes are the same transformations we used for \(a = 0\) and its variations. Also, there are two arcs colored by 10, each of which are transformed by \(a = 3\) as in Figure 37.

Now we consider the case where 10 is an under-arc. There are six such cases: \((a, b) = (0, 3), (3, 0), (0, 5), (5, 0), (3, 5), (5, 3)\). If \((a, b) = (0, 3)\), we transform the diagram as in Figure 39. For eliminating the 10 arc, see the variations of \(a = 0\) in Figure 36. The case \((a, b) = (3, 0)\) is similar.

If \((a, b) = (0, 5)\), we transform the diagram as in Figure 40. For eliminating the 10 arc, see \(a = 5\) in Figure 38; however, we will use the variations of \(a = 0\) in Figure 36 for the center. The case \((a, b) = (5, 0)\) is similar.
Figure 38
If \((a, b) = (3, 5)\), we transform the diagram as in Figure 41. For eliminating the 10 arcs, see the \((a, b) = (0, 3)\) case in Figure 39 and the \(a = 5\) case in Figure 38 using the variations in Figure 36. The case \((a, b) = (5, 3)\) is similar. \qed
Eliminating the color 5.

Lemma 2.9. Any 13-colorable knot has a 13-colored diagram D with no arc colored by 1, 5, 6, 7, 8, 10, 11, or 12.

Proof. Let $c = 5$. By the previous lemmas we assume that no arc in D is colored by 1, 6, 7, 8, 10, 11, or 12. We first transform any crossing of the form $\{5|5|5\}$. If there is any such crossing, there is an adjacent crossing of the form $\{5|a|2a+8\}$, where a is in $\mathbb{Z}_{13} \backslash \{1, 5, 6, 7, 8, 10, 11, 12\}$. Since $10 - a = 1, 6, 7, 8, 10, 11, 12$ when $a = 0, 2, 3, 4, 9$, we know a cannot be an under-arc. Therefore, with the exceptions of $a = 0, 2, 3$ as an over-arc (when $2a + 8 = 1, 5, 6, 7, 8, 10, 11, 12$), we transform the diagram as in Figure 2. Therefore any crossings of the form $\{5|5|5\}$ are removed.
Next, we remove 5 as an over-arc by transforming any crossings of the form \(\{a | 5 | 10 - a\} \). Since \(10 - a \neq 1, 5, 6, 7, 8, 10, 11, 12 \), we have \(a \neq 0, 2, 3, 4, 9 \). Therefore, 5 cannot be an over-arc.
We complete the proof of Lemma 2.8 by removing 5 as an under-arc in a case-by-case method. We first consider the case where 5 is an under-arc connecting two crossings of the form \(5|a|2a+8\). Since \(2a+8 \neq 1, 5, 6, 7, 8, 10, 11, 12\), we have \(a \neq 0, 2, 3\). So, we need to check \(a = 4, 9\). If \(a = 4\), we transform the diagram as in Figure 42. If \(a = 9\), we transform the diagram as in Figure 43.

Now we consider the case where 5 is an under-arc connecting two crossings of the forms \(5|a|2a+8\) and \(5|b|2b+8\). Since \(2a+8, 2b+8 \neq 1, 5, 6, 7, 8, 10, 11, 12\), there are two cases that we need to consider: \((a, b) = (4, 9), (9, 4)\). If \((a, b) = (4, 9)\), we transform the diagram as in Figure 44. The case \((a, b) = (9, 4)\) is similar. □

At the same time we were working on this problem, Bento and Lopes [2015] proved the same result using different techniques.

References

Received: 2015-09-29 Revised: 2016-01-05 Accepted: 2016-01-24

emohamed@usf.edu Mathematics Department, University of South Florida, Tampa, FL 33620, United States

kerrj@mail.usf.edu Mathematics Department, University of South Florida, Tampa, FL 33620, United States
INVOLVE YOUR STUDENTS IN RESEARCH

Involve showcases and encourages high-quality mathematical research involving students from all academic levels. The editorial board consists of mathematical scientists committed to nurturing student participation in research. Bridging the gap between the extremes of purely undergraduate research journals and mainstream research journals, Involve provides a venue to mathematicians wishing to encourage the creative involvement of students.

MANAGING EDITOR
Kenneth S. Berenhaut Wake Forest University, USA

BOARD OF EDITORS

Colin Adams Williams College, USA
John V. Baxley Wake Forest University, NC, USA
Arthur T. Benjamin Harvey Mudd College, USA
Martin Bohner University of Wisconsin, USA
Nigel Boston U of North Carolina, Chapel Hill, USA
Amarjit S. Budhiraja La Trobe University, Australia
Pietro Cerone Sam Houston State University, USA
Scott Chapman University of South Carolina, USA
Joshua N. Cooper University of Colorado, USA
Jem N. Corcoran Howard University, USA
Toka Diagana Brigham Young University, USA
Michael Dorff Victoria University, Australia
Sever S. Dragomir The Petroleum Institute, UAE
Behrouz Emamizadeh SUNY Potsdam, USA
Joel Foisy Wake Forest University, USA
Errin W. Fulp University of Minnesota Duluth, USA
Joseph Gallian Pomona College, USA
Stephan R. Garcia East Tennessee State University, USA
Ron Gould Emory University, USA
Andrew Granville Université Montréal, Canada
Jerrold Griggs University of South Carolina, USA
Sat Gupta U of North Carolina, Greensboro, USA
Jim Haglund University of Pennsylvania, USA
Johnny Henderson Baylor University, USA
Jim Hoste Pitzer College, USA
Natalia Hritonenko Prairie View A&M University, USA
Glenn H. Hurlbert Arizona State University, USA
Charles R. Johnson College of William and Mary, USA
K. B. Kulasekera Clemson University, USA
Gerry Ladas University of Rhode Island, USA
Suzanne Lenhart University of Tennessee, USA
Chi-Kwong Li College of William and Mary, USA
Robert B. Lund Clemson University, USA
Gaven J. Martin Massey University, New Zealand
Mary Meyer Colorado State University, USA
Emil Minchev Ruse, Bulgaria
Frank Morgan Williams College, USA
Mohammad Sal Moslehian Ferdowsi University of Mashhad, Iran
Zuhair Nashed University of Central Florida, USA
Ken Ono Emory University, USA
Timothy E. O'Brien Loyola University Chicago, USA
Joseph O'Rourke Smith College, USA
Yuval Peres Microsoft Research, USA
Y.-F. S. Pétermann Université de Genève, Switzerland
Robert J. Plemmons Wake Forest University, USA
Carl B. Pomerance Dartmouth College, USA
Vadim Ponomarenko San Diego State University, USA
Bjorn Poonen UC Berkeley, USA
James Propp U Mass Lowell, USA
Józeph H. Przytycki George Washington University, USA
Richard Rebarber University of Nebraska, USA
Robert W. Robinson University of Georgia, USA
Filip Saidak U of North Carolina, Greensboro, USA
James A. Sellers Penn State University, USA
Andrew J. Sterge Honorary Editor
Ann Trenk Wellesley College, USA
Ravi Vakil Stanford University, USA
Antonia Vecchio Consiglio Nazionale delle Ricerche, Italy
Ram U. Verma University of Toledo, USA
John C. Wierman Johns Hopkins University, USA
Michael E. Zieve University of Michigan, USA

PRODUCTION
Silvio Levy, Scientific Editor

Cover: Alex Scorpan

See inside back cover or msp.org/involve for submission instructions. The subscription price for 2017 is US $175/year for the electronic version, and $235/year (+$35, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to MSP.

Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall #3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFlow® from Mathematical Sciences Publishers.

PUBLISHED BY

Mathematical Sciences Publishers

nonprofit scientific publishing

http://msp.org/

© 2017 Mathematical Sciences Publishers
Stability analysis for numerical methods applied to an inner ear model
Kimberley Lindenberg, Kees Vuik and Pieter W. J. van Hengel

Three approaches to a bracket polynomial for singular links
Carmen Caprau, Alex Chichester and Patrick Chu

Symplectic embeddings of four-dimensional ellipsoids into polydiscs
Madeleine Burkhart, Priera Panescu and Max Timmons

Characterizations of the round two-dimensional sphere in terms of closed geodesics
Lee Kennard and Jordan Rainone

A necessary and sufficient condition for coincidence with the weak topology
Joseph Clanin and Kristopher Lee

Peak sets of classical Coxeter groups
Alexander Diaz-Lopez, Pamela E. Harris, Erik Insko and Darleen Perez-Lavin

Fox coloring and the minimum number of colors
Mohamed Elhamdadi and Jeremy Kerr

Combinatorial curve neighborhoods for the affine flag manifold of type A^1_1
Leonardo C. Mihalcea and Trevor Norton

Total variation based denoising methods for speckle noise images
Arundhati Bagchi Misra, Ethan Lockhart and Hyeona Lim

A new look at Apollonian circle packings
Isabel Corona, Carolynn Johnson, Lon Mitchell and Dylan O’Connell