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We give explicit formulas for matrix coefficients of the depth-zero supercuspidal
representations of GL(2) over a nonarchimedean local field, highlighting the case
where the test vector is a unit new vector. We also describe the partition of the
set of such representations according to central character, and compute sums of
matrix coefficients over all representations in a given class.

Introduction

Let F be a nonarchimedean local field with integer ring o, maximal ideal p=$o,
and residue field k = o/p of cardinality q. The supercuspidal representations of
GL2(F) are precisely those irreducible admissible representations which do not
arise as constituents of parabolic induction. They are characterized by having matrix
coefficients which are compactly supported modulo the center.

In this paper we explicitly compute the matrix coefficients of depth-zero super-
cuspidal representations. These are the supercuspidals with the smallest possible
conductor exponent, namely 2. First discovered by Mautner [1964, Section 9], they
arise by compact induction from the (q−1)-dimensional representations of GL2(o)

inflated from the cuspidal series of the finite group GL2(k).
In the first section, we show that the matrix coefficients of any supercuspidal

representation are expressible in terms of those of the finite-dimensional inducing
representation. Thus, the task at hand essentially reduces to a computation of the
matrix coefficients of the cuspidal representations of GL2(k). The latter is achieved
in Theorem 2.7 using the explicit model from [Piatetski-Shapiro 1983].

With global applications in mind, in Section 3 we single out the case where
the test vector in the supercuspidal matrix coefficient is a unit new vector. The
resulting function, given in (3-6) and Theorem 3.2, may be used to define an integral
operator on the global automorphic spectrum of GL2 which isolates those cuspidal
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newforms with depth-zero supercuspidal local type (see Section 3.4). Possible
applications include various trace formulas involving newforms of level p2 which
are supercuspidal (as opposed to principal series or special) at p. For a recent
example involving the supercuspidal representations of conductor p3, see [Knightly
and Li 2012].

It is often desirable to organize representations according to central character.
For example, there are exactly 2(q − 1) supercuspidal representations of GL2(F)
of conductor p3 with a given central character (see [Bushnell and Henniart 2014,
Remark 2.2]). By contrast, there are (q/2)(q − 1) distinct cuspidal representations
of GL2(k) and (q − 1) possible central characters, but obviously there cannot be
q/2 of each kind if q is odd. We sort this out in Proposition 2.3, and use it to give a
formula (4-1) for the number of supercuspidals of conductor p2 with a given central
character. It depends on the parity of q and the order of the central character. We
then give formulas for various sums of matrix coefficients over the set of depth-zero
supercuspidal representations with a given central character. These computations
rely on sum formulas for primitive characters, derived in Proposition 2.4. We close
in the final section with some simple examples.

1. Matrix coefficients of supercuspidal representations

In this section let G =GLn(F), or more generally, any unimodular locally profinite
group [Bushnell and Henniart 2006] with center Z . Let H⊂G be an open and closed
subgroup containing Z with H/Z compact, and let (ρ, V ) be an irreducible smooth
representation of H . Consider the compact induction π = c-IndG

H (ρ). It consists
of the functions φ : G −→ V with compact support (mod Z ) for which φ(hg)=
ρ(h)φ(g) for all h ∈ H, g ∈ G, with G acting on the space by right translation.
Here we show that, as observed by Mautner [1964], the matrix coefficients of π are
essentially those of ρ. These matrix coefficients are compactly supported (modulo
Z ), so if π is irreducible and admissible, it is supercuspidal. Conversely, it is
conjectured that all supercuspidal representations arise in this way. This was proven
by Bushnell and Kutzko [1993] for G = GLn(F), and more recently in great (but
not complete) generality in [Stevens 2008; Kim 2007].

We assume for simplicity that ρ has unitary central character, so that by the fact
that H/Z is compact, ρ is unitarizable. Let 〈v,w〉V denote an H -equivariant inner
product on V . Then the inner product on c-IndG

H (ρ) given by

〈φ,ψ〉 =
∑

x∈H\G

〈
φ(x), ψ(x)

〉
V

is convergent (in fact a finite sum) and well-defined. Further, for any g ∈ G,〈
π(g)φ, π(g)ψ

〉
=

∑
x∈H\G

〈
φ(xg), ψ(xg)

〉
V =

∑
x∈H\G

〈
φ(x), ψ(x)

〉
V = 〈φ,ψ〉.
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Thus π is unitary relative to this inner product.
For v ∈ V and y ∈ G, define a function fy,v ∈ c-IndG

H (ρ) by

fy,v(g)=
{
ρ(h)v if g = hy ∈ H y,
0 if g /∈ H y.

Then the set
{

fy,v | y ∈ H\G, v ∈ V
}

spans the space c-IndG
H (ρ). (Note that

fhy,v = fy,ρ(h−1)v.)

Proposition 1.1. For y, z ∈ G and v,w ∈ V ,〈
π(g) fy,v, fz,w

〉
=

{〈
ρ(h)v,w

〉
V if g = z−1hy ∈ z−1 H y,

0 if g /∈ z−1 H y.

Proof. By definition of the inner product,

〈π(g) fy,v, fz,w〉 =
∑

x∈H\G

〈
π(g) fy,v(x), fz,w(x)

〉
V

=

∑
x∈H\G

〈
fy,v(xg), fz,w(x)

〉
V

=
〈
fy,v(zg), w

〉
V ,

since fz,w(x) vanishes unless x ∈ H z. If g = z−1hy ∈ z−1 H y, then the above is
equal to 〈

fy,v(hy), w
〉
V =

〈
ρ(h)v,w

〉
V ,

as needed. If g /∈ z−1 H y, then zg /∈ H y, so fy,v(zg) = 0 and the inner product
vanishes. �

If we let G=G/Z , then the formal degree dπ of π is a positive constant satisfying∫
G

∣∣〈π(g) f, f
〉∣∣2dg =

‖ f ‖4

dπ
(1-1)

for all f ∈ c-IndG
H (ρ). It depends on the choice of Haar measure on G. (The

existence of dπ is due to Godement; see, for example, [Knightly and Li 2006,
Proposition 10.4].)

Proposition 1.2. For any choice of Haar measure on G = G/Z , the associated
formal degree of π is given by

dπ =
dim ρ

meas(H)
,

where H is the (open) image of H in G.
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Proof. Let v ∈ V be a unit vector, and consider the function f1,v . By Proposition 1.1,〈
π(g) f1,v, f1,v

〉
=

{〈
ρ(g)v, v

〉
V if g ∈ H,

0 if g /∈ H.

Therefore, ∫
G

∣∣〈π(g) f1,v, f1,v
〉∣∣2 dg =

∫
H

∣∣〈ρ(g)v, v〉V ∣∣2 dg

=
‖v‖4

dim(ρ)
meas(H)=

meas(H)
dim(ρ)

,

by the Schur orthogonality relations for irreducible representations of compact
groups. By (1-1),

meas(H)
dim(ρ)

=
‖ f1,v‖

4

dπ
.

Therefore, it suffices to show that ‖ f1,v‖ = 1. This can be done via a direct
computation:

‖ f1,v‖
2
= 〈 f1,v, f1,v〉 =

∑
x∈H\G

〈
f1,v(x), f1,v(x)

〉
V

=
〈
f1,v(1), f1,v(1)

〉
V = 〈v, v〉 = 1,

as needed. �

2. Cuspidal representations of GL2(k)

Let q be a prime power, let k be the finite field with q elements, let L be the unique
quadratic extension of k, and let G = GL2(k). Define the subgroups

U =
{(

1 b
0 1

)
∈ G

}
, Z =

{( a
a
)
∈ G

}
, B =

{(
a b
0 d

)
∈ G

}
.

Note that Z is the center of G. Recall that the cuspidal representations of G are
those that do not contain the trivial character of the unipotent subgroup U . These
are precisely the irreducible representations that do not arise via parabolic induction.
They have dimension q−1, and are parametrized by the Galois orbits of the primitive
characters of L∗, defined below.

2.1. Primitive characters of L∗. For any finite abelian group H , we write Ĥ for
the dual group, consisting of the characters χ : H −→ C∗. We recall that

H ∼= Ĥ .

Thus L̂∗ is a cyclic group of order q2
−1. A character ν ∈ L̂∗ is primitive if νq

6= ν.
Otherwise, ν is imprimitive. Letting ᾱ = αq denote the Frobenius map, the norm
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map N : L −→ k is given by

N (α)= αᾱ = αq+1.

Proposition 2.1. Let ν : L∗→ C∗ be a character of L∗. Then the following are
equivalent:

(i) ν is imprimitive; that is, νq
= ν.

(ii) ν = χ ◦ N for some χ ∈ k̂∗.

(iii) L1
⊂ ker(ν), where L1 is the subgroup of norm 1 elements of L∗.

Proof. Let θ be a generator of the cyclic group L∗. Then θq+1 is a generator of k∗.
If νq

= ν, then ν(θ) is a (q − 1)-st root of unity, so we may define χ ∈ k̂∗ by
χ(θq+1)= ν(θ). Then ν = χ ◦ N , so (i) implies (ii). It is clear that (ii) implies (iii).
On the other hand, for any x ∈ L∗, N (xq−1) = N (x)q−1

= 1, so that xq−1
∈ L1.

Therefore if (iii) holds, νq(x)= ν(xq)= ν(xq−1x)= ν(xq−1)ν(x)= ν(x). Hence
(iii) implies (i). �

The imprimitive characters thus correspond bijectively with the characters of k∗,
so there are q − 1 of them. It follows that there are (q2

− 1)− (q − 1) = q2
− q

primitive characters of L∗.

Lemma 2.2. Let ν be a primitive character of L∗. Then, for all α ∈ k∗,∑
x∈L∗

N (x)=α

ν(x)= 0.

Proof. By Proposition 2.1, there exists λ ∈ L1 such that ν(λ) 6= 1. Thus,∑
N (x)=α

ν(x)=
∑

N (x)=α

ν(λx)= ν(λ)
∑

N (x)=α

ν(x).

It follows that
∑

N (x)=α
ν(x)= 0. �

Next, we examine the partition of primitive characters into classes according
to their restrictions to k∗. This will allow us to count the number of depth-zero
supercuspidal representations with a given central character (see (4-1)).

Proposition 2.3. Suppose ω is a given character of k∗. Let Pω denote the number
of primitive characters ν of L∗ for which ν|k∗ = ω. Then

Pω =


q − 1 if q is odd and ω(q−1)/2 is trivial,
q + 1 if q is odd and ω(q−1)/2 is nontrivial,
q if q is even.
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Proof. Let ξ be a generator of the cyclic group L̂∗. Let ν0 = ξ
q−1. Note that for

α ∈ k∗,
ν0(α)= ξ(α

q−1)= ξ(1)= 1.

In fact, ν0 is a generator of the order q + 1 subgroup L̂∗/k∗ of L̂∗. Let us consider
two characters of L∗ to be equivalent if they have the same restriction to k∗. Then
the equivalence class of a given character ν is the set{

ν, νν0, νν
2
0 , . . . , νν

q
0

}
. (2-1)

If ω= ν|k∗ , then Pω = q+1− Aω, where Aω is the number of imprimitive elements
of the above set. Write ν = ξ b. Without loss of generality (replacing ν by some
ννm

0 ), we may assume that 0≤ b< q−1. A character ξa is imprimitive if and only
if ξqa

= ξa , or equivalently, (q + 1) | a. Suppose ννs
0 and ννk

0 are both imprimitive
for 0≤ s ≤ k ≤ q . Then b+ (q − 1)s and b+ (q − 1)k are both divisible by q + 1
and strictly less than q2

− 1. Their difference (k − s)(q − 1) ≥ 0 also has these
properties, and furthermore it is divisible by

lcm(q − 1, q + 1)=
{
(q2
− 1)/2 if q is odd,

q2
− 1 if q is even.

It follows that k− s = 0 if q is even, and k− s ∈ {0, (q + 1)/2} if q is odd. This
means that Aω ≤ 1 if q is even, and Aω ≤ 2 if q is odd.

Suppose q is odd and b is even. Then there are two imprimitive elements, namely

b+ 1
2 b(q − 1)= 1

2 b(q + 1), (2-2)

giving ννb/2
0 = ξ

b/2
◦ N , and

b+
b+ q + 1

2
(q − 1)=

b+ q − 1
2

(q + 1), (2-3)

giving νν(b+q+1)/2
0 = ξ (b+q−1)/2

◦ N . Hence Aω = 2 in this case. Noting that b
is even if and only if ω(q−1)/2

= 1, we obtain the first claim of the proposition:
Pω = q + 1− Aω = q − 1.

Suppose q is odd and b is odd. Then for all k, b+ k(q − 1) is odd, and hence it
cannot be divisible by the even number q+1. So Aω = 0, and Pω = q+1, proving
the second claim of the proposition.

If q is even, then as shown above, Aω ≤ 1. If b is even then (2-2) is a solution,
and if b is odd, (2-3) is a solution. Either way, this shows that Aω ≥ 1, and hence
Aω = 1, proving the final claim that Pω = q + 1− Aω = q when q is even. �

The character sums in the next proposition will be used in Section 4 when we
sum matrix coefficients over all representations with a given central character.
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Proposition 2.4. Let ω be a character of k∗, and let [ω] denote the set of primitive
characters of L∗ extending ω.

Suppose q is odd and ω(q−1)/2 is nontrivial. Then for α ∈ L∗,∑
ν∈[ω]

ν(α)=

{
(q + 1)ω(α) if α ∈ k∗,
0 if α /∈ k∗.

(2-4)

Suppose q is odd and ω(q−1)/2 is trivial. Then for α ∈ L∗,

∑
ν∈[ω]

ν(α)=


(q − 1)ω(α) if α ∈ k∗,
−2ω(α(q+1)/2) if α /∈ k∗, α(q

2
−1)/2
= 1,

0 if α(q
2
−1)/2
=−1.

(2-5)

(Note that necessarily α /∈ k∗ if α(q
2
−1)/2
6= 1.)

Suppose q is even. Then for α ∈ L∗,∑
ν∈[ω]

ν(α)=

{
qω(α) if α ∈ k∗,
−ω(N (α)1/2) if α /∈ k∗.

(2-6)

Here, we note that the square root is unique in k∗, since the square function is a
bijection when q is even.

Proof. If α ∈ k∗, then the sum is equal to Pωω(α) and the assertions follow from
the previous proposition. So we may assume that α /∈ k∗. We use the notation from
the previous proof. Suppose q is odd and ω(q−1)/2 is nontrivial. By the proof of the
previous proposition, ∑

ν∈[ω]

ν(α)= ν(α)

q∑
m=0

νm
0 (α),

where on the right-hand side ν is any fixed element of [ω]. Noting that
q∑

m=0

νm
0 (α)=

∑
χ∈L̂∗/k∗

χ(α)=

{
q + 1 if α ∈ k∗,
0 if α /∈ k∗,

(2-7)

(2-4) follows.
Now suppose q is odd and ω(q−1)/2 is trivial. By the proof of the previous

proposition,∑
ν∈[ω]

ν(α)= ξ b(α)

( q∑
m=0

νm
0 (α)− ν0(α)

b/2
− ν0(α)

(b+q+1)/2
)
.

Since α /∈ k∗, by (2-7) this is equal to

−ξ b(α)
[
ν0(α)

b/2
+ ν0(α)

b/2ν0(α)
(q+1)/2].
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Recalling that ν0 = ξ
q−1 and writing ξ b

= ν, this is

=−ν
(
α1+((q−1)/2))[1+ ξ(α(q2

−1)/2)]
=−ν

(
α(q+1)/2)[1+ ξ(α(q2

−1)/2)
]
. (2-8)

Observe that α(q
2
−1)/2

= ±1 since its square is 1. If it is equal to +1, then
α(q+1)/2

∈ k∗ since its (q− 1)-st power is 1, and we immediately obtain the middle
line of (2-5). Otherwise ξ

(
α(q

2
−1)/2

)
= ξ(−1)=−1 and (2-8) vanishes.

When q is even, there exists a choice of ξ for which ω = ξ b with b even. Then
using (2-2), we find that when α /∈ k∗,∑

ν∈[ω]

ν(α)=−ξ b/2(N (α))=−ω
(
N (α)1/2

)
. �

2.2. Model for cuspidal representations. There are various ways to construct the
cuspidal representation ρν attached to a primitive character ν. The action of L∗ on
the k-vector space L ∼= k2 by multiplication gives an identification

L∗ ∼= T (2-9)

of L∗ with a nonsplit torus T ⊂ G, with k∗ ⊂ L∗ mapping onto Z ⊂ T . The
characteristic polynomial of an element g ∈ G is irreducible over k if and only if g
is conjugate to an element of T − Z .

Fix a nontrivial character of the additive group

ψ : k −→ C∗,

viewed in the obvious way as a character of U . Then one may define ρν implicitly
by

IndG
ZU (ν⊗ψ)= ρν ⊕ IndG

T ν; (2-10)

see [Bushnell and Henniart 2006, Theorem 6.4]. Although (2-10) allows for com-
putation of the trace of ρν (see (2-20) below), it is not convenient for computing the
matrix coefficients. For this purpose we shall use the explicit model for ρν defined
in [Piatetski-Shapiro 1983, Section 13] as follows.1

Given a primitive character ν of L∗ and ψ as above, let

V = C[k∗]

1There is a minus sign missing from the definition of j (x) in Equation (4) of Section 13 of
[Piatetski-Shapiro 1983] (otherwise his identity (6) will not hold). Likewise a minus sign is missing
from (16) on page 40. The expression four lines above (16) is correct (except K should be K ∗).
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be the vector space of functions f : k∗→ C. We define a representation ρν of G
on V as follows. For any

(
a b
0 d

)
∈ B, f ∈ V , let[

ρν

(
a b
0 d

)
f

]
(x)= ν(d)ψ(bd−1x) f (ad−1x) (x ∈ k∗), (2-11)

and for g ∈ G− B, define

(ρν(g) f )(x)=
∑
y∈k∗

φ(x, y; g) f (y) (x ∈ k∗), (2-12)

where, for g =
(

a b
c d

)
∈ G− B,

φ(x, y; g)=−
1
q
ψ

[
ax + dy

c

] ∑
t∈L∗

N (t)=xy−1 det g

ψ

(
−

y
c
(t + t̄ )

)
ν(t). (2-13)

Theorem 2.5. If ν is a primitive character of L∗, (2-11) and (2-12) give a well-
defined representation (ρν, V ) which is cuspidal. Furthermore, every cuspidal
representation is isomorphic to some ρν , and ρν ∼= ρν′ if and only if ν ′ ∈ {ν, νq

}. In
particular, there are (q2

− q)/2 distinct cuspidal representations.

Proof. See [Piatetski-Shapiro 1983, Section 13–14], where it is assumed that q > 2
throughout. When q = 2, G is isomorphic to the symmetric group S3. The unique
cuspidal representation is the character sending each permutation to its sign. It is
readily checked that the above construction defines this character as well, so the
theorem remains valid when q = 2. �

Define an inner product on V by

〈 f1, f2〉 =
∑
x∈k∗

f1(x) f2(x). (2-14)

We will work with the orthonormal basis

B= { fr }r∈k∗ for fr (x)=
{

1 if x = r,
0 if x 6= r.

Proposition 2.6. Let ν be a primitive character of L∗, and let ρν be the associated
cuspidal representation of G. Then ρν is unitary with respect to the inner product
(2-14).

Proof. By linearity, it suffices to prove that for all fr , fs ∈B and g ∈ G,

〈ρν(g) fr , ρν(g) fs〉 = 〈 fr , fs〉. (2-15)

By the Bruhat decomposition G = B ∪ Bw′U for w′ =
(

1
−1

)
and the fact that ρν

is a homomorphism, we only need to consider g ∈ B and g = w′.
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Suppose first that g =
(

a b
0 d

)
∈ B. Then by (2-11),〈

ρν(g) fr , ρν(g) fs
〉
=

∑
x∈k∗

ν(d)ψ(bd−1x) fr (ad−1x)ν(d)ψ(bd−1x) fs(ad−1x).

Using the fact that ν and ψ are unitary, and replacing x by a−1 dx , we see that this
expression equals ∑

x∈k∗
fr (x) fs(x)= 〈 fr , fs〉,

as needed.
It remains to prove (2-15) for g = w′ =

( 0 1
−1 0

)
. By (2-12),

ρν(w
′) f (x)

=

∑
y∈k∗

φ(x, y;w′) f (y)=−1
q

∑
y∈k∗

∑
t∈L∗

N (t)=xy−1

ψ(y(t + t̄))ν(t) f (y)

=−
1
q

∑
y∈k∗

∑
u∈L∗

N (u)=xy

ψ(u+ ū)ν(u)ν(y−1) f (y)=
∑
y∈k∗

ν(y−1) j (xy) f (y),

where
j (t)=−1

q

∑
u∈L∗

N (u)=t

ψ(u+ ū)ν(u). (2-16)

Hence

ρν(w
′) fr (x)=

∑
y∈k∗

ν(y−1) j (xy) fr (y)= ν(r−1) j (r x).

We now see that

〈ρν(w
′) fr , ρν(w

′) fs〉 =
∑
x∈k∗

ν(r−1) j (r x)ν(s−1) j (sx)= ν(sr−1)
∑
x∈k∗

j (r x) j (sx)

= ν(sr−1)
∑
x∈k∗

j (rs−1x) j (x).

Taking r ′ = rs−1, it suffices to prove that∑
x∈k∗

j (r ′x) j (x)=
{

0 if r ′ 6= 1,
1 if r ′ = 1.

(2-17)

From the definition (2-16), we have∑
x∈k∗

j (r ′x) j (x)= 1
q2

∑
x∈k∗

∑
N (α)=r ′x

∑
N (β)=x

ψ(α+ ᾱ)ν(α)ψ(−β − β̄)ν(β−1)

=
1
q2

∑
β∈L∗

∑
N (α)=r ′N (β)

ψ(α+ ᾱ−β − β̄)ν(αβ−1).
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Since the norm map is surjective, there exists z ∈ L∗ such that N (z) = r ′. Then
α = zβu for some u ∈ L1. This allows us to rewrite the above sum as∑

x∈k∗
j (r ′x) j (x)=

1
q2

∑
β∈L∗

∑
u∈L1

ψ
(
zβu+ zβu−β − β̄

)
ν(zu)

=
ν(z)
q2

∑
u∈L1

ν(u)
∑
β∈L∗

ψ
(
tr[(zu− 1)β]

)
. (2-18)

Generally, for c ∈ L , the map R(β) = ψ(tr[cβ]) is a homomorphism from L to
C∗. If c 6= 0, then R is nontrivial since the trace map from L to k is surjective. It
follows that ∑

β∈L∗
ψ
(
tr[cβ]

)
=

{
−1 if c 6= 0,
q2
− 1 if c = 0.

(2-19)

Suppose r ′ 6= 1. Then N (zu)= N (z)= r ′ 6= 1, so in particular zu 6= 1. Therefore
(2-18) becomes ∑

x∈k∗
j (r ′x) j (x)=−

ν(z)
q2

∑
u∈L1

ν(u)= 0,

where we have used the fact (Proposition 2.1) that ν is a nontrivial character of L1

since ν is primitive.
Now suppose r ′ = 1. Then we can take z = 1, so by (2-18) and (2-19),∑

x∈k∗
j (x) j (x)=

1
q2

∑
u∈L1

ν(u)
∑
β∈L∗

ψ
(
tr[(u− 1)β]

)
=

q2
− 1

q2 −
1
q2

∑
u∈L1

u 6=1

ν(u)=
(

1−
1
q2

)
+

1
q2 = 1,

since
∑

u∈L1

u 6=1

ν(u)=−1, again because ν is nontrivial on L1. This proves (2-17). �

2.3. Matrix coefficients of cuspidal representations. Let ν be a primitive charac-
ter of L∗. Using (2-10), one finds that

tr ρν(x)=


(q − 1)ν(x) if x ∈ Z ,
−ν(z) if x = zu, z ∈ Z , u ∈U, u 6= 1,
−ν(x)− νq(x) if x ∈ T, x /∈ Z ,
0 if no conjugate of x is in T ∪ ZU

(2-20)

(see [Bushnell and Henniart 2006, (6.4.1)]). This is a sum of matrix coefficients.
For the coefficients themselves, we use the model given in the previous section to
prove the following (which can also be used to derive (2-20)).
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Theorem 2.7. Let g=
(

a b
c d

)
∈G and fr , fs ∈B. Let ρν be a cuspidal representation

of G. If g ∈ B, then〈
ρν(g) fr , fs

〉
=

{
ν(d)ψ(bd−1s) if r = ad−1s,
0 if r 6= ad−1s.

If g /∈ B, then 〈
ρν(g) fr , fs

〉
= φ(s, r; g),

where φ is defined in (2-13).

Proof. First suppose g ∈ B (i.e., c = 0). Then〈
ρν(g) fr , fs

〉
=

∑
x∈k∗

[
ρν(g) fr

]
(x) fs(x)=

[
ρν(g) fr

]
(s)

= ν(d)ψ(bd−1s) fr (ad−1s)=
{
ν(d)ψ(bd−1s) if r = ad−1s,
0 if r 6= ad−1s.

Now, suppose g /∈ B. Then[
ρν(g) fr

]
(x)=

∑
y∈k∗

φ(x, y; g) fr (y)= φ(x, r; g).

Therefore

〈ρν fr , fs〉 =
∑
x∈k∗

[
ρν(g) fr

]
(x) fs(x)=

[
ρν(g) fr

]
(s)= φ(s, r; g),

as needed. �

3. Depth-zero supercuspidal representations of GL2(F)

We move now to the p-adic setting. When no field is specified, G, Z , B,U , etc.,
will henceforth denote the corresponding subgroups of GL2(F) rather than GL2(k).
Fix a primitive character ν, and let ρν be the associated cuspidal representation of
GL2(k). We view ρν as a representation of K = GL2(o) via reduction modulo p:

K −→ GL2(k)−→ GL(V ).

The central character of this representation is given by z 7→ ν(z(1+ p)) for z ∈ o∗.
Extend this character of o∗ to Z ∼= F∗=

⋃
n∈Z$

no∗ by choosing a complex number
ν($) of absolute value 1. We denote this character of F∗ by ν. This allows us to
view ρν as a unitary representation of the group ZK . Let

πν = c-IndGL2(F)
ZK (ρν)

be the representation of G compactly induced from ρν . This representation is
irreducible and supercuspidal (see, for example, [Bump 1997, Theorem 4.8.1]).
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3.1. Matrix coefficients. Define an inner product on c-IndG
ZK (ρν) by

〈 f1, f2〉 =
∑

x∈ZK\G

〈
f1(x), f2(x)

〉
V , (3-1)

where 〈 · , · 〉V denotes the inner product on V defined in (2-14). As in Section 1,
this inner product is G-equivariant.

The matrix coefficients of πν can now be computed explicitly by using Proposition
1.1 in conjunction with Theorem 2.7. Likewise, by Proposition 1.2, if we normalize
so that meas(K )= 1, then

dπν = dim ρν = q − 1. (3-2)

Define a function φν : G −→ C by

φν(x)=
{

tr ρν(x) if x ∈ ZK ,
0 otherwise.

(3-3)

Then this is a pseudocoefficient of πν in the sense that for any irreducible tempered
representation π of G with central character ω,

trπ(φν)=
{

1 if π ∼= πν,
0 otherwise

(see [Palm 2012, Section 9.4.1]). The function φν may be computed explicitly using
(2-20).

3.2. New vectors. For an integer n ≥ 0, define the congruence subgroup

K1(p
n)=

{(
a b
c d

)
∈ K | c, (d − 1) ∈ pn}.

If π is a representation of G, we let πK1(p
n) denote the space of vectors fixed by

K1(p
n). By a result of Casselman [1973], for any irreducible admissible repre-

sentation π of G, there exists a unique ideal pn (the conductor of π) for which
dimπK1(p

n)
= 1 and dimπK1(p

n−1)
= 0. A nonzero vector fixed by K1(p

n) is called
a new vector. The supercuspidal representations constructed above have conductor
p2. We shall give an elementary proof below, and exhibit a new vector. More
generally, the new vectors for depth-zero supercuspidal representations of GLn(F)
were identified by Reeder [1991, Example (2.3)].

Proposition 3.1. The supercuspidal representation πν defined above has conductor
p2. If we let w ∈ C[k∗] denote the constant function 1, that is,

w =
∑
r∈k∗

fr , (3-4)
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then the function f = f($
1

)
,w

supported on the coset

ZK
(
$ 0
0 1

)
= ZK

(
$ 0
0 1

)
K1(p

2),

and defined by

f
(

zk
(
$ 0
0 1

))
= ρν(zk)w,

is a new vector of πν .

Proof. To see that f is K1(p
2)-invariant, it suffices to show that

f
((

$
1
)
k
)
= w for all k ∈ K1(p

2).

Writing k =
(

a b
c d

)
with c ∈ p2 and d ∈ 1+ p2, we have

f

((
$

1

)
k

)
= f

((
$

1

)(
a b
c d

)(
$−1

1

)(
$

1

))

= ρν

((
a $b

$−1c d

))
w = ρν

((
a 0
0 1

))
w

=

∑
r∈k∗

ρν

((
a

1

))
fr =

∑
r∈k∗

fa−1r = w,

as needed. This shows that πK1(p
2)

ν 6= 0, so the conductor divides p2. There are
various ways to see that the conductor is exactly p2. When n>1, it is straightforward
to show that a continuous irreducible n-dimensional complex representation of
the Weil group of F has Artin conductor of exponent at least n (see, for example,
[Gross and Reeder 2010, Equation (1)]). So by the local Langlands correspondence,
the conductor of any supercuspidal representation of GLn(F) is divisible by pn ,
giving the desired conclusion here when n = 2. For an elementary proof in the
present situation, one can observe that a function f ∈ c-IndG

ZK (ρν) supported on a
coset ZK x is K1(p)-invariant if and only if ρν is trivial on K ∩ x K1(p)x−1. Using
the double coset decomposition

G =
⋃
n≥0

ZK
(
$ n

1

)
K =

⋃
n≥0

⋃
δ∈K/K1(p)

ZK
(
$ n

1

)
δK1(p)

(we may use the representatives δ ∈ {1} ∪
{( y 1

1 0

) ∣∣ y ∈ o/p
}
; see, for example,

[Knightly and Li 2006, Lemma 13.1]), it suffices to consider x =
(
$ n

1

)
δ, and one

checks that in each case ρν is not trivial on K ∩ x K1(p)x−1, so πK1(p)
ν = {0}. �



MATRIX COEFFICIENTS OF DEPTH ZERO SUPERCUSPIDALS 683

3.3. Matrix coefficient of the new vector. Generally, if π is a supercuspidal repre-
sentation with unit new vector v and formal degree dπ , the function

g 7→ dπ 〈π(g)v, v〉

can be used to define a projection operator onto Cv.
In the present context, if f is the new vector defined in Proposition 3.1, one finds

easily that ‖ f ‖2 = (q − 1), so with the standard normalization meas(K ) = 1, by
(3-2) we have

8ν(g)
def
= dπν

〈
πν(g)

f
‖ f ‖

,
f
‖ f ‖

〉
= 〈πν(g) f, f 〉. (3-5)

By Proposition 1.1,

Supp(8ν)=
(
$−1

1

)
ZK

(
$

1

)
,

and for g =
(
$−1

1

)
h
(
$

1
)
∈ Supp(8ν),

8ν(g)= 〈ρν(h)w,w〉V (3-6)

for w as in (3-4). This is computed as follows.

Theorem 3.2. Let h =
(

a b
c d

)
∈ G(k) = GL2(k), and let w ∈ V be the function

defined in (3-4). Then

〈ρν(h)w,w〉V =


(q − 1)ν(d) if b = c = 0,
−ν(d) if c = 0, b 6= 0,
−

∑
α∈L∗

α+ᾱ=
aN (α)
det h +d

ν(α) if c 6= 0.

Remark. The sum may be evaluated using Proposition 3.3 below.

Proof. To ease notation, we drop the subscript V from the inner product. Suppose
h =

(a
0

b
d

)
∈ B(k). Then applying Theorem 2.7,〈

ρν(h)w,w
〉
=

∑
r,s∈k∗

〈
ρν(h) fr , fs

〉
=

∑
s∈k∗

〈
ρν(h) fad−1s, fs

〉
= ν(d)

∑
s∈k∗

ψ(bd−1s).

This gives

〈ρν(h)w,w〉 =
{
(q − 1)ν(d) if b = 0,
−ν(d) if b 6= 0.
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Now suppose h =
(a

c
b
d

)
∈ G(k)− B(k). Then by Theorem 2.7,

〈ρν(h)w,w〉 =
∑

r,s∈k∗
φ(s, r; h)

=−
1
q

∑
r,s∈k∗

ψ
(
c−1(sa+ rd)

) ∑
α∈L∗

N (α)=sr−1 det h

ψ
(
−rc−1(α+ ᾱ)

)
ν(α).

Let l = sr−1, so s = rl. From the previous display we have

〈ρν(h)w,w〉 = −
1
q

∑
r∈k∗

∑
l∈k∗

ψ
(
c−1(rla+ rd)

) ∑
N (α)=l det h

ψ
(
−rc−1(α+ ᾱ)

)
ν(α)

=−
1
q

∑
l∈k∗

∑
N (α)=l det h

ν(α)
∑
r∈k∗

ψ
(
rc−1(al + d − (α+ ᾱ ))

)
=−

1
q

∑
l∈k∗

∑
N (α)=l det h

ν(α)
∑
r∈k∗

ψ
(
r(al + d − (α+ ᾱ))

)
.

There are two cases for the inner sum:∑
r∈k∗

ψ
(
r(al + d − (α+ ᾱ))

)
=

{
−1 if al + d − (α+ ᾱ) 6= 0,
q − 1 if al + d − (α+ ᾱ)= 0.

Therefore,〈
ρν(h)w,w

〉
=−

1
q

∑
l∈k∗

( ∑
N (α)=l det h
α+ᾱ 6=al+d

−ν(α)+
∑

N (α)=l det h
α+ᾱ=al+d

(q − 1)ν(α)
)

=−
1
q

∑
l∈k∗

(
−

∑
N (α)=l det h

ν(α)+ q
∑

N (α)=l det h
α+ᾱ=al+d

ν(α)

)
.

By Lemma 2.2, the first sum in the big parentheses vanishes. So〈
ρν(h)w,w

〉
=−

1
q

∑
l∈k∗

q
∑

N (α)=l det h
α+ᾱ=al+d

ν(α)=−
∑
α∈L∗

α+ᾱ=
aN (α)
det h +d

ν(α), (3-7)

as claimed. �

This sum can be refined as follows.

Proposition 3.3. For l ∈ k∗ and h =
(

a b
c d

)
∈ G(k) with c 6= 0, define

ph,l(X)= X2
−

(
al

det h
+ d

)
X + l ∈ k[X ]. (3-8)
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Then〈
ρν(h)w,w

〉
= −

∑
l∈k∗

ph,l (X) irred. over k

∑
rootsα of

ph,l (X) in L∗

ν(α) −
∑
l∈k∗

ph,l (X)=(X−α)2in k[X ]

ν(α). (3-9)

Proof. If α ∈ L∗ contributes to the sum (3-7), then it is a root of

X2
−

(
aN (α)
det h

+ d
)

X + N (α).

Conversely, given l ∈ k∗, a root αl of ph,l(X) contributes to (3-7) if and only if
ph,l(X)= (X−αl)(X− ᾱl) in L[X ], which is the case if and only if either ph,l(X)
is irreducible or ph,l(X)= (X−αl)

2 with αl ∈ k∗. The proposition now follows. �

3.4. Motivation. Although specific global applications of the above formulas are
beyond the scope of this article, perhaps a few words of motivation will be helpful.
The two functions φν and 8ν of (3-3) and (3-5) serve slightly different purposes.
The former is simpler and hence easier to work with. Taken as a local component of
a global test function, it is well suited for use in the Arthur–Selberg trace formula,
for example if one is interested in detecting those automorphic representations
π =

⊗
w πw of the adelic group GL2(AQ) with the local condition πw ∼= πν at a

given finite place w (e.g., to obtain a dimension formula for the associated space of
classical newforms). This method was treated in detail recently by Palm [2012]. On
the other hand, as mentioned in the Introduction, the matrix coefficient 8ν gives
rise to an operator projecting onto the span of the newforms attached to the global
representations π as above (see [Knightly and Li 2012, Section 2.5]). It can be used
in variants of the trace formula to extract finer information, like Fourier coefficients
or L-values of these newforms. Of course, the utility of 8ν in explicit computation
is limited by the complexity of the sum in Theorem 3.2.

4. Consideration of central character

The supercuspidal representations which have a given central character ω occur
naturally together as irreducible subrepresentations of the right regular representation
of G(F) on the space of L2 functions f :G(F)→C that transform under the center
by ω̄. It is often the case in number theory that one can achieve a certain amount
of simplification by simultaneously treating all objects in a family via averaging.
Here we sum the trace functions φν from (3-3) over all isomorphism classes of
depth-zero supercuspidal πν with a given central character, and similarly for the
new vector matrix coefficients 8ν of (3-5).

Let ω be a unitary character of F∗, and let Sω denote the set of isomorphism
classes of depth-zero supercuspidal representations of GL2(F)with central character
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ω. In order for Sω to be nonempty, ω must be trivial on 1+ p. In fact we have

|Sω| =
{

Pω/2 if ω |(1+p) = 1,
0 otherwise,

(4-1)

for Pω as in Proposition 2.3. (Note that ν and νq have the same restriction to k∗

and ρν ∼= ρνq .)
Assuming ω |(1+p) is trivial, consider the sum of the trace functions φν defined

in (3-3). In view of the fact that φν = φνq , we define

φω =
1
2

∑
ν∈[ω]

φν, (4-2)

with notation as in Proposition 2.4. We can make it explicit with the following.

Theorem 4.1. Suppose q is odd and ω(q−1)/2 is nontrivial. Then for x ∈ G(k),

∑
ν∈[ω]

tr ρν(x)=


(q2
− 1)ω(x) if x ∈ Z ,

−(q + 1)ω(z) if x = zu, z ∈ Z , u ∈U, u 6= 1,
0 if no conjugate of x is in ZU.

Suppose q is odd and ω(q−1)/2 is trivial. Then with T as in (2-9),

∑
ν∈[ω]

tr ρν(x)=



(q − 1)2ω(x) if x ∈ Z ,
−(q − 1)ω(z) if x = zu, z ∈ Z , u ∈U, u 6= 1,
4ω(x (q+1)/2) if x ∈ T − Z , x (q

2
−1)/2
= 1,

0 if x ∈ T − Z , x (q
2
−1)/2
=−1, or if

no conjugate of x is in T ∪ ZU.

Suppose q is even. Then

∑
ν∈[ω]

tr ρν(x)=


q(q − 1)ω(x) if x ∈ Z ,
−qω(z) if x = zu, z ∈ Z , u ∈U, u 6= 1,
2ω(N (x)1/2) if x ∈ T − Z ,
0 if no conjugate of x is in T ∪ ZU.

Proof. This follows immediately by examining the various cases using (2-20) and
Proposition 2.4. �

Likewise, for a depth-zero supercuspidal representation π = πν , let 8π =8ν be
the matrix coefficient defined in (3-5). Define a function 8ω on G by

8ω(g)=
∑
π∈Sω

8π (g)=
1
2

∑
ν∈[ω]

〈ρν(h)w,w〉V (4-3)

for g =
(
$−1

1

)
h
(
$

1
)

with h ∈ ZK . In principle, this function can be used to
define an operator that projects the automorphic spectrum of GL2(AQ) onto the span
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of those newforms of a given weight and level p2 that correspond to automorphic
representations which are unramified away from p and are supercuspidal (as opposed
to special or principal series) at p.

One can evaluate 8ω via the following.

Theorem 4.2. Suppose h =
( a

d
)
∈ G(k) is diagonal. Then

∑
ν∈[ω]

〈
ρν(h)w,w

〉
V =


(q2
− 1)ω(d) if q is odd and ω(q−1)/2 is nontrivial,

(q − 1)2ω(d) if q is odd and ω(q−1)/2 is trivial,
q(q − 1)ω(d) if q is even.

(4-4)

If h =
(

a b
0 d

)
∈ B(k) with b 6= 0, then

∑
ν∈[ω]

〈
ρν(h)w,w

〉
V =


−(q + 1)ω(d) if q is odd and ω(q−1)/2 is nontrivial,
−(q − 1)ω(d) if q is odd and ω(q−1)/2 is trivial,
−qω(d) if q is even.

(4-5)

If g ∈ G(k)− B(k), then the sum is given by (4-6) below.

Proof. Suppose h =
(

a 0
0 d

)
is diagonal. Then by Theorem 3.2, we can write∑

ν∈[ω]

〈ρν(h)w,w〉 = (q − 1)
∑
ν∈[ω]

ν(d).

Applying Proposition 2.4 now gives (4-4), using the fact that d ∈ k∗.
Similarly, if h =

(
a b
0 d

)
with b 6= 0, then applying Theorem 3.2,∑

ν∈[ω]

〈ρν(h)w,w〉 = −
∑
ν∈[ω]

ν(d).

Using Proposition 2.4, this gives (4-5).
Now suppose h =

(
a b
c d

)
∈ G(k)− B(k). By Proposition 3.3,∑

ν∈[ω]

〈ρν(h)w,w〉 = −
∑
l∈k∗

ph,l (X) irred.

∑
roots α of

ph,l (X) in L∗

∑
ν∈[ω]

ν(α) −
∑
l∈k∗

ph,l (X)=(X−α)2

∑
ν∈[ω]

ν(α),

where ph,l(X) = X2
−
(
(al/ det h)+ d

)
X + l ∈ k[X ]. If we fix one root αl ∈ L∗

of ph,l(X) for each l, then the above is

=−2
∑
l∈k∗

ph,l (X) irred.

∑
ν∈[ω]

ν(αl) − Pω
∑
l∈k∗

ph,l (X)=(X−αl )
2

ω(αl), (4-6)

where Pω =
∣∣[ω]∣∣ as in Proposition 2.3. We have used the fact that∑

ν∈[ω]

ν(αl)=
∑
ν∈[ω]

ν(ᾱl),
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since ν and νq both belong to [ω]. Once again, (4-6) can be evaluated on a case-by-
case basis using Proposition 2.4.

For instance, suppose q is odd. If ω(q−1)/2 is nontrivial, the first term of (4-6)
vanishes. If (al + d det h)= 0, then l makes no contribution to the second term. In
particular, the term vanishes if a = d = 0. Generally, at most two l contribute to
the second term when q is odd since 2αl = ((al/ det h)+ d) implies that l satisfies
the quadratic equation l = α2

l =
1
4

(
(al/ det h)+ d

)2.
On the other hand, if q is even, a given l ∈ k∗ contributes to the second term of

(4-6) if and only if (al + d det h)= 0 since (X −αl)
2
= X2

−α2
l , and as remarked

earlier every l is a square when q is even. �

5. Examples

Take q = 2. By (4-1), there is a unique supercuspidal representation π of GL2(Q2)

of conductor 22. As mentioned before, the cuspidal representation of GL2(F2)∼= S3

is the character ρ sending a matrix g to (−1)|g|+1, where |g| is the order of g
in the finite group. Explicitly, ρ sends

(
1 0
0 1

)
,
(

0 1
1 0

)
,
(

1 1
0 1

)
,
(

1 0
1 1

)
,
(

1 1
1 0

)
,
(

0 1
1 1

)
to

1,−1,−1,−1, 1, 1 respectively. This one-dimensional representation of course
coincides with its matrix coefficient:〈

ρ(h)w,w
〉
= ρ(h)〈w,w〉 = ρ(h).

Indeed, one may verify that Theorem 3.2 recovers ρ when q = 2. For example,
consider h=

(
0 1
1 1

)
. The polynomial (3-8) becomes ph,1(X)= X2

+X+1. If θ ∈ F∗4
is a root, then ν(θ)= exp(2π i/3) defines a primitive character. By (3-9),

ρ(h)=−
(
ν(θ)− ν(θ2)

)
= 1.

By (3-6), the matrix coefficient 8 attached to the new vector of π has the simple
expression

8(g)=
{
ρ(h) if g = z

(
2−1

1

)
h
(

2
1

)
∈ Z

(
2−1

1

)
K
(

2
1

)
,

0 otherwise.
(5-1)

Now consider k = F5 and L = F25. Then L = k[θ ], where θ2
= 2. One finds that

1+ 2θ generates the cyclic group L∗, so the characters of L∗ are the maps

νn(1+ 2θ)= ζ n (n ∈ Z/24Z),

where ζ = exp(2π i/24). Note that νn is primitive if and only if 6 - n. There are
exactly four characters of k∗, given by

ωn(3)= in (n ∈ Z/4Z).
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Noting that νn(3) = νn((1+ 2θ)6) = ζ 6n
= in , we see that νn|k∗ = ωn . So the

equivalence classes of primitive characters of L∗ are as follows:

[ω0] = {ν4, ν20, ν8, ν16}, [ω1] = {ν1, ν5, ν9, ν21, ν13, ν17},

[ω2] = {ν2, ν10, ν14, ν22}, [ω3] = {ν3, ν15, ν7, ν11, ν19, ν23},

where each primitive character is listed alongside its conjugate. The above illustrates
Proposition 2.3. As a simple illustration of Theorem 4.2, we now show that∑

ν∈[ω0]

〈
ρν

(( 0 1
−1 0

))
w,w

〉
= 0.

For h=
( 0 1
−1 0

)
the polynomial (3-8) becomes ph,l(X)= X2

+l. The second term in
(4-6) vanishes. Thus an element l ∈ k∗ contributes to (4-6) only if −l is a quadratic
nonresidue in k. The roots of X2

+ 2 are

α2 = (1+ 2θ)3 and ᾱ2 = (1+ 2θ)15.

The roots of X2
+ 3 are

α3 = θ = (1+ 2θ)9 and θ = (1+ 2θ)21.

For any ν ∈ [ω0], ν(α j ) is a power of ζ 12
=−1 when 4|n. Hence ν5(α j )= ν(α j ).

Thus in this case (4-6) equals

−2
[
2ν4(α2)+ 2ν8(α2)+ 2ν4(α3)+ 2ν8(α3)

]
=−4[−1+ 1− 1+ 1] = 0.
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