\bullet
 involve a journal of mathematics

An orbit Cartan type decomposition of the inertia space of $\mathrm{SO}(2 m)$ acting on $\mathbb{R}^{2 m}$

Christopher Seaton and John Wells

An orbit Cartan type decomposition of the inertia space of $\mathrm{SO}(2 m)$ acting on $\mathbb{R}^{2 m}$

Christopher Seaton and John Wells

(Communicated by Michael Dorff)

Abstract

We study the inertia space of $\mathbb{R}^{2 m}$ with the standard action of the special orthogonal group $\mathrm{SO}(2 m)$. In particular, we indicate a decomposition of the inertia space that induces the orbit Cartan type stratification of the inertia space recently defined by C. Farsi, M. Pflaum, and the first author for an arbitrary smooth G-manifold where G is a compact Lie group.

1. Introduction

Let G be a compact Lie group, let M be a smooth, left G-manifold, and let $X=G \backslash M$ denote the orbit space of M. The inertia space ΛX is a topological space given by a subquotient of $G \times M$ under the diagonal G-action, where G acts by conjugation on the first factor. In [Farsi et al. 2012], an explicit Whitney stratification of the inertia space is presented, called the orbit Cartan type stratification, giving the inertia space the structure of a differentiable stratified space. This structure coincides with the notion of a stratified space with smooth structure - see [Pflaum 2001] and simultaneously a differentiable space in the sense of [Navarro González and Sancho de Salas 2003]. In the case that G acts locally freely, so that $G \backslash M$ is an orbifold, the inertia space has played a major role in the study of the geometry of orbifolds; see [Adem et al. 2007], for instance. In general, the inertia space has appeared in connection with equivariant homology theories in noncommutative geometry [Brylinski 1987].

Recall that a decomposition of a topological space X is a locally finite partition of X into locally closed, smooth manifolds, called pieces, such that the frontier condition is satisfied: if $R \cap \bar{S} \neq \varnothing$ for pieces R and S, then $R \subseteq \bar{S}$. A stratification of X is an equivalence class of essentially identical decompositions, defined by assigning to each point $x \in X$ the germ at x of the piece containing x in a decomposition of a neighborhood of x. A decomposition of X induces a stratification

[^0]if the germ assigned to x by the stratification coincides with the germ at x of the piece of the decomposition containing x. See [Pflaum 2001] for background on decomposed and stratified spaces.

In this note, we determine a decomposition of the inertia space for the standard action of the even special orthogonal group $\mathrm{SO}(2 m)$ on $\mathbb{R}^{2 m}$ that induces the orbit Cartan type stratification. Our goal is to illustrate the computability of the stratification and to develop a large class of examples through which to better understand its properties.

The outline of this paper is as follows. In Section 2, we recall the definition of the inertia space and the orbit Cartan type stratification, and discuss facts about $\mathrm{SO}(2 m)$ that we will need. In Section 3, we define the decomposition and prove that it has the required properties, recalling necessary information about the centralizers of elements of the standard maximal torus in $\mathrm{SO}(2 m)$. We prove Theorem 3.2 by verifying the decomposition of the inertia space as well as its relationship to the stratification.

2. Background

In this section, we recall the orbit Cartan type stratification of the inertia space and collect the results we will need in the sequel. We use R_{θ} to indicate the 2×2 matrix

$$
R_{\theta}=\left[\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

that acts (on the left) on \mathbb{R}^{2} as a rotation through the angle θ. We say a value of θ is generic if θ is not congruent to $0 \bmod 2 \pi$ or $\pi \bmod 2 \pi$. Additionally, we use $\operatorname{diag}\left(A_{1}, \ldots, A_{\ell}\right)$ to indicate the matrix in block form with diagonal blocks A_{1}, \ldots, A_{ℓ} and 0 elsewhere. We let I_{n} denote the $n \times n$ identity matrix, or simply I when the dimensions are clear from the context, and we let $\langle x\rangle$ denote the span of an element $x \in \mathbb{R}^{2 m}$.

The inertia space of a G-manifold and its stratification. We recall the following from [Farsi et al. 2012]. Note that $\mathrm{SO}(2 m)$ is connected, and with respect to the standard action of $\mathrm{SO}(2 m)$ on $\mathbb{R}^{2 m}$, the isotropy group of each point $x \in \mathrm{SO}(2 m)$ is connected. As this is our intended application, we specialize to this case for simplicity.

Let G be a compact, connected Lie group, let M be a smooth, left G-manifold, and let $X=G \backslash M$ denote the quotient space. The loop space ΛM of the G-manifold M is the set

$$
\Lambda M:=\{(h, x) \in G \times M \mid h x=x\} .
$$

The loop space ΛM is clearly invariant under the action of G on $G \times M$ given by

$$
g(h, x)=\left(g h g^{-1}, g x\right)
$$

and the inertia space ΛX is defined to be the quotient of the loop space under this action.

Now, assume the isotropy group of each $x \in M$ is connected, and let $(h, x) \in \Lambda M$. Let $H=G_{(h, x)}$ denote the isotropy group of (h, x) in G, which is given by the centralizer $Z_{G_{x}}(h)$ of h in the isotropy group G_{x} of x, and choose a linear slice $V_{(h, x)}$ at (h, x) for the G-action on $G \times M$. By a slice, we mean a submanifold $V_{(h, x)}$ of $G \times M$ transversal to the orbit of (h, x) and satisfying these properties:

- $V_{(h, x)}$ is closed in its orbit $G V_{(h, x)}$, which is an open neighborhood of (h, x) in $G \times M$.
- $H V_{(h, x)}=V_{(h, x)}$.
- $g V_{(h, x)} \cap V_{(h, x)} \neq \varnothing$ implies $g \in H$.

A linear slice is H-equivariantly diffeomorphic to an H-invariant neighborhood of the origin in the normal space $T_{(h, x)}(G \times M) / T_{(h, x)} G(h, x)$ to the orbit at (h, x), on which H acts linearly. See [Bredon 1972, II, Theorem 4.4] and [Koszul 1953].

As G_{x} is connected by hypothesis, we have, by [Duistermaat and Kolk 2000, Theorem 3.3.1(i)], that h is contained in the connected component of the identity H° of H. Therefore, we may choose a maximal torus $\mathrm{T}_{(h, x)}$ of H° containing h. We define an equivalence relation \sim on $\mathrm{T}_{(h, x)}$ by declaring that $t_{1} \sim t_{2}$ for $t_{1}, t_{2} \in \mathrm{~T}_{(h, x)}$ if there is an open G-invariant neighborhood U of (h, x) such that $U^{t_{1}}=U^{t_{2}}$. This is the case if and only if $\left(G V_{(h, x)}\right)^{t_{1}}=\left(G V_{(h, x)}\right)^{t_{2}}$. We let $\mathrm{T}_{(h, x)}^{*}$ denote the \sim class of h in $\mathrm{T}_{(h, x)}$.

With this, the stratification of ΛM is given by assigning to (h, x) the germ of the set

$$
\begin{equation*}
G\left(V_{(h, x)}^{H} \cap\left(\mathrm{~T}_{(h, x)}^{*} \times M\right)\right), \tag{2-1}
\end{equation*}
$$

and the stratification of ΛX is given by assigning to the orbit $G(h, x)$ the germ of this G-invariant set. It is demonstrated in [Farsi et al. 2012] that ΛM equipped with this stratification has the structure of a differentiable Whitney stratified space, and moreover that ΛX inherits from this G-invariant stratification the structure of a differentiable Whitney stratified space. In particular, the germ at (h, x) of the set defined in (2-1) does not depend on the choice of slice nor on the choice of maximal torus $\mathrm{T}_{(h, x)}$, and the germ at $G(h, x)$ of the corresponding stratification of ΛX does not depend on the choice of representative (h, x) from the orbit $G(h, x)$.
Example 2.1. Consider the case $G=\mathrm{SO}(2)$ with its standard action on $M=\mathbb{R}^{2}$. It is easy to see that

$$
\Lambda \mathbb{R}^{2}=\left\{(I, x): x \in \mathbb{R}^{2} \backslash\{0\}\right\} \cup\{(h, 0): h \in \mathrm{SO}(2)\} \subseteq \mathrm{SO}(2) \times \mathbb{R}^{2}
$$

where $I \in \mathrm{SO}(2)$ denotes the identity matrix. That is, $\Lambda \mathbb{R}^{2}$ is homeomorphic to \mathbb{R}^{2} with a circle attached at the origin. The $\mathrm{SO}(2)$-isotropy group of points of the form $(h, 0)$ is $\mathrm{SO}(2)$, while all other points have trivial isotropy. In particular, note that the partition of $\Lambda \mathbb{R}^{2}$ into isotropy types is not a decomposition, as the frontier condition fails at the point $(I, 0)$.

Any invariant neighborhood of a point $(h, 0)$ contains points with nonzero \mathbb{R}^{2}-coordinate. Hence, the maximal torus $\mathrm{T}_{(h, 0)}=\mathrm{SO}(2)$ consists of two \sim classes: the identity fixing each point in any $\mathrm{SO}(2)$-invariant neighborhood, and $\mathrm{SO}(2) \backslash\{I\}$, whose elements fix points of the form $(h, 0)$. Clearly, $\mathrm{T}_{(I, x)}$ is trivial for $x \neq 0$. It follows that a decomposition of $\Lambda \mathbb{R}^{2}$ inducing the orbit Cartan type stratification consists of three pieces:

$$
\begin{aligned}
& \mathscr{P}_{1}=\left\{(I, x): x \in \mathbb{R}^{2} \backslash\{0\}\right\}, \\
& \mathscr{P}_{2}=\{(h, 0): h \in \operatorname{SO}(2) \backslash\{I\}\}, \\
& \mathscr{P}_{3}=\{(I, 0)\} .
\end{aligned}
$$

The $\operatorname{SO}(2)$-action on \mathscr{P}_{1} is identified with the standard action on $\mathbb{R}^{2} \backslash\{0\}$, while the action is trivial on \mathscr{P}_{2} and \mathscr{P}_{3}. Hence, the quotient space ΛX is homeomorphic to a ray with a circle attached to its endpoint.

The special orthogonal group $\mathbf{S O}(n)$. The material in this section is well-known, and can be found in [Tapp 2005, Chapter 9]. See also [Bröcker and tom Dieck 1995, IV Section 3; Humphreys 1978, pages 64-5] for a description of the Weil group of $\mathrm{SO}(n)$.

The special orthogonal group $\mathrm{SO}(n)$ is the group of $n \times n$ orthogonal matrices with determinant 1 . It is a compact, connected Lie group of dimension $n(n-1) / 2$. For an element $k \in \operatorname{SO}(n)$, we let (k) denote the $\operatorname{SO}(n)$-conjugacy class of k.

If $n=2 m$ is even, then the standard maximal torus $\mathbb{T}_{2 m}^{\mathrm{st}}$ in $\mathrm{SO}(n)$ is an m dimensional torus given by the set of matrices of the form

$$
\mathbb{T}_{2 m}^{\mathrm{st}}:=\left\{\operatorname{diag}\left(R_{\theta_{1}}, \ldots, R_{\theta_{m}}\right) \mid \theta_{i} \in[0,2 \pi)\right\} .
$$

The center of $\mathrm{SO}(2 m)$ is $\{I,-I\}$. The Weil group $N_{\mathrm{SO}(2 m)}\left(\mathbb{T}_{2 m}^{\mathrm{st}}\right) / \mathbb{T}_{2 m}^{\mathrm{st}}$ is generated by all permutations of the angles $\theta_{1}, \ldots, \theta_{m}$ as well as all transformations multiplying two angles by $-1 \bmod 2 \pi$.

If $n=2 m+1$ is odd, then the standard maximal torus $\mathbb{T}_{2 m+1}^{\mathrm{st}}$ of $\mathrm{SO}(2 m+1)$ is m-dimensional of the form

$$
\mathbb{T}_{2 m+1}^{\mathrm{st}}:=\left\{\operatorname{diag}\left(1, R_{\theta_{1}}, \ldots, R_{\theta_{m}}\right) \mid \theta_{i} \in[0,2 \pi)\right\},
$$

and the center of $\mathrm{SO}(2 m+1)$ is trivial. The Weil group of $\mathrm{SO}(2 m+1)$ is generated by all permutations of $\theta_{1}, \ldots, \theta_{m}$ and all transformations multiplying any angle by $-1 \bmod 2 \pi$.

3. The decomposition of $\boldsymbol{\Lambda} \mathbb{R}^{2 m}$

Statement of the decomposition. Let $k \in \mathrm{SO}(2 m)$. As every element of $\mathrm{SO}(2 m)$ is conjugate to an element of $\mathbb{T}_{2 m}^{\mathrm{st}}$, we may choose an element $h=\operatorname{diag}\left(R_{\theta_{1}}, \ldots, R_{\theta_{m}}\right)$ of the $\mathrm{SO}(2 m)$-conjugacy class of k contained in the standard maximal torus. Using the action of the Weil group, we may choose h with the θ_{i} listed in the following order. We first list all $\theta_{i}=0$, followed by all $\theta_{i}=\pi$. Then, we list the remaining $\theta_{i} \neq 0$ in such a way that any angles that agree up to a sign $\bmod 2 \pi$ are listed consecutively.

Given such a choice of h, define $\left(a_{0}(h), a_{\pi}(h), \rho(h), s(h)\right)$ as follows. Let $a_{0}(h)$, with $0 \leq a_{0}(h) \leq m$, denote the multiplicity of the angle 0 ; let $a_{\pi}(h)$, with $0 \leq a_{\pi}(h) \leq m-a_{0}(h)$, denote the multiplicity of π; let ρ denote the (possibly empty) partition of $m-a_{0}(h)-a_{\pi}(h)$ indicating the number of generic angles that coincide up to a sign for each angle that occurs. Finally, if it is possible by the action of the Weil group to list all angles that coincide up to a sign with the same sign, we let $s(h)=+$; otherwise, we let $s(h)=-$. As elements of $\mathbb{T}_{2 m}^{\mathrm{st}}$ are conjugate in $\mathrm{SO}(2 m)$ if and only they are conjugate via an element of $N_{\mathrm{SO}(2 m)}\left(\mathbb{T}_{2 m}^{\mathrm{st}}\right)$, it is easy to see that $\left(a_{0}(h), a_{\pi}(h), \rho(h), s(h)\right)$ does not depend on the choice of h, and hence is constant on the conjugacy class of k. Hence, we define

$$
\left(a_{0}(k), a_{\pi}(k), \rho(k), s(k)\right)=\left(a_{0}(h), a_{\pi}(h), \rho(h), s(h)\right) .
$$

We refer to $T(k)=\left(a_{0}(k), a_{\pi}(k), \rho(k), s(k)\right)$ as the type of k, denoted simply $T=\left(a_{0}, a_{\pi}, \rho, s\right)$ when k is clear from the context.

Example 3.1. We now illustrate the types of elements of $\mathbb{T}_{2 m}^{s t}$.
(1) The identity element I has type $(m, 0, \varnothing,+)$, while $-I$ has type $(0, m, \varnothing,+)$.
(2) The element $h=\operatorname{diag}\left(R_{\theta}, R_{\theta}, R_{-\theta}\right) \in \operatorname{SO}(6)$ with θ generic has type $(0,0,\{3\},-)$. Note that any permutation of angles or multiplication of an even number of angles by $-1 \bmod 2 \pi$ will result in angles with different signs.
(3) The element $h=\operatorname{diag}\left(R_{\theta}, R_{-\theta}, R_{\phi}, R_{\phi}, R_{-\phi}\right) \in \mathrm{SO}(10)$ with θ, ϕ generic has type ($0,0,\{2,3\},+$) because it is conjugate to $\operatorname{diag}\left(R_{\theta}, R_{\theta}, R_{\phi}, R_{\phi}, R_{\phi}\right)$. On the other hand, $\operatorname{diag}\left(R_{\theta}, R_{-\theta}, R_{\phi}, R_{\phi}, R_{\phi}\right)$ has type ($0,0,\{2,3\},-$).
(4) An element $h=\operatorname{diag}\left(R_{0}, R_{\theta}, R_{-\theta}\right) \in \operatorname{SO}(6)$ with θ generic has type $(1,0,\{2\},+)$, because it is conjugate to $\operatorname{diag}\left(R_{0}, R_{\theta}, R_{\theta}\right)$ via multiplication of the first and third angles by $-1 \bmod 2 \pi$.

For any k of type (a_{0}, a_{π}, ρ, s), we have $0 \leq a_{0} \leq m$ and $0 \leq a_{\pi} \leq m-a_{0}$. If $a_{0}>0$ or $a_{\pi}>0$, then $s=+$; this follows from the fact that multiplication by $-1 \bmod 2 \pi$ fixes angles 0 and π, as in Example 3.1(4) above. We specify a specific partition $\rho(k)$ by a set with multiplicity, such as $\{1,1,2\}$, and adapt ordinary set operations in the obvious way: $\{1\} \cup\{1,2\}=\{1,1,2\}$.

Given $k \in \operatorname{SO}(2 m)$ of type $\left(a_{0}, a_{\pi}, \rho, s\right)$ with $\rho=\left\{\rho_{1}, \ldots, \rho_{\ell}\right\}$ listed in nondecreasing order, by the above observations, there is an element $h \in(k) \cap \mathbb{T}_{2 m}^{\mathrm{st}}$ such that

$$
h=\operatorname{diag}(I_{2 a_{0}},-I_{2 a_{\pi}}, \underbrace{R_{\theta_{1}}, \ldots, R_{\theta_{1}}}_{\rho_{1}}, \ldots, \underbrace{R_{\theta_{\ell}}, \ldots, R_{ \pm \theta_{\ell}}}_{\rho_{\ell}}),
$$

with each θ_{i} generic and $\theta_{i} \neq \pm \theta_{j}$ for $i \neq j$. In other words, the order and signs of the angles are chosen as above according to the ordering of ρ with at most one sign change, which is required to occur in the last position. We then say that h is in standard form. Note that h is unique if and only if $\rho_{i} \neq \rho_{i+1}$ for each i. We say that $h^{\prime} \in \mathbb{T}_{2 m}^{s t}$ of the same type as h is in the same standard form as h if

$$
h^{\prime}=\operatorname{diag}(I_{2 a_{0}},-I_{2 a_{\pi}}, \underbrace{R_{\phi_{1}}, \ldots, R_{\phi_{1}}}_{\rho_{1}}, \ldots, \underbrace{R_{\phi_{\ell}}, \ldots, R_{ \pm \phi_{\ell}}}_{\rho_{\ell}}),
$$

with each ϕ_{i} generic and $\phi_{i} \neq \pm \phi_{j}$ for $i \neq j$, so that the repeated angles and the single sign discrepancy, if it occurs, occur in the same positions. Given h and h^{\prime} in the same standard form, for any $g \in N_{\mathrm{SO}(2 m)}\left(\mathbb{T}_{2 m}^{\text {st }}\right)$, we say that $g h g^{-1}$ and $g h^{\prime} g^{-1}$ are in the same form. That is, elements of $\mathbb{T}_{2 m}^{\mathrm{st}}$ are in the same form if they are of the same type and can be put into the same standard form by the same element of the Weil group.

With this, we are ready to state our main result, which describes a decomposition of $\Lambda \mathbb{R}^{2 m}$ that induces the orbit Cartan type stratification given by (2-1). We state the decomposition for the loop space $\Lambda \mathbb{R}^{2 m}$, though a direct consequence is that the quotients of the pieces of the decomposition, which are $\mathrm{SO}(2 m)$-invariant and consist of points of the same isotropy type, define a decomposition of the inertia space $\Lambda\left(\mathrm{SO}(2 m) \backslash \mathbb{R}^{2 m}\right)$ that induces the orbit Cartan type stratification.

Theorem 3.2. For each type $T=\left(a_{0}, a_{\pi}, \rho, s\right)$, let

$$
P_{T, 0}=\left\{(h, 0) \in \mathrm{SO}(2 m) \times \mathbb{R}^{2 m}: h \text { has type } T\right\}
$$

and let

$$
P_{T, 1}=\left\{(h, x) \in \mathrm{SO}(2 m) \times\left(\mathbb{R}^{2 m} \backslash\{0\}\right): h x=x, h \text { has type } T\right\} .
$$

Then a decomposition of $\Lambda \mathbb{R}^{2 m}$ inducing the orbit Cartan type stratification described by (2-1) is given by the following pieces:
I. $P_{T, 0}$ for each type $T=\left(a_{0}, a_{\pi}, \rho, s\right)$ such that $a_{0}>0, a_{\pi}>1, s=-$, or $a_{\pi}=0$ and $1 \notin \rho$,
II. $P_{(0,1, \rho,+), 0} \cup P_{(0,0,\{1\} \cup \rho,+), 0}$ for each partition ρ of $m-1$,
III. $P_{T, 1}$ for each type $T=\left(a_{0}, a_{\pi}, \rho,+\right)$ such that $a_{0}>0$.

Note that an element h fixes a nonzero element of $\mathbb{R}^{2 m}$ if and only if $a_{0}(h)>0$, and recall that $s(h)=+$ whenever $a_{0}(h)>0$ or $a_{\pi}(h)>0$.

Centralizers in $\mathbf{S O}(\mathbf{2 m})$. Let $h \in \mathbb{T}_{2 m}^{\mathrm{st}} \leq \mathrm{SO}(2 m)$ be in standard form. Then the centralizer of h in $\mathrm{SO}(2 m)$ is determined by the form of h. Specifically, let

$$
h=\operatorname{diag}(I_{2 a_{0}},-I_{2 a_{\pi}}, \underbrace{R_{\theta_{1}}, \ldots, R_{\theta_{1}}}_{\rho_{1}}, \ldots, \underbrace{R_{\theta_{\ell}}, \ldots, R_{ \pm \theta_{\ell}}}_{\rho_{\ell}}),
$$

with each θ_{i} generic and $\theta_{i} \neq \pm \theta_{j}$ for $i \neq j$, where we may have $a_{0}=0$ or $a_{\pi}=0$. The centralizer of h in $\mathrm{SO}(2 m)$ is a set of matrices in blocks given by

$$
\operatorname{diag}\left(A, B, C_{1}, \ldots, C_{\ell}\right)
$$

where $A \in \mathrm{O}\left(2 a_{0}\right), B \in \mathrm{O}\left(2 a_{\pi}\right)$, and each $C_{i} \in \mathrm{O}\left(2 \rho_{i}\right)$. Note that in general, $Z_{\mathrm{SO}(2 m)}(h)$ contains $\mathbb{T}_{2 m}^{\mathrm{st}}$. We first discuss the matrices C_{i}.

By direct computation, it is easy to see that the only 2×2 matrices that commute with R_{θ} for θ generic are given by

$$
\left[\begin{array}{rr}
c_{1} & -c_{2} \\
c_{2} & c_{1}
\end{array}\right]
$$

i.e., a scalar multiple of a rotation matrix. The only $2 \rho_{i} \times 2 \rho_{i}$ matrices C_{i} that commute with $\operatorname{diag}\left(R_{\theta}, \ldots, R_{\theta}\right)$, where θ is generic and R_{θ} occurs ρ_{i} times, are matrices whose 2×2 blocks are scalar multiples of rotation matrices as above. Similarly, the only $2 \rho_{i} \times 2 \rho_{i}$ matrices that commute with $\operatorname{diag}\left(R_{\theta}, \ldots, R_{\theta}, R_{-\theta}\right)$, where θ is generic and R_{θ} occurs $\rho_{i}-1$ times, are matrices whose 2×2 block are as above except for the blocks in the last two rows and columns, excluding the lower-right 2×2 block, which are given by

$$
\left[\begin{array}{rr}
c_{1} & c_{2} \\
c_{2} & -c_{1}
\end{array}\right] .
$$

In particular, as these computations require only that θ is generic, all elements of the same form have the same centralizer.

If $a_{\pi}=0$, then the set of elements of the same form as h is an open, dense subset of a torus of $\mathrm{SO}(2 m)$ of dimension ℓ, and $Z_{\mathrm{SO}(2 m)}(h)$ coincides with the centralizer of this torus. In particular, $Z_{\mathrm{SO}(2 m)}(h)$ is connected by [Duistermaat and Kolk 2000, Theorem 3.3.1]. Then as the determinant of each block is a continuous function from $Z_{\mathrm{SO}(2 m)}(h)$ to $\{ \pm 1\}$, it must be that each C_{i} has determinant 1 . It follows that A must have determinant 1 , and hence A can be any element of $\operatorname{SO}\left(2 a_{0}\right)$. Note that we may also conclude for arbitrary h that each $C_{i} \in \mathrm{SO}\left(2 \rho_{i}\right)$.

If $a_{\pi} \neq 0$ and $a_{0} \neq 0$, then $A \in \mathrm{O}\left(2 a_{0}\right)$ and $B \in \mathrm{O}\left(2 a_{\pi}\right)$ can be any elements with the same determinant ± 1, and the centralizer of h has two connected components.

If $a_{\pi} \neq 0$ and $a_{0}=0$, then as the determinant of each C_{i} is $1, B$ must also have determinant 1 and can be any element of $\operatorname{SO}\left(2 a_{\pi}\right)$.

The reader is cautioned that it is possible for elements of different types to have identical centralizers. For instance, for θ_{1} and θ_{2} generic, $\theta_{1} \neq \pm \theta_{2}$, the centralizers of the elements $\operatorname{diag}\left(R_{0}, R_{\theta_{2}}\right), \operatorname{diag}\left(R_{\pi}, R_{\theta_{2}}\right)$, and $\operatorname{diag}\left(R_{\theta_{1}}, R_{\theta_{2}}\right)$ coincide and are equal to the standard maximal torus $\mathrm{SO}(2) \times \mathrm{SO}(2) \leq \mathrm{SO}(4)$, though these elements are in standard from of type $(1,0,\{1\},+),(0,1,\{1\},+)$, and $(0,0,\{1,1\},+)$, respectively. More generally, if ρ is any partition of $m-1$, then elements of type $(1,0, \rho,+),(0,1, \rho,+)$, and $(0,0,\{1\} \cup \rho,+)$ in standard form have the same centralizer, as in either case, the first 2×2-block is forced to be an element of $\mathrm{SO}(2)$. If h is in standard form and of either of these types, then any element with the same centralizer as h is also in standard form.

However, if $a_{0}(h)=a_{0}\left(h^{\prime}\right)>0$ for elements $h, h^{\prime} \in \mathbb{T}_{2 m}^{\mathrm{st}}$ such that h is in standard form and both h and h^{\prime} have centralizer H, then h and h^{\prime} are in the same standard form. In particular, if H is connected, then $a_{\pi}(h)=a_{\pi}\left(h^{\prime}\right)=0$, and if H is not connected, then the size of the second block in elements of H determines that $a_{\pi}(h)=a_{\pi}\left(h^{\prime}\right)>0$. The size and structure of the later blocks in elements of H determine the values of ρ and $s=+$ for both h and h^{\prime} as well as their form. Similarly, if $a_{0}(h)=a_{0}\left(h^{\prime}\right)=0$ and $a_{\pi}(h)>1$ with h in standard form, then the size and structure of the blocks in the centralizer again determine the form of h and hence h^{\prime}.

Finally, suppose $a_{0}(h)=a_{\pi}(h)=0$ with h in standard form. If $1 \notin \rho(h)$, then the size and structure of the blocks of H determine the form of h and hence h^{\prime} so that h^{\prime} is in the same standard form as h. Otherwise, h has type $(0,0,\{1\} \cup \rho, s)$ for a partition ρ of $m-1$ and is in standard form

$$
h=\operatorname{diag}(R_{\theta_{1}}, \underbrace{R_{\theta_{2}}, \ldots, R_{\theta_{2}}}_{\rho_{1}}, \ldots, \underbrace{R_{\theta_{\ell}}, \ldots, R_{ \pm \theta_{\ell}}}_{\rho_{\ell-1}})
$$

so that $\theta_{1}, \ldots, \theta_{\ell}$ are generic. If $a_{0}\left(h^{\prime}\right)=0$, then either h^{\prime} is in the same standard form as h or

$$
h^{\prime}=\operatorname{diag}(R_{\pi}, \underbrace{R_{\phi_{1}}, \ldots, R_{\phi_{1}}}_{\rho_{1}}, \ldots, \underbrace{R_{\phi_{\ell}}, \ldots, R_{ \pm \phi_{\ell}}}_{\rho_{\ell-1}}),
$$

which has type $(0,1, \rho,+)$ and is not in standard form if $s(h)=-$.
We now summarize these observations.
Proposition 3.3. Elements of $\mathbb{T}_{2 m}^{s t}$ in the same standard form have the same centralizer, and elements of $\mathrm{SO}(2 m)$ of the same type have conjugate centralizers. Conversely, if $h, h^{\prime} \in \mathbb{T}_{2 m}^{\mathrm{st}}$ with h in standard form and $Z_{\mathrm{SO}(2 m)}(h)=Z_{\mathrm{SO}(2 m)}\left(h^{\prime}\right)$, then:

- If $a_{0}(h)=a_{0}\left(h^{\prime}\right)>0$, then h and h^{\prime} are in the same standard form.
- If $a_{0}(h)=a_{0}\left(h^{\prime}\right)=0$ and $a_{\pi}(h)>1$, then h and h^{\prime} are in the same standard form.
- If $a_{0}(h)=a_{\pi}(h)=0$ and $1 \notin \rho(h)$, then h and h^{\prime} are in the same standard form.
- If $a_{0}(h)=a_{0}\left(h^{\prime}\right)=0$ and h has type $(0,1, \rho,+)$ or $(0,0,\{1\} \cup \rho,+)$, then h^{\prime} is in standard form and has type $(0,1, \rho,+)$ or $(0,0,\{1\} \cup \rho,+)$.
- If $a_{0}(h)=a_{0}\left(h^{\prime}\right)=0$ and h has type $(0,0,\{1\} \cup \rho,-)$, then either h^{\prime} is in standard form of type $(0,0,\{1\} \cup \rho,-)$ or h^{\prime} is of type $(0,1, \rho,+)$ and is not in standard form.

Note that Proposition 3.3 does not exhaust all cases but considers those that we will need below.

Proof of Theorem 3.2. In this section, we demonstrate that the partition defined in Theorem 3.2 is indeed a decomposition that induces the orbit Cartan type stratification. First, we establish the following.

Lemma 3.4. Let $h \in \mathbb{T}_{2 m}^{\mathrm{st}}$ be in standard form. Then there is a neighborhood U of h in $\mathbb{T}_{2 m}^{s t}$ small enough so that every $h^{\prime} \in U$ of the same type as h is in the same standard form as h. If h has type $(0,0,\{1\} \cup \rho,-)$, then we may choose U so that it contains no elements h^{\prime} such that $a_{\pi}\left(h^{\prime}\right)>0$.

Proof. Let $h=\operatorname{diag}\left(R_{\theta_{1}}, \ldots, R_{\theta_{m}}\right)$, where angles need not be distinct or generic. Choose $\epsilon>0$ such that $\left(\theta_{i}-\epsilon, \theta_{i}+\epsilon\right.$) contains 0 (respectively π) if and only if $\theta_{i}=0$ (respectively π), and, for $i \neq j$, the intersection $\left(\theta_{i}-\epsilon, \theta_{i}+\epsilon\right) \cap\left(\pm \theta_{j}-\epsilon, \pm \theta_{j}+\epsilon\right.$) is nonempty if and only if $\theta_{i}= \pm \theta_{j}$. Then for any $h^{\prime}=\operatorname{diag}\left(\phi_{i}, \ldots, \phi_{m}\right)$ such that $\left|\phi_{i}-\theta_{i}\right|<\epsilon$ for each i, h^{\prime} is of the same type as h if and only if it is in the same standard form. Moreover, if h has type $(0,0,\{1\} \cup \rho,-)$, then as $\theta_{i} \neq \pi$ for each i, U contains no elements of type $\left(0, a_{\pi}, \sigma,+\right)$ for $a_{\pi}>0$ and any partition σ.
Lemma 3.5. Let $h \in \mathbb{T}_{2 m}^{s t}$ be an element of the maximal torus of $\mathrm{SO}(2 m)$.
(i) A linear slice $V_{(h, 0)}$ for the diagonal $\mathrm{SO}(2 m)$-action on $\mathrm{SO}(2 m) \times \mathbb{R}^{2 m}$ at $(h, 0)$ can be chosen such that $V_{(h, 0)}$ contains $U_{h} \times U_{0}$, where U_{h} is a neighborhood of h in $\mathbb{T}_{2 m}^{\mathrm{st}}$ and U_{0} is a neighborhood of 0 in $\mathbb{R}^{2 m}$.
(ii) If $0 \neq x \in \mathbb{R}^{2 m}$ such that $h x=x$, then a linear slice $V_{(h, x)}$ for the diagonal $\mathrm{SO}(2 m)$-action on $\mathrm{SO}(2 m) \times \mathbb{R}^{2 m}$ at (h, x) can be chosen such that $V_{(h, x)}$ contains $U_{h} \times U_{x}$ where U_{h} is a neighborhood of h in $\mathbb{T}_{2 m}^{\text {st }}$ and U_{x} is a connected neighborhood of x in the span $\langle x\rangle$ of x in $\mathbb{R}^{2 m}$.
Proof. Fix the standard $\left(\mathrm{SO}(2 m)\right.$-invariant) Riemannian metric on $\mathbb{R}^{2 m}$, choose a bi-invariant metric on $\mathrm{SO}(2 m)$, and let $\mathrm{SO}(2 m) \times \mathbb{R}^{2 m}$ carry the product metric. Recall that (h) denotes the $\mathrm{SO}(2 m)$-conjugacy class of h. By [Duistermaat and Kolk

2000, Proposition 3.1.1], the only slice at h for the $S O(2 m)$-action on $S O(2 m)$ by conjugation is given by a neighborhood S_{h} of h in the centralizer $Z_{S O(2 m)}(h)$, where the linear structure is inherited from the Lie algebra \mathfrak{z}_{h} of $Z_{S O(2 m)}(h)$ via a logarithmic chart. Because the orthogonal complement of $T_{h}(h)$ in $T_{h} \mathrm{SO}(2 m)$ with respect to the metric is mapped to a slice by the exponential map (see [Duistermaat and Kolk 2000, Theorem 2.3.3]), it follows that $T_{h} S_{h}=T_{h} Z_{S O(2 m)}(h)$ is the orthogonal complement of $T_{h}(h)$ in $T_{h} \mathrm{SO}(2 m)$.

As $S O(2 m)(h, 0)=(h) \times\{0\} \subset \mathrm{SO}(2 m) \times \mathbb{R}^{2 m}$, using the isometry

$$
T_{(h, 0)}\left(\mathrm{SO}(2 m) \times \mathbb{R}^{2 m}\right) \rightarrow T_{h} \mathrm{SO}(2 m) \oplus T_{0} \mathbb{R}^{2 m}
$$

we have that

$$
\begin{aligned}
T_{(h, 0)}\left(Z_{S O(2 m)}(h) \times \mathbb{R}^{2 m}\right) & \cong T_{h} Z_{S O(2 m)}(h) \oplus T_{0} \mathbb{R}^{2 m} \\
& \cong\left(T_{(h, 0)} \operatorname{SO}(2 m)(h, 0)\right)^{\perp}
\end{aligned}
$$

Hence, a slice for the $\mathrm{SO}(2 m)$-action on $\mathrm{SO}(2 m) \times \mathbb{R}^{2 m}$ may be chosen to be a suitably small neighborhood of $(h, 0)$ in $Z_{S O(2 m)}(h) \times \mathbb{R}^{2 m}$. Clearly $\mathbb{T}_{2 m}^{s t} \leq Z_{S O(2 m)}(h)$, proving (i).

To prove (ii), note that the orbit $\mathrm{SO}(2 m) x$ of x is given by the sphere of radius $\|x\|$, so that in $T_{x} \mathbb{R}^{2 m},\left(T_{x} \mathrm{SO}(2 m) x\right)^{\perp}=T_{x}\langle x\rangle$. Then as

$$
T_{(h, x)} \mathrm{SO}(2 m)(h, x) \subseteq T_{h}(h) \oplus T_{x} \mathrm{SO}(2 m) x
$$

we have

$$
\begin{aligned}
T_{h} Z_{S O(2 m)}(h) \oplus T_{x}\langle x\rangle & =\left(T_{h}(h)\right)^{\perp} \oplus\left(T_{x} \mathrm{SO}(2 m) x\right)^{\perp} \\
& \subseteq\left(T_{h}(h) \times T_{x} \mathrm{SO}(2 m) x\right)^{\perp} \\
& \subseteq\left(T_{(h, x)} \mathrm{SO}(2 m)(h, x)\right)^{\perp}
\end{aligned}
$$

It follows that we may choose a slice $V_{(h, x)}$ at (h, x) such that

$$
T_{(h, x)} V_{(h, x)}=\left(T_{(h, x)} \operatorname{SO}(2 m)(h, x)\right)^{\perp}
$$

and hence an open neighborhood of (h, x) in $Z_{S O(2 m)}(h) \times\langle x\rangle$ is contained in $V_{(h, x)}$.
Proof of Theorem 3.2. Given an arbitrary element $(k, x) \in \Lambda \mathbb{R}^{2 m}$, as k is conjugate to an element of $\mathbb{T}_{2 m}^{s t}$, the type of k is defined. Moreover, as the type is conjugation invariant, it is well defined, so that the pieces defined in I, II, and III clearly form a partition of $\Lambda \mathbb{R}^{2 m}$. Moreover, as the number of types is finite, the partition is finite and hence trivially locally finite.

For each element (k, y) of a piece P, we now demonstrate that for some (h, x) in the orbit of (k, y) and appropriate choices of slice and maximal torus,
there is an open, $\mathrm{SO}(2 m)$-invariant neighborhood of (h, x) within which the set $P \cap \mathrm{SO}(2 m) V_{(h, x)}$ coincides with the set defined in (2-1). This implies that the decomposition induces the orbit Cartan type stratification. Moreover, as the germs defining the stratification are germs of locally closed, smooth manifolds, it follows that each piece P is a locally closed, smooth submanifold of $\mathrm{SO}(2 m) \times \mathbb{R}^{2 m}$. With this, we will need only show that the pieces satisfy the frontier condition.
I. Suppose $(k, 0)$ is of type $T=\left(a_{0}, a_{\pi}, \rho, s\right)$ with $a_{0}>0, a_{\pi}>1, s=-$, or $a_{\pi}=0$ and $1 \notin \rho$. Choose an element $h \in(k) \cap \mathbb{T}_{2 m}^{s t}$ in standard form and a slice $V_{(h, 0)}$ at $(h, 0)$ for the $\mathrm{SO}(2 m)$-action on $\mathrm{SO}(2 m) \times \mathbb{R}^{2 m}$ with $U_{h} \times U_{0} \subseteq V_{(h, 0)}$ as in Lemma 3.5. Applying Lemma 3.4 and shrinking $V_{(h, 0)}$ if necessary, we assume that if $\left(h^{\prime}, x\right) \in V_{(h, 0)}$ with $h^{\prime} \in \mathbb{T}_{2 m}^{\mathrm{st}}$ of the same type as h, then h^{\prime} is in the same standard form as h. Moreover, if h has type $(0,0,\{1\} \cup \rho,-)$, we assume that $V_{(h, 0)}$ contains no elements of the form $\left(h^{\prime}, x\right)$ such that $a_{\pi}\left(h^{\prime}\right)>0$. Let $H=\mathrm{SO}(2 m)_{(h, 0)}=Z_{\mathrm{SO}(2 m)}(h)$, and define the set

$$
Q_{(h, 0)}:=V_{(h, 0)}^{H} \cap\left(\left(\mathbb{T}_{2 m}^{\mathrm{st}}\right)_{(h, 0)}^{*} \times \mathbb{R}^{2 m}\right) .
$$

That is, the $\operatorname{SO}(2 m)$-saturation $\operatorname{SO}(2 m) Q_{(h, 0)}$ is the set that defines the germ of the stratum containing $(h, 0)$ in (2-1). Note that as H contains $\mathbb{T}_{2 m}^{\text {st }}$, which only fixes the origin in $\mathbb{R}^{2 m}$, any element of $V_{(h, 0)}^{H}$ is of the form $\left(h^{\prime}, 0\right)$ for $h^{\prime} \in \operatorname{SO}(2 m)$. Moreover, as $h \in H$, it must be that for any $\left(h^{\prime}, 0\right) \in V_{(h, 0)}^{H}$, the element h^{\prime} commutes with h.

Let $\left(h^{\prime}, 0\right) \in Q_{(h, 0)}$ be arbitrary. Then $h^{\prime} \in\left(\mathbb{T}_{2 m}^{\mathrm{st}}\right)_{(h, 0)}^{*}$, implying that the h and h^{\prime} fix the same subset of $\mathrm{SO}(2 m) V_{(h, 0)}$. In particular, as $\{h\} \times U_{0} \subseteq V_{(h, 0)}$, with U_{0} a neighborhood of the origin in $\mathbb{R}^{2 m}$, and as h^{\prime} commutes with h, it follows that $\left(\mathbb{R}^{2 m}\right)^{h}=\left(\mathbb{R}^{2 m}\right)^{h^{\prime}}$, so $a_{0}(h)=a_{0}\left(h^{\prime}\right)$. Additionally, by the definition of slice, every point in $V_{(h, 0)}$ has isotropy group contained in H, so $V_{(h, 0)}^{H}$ consists only of points with isotropy group equal to H. Hence $Z_{\mathrm{SO}(2 m)}(h)=Z_{\mathrm{SO}(2 m)}\left(h^{\prime}\right)$, so by Proposition 3.3 and the choice of slice, h and h^{\prime} are in the same standard form. It follows that the orbit of any element of $Q_{(h, 0)}$ is contained in $P_{T, 0}$ and hence $\mathrm{SO}(2 m) Q_{(h, 0)} \subseteq P_{T, 0}$.

Conversely, if $\left(k^{\prime}, 0\right) \in P_{T, 0} \cap \mathrm{SO}(2 m) V_{(h, 0)}$ so that k^{\prime} is of the same type as h, then by the choice of $V_{(h, 0)}$, there is an $\left(h^{\prime}, 0\right) \in V_{(h, 0)} \cap \operatorname{SO}(2 m)\left(k^{\prime}, 0\right)$ such that h^{\prime} is in the same standard form as h. Then h and h^{\prime} have the same centralizer by Proposition 3.3 so that $\left(h^{\prime}, 0\right) \in V_{(h, 0)}^{H}$. Moreover, because $Z_{S O(2 m)}(h)=Z_{S O(2 m)}\left(h^{\prime}\right)$ and the angle 0 occurs in the same positions in both, h and h^{\prime} fix the same elements of $\mathrm{SO}(2 m) \times \mathbb{R}^{2 m}$ so that clearly $\left(\mathrm{SO}(2 m) V_{(h, 0)}\right)^{h}=\left(\mathrm{SO}(2 m) V_{(h, 0)}\right)^{h^{\prime}}$. Hence $\left(h^{\prime}, 0\right) \in Q_{(h, 0)}$. Therefore, we have that $\mathrm{SO}(2 m) Q_{(h, 0)}=P_{T, 0} \cap \mathrm{SO}(2 m) V_{(h, 0)}$, so that $\mathrm{SO}(2 m) Q_{(h, 0)}$ and $P_{T, 0}$ define the same germ at $(h, 0)$.
II. The argument in this case is similar to I above. Choosing a representative $(h, 0)$ of the orbit of an arbitrary point with $h \in \mathbb{T}_{2 m}^{\text {st }}$ in standard form, for any $h^{\prime} \in\left(\mathbb{T}_{2 m}^{\mathrm{st}}\right)_{(h, 0)}^{*}$, as h and h^{\prime} have the same fixed point set in $\mathbb{R}^{2 m}, a_{0}(h)=0$ implies $a_{0}\left(h^{\prime}\right)=0$. In this case, however, while elements $h, h^{\prime} \in \mathbb{T}_{2 m}^{\text {st }}$ of the same type have the same centralizer, the centralizers do not distinguish between group elements in standard form of type $(0,1, \rho,+)$ and $(0,0,\{1\} \cup \rho,+)$ by Proposition 3.3. Moreover, any neighborhood of an element in standard form of type ($0,1, \rho,+$) clearly contains elements in standard form of type $(0,0,\{1\} \cup \rho,+)$. As the fixedpoint sets of such elements in $\mathrm{SO}(2 m) \times \mathbb{R}^{2 m}$ coincide, the argument is identical to that of I combining these two types.
III. Let $(k, x) \in \Lambda \mathbb{R}^{2 m}$ and let T be the type of k. As the $\mathrm{SO}(2 m)$-action on $\mathbb{R}^{2 m}$ is transitive on spheres about the origin, we may assume that x has coordinates $(\|x\|, 0, \ldots, 0)$, and hence $\operatorname{SO}(2 m)_{x}=\{\operatorname{diag}(1, A): A \in \operatorname{SO}(2 m-1)\} \cong \mathrm{SO}(2 m-1)$. As any element of $\mathrm{SO}(2 m)_{x}$ is conjugate to an element of the standard maximal torus $\mathbb{T}_{2 m-1}^{\text {st }}$ via an element of $\operatorname{SO}(2 m)_{x}$, we may choose an element (h, x) in the orbit $\operatorname{SO}(2 m)_{x}(k, x)$ such that $h \in \mathbb{T}_{2 m-1}^{\mathrm{st}}$ is in standard form. Note that as h fixes x, we have $a_{0}(h)>0$.

Choose a slice $V_{(h, x)}$ at (h, x) that contains $U_{h} \times U_{x}$ as in Lemma 3.5, and shrink $V_{(h, x)}$ if necessary so that $V_{(h, x)} \cap\left(\mathrm{SO}(2 m) \times-U_{x}\right)=\varnothing$. We again assume by Lemma 3.4 and shrinking $V_{(h, x)}$ that for any $\left(h^{\prime}, y\right) \in V_{(h, x)}$ such that $h^{\prime} \in \mathbb{T}_{2 m}^{\text {st }}$ has the same type as h, h^{\prime} must also have the same form.

It will be convenient to restrict to a smaller open neighborhood of (h, x) in $\mathrm{SO}(2 m) \times \mathbb{R}^{2 m}$. To do so, recall that the Weil group $N_{\mathrm{SO}(2 m)}\left(\mathbb{T}_{2 m}^{\mathrm{st}}\right) / \mathbb{T}_{2 m}^{\mathrm{st}}$ is finite. Hence, by [tom Dieck 1987, Proposition 3.23], we may shrink U_{h} to assume that for $g \in N_{\mathrm{SO}(2 m)}\left(\mathbb{T}_{2 m}^{\mathrm{st}}\right)$, we have $g U_{h}=U_{h}$ if $g \in Z_{S O(2 m)}(h)$ and $U_{h} \cap g U_{h}=\varnothing$ otherwise. Moreover, letting $\mathrm{SO}(2 m)_{*}$ denote the set of conjugacy classes in $\mathrm{SO}(2 m)$ equipped with its natural quotient topology, we may assume that the quotient of U_{h} by $N_{\mathrm{SO}(2 m)}\left(\mathbb{T}_{2 m}^{\mathrm{st}}\right) / Z_{S O(2 m)}(h)$ is homeomorphic to an open subset of $\mathrm{SO}(2 m)_{*}$ containing (h). In particular, as the quotient map $\mathrm{SO}(2 m) \rightarrow \mathrm{SO}(2 m)_{*}$ is continuous, $\mathrm{SO}(2 m) U_{h}$ is open in $\mathrm{SO}(2 m)$. Let $W=\left(\mathrm{SO}(2 m) U_{h}\right) \times\left(\mathrm{SO}(2 m) U_{x}\right)$, and then as $\operatorname{SO}(2 m) U_{x}=\left\{z \in \mathbb{R}^{2 m}: \epsilon_{1}<\|z\|<\epsilon_{2}\right\}$ for some $0<\epsilon_{1}<\epsilon_{2}, \mathrm{SO}(2 m) U_{x}$ is open in $\mathbb{R}^{2 m}$. Hence W is an open, $\mathrm{SO}(2 m)$-invariant neighborhood of (h, x) in $\mathrm{SO}(2 m) \times \mathbb{R}^{2 m}$. Finally, we further shrink $V_{(h, x)}$ if necessary to assume that it does not intersect $g U_{h} \times \mathbb{R}^{2 m}$ for any of the finite translates of U_{h} by $g \in N_{\mathrm{SO}(2 m)}\left(\mathbb{T}_{2 m}^{\mathrm{st}}\right)$ such that $g \notin Z_{\mathrm{SO}(2 m)}(h)$. We will show that the piece $P_{T, 1}$ coincides with the set given in (2-1) when intersected with W.

Let $H=\mathrm{SO}(2 m)_{(h, x)}=Z_{\mathrm{SO}(2 m-1)}(h)$ so that H consists of those elements of $Z_{\mathrm{SO}(2 m)}(h)$ whose first row and column are that of the identity. Define the set

$$
Q_{(h, x)}:=V_{(h, x)}^{H} \cap\left(\left(\mathbb{T}_{2 m-1}^{\mathrm{st}}\right)_{(h, x)}^{*} \times \mathbb{R}^{2 m}\right) \cap W .
$$

Fix $\left(h^{\prime}, y\right) \in Q_{(h, x)}$ so that $h^{\prime} \in\left(\mathbb{T}_{2 m-1}^{\mathrm{st}}\right)_{(h, x)}^{*}$. Therefore, as any neighborhood of (h, x) contains points $\left(h, y^{\prime}\right)$ where any coordinate of y^{\prime} except the first may be chosen to be zero or nonzero, and as $h \in H$ so that h and h^{\prime} commute, we have that h and h^{\prime} must have 0 occur as an angle with the same multiplicity in the same positions. Therefore, $a_{0}\left(h^{\prime}\right)=a_{0}(h)>0$. Note that $\left(h^{\prime}, y\right) \in V_{(h, x)}^{H}$ so that $\mathrm{SO}(2 m)_{\left(h^{\prime}, y\right)}=Z_{\mathrm{SO}(2 m)_{y}}\left(h^{\prime}\right)=H$. In particular, as $\left(h^{\prime}, y\right) \in W \cap V_{(h, x)}$ and $h^{\prime} \in \mathbb{T}_{2 m-1}^{\text {st }} \leq \mathbb{T}_{2 m}^{\text {st }}$, we may conclude h^{\prime} is in U_{h}. We consider two cases:

If $a_{0}(h)>1$ or $a_{\pi}(h)>0$, then H contains $\mathbb{T}_{2 m-1}^{s t}$ as well as the element $g=\operatorname{diag}\left(1,-1,-1,1, I_{2 m-4}\right)$. The fixed point set in $\mathbb{R}^{2 m}$ of the group generated by g and $\mathbb{T}_{2 m-1}^{\mathrm{st}}$ is $\langle x\rangle$, so that $y \in\langle x\rangle$. Then as $a_{0}\left(h^{\prime}\right)=a_{0}(h)$, connectedness of H determines whether $a_{\pi}(h)$, and hence $a_{\pi}\left(h^{\prime}\right)$, vanish. If not, the second block of elements of H indicates that $a_{\pi}\left(h^{\prime}\right)=a_{\pi}(h)$, and the following blocks further indicate that h and h^{\prime} have the same type. Therefore, $\left(h^{\prime}, y\right) \in P_{T, 1}$.

If $a_{0}(h)=1$ and $a_{\pi}(h)=0$, then every element of H, and in particular h^{\prime}, is given by $\operatorname{diag}\left(I_{2}, D\right)$ for a $(2 m-2) \times(2 m-2)$ matrix D. As H contains $\mathbb{T}_{2 m-1}^{\text {st }}$ which then must fix y, it follows that $y=(a, b, 0, \ldots, 0)$ for some $a, b \in \mathbb{R}$. Then there is a $\bar{g}=\operatorname{diag}\left(R_{\theta}, I_{2 m-2}\right)$ such that $\bar{g} y=(\|y\|, 0, \ldots, 0)$. Moreover, as $h^{\prime}=\operatorname{diag}\left(I_{2}, D\right)$ for some D, we have $\bar{g} h^{\prime} \bar{g}^{-1}=h^{\prime}$, and $\bar{g}\left(h^{\prime}, y\right)=\left(h^{\prime},(\|y\|, 0, \ldots, 0)\right)$. However, as $y \in \mathrm{SO}(2 m) U_{x}$, and $\bar{g} y \in\langle x\rangle$ has positive first coordinate, it follows that $\bar{g} y \in U_{x}$. Moreover, as $h^{\prime} \in U_{h}$, we have $\bar{g}\left(h^{\prime}, y\right) \in U_{h} \times U_{x} \subseteq V_{(h, x)}$, so that as $\left(h^{\prime}, y\right) \in V_{(h, x)}$, it follows from the definition of slice that $\bar{g} \in H$. Then as elements of H fix y, we have that $y=(\|y\|, 0, \ldots, 0)$ to begin with.

With this, the element $g=\operatorname{diag}\left(1,-1,-1,1, I_{2 m-4}\right)$ fixes y and hence, as it is not an element of H, cannot commute with h^{\prime}. It follows that $a_{\pi}\left(h^{\prime}\right)=0$, and then the structure of blocks of elements of H imply that h and h^{\prime} have the same type. We again have $\left(h^{\prime}, y\right) \in P_{T, 1}$, and hence $\operatorname{SO}(2 m) Q_{(h, x)} \subseteq P_{T, 1}$, since $P_{T, 1}$ is $\mathrm{SO}(2 m)$-invariant.

Conversely, if $(k, y) \in P_{(T, 1)} \cap \mathrm{SO}(2 m) V_{(h, x)} \cap W$, then (k, y) is in the orbit of an element $\left(h^{\prime}, y^{\prime}\right) \in V_{(h, x)}$. Then as h^{\prime} has the same type as h, it must have the same standard form as h. This implies that h^{\prime} and h have the same centralizer, and moreover that $a_{0}\left(h^{\prime}\right)=a_{0}(h)>0$. Noting that h^{\prime} fixes y^{\prime}, and hence that y^{\prime} has nonzero coordinates only in the first $2 a_{0}(h)$ positions, there is an element $\bar{g}=\operatorname{diag}\left(D, I_{2\left(m-a_{0}(h)\right)}\right) \leq \operatorname{SO}(2 m)$ for some $D \in \operatorname{SO}\left(2 a_{0}(h)\right)$ such that $\bar{g} y^{\prime}=\left(\left\|y^{\prime}\right\|, 0, \ldots, 0\right)$. As $\left(h^{\prime}, y^{\prime}\right) \in W \cap V_{(h, x)}$ and $h^{\prime} \in \mathbb{T}_{2 m}^{\mathrm{st}}, h^{\prime} \in U_{h}$. Hence, as \bar{g} commutes with $h^{\prime}, \bar{g}\left(h^{\prime}, y^{\prime}\right)=\left(h^{\prime},\left(\left\|y^{\prime}\right\|, 0, \ldots, 0\right)\right) \in U_{h} \times U_{x} \subseteq V_{(h, x)}$. That h and h^{\prime} have the same centralizer and $\bar{g} y^{\prime} \in\langle x\rangle$ implies $\bar{g}\left(h^{\prime}, y^{\prime}\right) \in V_{(h, x)}^{H}$. In addition, that h and h^{\prime} have the same type implies $h^{\prime} \in\left(\mathbb{T}_{2 m-1}^{s t}\right)_{(h, x)}^{*}$. It follows that $\bar{g}\left(h^{\prime}, y^{\prime}\right) \in Q_{(h, x)} \cap W$ so that $(k, y) \in \operatorname{SO}(2 m) Q_{(h, x)} \cap W$, completing the proof that $\mathrm{SO}(2 m) Q_{(h, x)} \cap W=P_{(T, 1)} \cap \mathrm{SO}(2 m) V_{(h, x)} \cap W$.

The frontier condition. To show that the pieces defined in Theorem 3.2 satisfy the frontier condition, we first claim that $k \in \mathrm{SO}(2 m)$ is in the closure in $\mathrm{SO}(2 m)$ of the set of elements of type T if and only if some conjugate gkg^{-1} of k is in the closure in $\mathbb{T}_{2 m}^{s t}$ of the set of elements of type T in standard form. Note that gkg^{-1} itself need not be in standard form.

Let $\left\{k_{i}\right\}_{i \in \mathbb{N}}$ be a convergent sequence of elements of $\mathrm{SO}(2 m)$ that are all of the same type $T=\left(a_{0}, a_{\pi}, \rho, s\right)$, and let $k=\lim _{i \rightarrow \infty} k_{i} \in \mathrm{SO}(2 m)$. Then for each i, there is a g_{i} such that $g_{i} k_{i} g_{i}^{-1} \in \mathbb{T}_{2 m}^{\mathrm{st}}$ is of standard form. By compactness of $\mathrm{SO}(2 m)$, we may assume by passing to a subsequence that the g_{i} converge to some $g \in \mathrm{SO}(2 m)$. Then by continuity of the action by conjugation and as $\mathbb{T}_{2 m}^{s t}$ is closed, we have

$$
g k g^{-1}=\lim _{i \rightarrow \infty} g_{i} k_{i} g_{i}^{-1} \in \mathbb{T}_{2 m}^{\mathrm{st}}
$$

Conversely, if k is conjugate to some $g k g^{-1} \in \mathbb{T}_{2 m}^{\text {st }}$, where $g k g^{-1}$ is the limit of a sequence $\left\{h_{i}\right\}_{i \in \mathbb{N}}$ of elements in $\mathbb{T}_{2 m}^{s t}$ of the same type T in standard form, then $g^{-1} h_{i} g$ is a sequence of elements of type T that converges to k.

Now, for a type $T=\left\{a_{0}, a_{\pi}, \rho, s\right\}$ with $\rho=\left\{\rho_{1}, \ldots, \rho_{\ell}\right\}$, let $\mathbb{T}_{2 m}^{\text {st }}(T)$ denote the set of elements in $\mathbb{T}_{2 m}^{\text {st }}$ in standard form of type T. Suppose $h \in \overline{\mathbb{T}_{2 m}^{s t}(T)}$ so that there is a sequence $\left\{h_{i}\right\}_{i \in \mathbb{N}} \subseteq \mathbb{T}_{2 m}^{s t}(T)$ such that $h_{i} \rightarrow h$. Recall that if $s=-$, then the sign discrepancy in the angles of the h_{i} is taken to be in the final position, corresponding to ρ_{ℓ}. As each h_{i} has I and $-I$ in the first a_{0} and a_{π} positions, respectively, it follows that h must as well. Similarly, letting $\theta_{j, i}$ denote the angle in the ρ_{j} position of h_{i} for $j=1, \ldots, \ell$, we have that $\lim _{i \rightarrow \infty} \theta_{j, i}$ exists and is given by θ_{j}, the angle in the corresponding position of h, which can have any value. Let $J=\left\{j \in\{1, \ldots, \ell\}: \theta_{j}=0\right\}$, and let $J^{\prime}=\left\{j \in\{1, \ldots, \ell\}: \theta_{j}=\pi\right\}$. As it may be the case that the θ_{j} are not distinct, let σ denote the partition formed from $\rho \backslash\left\{\rho_{j}: j \in I \cup J\right\}$ by summing elements ρ_{j} and $\rho_{j^{\prime}}$ when $\theta_{j}=\theta_{j^{\prime}}$. Then if $s=+$ or θ_{ℓ} is generic, h has type

$$
\left(a_{0}+\sum_{j \in J} \rho_{j}, a_{\pi}+\sum_{j \in J^{\prime}} \rho_{j}, \sigma, s\right)
$$

while if $s=-$ and $\theta_{\ell} \in\{0, \pi\}, h$ has type

$$
\left(a_{0}+\sum_{j \in I} \rho_{j}, a_{\pi}+\sum_{j \in J} \rho_{j}, \sigma,+\right)
$$

Given an arbitrary element h^{\prime} of $\mathbb{T}_{2 m}^{\mathrm{st}}$ of the same form as h, it is easy to see that one can define a sequence $\left\{h_{i}^{\prime}\right\}_{i \in \mathbb{N}}$ of elements of type T such that $h_{i}^{\prime} \rightarrow h^{\prime}$ simply by redefining the angles in the h_{i} corresponding to $j \notin J \cup J^{\prime}$ to converge to those of h^{\prime}, choosing distinct sequences when $\theta_{j}=\theta_{j^{\prime}}$ for $j \neq j^{\prime}$ as above. It follows that
if $h \in \overline{\mathbb{T}}_{2 m}^{\mathrm{st}}(T)$, then every element of $\mathbb{T}_{2 m}^{\mathrm{st}}$ of the same form of h is contained in $\mathbb{T}_{2 m}^{\mathrm{st}}(T)$. However, by applying the Weil group to this sequence, it then follows that every element of $\mathbb{T}_{2 m}^{\mathrm{st}}$ of the same type as h is contained in the closure of elements of type T in $\mathbb{T}_{2 m}^{s t}$. This claim extends by conjugation to all of $\operatorname{SO}(2 m)$ as above, so we conclude that the partition of $\mathrm{SO}(2 m)$ into types satisfies the frontier condition.

Finally, note that this partition still satisfies frontier if we combine types of the form $(0,1, \rho, s)$ and $(0,0,\{1\} \cup \rho, s)$. If the set of elements of type T contains points of type $(0,1, \sigma, s)$ in its closure, then T must itself be of the form either $(0,1, \rho, s)$ or $(0,0,\{1\} \cup \rho, s)$, where σ is formed from ρ or $\{1\} \cup \rho$ by summing elements as above. As these types are also combined, the resulting set must contain all elements of type $(0,1, \sigma, s)$ and $(0,0,\{1\} \cup \sigma, s)$ in its closure.

With this, we need only note that as the closure of $\mathbb{R}^{2 m} \backslash\{0\}$ is clearly $\mathbb{R}^{2 m}$, by inspection, the pieces of type I, II, and III satisfy the frontier condition. Hence, by $\mathrm{SO}(2 m)$-invariance of these pieces, frontier is satisfied in the quotient as well. \square

It is of interest to note that the sets of type III form a decomposition of the loop space of the $\operatorname{SO}(2 m)$-space $\mathbb{R}^{2 m} \backslash\{0\}$. Because each point in $\Lambda\left(\mathbb{R}^{2 m} \backslash\{0\}\right)$ is contained in an $\mathrm{SO}(2 m)$-invariant neighborhood in $\Lambda \mathbb{R}^{2 m}$ that does not intersect $\mathrm{SO}(2 m) \times\{0\}$, it follows that this decomposition induces the orbit Cartan type stratification of the inertia space $\Lambda\left(\mathrm{SO}(2 m) \backslash\left(\mathbb{R}^{2 m} \backslash\{0\}\right)\right)$.

The loop space $\Lambda\left(\mathbb{R}^{2 m} \backslash\{0\}\right)$ is the loop space of a $\mathrm{SO}(2 m)$-manifold with a single isotropy type and hence is a smooth manifold by [Farsi et al. 2012, Proposition 4.4]. Given an element $(h, x) \in \Lambda\left(\mathbb{R}^{2 m} \backslash\{0\}\right)$, where we may assume up to conjugation that $x=(\|x\|, 0, \ldots, 0)$ and $h \in \mathbb{T}_{2 m-1}^{\mathrm{st}}$ is in standard form as above, it must be that $a_{0}(h)>0$. Hence, as the types of such elements are determined by their centralizers by Proposition 3.3, the decomposition of $\Lambda\left(\mathbb{R}^{2 m} \backslash\{0\}\right)$, and hence the associated inertia space, corresponds to the decomposition into isotropy types, demonstrating that the orbit Cartan type stratification of this $\mathrm{SO}(2 m)$-manifold coincides with its stratification by isotropy types. This is not generally true for the odd case, as it fails in the case of $\operatorname{SO}(3)$ acting on $\mathbb{R}^{3} \backslash\{0\}$ described in [Farsi et al. 2012, Section 4.2.6].

Acknowledgements

This paper is the result of the second author's Senior Seminar project in the Department of Mathematics and Computer Science at Rhodes College, and both authors express appreciation to the department and college for support during the preparation of this manuscript. The first author would like to thank Carla Farsi and Markus Pflaum for helpful conversations and support. The first author was partially supported by a Rhodes College Faculty Development Endowment Grant. The second author was partially supported by a Rhodes College Fellowship.

References

[Adem et al. 2007] A. Adem, J. Leida, and Y. Ruan, Orbifolds and stringy topology, Cambridge Tracts in Mathematics 171, Cambridge University Press, Cambridge, 2007. MR 2009a:57044 Zbl 1157.57001
[Bredon 1972] G. E. Bredon, Introduction to compact transformation groups, Pure and Applied Mathematics 46, Academic Press, New York, 1972. MR 54 \#1265 Zbl 0246.57017
[Bröcker and tom Dieck 1995] T. Bröcker and T. tom Dieck, Representations of compact Lie groups, Graduate Texts in Mathematics 98, Springer, New York, 1995. MR 97i:22005 Zbl 0874.22001
[Brylinski 1987] J.-L. Brylinski, "Cyclic homology and equivariant theories", Ann. Inst. Fourier (Grenoble) 37:4 (1987), 15-28. MR 89j:55008 Zbl 0625.55003
[tom Dieck 1987] T. tom Dieck, Transformation groups, de Gruyter Studies in Mathematics 8, De Gruyter, Berlin, 1987. MR 89c:57048 Zbl 0611.57002
[Duistermaat and Kolk 2000] J. J. Duistermaat and J. A. C. Kolk, Lie groups, Springer, Berlin, 2000. MR 2001j:22008 Zbl 0955.22001
[Farsi et al. 2012] C. Farsi, M. Pflaum, and C. Seaton, "Inertia spaces of proper Lie group actions and their topological properties", preprint, 2012. arXiv 1207.0595 v 1
[Humphreys 1978] J. E. Humphreys, Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics 9, Springer, New York, 1978. MR 81b:17007 Zbl 0447.17001
[Koszul 1953] J. L. Koszul, "Sur certains groupes de transformations de Lie", Colloques Int. Centre Nat. Rech. Sci. 52 (1953), 137-141. MR 15,600g Zbl 0101.16201
[Navarro González and Sancho de Salas 2003] J. A. Navarro González and J. B. Sancho de Salas, C^{∞} differentiable spaces, Lecture Notes in Mathematics 1824, Springer, Berlin, 2003. MR 2005c:58008 Zbl 1039.58001
[Pflaum 2001] M. J. Pflaum, Analytic and geometric study of stratified spaces, Lecture Notes in Mathematics 1768, Springer, Berlin, 2001. MR 2002m:58007 Zbl 0988.58003
[Tapp 2005] K. Tapp, Matrix groups for undergraduates, Student Mathematical Library 29, American Mathematical Society, Providence, RI, 2005. MR 2006d:20001 Zbl 1089.20001

Received: 2012-08-30
seatonc@rhodes.edu
jwwells@math.hawaii.edu

Revised: 2013-05-17 Accepted: 2013-05-19
Department of Mathematics and Computer Science, Rhodes College, 2000 North Parkway, Memphis, TN 38112, United States

Department of Mathematics, University of Hawaii at Manoa, 2565 McCarthy Mall, Honolulu, HI 96822, United States

involve

 msp.org/involve

 msp.org/involve EDITORS

 EDITORS}

Managing Editor
Kenneth S. Berenhaut, Wake Forest University, USA, berenhks@ wfu.edu

Board of Editors			
Colin Adams	Williams College, USA colin.c.adams@williams.edu	David Larson	Texas A\&M University, USA larson@math.tamu.edu
John V. Baxley	Wake Forest University, NC, USA baxley@wfu.edu	Suzanne Lenhart	University of Tennessee, USA lenhart@math.utk.edu
Arthur T. Benjamin	Harvey Mudd College, USA benjamin@hmc.edu	Chi-Kwong Li	College of William and Mary, USA ckli@math.wm.edu
Martin Bohner	Missouri U of Science and Technology, USA bohner@mst.edu	Robert B. Lund	Clemson University, USA lund@clemson.edu
Nigel Boston	University of Wisconsin, USA boston@math.wisc.edu	Gaven J. Martin	Massey University, New Zealand g.j.martin@massey.ac.nz
Amarjit S. Budhiraja	U of North Carolina, Chapel Hill, USA budhiraj@email.unc.edu	Mary Meyer	Colorado State University, USA meyer@stat.colostate.edu
Pietro Cerone	Victoria University, Australia pietro.cerone@vu.edu.au	Emil Minchev	Ruse, Bulgaria eminchev@hotmail.com
Scott Chapman	Sam Houston State University, USA scott.chapman@shsu.edu	Frank Morgan	Williams College, USA frank.morgan@williams.edu
Joshua N. Cooper	University of South Carolina, USA cooper@math.sc.edu	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran moslehian@ferdowsi.um.ac.ir
Jem N. Corcoran	University of Colorado, USA corcoran@colorado.edu	Zuhair Nashed	University of Central Florida, USA znashed@mail.ucf.edu
Toka Diagana	Howard University, USA tdiagana@howard.edu	Ken Ono	Emory University, USA ono@mathcs.emory.edu
Michael Dorff	Brigham Young University, USA mdorff@math.byu.edu	Timothy E. O'Brien	Loyola University Chicago, USA tobrie1@luc.edu
Sever S. Dragomir	Victoria University, Australia sever@matilda.vu.edu.au	Joseph O'Rourke	Smith College, USA orourke@cs.smith.edu
Behrouz Emamizadeh	The Petroleum Institute, UAE bemamizadeh@pi.ac.ae	Yuval Peres	Microsoft Research, USA peres@microsoft.com
Joel Foisy	SUNY Potsdam foisyjs@potsdam.edu	Y.-F. S. Pétermann	Université de Genève, Switzerland petermann@math.unige.ch
Errin W. Fulp	Wake Forest University, USA fulp@wfu.edu	Robert J. Plemmons	Wake Forest University, USA plemmons@wfu.edu
Joseph Gallian	University of Minnesota Duluth, USA jgallian@d.umn.edu	Carl B. Pomerance	Dartmouth College, USA carl.pomerance@dartmouth.edu
Stephan R. Garcia	Pomona College, USA stephan.garcia@pomona.edu	Vadim Ponomarenko	San Diego State University, USA vadim@sciences.sdsu.edu
Anant Godbole	East Tennessee State University, USA godbole@etsu.edu	Bjorn Poonen	UC Berkeley, USA poonen@math.berkeley.edu
Ron Gould	Emory University, USA rg@mathcs.emory.edu	James Propp	U Mass Lowell, USA jpropp@cs.uml.edu
Andrew Granville	Université Montréal, Canada andrew@dms.umontreal.ca	Józeph H. Przytycki	George Washington University, USA przytyck@gwu.edu
Jerrold Griggs	University of South Carolina, USA griggs@math.sc.edu	Richard Rebarber	University of Nebraska, USA rrebarbe@math.unl.edu
Sat Gupta	U of North Carolina, Greensboro, USA sngupta@uncg.edu	Robert W. Robinson	University of Georgia, USA rwr@cs.uga.edu
Jim Haglund	University of Pennsylvania, USA jhaglund@ math.upenn.edu	Filip Saidak	U of North Carolina, Greensboro, USA f_saidak@uncg.edu
Johnny Henderson	Baylor University, USA johnny_henderson@baylor.edu	James A. Sellers	Penn State University, USA sellersj@math.psu.edu
Jim Hoste	Pitzer College jhoste@pitzer.edu	Andrew J. Sterge	Honorary Editor andy@ajsterge.com
Natalia Hritonenko	Prairie View A\&M University, USA nahritonenko@pvamu.edu	Ann Trenk	Wellesley College, USA atrenk@wellesley.edu
Glenn H. Hurlbert	Arizona State University,USA hurlbert@asu.edu	Ravi Vakil	Stanford University, USA vakil@math.stanford.edu
Charles R. Johnson	College of William and Mary, USA crjohnso@math.wm.edu	Antonia Vecchio	Consiglio Nazionale delle Ricerche, Italy antonia.vecchio@cnr.it
K. B. Kulasekera	Clemson University, USA kk@ces.clemson.edu	Ram U. Verma	University of Toledo, USA verma99@msn.com
Gerry Ladas	University of Rhode Island, USA gladas@math.uri.edu	John C. Wierman	Johns Hopkins University, USA wierman@jhu.edu
		Michael E. Zieve	University of Michigan, USA zieve@umich.edu

PRODUCTION

Silvio Levy, Scientific Editor
See inside back cover or msp.org/involve for submission instructions. The subscription price for 2013 is US $\$ 105 /$ year for the electronic version, and $\$ 145 /$ year ($+\$ 35$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to MSP.

Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall \#3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLow ${ }^{\circledR}$ from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers

involve 2013 vol. 6 no. 4

Embeddedness for singly periodic Scherk surfaces with higher dihedral symmetry 383Valmir Bucaj, Sarah Cannon, Michael Dorff, Jamal Lawson and RyanViertel
An elementary inequality about the Mahler measure 393
Konstantin Stulov and RongWei Yang
Ecological systems, nonlinear boundary conditions, and Σ-shaped bifurcation curves 399
Kathryn Ashley, Victoria Sincavage and Jerome Goddard II
The probability of randomly generating finite abelian groups 431
Tyler Carrico
Free and very free morphisms into a Fermat hypersurface 437
Tabes Bridges, Rankeya Datta, Joseph Eddy, Michael Newman and John Yu
Irreducible divisor simplicial complexes 447Nicholas R. Baeth and John J. Hobson
Smallest numbers beginning sequences of 14 and 15 consecutive happy numbers 461
Daniel E. Lyons
An orbit Cartan type decomposition of the inertia space of $\operatorname{SO}(2 m)$ acting on $\mathbb{R}^{2 m}$ 467
Christopher Seaton and John Wells
Optional unrelated-question randomized response models 483
Sat Gupta, Anna Tuck, Tracy Spears Gill and Mary Crowe
On the difference between an integer and the sum of its proper divisors 493
Nichole Davis, Dominic Klyve and Nicole Kraght
A Pexider difference associated to a Pexider quartic functional equation in topological 505vector spacesThemistocles M. Rassias

[^0]: MSC2010: 57S15, 58A35.
 Keywords: inertia space, stratification, special orthogonal group, Lie group.

