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The Johnson graph J (n, N ) is defined as the graph whose vertices are the n-
subsets of the set {1, 2, . . . , N }, where two vertices are adjacent if they share
exactly n − 1 elements. Unlike Johnson graphs, induced subgraphs of Johnson
graphs (JIS for short) do not seem to have been studied before. We give some
necessary conditions and some sufficient conditions for a graph to be JIS, includ-
ing: in a JIS graph, any two maximal cliques share at most two vertices; all trees,
cycles, and complete graphs are JIS; disjoint unions and Cartesian products of
JIS graphs are JIS; every JIS graph of order n is an induced subgraph of J (m, 2n)
for some m ≤ n. This last result gives an algorithm for deciding if a graph is JIS.
We also show that all JIS graphs are edge move distance graphs, but not vice
versa.

1. Introduction

We work with finite, simple graphs. Let F = {S1, . . . , Sm} be a family of finite
sets. The intersection graph of F , denoted �(F), is the graph whose vertices
are the elements of F , where two vertices Si and S j , i 6= j , are adjacent if they
share at least one element. More generally, for a fixed positive integer p, the
p-intersection graph of F , denoted �p(F), is the graph whose vertices are the
elements of F , where two vertices are adjacent if they share at least p elements.
(Thus �p(F) is a subgraph of �1(F) = �(F).) McKee and McMorris [1999]
give an extensive and excellent survey of intersection graphs, which also includes
a section on p-intersection graphs. Here we narrow attention to p-intersection
graphs of families of (p + 1)-sets, so that two vertices Si and S j are adjacent if
|Si ∩ S j | = |Si | − 1= |S j | − 1, i.e., Si and S j differ by exactly one element.

Another way to view these graphs is as induced subgraphs of Johnson graphs.
Given positive natural numbers n≤ N , the Johnson graph J (n, N ) is defined as the
graph whose vertices are the n-subsets of the set {1, 2, . . . , N }, where two vertices
are adjacent if they share exactly n− 1 elements. Hence a graph G is isomorphic
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to an induced subgraph of a Johnson graph if and only if it is possible to assign,
for some fixed n, an n-set Sv to each vertex v of G such that distinct vertices have
distinct corresponding sets, and vertices v and w are adjacent if and only if Sv and
Sw share exactly n− 1 elements. When this happens, we say the family of n-sets
F = {Sv : v ∈ V (G)} realizes G as an induced subgraph of a Johnson graph, which
we abbreviate by saying G is JIS. Thus, F realizes G as a JIS graph if and only if
G is isomorphic to �n−1(F), which in turn is isomorphic to an induced subgraph
of J (n, N ), where N =

∣∣⋃
S∈F S

∣∣.
Although there is a considerable amount of literature written on Johnson graphs,

we have not been able to find any on their induced subgraphs. It would be desirable
to obtain “nice” necessary and sufficient conditions for when a graph is JIS. In this
paper, we only give some necessary conditions and some sufficient conditions.

A clique in a graph G is a complete subgraph of G. A clique L in G is called
a maximal clique, or a maxclique for short, if there is no larger clique L ′ ⊆ G
that contains L . In Section 2 we describe how the maxcliques of a graph play a
role in whether or not it is JIS. In particular, Proposition 2(1) states that any two
distinct maxcliques in a JIS graph can share at most two vertices. It follows, for
example, that the graph “K5 minus one edge” is not JIS, since it contains two
maximal 4-cliques that share three vertices.

The conditions given in Section 2 are necessary, but not sufficient, for a graph to
be JIS. In Section 3 we show that the complete bipartite graph K2,3, as well as a few
other graphs, satisfy all these necessary conditions but are not JIS. In Section 3 we
also give some sufficient conditions for a graph to be JIS, including the following:

• All complete graphs and all cycles are JIS.

• A graph is JIS if and only if all its connected components are JIS.

• The Cartesian product of two JIS graphs is JIS.

Despite not having a “nice” characterization of JIS graphs, for any graph G the
question “Is G JIS?” is decidable; this follows from Theorem 10, which says that
every JIS graph of order n is isomorphic, for some m ≤ n, to an induced subgraph
of the Johnson graph J (m, 2n). In other words, every JIS graph of order n can,
for some m ≤ n, be realized by m-subsets of {1, 2, . . . , 2n}. This gives us a simple
(albeit slow) algorithm for determining if a graph G is JIS: Do an exhaustive search
among all n-families of m-subsets of {1, . . . , 2n}, where n is the order of G and
m ≤ n, to see if any of them realizes G as a JIS graph.

The p-intersection number of a graph G is defined as the smallest k such that
G is isomorphic to the p-intersection graph of a family of subsets of {1, . . . , k}
([McKee and McMorris 1999], p. 91). Thus, an immediate corollary of Theorem 10
is that every JIS graph of order n has, for some m≤ n, (m−1)-intersection number
at most 2n.
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In the final section of this paper we discuss edge move distance graphs and their
relationship to JIS graphs.

2. Maxcliques in JIS Graphs

Given n-sets S1, . . . , Sk with n ≥ 1 and k ≥ 2, we say they share an immediate
subset if

∣∣⋂k
i=1 Si

∣∣= n−1. Similarly, S1, . . . , Sk share an immediate superset if∣∣⋃k
i=1 Si

∣∣= n+ 1. Observe that for k = 2, S1 and S2 share an immediate subset if
and only if they share an immediate superset: |S1∪ S2| = |S1|+ |S2|− |S1∩ S2| =

2n−|S1∩S2|; hence |S1∪S2|= n+1 if and only if |S1∩S2|= n−1. We begin with
the following elementary result on realizations of complete graphs as JIS graphs.

Lemma 1. Let S1, . . . , Sk be n-sets that pairwise share an immediate subset, where
n ≥ 1 and k ≥ 3. Then S1, . . . , Sk share an immediate subset or an immediate
superset, but not both.

Proof. We first show that for k ≥ 3, if S1, . . . , Sk share an immediate subset, then
they do not share an immediate superset. Suppose T = S1 ∩ · · · ∩ Sk has n − 1
elements. Then, for each i , Si \ T has exactly one element, xi . For all j 6= i ,
xi 6∈ S j since Si 6= S j . It follows that S1 ∪ · · · ∪ Sk has at least n− 1+ k ≥ n+ 2
elements, since k ≥ 3. Thus S1, . . . , Sk do not share an immediate superset.

Now suppose S1, . . . , Sk pairwise share an immediate subset. We use induction
on k to prove that they share an immediate subset or an immediate superset.

Assume k = 3. Let T = S1 ∩ S2. If T ⊂ S3, then |S1 ∩ S2 ∩ S3| = |T | = n− 1,
and we’re done. So assume T 6⊂ S3. Note that |S1 \ T | = |S2 \ T | = 1. Hence,
for S3 to share n− 1 elements with each of S1 and S2, it must contain an (n− 2)-
subset of T , as well as S1 \ T and S2 \ T , and no other elements. It follows that
|S1 ∪ S2 ∪ S3| = n+ 1, as desired.

Now assume k ≥ 4. Then, by our induction hypothesis, S1, . . . , Sk−1 share an
immediate subset or an immediate superset; and similarly for S2, . . . , Sk . We have
four cases:

Case 1: S1, . . . , Sk−1 share an immediate subset and S2, . . . , Sk share an immediate
subset. Then S1, . . . , Sk share S2 ∩ S3 as an immediate subset.

Case 2: S1, . . . , Sk−1 share an immediate superset and S2, . . . , Sk share an imme-
diate superset. Then S1, . . . , Sk share S2 ∪ S3 as an immediate superset.

Case 3: S1, . . . , Sk−1 share an immediate subset and S2, . . . , Sk share an immediate
superset. Let T = S1 ∩ · · · ∩ Sk−1. Then, for 1 ≤ i ≤ k − 1, Si \ T has exactly
one element, xi ; and, for 1 ≤ j ≤ k − 1 with j 6= i , xi 6∈ S j since Si 6= S j . Since
|S2 ∪ · · · ∪ Sk | = n+ 1= |S2 ∪ S3|, Sk is a proper subset of S2 ∪ S3 = T ∪ {x2, x3}.
And since S2, S3, Sk share an immediate superset, they do not share an immediate
subset; hence T 6⊂ Sk . This implies that x2, x3 ∈ Sk since Sk has n elements and
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T ∪ {x2, x3} has n + 1 elements. But x2, x3 6∈ S1, so |S1 ∩ Sk | < n − 1, which
contradicts the hypothesis of the lemma.

Case 4: S1, . . . , Sk−1 share an immediate superset and S2, . . . , Sk share an imme-
diate subset. This case is similar to Case 3. �

We now use Lemma 1 to establish restrictions on how maxcliques in a JIS graph
can intersect or connect to each other by edges.

Proposition 2. Suppose G is JIS and L and L ′ are distinct maxcliques in G.

(1) L and L ′ share at most two vertices.

(2) If L and L ′ share exactly two vertices, then no vertex in V (L) \ V (L ′) is
adjacent to a vertex in V (L ′) \V (L).

(3) If L and L ′ share exactly one vertex, then each vertex in either of the two sets
V (L) \V (L ′) and V (L ′) \V (L) is adjacent to at most one vertex in the other
set.

Proof. Let {Sv : v ∈ V (G)} be a family of n-sets that realizes G as a JIS graph.

(1) Suppose towards contradiction that L and L ′ are distinct maxcliques that share
three (or more) vertices, u, v, and w. Let x be a vertex of L not in L ′, and x ′

a vertex of L ′ not in L; x and x ′ exist since L and L ′ are distinct and maximal.
Then, by Lemma 1, the sets Sx , Su , Sv, and Sw share an immediate subset or an
immediate superset. Similarly for Sx ′ , Su , Sv, and Sw. But Su , Sv, and Sw cannot
share both an immediate subset and an immediate superset. It follows that Sx and
Sx ′ share an immediate subset or an immediate superset, which implies that x and
x ′ are adjacent. Hence every vertex of L is adjacent to every vertex of L ′, but this
contradicts the assumption that L is a maxclique in G.

(2) Let L and L ′ be distinct maxcliques that share exactly two vertices, v and w.
Suppose towards contradiction that there exist adjacent vertices x ∈ V (L) \V (L ′)
and x ′ ∈ V (L ′)\V (L). Then the induced subgraph of G containing {x, x ′, v, w} is
a 4-clique. Let L ′′ be the maxclique that contains this 4-clique. Then L ′′ is distinct
from L and shares at least three vertices with it. This contradicts (1).

(3) The proof is similar to the proof of (2). Let L and L ′ be distinct maxcliques
that share exactly one vertex, v. Suppose towards contradiction that there exist
vertices x ∈ V (L) \V (L ′) and x ′, y′ ∈ V (L ′) \V (L) with x adjacent to x ′ and
y′. Then the induced subgraph of G containing {x, x ′, y′, v} is a 4-clique, and the
maxclique that contains this 4-clique is distinct from L ′ and shares at least three
vertices with it. This contradicts (1). �

Proposition 3. Suppose L1, . . . , Lk , where k is odd and at least 3, are distinct
maxcliques in a graph G such that L i shares exactly two vertices with L i+1 for
1≤ i ≤ k− 1, and Lk shares exactly two vertices with L1; then G is not JIS.



INDUCED SUBGRAPHS OF JOHNSON GRAPHS 29

Proof. In the following, L i+1 refers to L1 whenever i = k. Suppose towards contra-
diction that G is realized as a JIS graph by a family of n-sets. Note that each L i has
at least three vertices, since otherwise it would not be distinct from L i+1. Hence, by
Lemma 1, we can label each L i as either “sub” or “super” according to whether the
n-sets assigned to its vertices share an immediate subset or an immediate superset.
Then, since k is odd, there exists a j such that L j and L j+1 have the same label.
Now, L j and L j+1 share two vertices; therefore the n-sets assigned to their vertices
must all share the same immediate subset or immediate superset, which makes all
vertices in L j adjacent to those in L j+1, giving a contradiction. �

An equivalent way of stating the above result is: One can label every maxclique
in a JIS graph with a + or − (or any two symbols) in such a way that any two
maxcliques that share two vertices have distinct labels.

3. Miscellaneous JIS and non-JIS graphs

In this section we give some sufficient conditions for when a graph is JIS. We
also describe some graphs that satisfy all the conditions listed in the results of the
previous section as necessary for a graph to be JIS, but are not JIS.

Proposition 4. All complete graphs and all cycles are JIS.

Proof. For each n, Kn is realized as a JIS graph by the 1-sets {1}, {2}, . . . , {n}. For
each n ≥ 3, the n-cycle is realized as a JIS graph by the 2-sets {1, 2}, {2, 3}, . . . ,
{n−1, n}, {n, 1}. �

We define the n-core of a graph G as the graph obtained by recursively removing
all vertices of degree less than n until there are none left.

Proposition 5. A graph is JIS if and only if its 2-core is JIS.

Proof. Suppose G is obtained from a graph G ′ by removing exactly one vertex, w,
which has degree 0 or 1. By induction, it is enough to show that G is JIS if and
only if G ′ is JIS. Clearly, if G ′ is JIS, then so is G, since any induced subgraph of
a JIS graph is JIS. To prove the converse, suppose G is JIS. Let {Sx : x ∈ V (G)}
be n-sets that realize G as a JIS graph. Pick distinct a and b that are not in any
of the sets Sx . For each x ∈ V (G), let S′x = Sx ∪ {a}. Let S′w = Sv ∪ {b}, where
v ∈ V (G ′) is arbitrary if w has degree 0, and v is adjacent to w if w has degree 1.
Then {S′x : x ∈ V (G ′)} are (n+1)-sets that realize G ′ as a JIS graph, as desired. �

It follows as a trivial corollary that all trees are JIS.

Proposition 6. A graph is JIS if and only if all its connected components are JIS.

Proof. One direction is trivial: every induced subgraph of a JIS graph, and in par-
ticular every connected component of it, is JIS. We prove the converse by induction
on the number of components of G.
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Base step: Suppose that G has two components, Gi , i = 1, 2, each realized as
a JIS graph by a family of sets Fi . We can assume without loss of generality that
each set in F1 is disjoint from each set in F2.

We would like each set in F1 to have the same size as each set in F2, in order to
obtain F1 ∪ F2 as a family that realizes G as a JIS graph. If this is not already so,
we proceed as follows. Let mi denote the number of elements in each set in Fi .
We can assume n1 > n2. Now add the first n1− n2 elements of the first set in F1

to every set in F2.
Once the sets in the two families all have the same size, we must make sure that

sets corresponding to vertices in different components of G do not share immediate
subsets. This will automatically be true for sets that had two or more elements
before any extra elements were added to them (since we started with the sets in F1

disjoint from those in F2), but not for singletons. We remedy this by adding, for
each i , an element ei to every set in Fi , where e1 and e2 are distinct elements not
already in any set in any Fi . It is now easy to verify that F1 ∪ F2 realizes G as a
JIS graph.

The inductive step follows trivially from the base step. �

Proposition 7. The Cartesian product of two JIS graphs is JIS.

Proof. Let G and G ′ be JIS graphs that are realized, respectively, by sets {Sx : x ∈
V (G)} and {S′x ′ : x

′
∈ V (G ′)}. We can assume without loss of generality that every

Sx is disjoint from every S′x ′ .
For each vertex v = (x, x ′) ∈ V (G × G ′), let Tv = Sx ∪ S′x ′ . By definition,

two vertices v = (x, x ′) and w = (y, y′) of G × G ′ are adjacent if and only if
x = x ′ and y is adjacent to y′ or y = y′ and x is adjacent to x ′. Thus, Tv and
Tw share an immediate subset if and only if v and w are adjacent. Hence the sets
{Tv : v ∈ G×G ′} realize G×G ′ as a JIS graph. �

Proposition 8. The complete bipartite graph K2,3 is not JIS.

Proof. Label the two degree-3 vertices of K2,3 as v and w, and the three degree-2
vertices as x , y, and z, as in Figure 1. Suppose towards contradiction that there
exists a family of n-sets {Su : u ∈ V (K2,3)} that realizes K2,3 as a JIS graph. Since
v and w have distance two (where distance is the number of edges in the shortest

v w

x y z

Figure 1. K2,3 with labeled vertices.
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path joining the two vertices), Sv and Sw must share exactly n− 2 elements (this
does not work for distance ≥ 3; it works only for distance ≤ 2). Let T = Sv ∩ Sw.
Then, since each of x , y, and z is adjacent to both v andw, Sx , Sy , and Sz must each
contain T as a subset. Therefore, by subtracting T from every Su, u ∈ V (K2,3), we
get a family of 2-sets that realizes K2,3. Hence we will assume that every Su has
exactly two elements. It follows that Sv and Sw are disjoint; and Sx , Sy , and Sz are
pairwise disjoint and each shares exactly one element with each of Sv and Sw.

So, without loss of generality, Sv = {1, 2}, and Sw = {3, 4}. Therefore, again
without loss of generality, Sx = {1, 3}, and Sy = {2, 4}. And there is nothing left
for Sz . �

The graph K2,3 can be thought of as two 4-cycles that share three vertices. So
one may wonder whether the graph θn consisting of two n-cycles that share n− 1
vertices is also not JIS. It turns out that θn is not JIS only for n = 4 and n = 5.
The proof that θ5 is not JIS is very similar to the proof that K2,3 is not JIS, and we
therefore omit it. The proof that θn is JIS for n≥6 is a straightforward construction,
which we also omit.

One may also wonder whether K2,3 becomes JIS if an edge is added to it. There
are, up to isomorphism, two ways to add an edge to K2,3: add an edge that connects
the two degree-3 vertices; or add an edge that connects two of the three degree-2
vertices. It turns out that neither of these two graphs is JIS. The proof that the
former graph is not JIS follows immediately from Proposition 3. The proof that
the latter graph (which we call 12) is not JIS is given below in Proposition 9.

The graphs1i depicted in Figure 2 have the following pattern (ignore the vertex
labels and the + and − signs for now; they are used later): 1i consists of a chain
of i “consecutively adjacent” triangles, plus one vertex which is connected to the
two vertices of degree 2 in the triangle chain. It turns out that, like K2,3, 12, 14,
and 16 satisfy the necessary conditions in the results of the previous sections for
being JIS, but are not JIS; 13 and 15, however, are JIS. We prove these claims
below, except for16: its proof is similar to that of12 and14, but is more tedious,
and in our opinion not worth being included here. We did not check which 1i are
JIS for i ≥ 7, but, from the pattern for i ≤ 6, it seems that:

Conjecture. 1i is JIS if and only if i is odd.

Proposition 9. (i) The graphs 12 and 14 are not JIS. (ii) The graphs 13 and 15

are JIS.

Remark. As mentioned above,12 is isomorphic to K2,3 plus an edge that connects
two of its three degree-2 vertices. Because of this, the proof that K2,3 is not JIS
can be easily modified to prove that 12 is not JIS. However, we give a different
proof below, one that can be naturally extended to also prove that 14 (and 16) is
not JIS.
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Proof. Label the vertices of 12 as v1, . . . , v5, as in Figure 2. The + and − signs
will be explained shortly. Suppose, towards contradiction, that 12 can be realized
as a JIS graph by sets S1, . . . , S5 (for simplicity, we write Si instead of Svi ). Each
of the two triangles in 12 is a maxclique. Thus, by Lemma 1, S1, S2, and S3 must
share an immediate subset or an immediate superset; similarly for S2, S3, and S4.
Furthermore, S1, S2, and S3 share an immediate subset if and only if S2, S3, and
S4 share an immediate superset, because: if S1, S2, and S3 share an immediate
subset and S2, S3, and S4 also share an immediate subset, then S1 and S4 must
share S2 ∩ S3 as an immediate subset, but this contradicts the fact that v1 and v4

are not adjacent; and if S1, S2, and S3 share an immediate superset and S2, S3,
and S4 also share an immediate superset, then S1 and S4 must share S2 ∪ S3 as an
immediate superset, which implies that they also share an immediate subset, again
contradicting the fact that v1 and v4 are not adjacent.

Thus, without loss of generality, we will assume that S1, S2, and S3 share an
immediate subset. This is indicated in Figure 2 by the − sign; the + signs indicate
immediate supersets. So we will assume that S1 = {1, 2, 3, 4}, S2 = {1, 2, 3, 5},
and S3 = {1, 2, 3, 6}; we explain in the next paragraph why there is no loss of
generality in assuming that Si are 4-sets (as opposed to larger sets). To make the
notation more compact, we will drop the commas and the braces from each set; e.g.,
S1 = 1234. Then S4 must be a 4-subset of S2 ∪ S3 = 12356. Since S1 and S4 have
no immediate subset, we can without loss of generality assume that S4 = 2356.
Now, S5 must differ by exactly one element from each of S1 and S4. The only
possibilities are 1235, 1236, 2345, and 2346. But the first two are equal to S2 and
S3 respectively; and the last two differ from S2 and S3 respectively by exactly one
element, which is not allowed since v5 is adjacent to neither v2 nor v3. Thus we
have a contradiction, as desired.

Note that by assuming that all Si are 4-sets, we ended up with all of them sharing
the two elements 2 and 3. If we instead assumed that Si were n-sets with n ≥ 5,

v2 v4

v6v4

v1

v2

v3

v1 v7v5

v5

v3

+

+

-

+
--

Figure 2. 12, 13, and 14, with vertices labeled in 12 and 14.
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124

123

456

256

245 136

356

Figure 3. 13 (left) and 15 (right) realized as JIS graphs.

the proof would remain the same except that we would end up with all Si sharing
more than two elements. Hence there is no loss of generality in assuming that Si

are 4-sets (in fact, this shows that we could even assume they are 2-sets).
To prove that 14 is not JIS, we start with the same assumptions that S1, S2,

and S3 share an immediate subset, S2, S3, and S4 share an immediate superset, and
S1=1234, S2=1235, S3=1236, and S4=2356. Now, S3, S4, and S5 must share an
immediate subset. So S5 must contain S3∩S4= 236. Since v5 is adjacent to neither
v1 nor v2, S5 can contain neither 1 nor 4 nor 5. Hence, without loss of generality,
S5 = 2367. Continuing, S4, S5, and S6 must share an immediate superset. So S6

must be a 4-subset of S4∪ S5= 23567; i.e., we must drop one element from 23567
to get S6. Dropping 5 or 7 gets us back to S4 and S5; hence we must drop 2, 3, or
6. The roles of 2 and 3 have been identical so far; so, without loss of generality,
we must drop 2 or 6; so S6 = 2357 or 3567. The former is not possible since v6

and v2 are not adjacent. And the latter is ruled out by noticing that 3567 differs
from S1 = 1234 by three elements, which contradicts the fact that v6 and v1 have
distance two1. Thus we have reached a contradiction, as desired.

Part (ii) of the proposition is proved in Figure 3, which shows sets that realize
13 and 15 as JIS graphs. For the sake of compactness, braces and commas are
omitted from the sets. �

We end this section with the following definition and question. Let G be a JIS
graph, and suppose F = {Su : u ∈ V (G)} realizes G as a JIS graph. We define the
F-distance between two vertices v and w of G to be dF (v,w) = |Sv \ Sw|. It is
easy to show this distance function is indeed a metric. The JIS-diameter of G is
defined as

max
v,w∈V (G)

min
F
{dF (v,w)}

where the minimum is taken over all families F that realize G as a JIS graph.

Question. Do there exist JIS graphs with arbitrarily large JIS-diameter?

1Note that 14 − v7 is JIS, with S1 and S6 differing in three elements. We will refer back to this
point at the very end of this section.
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From the proof of Proposition 9 and the footnote in it, it follows that 14 minus
the degree-2 vertex v7 has JIS-diameter 3: S1 = 1234, S2 = 1235, S3 = 1236,
S4 = 2356, S5 = 2367, and S6 = 3567, i.e., v1 and v6 have F-distance 3.

4. An algorithm for recognizing JIS graphs

As mentioned in the introduction, the following theorem provides for an algorithm
for deciding if a graph is JIS by doing a bounded exhaustive search.

Theorem 10. Every JIS graph of order n is isomorphic, for some m ≤ n, to an
induced subgraph of the Johnson graph J (m, 2n).

Proof. Let G be a JIS graph of order n with c connected components.

Case 1. Assume c = 1, i.e., G is connected. In this case we will prove a slightly
stronger result, which we will use in the proof of Case 2:

G is isomorphic, for some m≤n, to an induced subgraph of J (m, 2n−1).

The case n= 1 is trivial; so we assume n≥ 2. Since G is connected, there exists an
ordering v1, v2, . . . , vn of the vertices of G such that for each i ≥ 2, vi is adjacent
to at least one of v1, . . . , vi−1. Since G is JIS, for some k ≥ 1 there exist k-sets
{S1, . . . , Sn} that realize G as a JIS graph, where Si corresponds to the vertex
vi . Since v1 and v2 are adjacent, |S1 ∩ S2| = k − 1. Since v3 is adjacent to at
least one of v1 and v2, |S1 ∩ S2 ∩ S3| ≥ k − 2. Continuing this way, we see that
|S1 ∩ · · · ∩ Sn| ≥ k− (n− 1). Let

S′i = Si \ (S1 ∩ · · · ∩ Sn)

for 1≤ i ≤ n. Then for all i , |S′i | =m where m ≤ k− (k− (n−1))= n−1, and it
is easily verified that the family of sets {S′1, . . . , S′n} realizes G as a JIS graph.

Now, since v1 and v2 are adjacent, |S′1 ∪ S′2| = m+ 1. Since v3 is adjacent to at
least one of v1 and v2, |S′1 ∪ S′2 ∪ S′3| ≤ m + 2. Continuing this way, we see that
|S′1 ∪ · · · ∪ S′n| ≤ m+ n− 1 ≤ 2n− 2, which implies G is an induced subgraph of
J (m, 2n−1), m ≤ n−1. (Note: we proved the inequalities |S′1∪· · ·∪ S′n| ≤ 2n−2
and m ≤ n− 1 only for n ≥ 2, not for n = 1.)

Case 2. Assume c ≥ 2. Let ni be the order of the i th component of G. Then, by
Case 1 above, for each i there is a family Fi of mi -sets, mi ≤ ni , that realizes the
i th component of G as a JIS graph, such that the union of the sets in Fi has at most
2ni − 1 elements. Thus

⋃
Fi has at most 2n− c elements.

We can assume m1≥mi for all i . We can also assume that for all i 6= j , every set
in the family Fi is disjoint from every set in F j . To make all sets in all the families
have the same size, for each i such that m1 >mi we add the first m1−mi elements
of the first set in F1 to every set in Fi . After adding these extra elements, we must
make sure that sets corresponding to vertices in different components of G do not
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share immediate subsets. This will automatically be true for sets that had two or
more elements before the extra elements were added, but not for singletons. We
remedy this by adding, for each i , an element ei to every set in Fi , where e1, . . . , ec

are distinct elements not already in any set in any Fi . Let F =
⋃

Fi . Then G is
realized as a JIS graph by F , which is a family of (m1+1)-sets whose union has at
most 2n− c+ c= 2n elements, where m1+1≤ n1+1≤ n. Thus G is an induced
subgraph of J (m, 2n) where m = m1+ 1≤ n. �

Remark. It is not difficult to modify the above proof in Case 1 to show that if G
is connected, then it is an induced subgraph of J (n, 2n). It would be interesting to
see for which graphs the bounds n and 2n can be lowered. Note that if G consists
of exactly n ≥ 2 vertices of degree zero, then the bound 2n is optimal.

5. Edge move distance graphs and JIS graphs

Since the 1970s many authors have written on various metrics defined on sets of
graphs; see, for instance, [Benadé et al. 1991; Chartrand et al. 1997; 1990; Deza
and Deza 2009; Johnson 1987; Kaden 1983; Zelinka 1985]. Among them are edge
move, edge rotation, edge jump, and edge slide distances. In general, given a metric
d on a set of graphs S = {G1, . . . ,Gk}, the distance graph of S, denoted Dd(S),
has S as its vertex set, where two vertices Gi and G j are adjacent if d(Gi ,G j )= 1.
We will see shortly that distance graphs associated with the edge move metric are
closely related to JIS graphs.

An edge move on a graph G consists of removing one edge from and adding a
new edge to G, without changing its vertex set V (G); i.e., one edge is “moved to a
new position.” The edge move distance dm(G, H) between two graphs G and H is
defined as the fewest number of edge moves necessary to transform G into H , up to
isomorphism. Note that for dm(G, H) to be defined, G and H must have the same
order and the same size. It is easy to verify that dm is a metric on any set of graphs
of given order and size. Given a set S of graphs of the same order and size, the edge
move distance graph of S, Dm(S), is the graph whose vertices are the elements of
S, where two vertices are adjacent if their edge move distance is one. When we
say a graph is an edge move distance graph we mean it is isomorphic to one.

The connection between JIS graphs and edge move distance graphs can be seen
by focusing on edge sets. Let G and H be graphs of the same order and size, with
n edges each. If the edge sets E(G) and E(H) share exactly n− 1 elements, then
G and H have edge move distance one. Conversely, if G and H have edge move
distance one, then their vertices can be labeled such that E(G) and E(H) share
exactly n− 1 elements. At first glance, this might seem to suggest that a graph is
JIS if and only if it is isomorphic to an edge move distance graphs. We will show,
however, that only half (one direction) of this statement is true.
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Proposition 11. Every JIS graph is an edge move distance graph.

Proof. Let G be realized as a JIS graph by a family of n-sets {Sv : v ∈ V (G)}. We
will construct a graph Gv for each v ∈ V (G) such that dm(Gv,Gw)= 1 if and only
if Sv and Sw share an immediate subset.

We can assume that each Sv consists of positive integers. Let

k = 1+max{i ∈ Sv : v ∈ V (G)},

and let P be a path of length 2k. Denote the vertices of P by p0, p1, . . . , p2k . For
each v ∈ V (G), we let Gv be the graph consisting of P plus the edges pi p2k−i for
all i ∈ Sv. Then it is easily verified that for v 6=w, Gv is not isomorphic to Gw, and
dm(Gv,Gw)= 1 if and only if Sv and Sw share an immediate subset. Therefore G
is isomorphic to the edge move distance graph Dm({Gv : v ∈ V (G)}). �

The converse is not true. The reason is that the number of edges shared by the
edge sets of two graphs depends on how their vertices are labeled, whereas edge
move distance is measured up to graph isomorphism.

Proposition 12. The graph obtained by removing one edge from the complete
graph Kn , where n ≥ 5, is an edge move distance graph but is not JIS.

Proof. Fix n ≥ 5, and let H be the graph obtained by removing one edge from Kn .
Then H contains two maximal (n− 1)-cliques which share n− 2 vertices. Hence,
by Proposition 2(1), H is not JIS.

To show that H is an edge move distance graph, we construct a set of graphs
S= {Q1, Q2, . . . , Qn} such that H ' Dm(S). For 1≤ i ≤ n, Qi has n+2 vertices:
V (Qi )= {v1, v2, . . . , vn+2}. For 1≤ i ≤ n− 1, we have

E(Qi )= {vkvk+1 : 1≤ k ≤ n} ∪ {vn−1vn+1, vivn+2};

and E(Qn)= (E(Q1)∪ {v1vn−2}) \ {vn−2vn−1}.
Then one readily verifies for all i 6= j except when {i, j} = {n − 1, n} that Qi

and Q j have edge move distance one. Thus H is an edge move distance graph. �

Figures 4 and 5 show some of the Qi in the case n = 6.

v1 v2 vn-2 vn-1 vn

vn+1vn+2

Figure 4. Q1 for n = 6.
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v1 v2 vn-2 vn-1 vn

vn+1
vn+2

v1 v2 vn-2 vn-1 vn

vn+1vn+2

Figure 5. Qn−1 (left) and Qn (right) for n = 6.
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