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The Lang–Kobayashi system of delay differential equations describes the behav-
ior of the complex electric field E and inversion N inside an external cavity semi-
conductor laser. This system has a family of special periodic solutions known as
external cavity modes (ECMs). It is well known that these ECM solutions appear
through saddle-node bifurcations, then lose stability through a Hopf bifurcation
before new ECM solutions are born through a secondary saddle-node bifurca-
tion. Employing analytical and numerical techniques, we show that for certain
short external cavity lasers the loss of stability happens only after the secondary
saddle-node bifurcations, which means that stable ECM solutions can coexist in
these systems. We also investigate the basins of these ECM attractors.

1. Introduction

Today nonlinear delay differential equations (NDDEs) are used extensively in many
fields of science and engineering. Disciplines such as population dynamics, epi-
demiology, financial mathematics, and optoelectronics, to name a few, use NDDEs
in their modeling efforts. In most cases the model equations have very simple
functional forms, yet this apparent simplicity is deceiving. They display unusually
rich and complex dynamics, which primarily is a result of the high dimensionality
that the time-delayed terms introduce [Hale and Verduyn Lunel 1993; Driver 1977].

Our focus is on equations modeling the behavior of external cavity semicon-
ductor lasers. Semiconductor lasers offer many advantages not only due to their
compact size but also because of their enormous application in various fields, par-
ticularly in optical data recording and optical fiber communications.

Optical feedback is inevitable in virtually all realistic applications, which can
be due to, for instance, reflections from fiber facets when radiation is coupled into
a fiber. From the standpoint of dynamics, an optical feedback introduces a time
delay to the reinjected field which in turn makes the phase space dimension of the
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underlying dynamical system infinite. The high dimensionality renders the analysis
and understanding of external cavity lasers an extremely challenging problem from
the dynamical systems point of view. As a result, our fundamental understand-
ing about the bifurcation mechanisms leading to chaotic responses is still lacking
[Davidchack et al. 2000; 2001; Erneux et al. 2000].

The performance of semiconductor lasers can be degraded significantly when
the feedback is at moderate or high levels.

In general, the study of a nonlinear system often begins with an analysis of
certain types of stationary solutions or fixed points. The method of study of the
Lang–Kobayashi equation is similar in this respect: first we identify specific solu-
tions, then we attempt to interpret the behavior of the model at different parameter
values in terms of the location and stability properties of these specific solutions.

Lang and Kobayashi [1980] formulated a model consisting of two delay dif-
ferential equations for the complex electrical field E and the carrier number N
(see also [Alsing et al. 1996; Heil et al. 2001; 2003]). Numerical simulations
have shown that these equations correctly describe the experimentally observed
dominant effects. The equations are given by

dE
dt
= (1+ iα)NE+ ηe−iω0τE(t − τ), (1)

T d N
dt
= P − N − (1+ 2N )|E|2 (2)

where E= Ex(t)+ i Ey(t). The physical interpretation of E is the complex electric
field of the laser, and N (t) is the carrier number density of the laser. The parameters
involved are α, the line-width enhancement factor; η, the feedback strength; τ , the
external cavity round-trip time; ω0, the angular frequency; T , the ratio of carrier
lifetime to photon lifetime; and P , the dimensionless pump current. The physi-
cally meaningful values we use in our investigation are α = 5, τ = 5, T = 1710,
P = 1.155. These values were also used in [Heil et al. 2003]. We will make the
usual assumption ω0=− arctanα/τ to simplify our computations. Our bifurcation
parameter will be η.

By setting E= Ex(t)+ i Ey(t), the equations can be expressed as

Ėx(t)= N Ex −αN Ey + η(cos(ω0τ)Ex(t − τ)+ sin(ωoτ)Ey(t − τ)), (3)

Ėy(t)= αN Ex + N Ey + η(− sin(ωoτ)Ex(t − τ)+ cos(ω0τ)Ey(t − τ)), (4)

Ṅ = 1
T
(P − N − (1+ 2N )(E2

x + E2
y)). (5)

We will use this form in our numerical analysis with Matlab and the Matlab package
DDE-BIFTOOL [Engelborghs et al. 2002].
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2. External cavity modes

Solutions to the system vary depending on the chosen values of the parameters.
A certain type of solution is an external cavity mode, or ECM. The ECM is a
specific solution with a constant carrier number density and constant light intensity
[Rottschäfer and Krauskopf 2007]. The ECM is typically of the form

E= Eseiφs t , N = Ns,

where Es , φs , and Ns are constants. This can be substituted into the complex-form
equations to solve for the variable φs in terms of the original parameters:

Esiφseiφs t
= (1+ iα)Ns Eseiφs t

+ ηe−iω0τ Eseiφs(t−τ), (6)

0= P − Ns − (1+ 2Ns)E2
s . (7)

Dividing (6) by eiφs t gives us

Esiφs = (1+ iα)Ns Es + ηEse−i(ω0τ+φsτ).

Assuming Es 6= 0, the equation can be divided by Es to find

iφs = (1+ iα)Ns + ηe−i(ω0τ+φsτ). (8)

Comparing real and imaginary parts of (7) and (8), we obtain

0= Ns + η cos(τ (ω0+φs)), (9)

φs = αNs − η sin(τ (ω0+φs)), (10)

0= P − Ns − (1+ 2Ns)E2
s . (11)

To find φs , we use (9) and (10) to eliminate Ns and get

−φs = αη cos(τ (ω0+φs))+ η sin(τ (ω0+φs)).

Then setting β = arctanα, we have

tanβ = α, sinβ = α
√
α2+1

, cosβ = 1
√
α2+1

.

Using the trigonometric identity for sin(x + y) we obtain

−φs = η
√
α2+ 1 sin(arctanα+ τ(ω0+φs)).

Since we are assuming τω0 =− arctanα,

−φs = η
√
α2+ 1 sin(τφs).
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Figure 1. Graph of the two sides of (12).

The final equations are therefore

−φs = η
√
α2+ 1 sin(τφs), (12)

Ns =−η cos(τ (ω0+φs)), (13)

Es =

√
P−Ns
1+2Ns

. (14)

Since (12) is transcendental, a closed form solution cannot be obtained, so numer-
ical solutions will be found. An example plot of the two sides of (12) is given in
Figure 1, using our values α = 5, τ = 5, and η = 0.25. As we can see, both sides
of (12) are odd functions, so for any φs solution, −φs is also a solution. Also,
φs = 0 is always a solution of (12), which gives us a family of equilibrium points
situated on a circle in the phase-space. We will not consider the behavior of these
degenerate ECMs in this paper (for different values of the bifurcation parameter η,
the stability of these equilibrium points changes as well).

3. Bifurcations

ECM solutions appear as a result of saddle-node bifurcations and disappear with
the occurrence of Hopf bifurcations. Changing η, the bifurcation parameter, will
change the amplitude of the right side of (12). This will change the number of
solutions. First, we only have φs = 0, then by changing the amplitude, we have
two new solutions at tangency points, and finally we have four solutions at four
distinct intersection points. This bifurcation is demonstrated below in Figure 2. It
is clear that (12) always has φs = 0 as a solution. For the other intersections, we
use the fact that at the bifurcation we have a tangency. At the point of tangency,
the derivatives of both sides of (12) are equal:

−1= η
√
α2+ 1 cos(τφs)τ.
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Figure 2. Example of bifurcation by changing η. Clockwise from
top left: η = 0.1, 0.1806, 0.25.

So, the equations for the system at the tangency point are

η =
−1
τ
·

1
√

1+α2
·

1
cos(φsτ)

,

−φs =
−1
τ
·

1
√

1+α2
·

1
cos(φsτ)

·

√
1+α2 · sin(φsτ).

This means that at the tangency,

φsτ = tan(φsτ).

Considering the graphs of x and tan x we can see that the solutions of the previ-
ous equation are on the intervals ((2n−1)π/2, (2n+1)π/2). We are only interested
in the solutions on the intervals ((4n+1)π/2, (4n+3)π/2), because the solutions
φs on the other intervals give us a negative η value. Also, asymptotically the
solutions of this equation are φsτ ∼ (4n+ 3)π/2.

For example, for our values of τ = 5, α = 5, P = 1.155, T = 1710, the
first saddle-node bifurcation occurs at η ≈ 0.1806, and the second saddle-node
bifurcation is at η ≈ 0.4295.
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4. Stability of ECMs

Generally, in the case of ordinary differential equations, when a saddle-node bi-
furcation occurs, one of the equilibrium points created is stable and the other is
unstable. In our case, the saddle-node bifurcation creates four ECM solutions (two
pairs, one pair for the negative φs values and one pair for the positive φs values).
In one of these pairs, both ECM solutions are unstable (when φs is positive) and
in the other pair, one ECM solution is stable and the other is unstable.

As an illustration, in Figures 3 and 4 we plot two solutions for the value η= 0.4
with history E = Eseiφs t , N = Ns , where φs , Ns and Es are obtained from (12),
(13), and (14). The values are φs ≈ −1.1382, Ns ≈ −0.2837, Es ≈ 1.8250 and
φs ≈−0.6982, Ns ≈−0.0606, Es ≈ 1.760. As the figure shows, one of the ECMs
is stable and the other one is unstable.

We used the Matlab function dde23 to create the illustration below.
The Matlab package DDE-BIFTOOL was used to analyze the stability of equi-

librium points and periodic solutions. Using this package, we calculate a branch

Figure 3. Stable ECM solution. The vertical coordinate in the
three-dimensional graph, N (t), is approximately −0.2837.
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Figure 4. Unstable ECM solutions.

of ECM solutions over a range of η values. The branch plot in Figure 5 shows the
amplitude of ECM solutions versus the feedback parameter η (each point on this
figure represents an ECM).

On Figure 6, we show for different values of η the corresponding ECM solutions
on the branch figure.

Figure 5. Branch plot from Matlab.
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Figure 6. ECM solutions for different values of η.

Floquet multipliers are also calculated with DDE-BIFTOOL and are used to
determine the stability of our ECM solutions. In order to be stable, Floquet mul-
tipliers must have an absolute value less than 1. (There is always one Floquet
multiplier equal to 1, but that does not affect the stability of the periodic solution.)

The Floquet multipliers are inside the unit circle on Figure 7 (left), which proves
the stability of that ECM solution. In Figure 7 (right), some of the Floquet multi-
pliers are outside the unit circle, so the corresponding periodic solution (ECM) is
unstable. This matches our numerical observations by dde23 presented earlier in
this section.
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Figure 7. Floquet multipliers of stable solutions (left) and unsta-
ble ones (right).
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5. Coexistence of stable ECMs and basins of attraction

Typically the leftmost φs value corresponds to the stable ECM solution and the
other ECM solutions are unstable. It was observed earlier that after ECM solutions
are created by saddle-node bifurcations, the stable ECM solution loses stability
through a Hopf bifurcation for a slightly higher η value, and then another stable
ECM will emerge through a new saddle-node bifurcation. On Figure 8, we illus-
trate the loss of stability through a Hopf bifurcation.

For short external cavity semiconductor lasers, there is a possibility of coexis-
tence of two stable ECM solutions. For the α = 5, τ = 5 case, we find that the
Hopf bifurcation, through which the primary ECM loses stability, occurs only after
the secondary ECM is born. This creates two simultaneous stable ECM solutions.
This coexistence of stable ECMs is maintained for τ values up to τ ≈ 35.

Using the calculated branch of the ECMs, the stability of these ECMs was de-
termined. Figure 9 plots the absolute value of the Floquet multipliers as a function
of η. Figure 9 (left) shows Floquet multipliers for the branch emerging from the
primary bifurcation point, and Figure 9 (right) shows that of the branch emerging
from the secondary bifurcation point. The graphs provide a rough estimate of the η
value where the ECMs lose stability. Analysis of this figure reveals the coexistence
of stable ECMs on the approximate range 0.43< η < 0.53.

The coexistence of two stable ECMs creates a partition in the history function
space between solutions that converge to the first ECM and those that converge to
the second. Of course, this function space is an infinite dimensional space, so we
will consider a three dimensional subspace consisting of periodic solutions in the
form E(t) = Eeiφt , N (t) = N . Figures 10–14 demonstrate the basins for the two
stable ECMs for various η values. White dots indicate an initial condition function
for which the solution converges to the ECM from the primary bifurcation, and
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Figure 8. Left: primary ECM; right: Hopf bifurcation.
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black dots indicate the initial condition functions for which the solution converges
to the ECM from the secondary bifurcation. On each figure, the six subfigures
correspond to the specified N value, the φ and E values on every subfigure cor-
respond to the range specified on the first subfigure, divided evenly between the
given values.

As these figures show, the basin of the secondary ECM attractor is growing as
η increases. Accordingly, the basin of the primary ECM attractor is contracting
before this ECM loses stability through the above-mentioned Hopf bifurcation at
around η = 0.53.

We demonstrated that for certain short external cavity semiconductor lasers,
the coexistence of stable ECM solutions is possible. Computations indicate that
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Figure 9. Floquet multipliers at the primary and secondary bifurcations.

Figure 10. The case η = 0.44.
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Figure 11. The case η = 0.46.

Figure 12. The case η = 0.48.

this coexistence of the stable primary and secondary ECM solutions disappear at
around τ ≈ 35 (for the previously specified α, P , T values). This means that for
short external cavities there is a range of the feedback parameter η where the laser
can operate in two different modes.
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Figure 13. The case η = 0.50.

Figure 14. The case η = 0.52.
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317Curvature measures for nonlinear regression models using continuous designs with
applications to optimal experimental design

TIMOTHY O’BRIEN, SOMSRI JAMROENPINYO AND CHINNAPHONG BUMRUNGSUP

333Numerical semigroups from open intervals
VADIM PONOMARENKO AND RYAN ROSENBAUM

341Distinct solution to a linear congruence
DONALD ADAMS AND VADIM PONOMARENKO

345A note on nonresidually solvable hyperlinear one-relator groups
JON P. BANNON AND NICOLAS NOBLETT

involve
2010

vol.3,
no.3

http://dx.doi.org/10.2140/involve.2010.3.241
http://dx.doi.org/10.2140/involve.2010.3.249
http://dx.doi.org/10.2140/involve.2010.3.273
http://dx.doi.org/10.2140/involve.2010.3.289
http://dx.doi.org/10.2140/involve.2010.3.297
http://dx.doi.org/10.2140/involve.2010.3.317
http://dx.doi.org/10.2140/involve.2010.3.317
http://dx.doi.org/10.2140/involve.2010.3.333
http://dx.doi.org/10.2140/involve.2010.3.341
http://dx.doi.org/10.2140/involve.2010.3.345

	1. Introduction
	2. External cavity modes
	3. Bifurcations
	4. Stability of ECMs
	5. Coexistence of stable ECMs and basins of attraction
	References
	
	

