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This short paper studies the statistical characteristics of extreme snowstorms
striking the eastern seaboard of the United States — the so-called nor’easters.
Poisson regression techniques and extreme value methods are used to estimate
return periods of storms of various snow volumes. Return periods of several
memorable events are estimated, including the superstorm of 1993, the North
American blizzard of 1996, and the blizzard of 1888. While nor’easters are
found to occur more frequently in late winter than early winter, no evidence of
increasing/decreasing storm frequencies in time or dependencies on the North
Atlantic oscillation is found.

1. Introduction

A nor’easter is a large-scale winter storm that impacts the east coast of the United
States. A nor’easter can drop copious amounts of snow and may also cause flood
and wind damage. Nor’easters occur from late fall through early spring. The super-
storm of 1993 (March 12–15), for example, was the largest snowstorm affecting
the United States in the last century. This storm deposited over 60 inches of snow
in some places, is blamed for 300 fatalities, and caused an estimated six to ten
billion dollars of damage.

While nor’easters are sometimes referred to as winter hurricanes, literature
studying their frequency properties is sparse when compared to that for summer
hurricanes. The goal here is to quantify the nor’easter snowstorm hazard. The
timing of this work coincides with attempts by several insurance risk modeling
firms to quantify the hazard.

The total snow volume of each storm will be used as the measure of storm sever-
ity. Return periods for various snow volume accumulations will then be estimated.
A snow volume return period is how long one waits, on average, until a nor’easter
with a preset snow volume or greater strikes. For example, the superstorm of 1993

MSC2000: 60G55, 62G07, 62G32, 62M99.
Keywords: extreme values, North Atlantic oscillation, peaks over threshold, Poisson processes,

snowstorms.

341

http://pjm.math.berkeley.edu/inv
http://dx.doi.org/10.2140/inv.2009.2-3


342 CHRISTOPHER KARVETSKI, ROBERT B. LUND AND FRANCIS PARISI

is also nicknamed the Storm of the Century, giving connotations of a 100-year
storm. Later, we will see that this storm was more than a 100-year event.

2. The data

The data for this analysis were taken from [Kocin and Uccellinni 2004a; 2004b].
These references contain much information about the individual storms. Nor’easter
documentation is scant when compared to that for summer hurricanes (for the latter,
see [Blake et al. 2005; Parisi and Lund 2008]). Our data consists of 65 storms
occurring during the years 1953–2003 inclusive; the record for this time period is
complete. The individual storms are chronologically listed in Table 1; no storms
occurred in 1953, 1954, or 1955. As the pre-1953 record is incomplete, we cannot
include memorable pre-1953 storms (such as the New England blizzard of 1888),
without biasing the overall results.

For each storm in the table, Kocin and Uccellinni 2004a report the areas that
accumulated more than four inches, ten inches, twenty inches, and thirty inches,
respectively. For each storm, we compute a crude volume estimate via the fol-
lowing rubric. For the superstorm of 1993, an area of 386.0× 103 squared miles
experienced snow accumulations of at least four inches, an area of 283.5× 103

squared miles saw accumulations of at least ten inches, an area of 142.4 × 103

squared miles had accumulations of at least twenty inches, and an area of 12.9×103

squared miles received accumulations of over thirty inches. A volume estimate for
the superstorm of 1993 is hence

386× 4+ 283.5× (10− 4)+ 142.4× (20− 10)+ 12.9× (30− 20)= 4798,

where the units on the volume are 103 inches times squared miles. The volumes can
be converted to cubic meters upon multiplication by 6.5024×107, but we will not
do this as the analysis below is invariant of any linear scale change on the volume
units. Because of this, volume units will be henceforth suppressed for simplicity.

Whereas our estimated volume underestimates actual values (areas receiving
less than 4 inches of snow, for example, are not included in the volume estimates),
the estimated volumes are reasonable measures of storm intensity; moreover, all
volumes are underestimated in the same way, which makes storm-by-storm com-
parisons meaningful. The smallest volume was 291.2 and the largest volume was
4798.0. On average, there are about 1.27 storms per season. The number of storms
in a single season ranges from zero to five.

We emphasize that this data only contains large-scale nor’easters and not more
localized events such as Great Lake effect snowfalls. Alberta Clipper-type storms,
whose snowfall volumes tend to be much less than nor’easters, are also not repre-
sented in this data.
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Date (midstorm) Sq. miles covered with NAO Rough
yr mo day 4 in 10 in 20 in 30 in average volume

1956 3 16 195.5 92.3 0 0 −1.07 1335.8
1956 3 18 64.9 28.6 2.6 0 −1.07 457.2
1957 12 4 87.2 9.4 0 0 0.073 405.2
1958 2 15 282.6 129.2 20.2 3.4 0.073 2141.6
1958 3 19 146.7 62.1 13.8 3.5 0.073 1132.4
1959 3 12 215.3 121.1 7.7 0 −0.13 1664.8
1960 2 14 353.9 142.1 23.3 0 0.093 2501.2
1960 3 3 590.4 140.8 7.6 0 0.093 3282.4
1960 12 12 302.9 78.5 0.6 0 1.993 1688.6
1961 1 19 144.9 62.3 5.7 0 1.993 1010.4
1961 2 3 369.3 114 19.4 1.4 1.993 2369.2
1961 12 24 105.5 14.8 0 0 0.497 510.8
1962 2 14 101.4 33.8 0.4 0 0.497 612.4
1962 3 6 148.6 70 19.3 0 0.497 1207.4
1963 12 22 374.2 51.3 0 0 −0.763 1804.6
1964 1 12 356.5 129.6 10.3 0 −0.763 2306.6
1964 2 19 169.7 53.4 3.5 0 −0.763 1034.2
1965 1 16 214.5 15.3 0 0 −1.42 949.8
1966 1 22 296.4 145.1 6.6 0 −0.05 2122.2
1966 1 30 371.4 111.7 12.3 1.5 −0.05 2293.8
1966 12 24 292.2 89.8 9.9 0 1.14 1806.6
1967 2 6 246 50.9 0 0 1.14 1289.4
1967 3 21 62.3 7 0 0 1.14 291.2
1969 2 9 107.5 66.4 11.6 0 −2.177 944.4
1969 2 25 101.7 48.4 40.8 24.2 −2.177 1347.2
1969 12 26 250.6 138.7 37.6 0 −0.107 2210.6
1970 12 31 151 46.4 4.4 0 −0.267 926.4
1971 3 4 195.7 101.6 23.3 0 −0.267 1625.4
1971 11 26 163.4 73.4 6.6 0 0.013 1160
1972 2 19 206.3 140.9 13.5 0 0.013 1805.6
1978 1 17 364.4 122.1 0 0 −0.593 2190.2
1978 1 20 295.2 167.7 8.3 0 −0.593 2270
1978 2 6 220.2 132.3 30.7 0.9 −0.593 1990.6
1979 2 18 304 88.2 4.3 0 −1.973 1788.2

Table 1. The nor’easter data (continued on next page).
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Date (midstorm) Sq. miles covered with NAO Rough
yr mo day 4 in 10 in 20 in 30 in average volume

1982 1 14 382.2 133.9 0 0 −0.223 2332.2
1982 4 6 258.3 79.3 2.1 0 −0.223 1530
1983 2 11 157.1 112.6 33.7 0.9 2.07 1650
1984 3 8 120.9 54.6 0 0 1.697 811.2
1984 3 28 124.6 53.3 2.1 0 1.697 839.2
1987 1 1 164.6 76.6 0 0 0.353 1118
1987 1 22 286.9 153.7 2 0 0.353 2089.8
1987 1 25 74.3 38 0 0 0.353 525.2
1987 2 22 61.3 28.3 0.3 0 0.353 418
1988 1 7 488.5 129.7 0 0 −0.13 2732.2
1990 12 26 166 12.7 0 0 0.73 740.2
1992 12 11 118.7 61.6 21.5 0 1.41 1059.4
1993 3 13 386 283.5 142.4 12.9 1.41 4798
1994 1 4 222.3 76.4 10.5 0 1.173 1452.6
1994 2 9 280 57.7 4.4 0 1.173 1510.2
1994 3 3 165.4 109.1 0 0 1.173 1316.2
1995 2 3 200.1 98 0 0 2.897 1388.4
1995 12 20 260.3 85.4 0 0 −2.24 1553.6
1996 1 7 313.8 200.1 90.2 15.1 −2.24 3508.8
1996 2 3 157.3 44.1 0.9 0 −2.24 902.8
1996 2 16 136.7 12.2 0 0 −2.24 620
1997 3 31 76.4 32 13.1 3.1 −0.463 659.6
1996 1 7 313.8 200.1 90.2 15.1 −2.24 3508.8
1996 2 3 157.3 44.1 0.9 0 −2.24 902.8
1996 2 16 136.7 12.2 0 0 −2.24 620
1997 3 31 76.4 32 13.1 3.1 −0.463 659.6
1999 3 14 180.3 58.8 1.4 0 1.55 1088
2000 1 25 205.6 74.2 0.3 0 2.283 1270.6
2000 12 30 103.8 56.5 3.7 0 −0.44 791.2
2001 3 5 161.1 105.1 30.4 1.8 −0.44 1597
2002 12 4 269.7 6.1 0 0 0.17 1115.4
2002 12 25 345.3 91.3 13.8 4.4 0.17 2111
2003 1 3 211.1 77.4 11 0 0.17 1418.8
2003 2 6 88.4 6.1 0 0 0.17 390.2
2003 2 16 303.5 142 51.9 2.7 0.17 2612

Table 1 (continued). The nor’easter data.
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3. Arrival properties of nor’easters

To estimate return periods, we need to model the storm arrival times. Following
[McDonnell and Holbrook 2004] and [Parisi and Lund 2008], the storm count in
season t is modeled as a Poisson random variable with mean λt , where

λt = exp (β0+αt +β1NAOt) .

Here, the parameter α allows for a linear trend in the storm counts (we will assess
whether or not this parameter is zero below) and the β1NAOt component allows
for possible influences of the North Atlantic oscillation (NAO). The average NAO
index over December, January, and February during season t is used for NAOt .
Kocin and Uccellinni [2004a] suggest that the NAO may influence nor’easter storm
counts (see [Van den Dool et al. 2006] for generalities about the NAO and North
American climate).

Poisson regression techniques were used to fit the above model. The estimated
parameters are α̂ = 0.008 and β̂1 = −0.0149. Intervals of 95% confidence for α
and β are [−0.009, 0.025] and [−0.339, 0.041]. As both of these intervals contain
zero, these two parameters are statistically indistinguishable from zero with 95%
confidence. All possible subsets of the regression model structure were also fitted
and produced insignificant parameters at the 95% level. Thus, we do not find
evidence of trends or NAO influences in the storm counts. A Kolmogorov–Smirnov
test fails to reject a Poisson distribution for the annual storm counts at the 95% level.
In short, the annual nor’easter storm counts pass as statistical white noise with a
Poisson marginal distribution with a mean of approximately 1.27 storms per season.

Although the number of storms from season to season appears time-homogen-
eous, the storms do not arrive uniformly within a season. To investigate this aspect,
the kernel intensity estimate in Figure 1 was constructed. This graphic presents a
probabilistic description of when storms occur within a season. As the earliest
storm in our data record occurred on November 26 (and the latest on April 6), we
have chosen to measure a storm’s arrival date as the number of days after October 1
that the storm’s midpoint took place on (the midpoint, or the average of the storms’
beginning and ending dates, is used since some storms last multiple days). Figure 1
displays estimates of the intensity function λ̂(t) at time t defined by

λ̂(t)=
1

Nyr

Nst∑
i=1

h−1K
( t−di

h

)
, 0≤ t < 365.

Here, Nyr = 51 is the number of seasons of data, Nst = 65 is the total number of
storms, K is the Gaussian kernel function

K (x)=
exp(−x2/2)
√

2π
, −∞< x <∞,
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Figure 1. Estimated seasonal intensity function.

h = 10 is a bandwidth parameter that controls the amount of smoothing done (see
[Sheather and Jones 1991] for discussion about selecting an appropriate h), and di

is the number of days after October 1 that the midpoint of the i th storm occurs on
for 1 ≤ i ≤ Nst. The interpretation of λ̂(t) is that the probability of a nor’easter
occurring in the time interval (t, t + h] is approximately λ̂(t)h for small h.

The intensity function in Figure 1 peaks at about 133.8 days after October 1,
or around February 11. Hence, nor’easters are slightly more likely to occur after
midwinter (which is about January 20) than before midwinter. Though we cannot
offer a meteorological explanation for this pattern, we note that summer hurricane
arrivals also peak in the later half of their season.

4. Return periods

Our next task lies in estimating the return periods of nor’easters. The return periods
derived below apply to the northeastern United States as a whole and not to a
specific geographic location. Elaborating, a return period of a twenty inch snowfall
for New York City should be estimated from snowfall data taken in New York City
proper (whose record is much longer than our 51 years) and not the nor’easter data
set in Table 1.

The return period of a volume x storm is simply how long one waits, on the
average, until a storm occurs that deposits a snow volume of x or more. We measure
all return periods from October 1. For example, one waits an average of 839.5 days
after October 1 of any calendar year for a 2.3 year nor’easter to occur.
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To estimate return periods, we need to model the snow volumes of the storms.
For this, we appeal to the peaks over threshold paradigm (see [Embrechts et al.
1997] for general discussion). Elaborating, there is very general mathematical
justification for fitting the Pareto cumulative distribution

P(Vi − u ≤ x |Vi > u)= 1−
(

1+ ξ
x
σ

)−1/ξ

+

, x ≥ 0, (4.1)

to the nor’easter snow volumes {Vi }
Nst
i=1. The three parameters in the Pareto model

are the shape parameter ξ , the scale parameter σ , and the threshold u > 0. In
Equation (4.1), x+ =max(x, 0). The threshold u = 290 is selected. This threshold
allows all nor’easters in Table 1 to be considered and passes the rudimentary diag-
nostic checks suggested in [Davison and Smith 1990]. The maximum likelihood
parameter estimates of the other Pareto parameters and 95% confidence intervals
are ξ̂ = −0.2899 ([−0.436,−0.144]) and σ̂ = 1544.931 ([1174.10, 2032.90]). A
Kolmogorov–Smirnov goodness of fit test fails to reject the fitted Pareto distribu-
tion with a p-value of 0.2175. Due to the support set of the distribution in (4.1),
the negative estimate of ξ implies that snow volumes of nor’easters cannot exceed
u−σ/ξ , which is approximately 5619.2 in this case. Finally, we regressed the snow
volumes on the average December, January, and February NAO index to ascertain
if the NAO influences snow volumes (Section 3 shows that NAO does not influence
storm counts). No statistically significant relationship was found.

With the above model, return periods can be estimated via simulation. One
season of the process is simulated as follows. First, a nonhomogeneous Poisson
process with the intensity function in Figure 1 is simulated. This intensity function
integrates to approximately 1.27 over an annual cycle, which is the mean number
of storms per season. For each generated storm in this cycle, we then simulate a
snow volume from the fitted Pareto model.

For a volume of x , the waiting time of the simulation is the elapsed time,
measured from October 1, until the first storm whose snow volume exceeds x is
encountered. If no snow volume of x is encountered in this season, then one adds
a year to the waiting time and simulates another season. This process is repeated
until a snow volume of x or more is encountered.

The above scheme generates one fair draw of a “level x” waiting time. Every
time a snow volume of x or more is encountered, the simulation run is over and
the next run starts from scratch (October 1). An estimate of the return period is
based on empirically averaging many independent waiting times.

Simulating the necessary processes is reasonably easy; see [Ross 2002] for gen-
eral detail. One aspect, however, does merit some elaboration: how to generate a
Poisson process from the intensity function in Figure 1. This is done by Poisson
thinning. Specifically, to generate one season of storm arrival times, we generate a
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Estimated return
Storm name Volume period (years)

Blizzard of 1888 1837.0 2.4
February blizzard of 1978 1990.6 2.8
Presidents’ Day storm of 2003 2612.0 5.5
North American blizzard of 1996 3508.8 19.0
Superstorm of 1993 4798.0 500.1

Table 2. Estimated return periods for some historical storms.

time-homogeneous Poisson process with arrival rate λ∗ satisfying λ̂(t)≤ λ∗ for all
t ∈ [0, 365]. If a storm occurs at time t in the time-homogeneous process, we then
independently flip a coin with heads probability λ(t)/λ∗. If the coin is heads, the
storm is kept; if the coin is tails, we disregard the storm. The “thinned process” of
retained storms is indeed a sample from a nonhomogeneous Poisson process with
arrival rate λ̂(t) at time t (see [Ross 1996, page 80] for a proof).

Figure 2 plots estimated return periods for various volume levels as estimated by
the model. For example, a snow volume of 4250 has an estimated return period of
82.4 years. This return period was estimated by averaging one hundred thousand
independent waiting time draws; hence, there is little simulation error.

While there is little simulation error in this return period estimate, significant
model uncertainties may well be present. One could use asymptotic normality of
the Pareto parameter estimators to quantify the Pareto uncertainties in the return
period estimates (the uncertainties in the Poisson arrival cycle are somewhat harder
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to quantify); however, such schemes do not appear to work well in practice (see
[Tajvidi 2003] for discussion and possible remedies). While we will not delve into
model uncertainties further, Bayesian methods may be promising.

The graphic in Figure 2 shows that a nor’easter with a volume of 3000 occurs
about once every nine years on average; a hundred-year volume is about 4300. The
return periods increase rapidly for volume levels above 4000. In fact, a volume of
4800 (which is only 2 more than the superstorm of 1993) has a return period of
about 500 years. Indeed, it appears that the superstorm of 1993 deserves its “Storm
of the Century” nickname.

Table 2 shows estimated return periods of selected historical storms. The bliz-
zard of 1888 has a return period of about 2.4 years, a relatively common event
given its historical lore. This estimate is, however, reasonable: while dropping
very heavy snow, the storm did not affect a large area. The recent Presidents’ Day
blizzard of 2003 has a return period of about 5.5 years. The only two storms in
our data set with volumes above 3500 are the North American blizzard of 1996
(a volume of 3508.8) and the superstorm of 1993 (a volume of 4798). The return
period for the North American blizzard of 1996 is estimated at 19.0 years and the
superstorm of 1993’s return period is estimated at a whopping 500.1 years. The
superstorm of 1993 is clearly an extreme event; indeed, its volume lies close to
the statistical boundaries of what is deemed possible. Whereas this return period
estimate likely contains considerable error due to model uncertainty, it was indeed
an impressive event. In fact, accounts of pre-1953 blizzards do not suggest an
event of this magnitude over the last 300 years (the Great Storm of February 1889
and the Great Snow of 1717 seem the closest in magnitude; see [Burt 2004] for
descriptions of these storms).
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