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Following a similar treatment of the Baumslag–Solitar group BS(1, 2) by Bahls,
we modify a transformation developed by Magnus to linearly order the group
BS(1, 3) given by the presentation 〈a, b | ab = ba3

〉. We demonstrate how this
same method will fail to admit such a treatment of the groups BS(1, n), n ≥ 4.

1. Introduction

This paper is heavily based on the work [Bahls 2007] on ordering the Baumslag–
Solitar group BS(1, 2). The purpose of this paper is to modify the method of [Bahls
2007] to linearly order the Baumslag–Solitar group BS(1, 3) with presentation

P = 〈a, b | ab = ba3
〉.

Theorem 1.1. The positive monoid BS+(1, 3) can be linearly ordered by an order
≤ compatible with multiplication on the left:

u ≤ v⇒ w · u ≤ w · v,

for all u, v, w ∈ BS+(1, 3). This order passes to an order on the corresponding
group BS(1, 3) which is also compatible with multiplication on the left.

We will also indicate why our method does not apply to any BS(1, n), n ≥ 4.
We would like to emphasize that it is possible to construct an order on BS(1, n)

by other means; the significance of this current work lies in its exploration of the
methods developed first in [Duchamp and Krob 1990; 1993], and [Duchamp and
Thibon 1992], and later modified by Bahls [2007]. Our results here highlight both
the potential and the limitations of these methods.

Before proceeding further we briefly motivate our study of orderability.
As in our theorem above, the group G is said to be left orderable if it admits a

linear ordering ≤ satisfying g1 ≤ g2⇒ g · g1 ≤ g · g2 for all g, g1, g2 ∈ G. Right

MSC2000: 06F15, 20F60.
Keywords: Group ordering, BS(1,n), Baumslag–Solitar, Magnus transformation.
The second and third authors were undergraduate students supported by an NSF-sponsored REU
grant provided to the University of North Carolina, Asheville during the writing of this paper.

211

http://pjm.math.berkeley.edu/inv
http://dx.doi.org/10.2140/inv.2009.2-2


212 PATRICK BAHLS, VOULA COLLINS AND ELIZABETH HERON

orderable and biorderable groups are defined in a similar fashion; biorderability
clearly implies both left and right orderability.

Orderability works well with other algebraic conditions. For instance, it is
known that if G is left orderable then it satisfies the Zero Divisor Conjecture:
the integral group ring ZG has no nontrivial divisors of zero. Local indicability is
another closely related property: G is said to be locally indicable if every nontrivial
finitely generated subgroup surjects onto Z. Such groups are known to be orderable
on one side, but conversely there are examples of groups which are right orderable
and not locally indicable. (See [Bergman 1991] for examples; more details can be
found in [Rhemtulla 2002].)

The braid groups Bn are one such class: they are orderable on one side but not
on both, and they are not locally indicable. Dehornoy et al. [2002] give an in-depth
treatment of Bn . The braid groups are one of many topologically and geometri-
cally significant classes of groups whose orderability has recently drawn attention.
Other examples include various mapping class groups of punctured surfaces with
boundary [Short and Wiest 2000] and fundamental groups of 3-manifolds [Boyer
et al. 2005].

A sketch of our argument is as follows. As in [Bahls 2007], we will first define
the Magnus transformation, µ, which maps a generator xi of a monoid M to 1+xi ,
an element of the algebra Ak(M) of formal power series freely generated by M
with coefficients in the integral domain k. A more extensive discussion of the
Magnus transformation in various settings can be found in the second section of
[Bahls 2007], in Magnus’s own classical work with Karrass and Solitar [Magnus
et al. 1976], or in [Duchamp and Krob 1990; 1993; Duchamp and Thibon 1992].

Due to the simplicity of the relations governing right-angled Artin groups, Du-
champ and his collaborators were able to work with µwithout passing to a quotient
algebra. In our present case, as in [Bahls 2007], µ is not inherently a homomor-
phism, so we must force it to be one by introducing a relation on the algebra,
thereby passing to a quotient. After defining a normal form for the elements in
BS(1, 3) we will apply the new relation to determine a normal form for elements
in the algebra. This will allow us to prove that the modified mapping µ is injective
and to define a linear order on the elements of BS(1, 3) by linearly ordering their
images under µ.

2. The mapping µ and normal forms in BS(1, 3)

Let M be the noncancellative positive monoid BS+(1,3) given by the presentation

〈a, b | ab = ba3
〉.
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It is known that an element of BS+(1, 3) has normal form bmal where m and l are
nonnegative integers. Similarly, an element in BS(1, 3) has normal form bmalb−k

where k and m are nonnegative integers and l is any integer not divisible by 3.
Let AQ(M) be the associative algebra of formal series freely generated by the

elements of M with coefficients in Q∪ {±∞}.

Note. For reasons that will become clear in the next section we will require infinite
coefficients. For any q ∈ Q we define∞+ q =∞ and∞· q = ±∞, depending
on the sign of q , and similarly for −∞. Though strictly speaking addition is not
defined on all pairs of elements in our algebra, the computation −∞+∞ will not
arise.

We define µ : M → AQ(M) by x 7→ 1+ x for x ∈ {a, b} and extend it in the
natural fashion:

xε1
1 xε2

2 · · · x
εk
k

µ
7→ (1+ x1)

ε1(1+ x2)
ε2 · · · (1+ xk)

εk .

We then make use of the existence of formal inverses in AQ(M): given any x ∈M ,

(1+ x)−1
= 1− x + x2

− x3
+ · · · ,

and thus we may extend µ to a mapping on BS(1, 3) by extending the natural
mapping

µ(a−1)= 1− a+ a2
− a3
+ · · · and µ(b−1)= 1− b+ b2

− b3
+ · · · .

As defined, the map µ is not a homomorphism on BS(1, 3). In order to ensure
that µ preserves the structure of the group we pass to the quotient of AQ(M) by
the image of the relation ab = ba3 under µ. That is, we define

A= AQ(M)/I,

where

I = 〈(1+ a)(1+ b)= (1+ b)(1+ a)3〉 = 〈ba2
=−(1/3)a3

− a2
− (2/3)a− ba〉.

Abusing notation, we let µ refer to the composition of the original mapping with
this quotient map.

Every element in A can be placed in normal form by successive applications of
the two relations

ab = ba3 and ba2
=−(1/3)a3

− a2
− (2/3)a− ba.

Such a normal form will admit additive terms in one of three forms: bh , ai , or
b j a. (The group relation allows us to move b to the left past a, and the quotient
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relation allows us to reduce powers of a that follow at least one b.) Images of
group elements under µ take the form

(1+ b)m(1+ a)l(1+ b)−k,

where m and k are nonnegative integers and l is an arbitrary integer. Upon ex-
panding these binomials and applying the two above relations, we obtain a normal
form

1+
∞∑

h=1

βhbh
+

∞∑
i=1

αi ai
+

∞∑
j=1

γ j b j a,

for rational numbers βh , αi , and γ j .

3. Injectivity of µ

By passing to A we have ensured that µ is a homomorphism. However, before we
will be able to linearly order the group by ordering its image under µ, we must
prove that µ is an embedding of BS(1, 3) into A. To prove that µ is injective we
must show that if g ∈ BS(1, 3) satisfies g 6= 1, then µ(g) 6= 1 in A.

We will need the following:

Lemma 3.1. For k ∈ N, and x ∈ (1,∞), then

∞∑
i=0

( i + k− 1
k− 1

)(
1−

1
x

)i
= xk .

To prove Lemma 3.1 we use the following obvious fact:

Lemma 3.2. Let gk(x)=
(
1/(1− x)

)k . Then

dngk

dxn =
(n+ k− 1)!
(k+ 1)!

( 1
1− x

)n+k
,

so

g(n)k (0)=
(n+ k− 1)!
(k+ 1)!

.

Proof of Lemma 3.1. Using the binomial theorem, we see

(
1

1−x

)k
=

∞∑
i=0

(i + k− 1
k− 1

)
x i .

But Taylor expansion gives
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∞∑
i=0

(i + k− 1
k− 1

)(
1−

1
x

)i
= gk

(
1−

1
x

)
=

( 1
1− (1− (1/x))

)k

=

( 1
(1/x)

)k

= xk,

and we are done. �

Let c(z,m) be the coefficient of the monoid element m as an additive term in
z ∈A written in normal form, and define H to be the image of BS(1, 3) under µ.
To prove injectivity we will derive formulas for c(z, a) for any arbitrary z ∈ H .

Proposition 3.3. The mapping µ is injective.

Proof. Let g = bmalb−k
6= 1. Clearly c(µ(g), b) 6= 0 if l = 0 and m 6= k. Thus we

may assume l 6= 0.
Suppose at least one of m or k is equal to 0 and l 6= 0. If m = k = 0, then

c(µ(g), a) = l, so µ(g) 6= 1. If m = 0 and k > 0, then c(µ(g), b) = −k; if k = 0
and m> 0, then c(µ(g), b)=m. Therefore no such group elements can be mapped
by µ to the identity.

Now let g = bmalb−k where m, k > 0 and l > 0. We show that c(µ(g), a) 6= 0.
Expanding µ(bmalb−k) gives a formal series with additive terms bha j bi (h ≤ m,
j ≤ l, and i arbitrarily large), before reducing to normal form. It is not difficult
to compute inductively the coefficient on a in such a term once it is reduced to
normal form:

Lemma 3.4. For any z = bha j bi as above,

c(z, a)= (−1)h+i+ j (2/3)h+i .

Proof. First apply the group relation ab = ba3 to move all powers of b to the left,
resulting in bh+i a j3i

.
We now show by induction on s and t that

c(bsat , a)= (−1)s+t(2/3)s
.

First consider s = 1. In the base case t = 2,

c(ba2, a)=−2/3,

as desired. Suppose inductively we have shown

c(bat , a)= (−1)s+t(2/3).
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Then

bat+1
= (ba2)at−1

=−(1/3)at+2
− at+1

− (2/3)at
− bat .

Our inductive hypothesis thus gives us coefficient

(−1)(−1)t+1(2/3)= (−1)[(t+1)+1](2/3)

on a, as needed.
Now suppose inductively we have shown

c(bsat , a)= (−1)s+t((2/3))s
,

for any t ≥ 2 and for some fixed s. In the base case (for s+ 1) t = 2, we have

bs+1a2
= bs(ba2)=−(1/3)bsa3

− bsa2
− bsa− bs+1a.

The last two terms contribute no a’s, while inductively the first two contribute
(−1/3) (−1)s+3 (2/3)s and (−1)(−1)s+2 (2/3)s a’s, respectively. Adding these
and simplifying yields the desired sum:

(−1/3) (−1)s+3 (2/3)s + (−1)(−1)s+2 (2/3)s = (−1)s+2 (1/3− 1) (2/3)s

= (−1)s+3 (2/3) (2/3)s

= (−1)(s+1)+2 (2/3)s+1 ,

as needed.
Thus

c(z, a)= c(bh+i a j3i
, a)= (−1)h+i+ j3i

(2/3)h+i
= (−1)h+i+ j (2/3)h+i ,

where the last equality holds since j and j3i have the same parity. �

We now claim that

c(µ(bmalb−k), a)= 1+ l +
m∑

h=0

l∑
j=1

∞∑
i=0

(−1)h+ j
(

2
3

)h+i (m
h

)(
l
j

)(
i + k− 1

k− 1

)
.

Indeed, the innermost sum, involving i , considers the contribution made by the
terms in µ(b−k) (the formal inverse makes this sum infinite). The next sum, in-
volving j , considers the contribution made by each term fromµ(al). The outermost
sum, involving h, considers the contribution made by each term from µ(bm).

The binomial coefficients represent the coefficients appearing on the terms of
the expanded binomials. We obtain (−1)h+ j from (−1)h+i+ j

· (−1)i , the first
term arising from Lemma 3.4 and the second from the sign on the term bi in the
infinite formal inverse (1+ b)−k . Finally, the term (2/3)h+i appears courtesy of



ORDERING BS(1, 3) USING THE MAGNUS TRANSFORMATION 217

Lemma 3.4. We now compute, first rearranging and then applying Lemma 3.1 to
the innermost sum:

c(µ(bmalb−k), a)

= 1+ l +
m∑

h=0

l∑
j=1

∞∑
i=0

(−1)h+ j
(2

3

)h+i
(

m
h

)(
l
j

)(
i + k− 1

k− 1

)

= 1+ l +
m∑

h=0

(−1)h
(2

3

)h
(

m
h

) l∑
j=1

(−1) j
(

l
j

) ∞∑
i=0

(2
3

)i
(

i + k− 1
k− 1

)

= 1+ l +
m∑

h=0

(
−

2
3

)h
(

m
h

) l∑
j=1

(−1) j
(

l
j

)
3k

= 1+ l +
m∑

h=0

(
−

2
3

)h
(

m
h

)
(−3k)

= 1+ l +
(
−

2
3
+ 1

)m
(−3k)

= 1+ l +
(1

3

)m
(−3k)= 1+ l − 3k−m .

If either m > k or m = k, this yields a nonzero quantity. If m < k, there are two
situations to consider. If m, l, k do not satisfy 3k−m

= l + 1, then c(µ(g), a) 6= 0.
If m, l, k satisfy 3k−m

= l+ 1, then c(µ(g), a)= 0, but since k >m we know that
c(µ(g), b)=−k+m 6= 0, and thus µ(g) is still not the identity.

Finally, we compute c(µ(bmalb−k), a) when m, k > 0 and l < 0. Arguing as
in the case l > 0, we obtain a similar formula for this coefficient, which reduces
nicely by applying Lemma 3.1 once more:

c(µ(bmalb−k), a)

=−l+
m∑

h=0

∞∑
j=1

∞∑
i=0

(−1)h+i+ j (−1)i (−1) j
(2

3

)h+i
(

m
h

)(
j + l − 1

l − 1

)(
i + k− 1

k− 1

)

=−l +
m∑

h=0

∞∑
j=1

∞∑
i=0

(−1)h+2i+2 j
(2

3

)h+i
(

m
h

)(
j + l − 1

l − 1

)(
i + k− 1

k− 1

)

=−l+
m∑

h=0

(−1)h
(2

3

)h
(

m
h

)∞∑
j=1

(
j + l − 1

l − 1

) ∞∑
i=0

(2
3

)i
(

i + k− 1
k− 1

)
−

∞∑
j=1

(
j + l − 1

l − 1

)

=−l +
∞∑
j=1

(
j + l − 1

l − 1

)( m∑
h=0

(
−

2
3

)h
(

m
h

) ∞∑
i=0

(2
3

)i
(

i + k− 1
k− 1

)
− 1

)
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=−l +
∞∑
j=1

(
j + l − 1

l − 1

)((
−

2
3
+ 1

)m(
−(3k)

)
− 1

)

=−l + (3k−m
− 1)

∞∑
j=1

(
j + l − 1

l − 1

)
.

Since
∑
∞

j=1
( j+l−1

l−1

)
= ∞, the coefficient on a is either ∞ or −∞ if m 6= k. In

this case c(µ(g), a) 6= 0, so µ(g) is not the identity in A. Finally, if m = k, then
c(µ(g), a)= l 6= 0 so that in this case too µ(g) is not the identity.

As we have now shown that µ(g) 6= 1 for all 1 6= g ∈ BS(1, 3), our mapping µ
is injective. �

4. Ordering BS(1, 3)

Using a method like that in [Bahls 2007], we will define an order on our group
H by defining a strict positive cone C of the algebra which satisfies the following
four properties:

(C1) C ·C ⊆ C ,

(C2) hCh−1
⊆ C for all h ⊆ H ,

(C3) C ∩C−1
=∅, and

(C4) C ∪C−1
∪ {1} = H .

Once we know that a set C in H satisfies the above properties, then we may de-
fine an order on H that is compatible with multiplication on the left, by demanding
h1 < h2 in H ⇔ h−1

1 h2 ∈ C (as in [Bahls 2007] or [Duchamp and Thibon 1992],
for example).

Let

x =
∞∑

i=1

βi bi
+

∞∑
j=1

α j a j
+

∞∑
h=1

γhbha ∈A.

If c(x, b) 6= 0, then we will define τ(x) = b, otherwise τ(x) = a. (We may think
of τ as indicating the “dominant” term of x .) Let λ(x)= c(x, τ (x)) and define the
positive cone C by

C = {1+ x ∈ H | λ(x) > 0}.

We require a few simple technical results.

Lemma 4.1. For positive integers i, j, i ′,

c(bi a j , bi ′a)=
{
(− 1)i+1 if i = i ′,

0 otherwise.
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Proof. Clearly if i < i ′ then c(bi a j , bi ′a)= 0 since reducing to normal form never
increases the exponent on the b. We must then consider the cases where i = i ′ and
i > i ′. However, from this point on the proof consists of a pair of nested inductions
(one for i = i ′ and one for i > i ′), each nearly identical to those in the proof of
Lemma 3.4. The details are left to the reader. �

Lemma 4.2. Let y ∈ H. If c(y, b) = 0, then c(y, bx) = 0 for any positive integer
x.

Proof. Indeed, c(y, b)= 0 implies that y=µ(bmalb−m) for some m ≥ 0. The only
way to obtain terms of the form bx from the product

(1+ b)m(1+ a)l(1− b+ b2
− b3
+ · · · )m

is to avoid terms with as in them, i.e. extracting terms bx from

(1+ b)m · 1 · (1− b+ b2
− b3
+ · · · )m = 1,

which clearly cannot be done. �

Lemma 4.3. Let y ∈ H. If c(y, b)= 0, then c(y, bxa)= 0 for any positive integer
x.

Proof. As before, c(y, b) = 0⇒ m = k. Moreover, we have just shown that the
only nonzero contribution to c(y, bxa) will come from reduction of terms bi a j

satisfying i = x . We therefore consider terms bha j bi obtained from expanding

y = (1+ b)m(1+ a)l(1− b+ b2
− b3
+ · · · )m

that satisfy i +h = x . (Note that moving the bs to the left past as does not change
the exponent on the bs.)

The contribution to c(y, bxa) coming from such unreduced terms bha j bi takes
the form

x∑
i=0

(
i +m− 1

m− 1

)(
m

x − i

)
(−1)i ,

in which
( m

x−i

)
accounts for the contribution from (1 + b)m for a fixed i and(i+m−1

m−1

)
(−1)i accounts for the contribution from (1 − b + b2

− b3
+ · · · )m for

the same i . It is not hard to show that the contribution from (1 + a) j is 1 as a
consequence of basic combinatorics of binomial coefficients.

Thus

c(y, bxa)=
x∑

i=0

(
i +m− 1

m− 1

)(
m

x − i

)
(−1)i =

0(1)
0(1− x)0(1+ x)

=
sin(πx)
πx

by basic properties of the Gamma function. Since x is assumed to be a nonzero
integer, this last quantity is 0, and we are done. �
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Thus if c(y, b)= 0 then the normal form of y consists only of powers of a.

Proposition 4.4. The set C defined as above satisfies (C1)–(C4).

Proof. Property (C4) is obvious.

For (C1), let 1+ x, 1+ y ∈ C be in normal form. If b does not appear as a term in
these normals forms (and thus by the preceding lemmas neither do bi or bi a, i ≥ 1)
then no term of the form bi or bi a will appear in the normal form of (1+x)(1+ y).
Since τ(1+ x) = a and τ(1+ y) = a, c(1+ x, a) > 0 and c(1+ y, a) > 0. As a
result, c((1+ x)(1+ y), a) > 0 also.

If one of 1+x, 1+y ∈C contains b as a term, by definition it will have a positive
coefficient, and thus c((1+ x)(1+ y), b) > 0 as well.

For (C3), let 1+ x ∈ C . Assume that 1+ x contains no terms bi , and therefore
contains only powers of a. Then

c((1+ x)−1, a)= c(1− x + x2
− x3
+ · · · , a)=−c(1+ x, a)

and thus (1+ x)−1
6∈ C . A similar argument may be used if terms bi do appear in

1+ x .

For (C2), let 1+ x = 1+βb+ x ′ where β > 0 is rational and all of the terms in x ′

have a form in

B = {bi
| i ≥ 2} ∪ {ai

| i ≥ 1} ∪ {bi a | i ≥ 1}.

Then

(1+ y)(1+ x)(1+ y)−1

= (1+ y)(1+βb+ x ′)(1− y+ y2
− y3
+ · · · )

= (1+βb+ x ′+ y+βyb+ yx ′)(1− y+ y2
− y3
+ · · · )

= (1+βb+ y+ z)(1− y+ y2
− y3
+ · · · ),

where z = x ′ + βyb+ yx ′ consists of terms in B. Since terms that are not in the
form γ b (where γ 6= 0 is rational) do not contribute to c(1+ x, b) in the reduced
form, none of these terms will contribute to c(1+ x, b) when reduced to normal
form. Continuing, this becomes

(1+βb+ y+ z)(1− y+ y2
− y3
+ · · · )

= 1+βb+ y+ z− y−βby− y2
− zy+ y2

+βby2
+ · · ·

= 1+βb+βb(−y+ y2
− · · · )+ z(−y+ y2

− · · · ).

The only term that will contribute to c(1+ x, b) in this equation is βb. Thus
c(1+ x, b)= β, and (1+ y)(1+ x)(1+ y)−1

∈ C .
Next, assume that 1+ x ∈ C contains no bs. Then 1+ x = (1+ a)l for some

positive integer l. Consider 1+ y ∈ C . As 1+ y is a mapping of a group element
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into the algebra, it will be of the form (1+b)i (1+a) j (1+b)−k for some integers
i, j, k, where i, k ≥ 0. Therefore we can rewrite (1+ y)(1+ x)(1+ y)−1 as

(1+ b)i (1+ a) j (1+ b)−k(1+ a)l(1+ b)k(1+ a)− j (1+ b)−i .

This is µ(bi a j b−kalbka− j b−i ) = µ(bi a3k lb−i ). However, it is easily shown that
c(µ(bi a3k lb−i ), a) = 3kl, which is positive because k > 0 is nonnegative and l is
positive. We can also see that µ(bi a3k lb−i ) will contain no bs. Hence,

λ((1+ y)(1+ x)(1+ y)−1) > 0,

and (1+ y)(1+ x)(1+ y)−1
∈ C . �

As discussed above, we have the following consequence:

Corollary 4.5. The group BS(1, 3) is linearly orderable by an order that is com-
patible with multiplication on the left.

5. BS(1, n) for n ≥ 4

Applying the method of this article to other groups was considered briefly in the
final section of [Bahls 2007]. Although analysis of other classes of groups has not
been performed, we conclude this article by indicating why the method we have
pursued above will fail to admit a workable mapping µ when applied analogously
to BS(1, n)= 〈a, b | ab = ban

〉, n ≥ 4.
As before, we may define the positive monoid M and the algebra AQ(M) freely

generated by M with coefficients in Q ∪ {±∞}. The initial map µ taking a to
1+a and b to 1+b is still defined, and in fact we may even define A as before by
forming the quotient of AQ(M) by the ideal I = 〈(1+a)(1+b)= (1+b)(1+a)n〉.
This leads to a modified µ, as before.

The difficulty comes when we attempt to define a normal form for elements in
A. Expanding the relation (1+ a)(1+ b)= (1+ b)(1+ a)n yields

1+a+b+ab=
n∑

i=0

(
n
i

)
ai
+

n∑
i=0

(
n
i

)
bai
⇒0= (n−1)a+

n∑
i=2

(
n
i

)
ai
+

n−1∑
i=1

(
n
i

)
bai

after canceling and applying the single group relation ab = ban .
What rule of reduction should we derive from this? In order that our replacement

rule remain somewhat “context free” we ought to replace a single term by a sum
containing 2n − 2 terms. In order that our replacement rule give a terminating
sequence of reductions, the single term must be one of either an or ban−1, since any
other choice will give rise to an infinite sequence of rewritings in which “longer”
strings continually replace “shorter” ones.
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Choosing the reduction rule

ban−1
−→

1
n

[
(n− 1)a+

n∑
i=2

(
n
i

)
ai
+

n−2∑
i=1

(
n
i

)
bai

]
,

as before, we obtain divergent alternating series as coefficients in certain reduc-
tions. For instance, if n = 4, the equation

ba3
=−(3/4)a− (3/2)a2

− a3
− (1/4)a4

− ba− (3/2)ba2,

when applied to µ(ba−1) gives

µ(ba−1)

= (1+ b)(1− a+ a2
− a3
+ a4
− · · · )

= 1− a+ a2
− a3
+ a4
− · · ·+ b− ba+ ba2

− ba3
+ ba4

− · · ·

= 1− a+ a2
− a3
+ · · ·+ b− ba+ ba2

+ ((3/4)a

+ (3/2)a2
+ a3
+ (1/4)a4

+ ba+ (3/2)ba2)+ ba4
− · · ·

= · · ·

Already we see a trend that will continue: the coefficient c(µ(ba−1), a) will
receive contributions from each term of the form bai , and these contributions will
continually alternate in sign and grow without bound, giving a divergent alternating
sum. So long as n ≥ 4, we will have this problem.

A similar difficulty arises if we attempt the only other feasible reduction rule,
replacing an by the remaining 2n−2 terms. Thus our method runs aground before
we even have a chance to test µ’s injectivity.
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