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Maximal cocliques in the Kneser graph
on plane-solid flags in PG(6, q)

Klaus Metsch and Daniel Werner

For q ≥ 27 we determine the independence number α(0) of the Kneser graph
0 on plane-solid flags in PG(6, q). More precisely we describe all maximal
independent sets of size at least q11 and show that every other maximal example
has cardinality at most a constant times q10.

1. Introduction

For integers n ≥ 2 and prime powers q we denote by PG(n, q) the n-dimensional
projective space over the finite field Fq . A flag F of PG(n, q) is a set of nontrivial
subspaces of PG(n, q) such that U ⊆ U ′ or U ′ ⊆ U for all U,U ′ ∈ F . Here
nontrivial means different from ∅ and PG(n, q). The set {dim(U ) | U ∈ F} is
called the type of the flag F . Two flags F1 and F2 of PG(n, q) are said to be in
general position, if for all subspaces U1 ∈ F1 and U2 ∈ F2 we have U1 ∩U2 =∅
or 〈U1,U2〉 = PG(n, q).

If S is a nonempty subset of {0, 1, . . . , n− 1}, then the Kneser graph of flags
of type S is the simple graph whose vertices are the flags of type S of PG(n, q)
with two flags F and F ′ adjacent if and only if they are in general position. Note
that this graph, among other generalizations of Kneser graphs, has already been
defined in [Güven 2012].

For |S| = 1 the Kneser graph of type S is also known simply as q-Kneser graph
and the size of maximal cocliques therein was determined in [Frankl and Wilson
1986]. Furthermore, for |S|> 1 maximal cocliques in this graph were studied in
[Blokhuis and Brouwer 2017] for S = {1, 2} and n = 4, in [Blokhuis, Brouwer and
Güven 2014] for S = {0, n− 1} and n ≥ 2, and in [Blokhuis, Brouwer and Szőnyi
2014] for S = {0, 2} and n = 4. The result given in the second of these works was
already conjectured in [Mussche 2009] and is also given in [Güven 2012].
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In this paper we determine the independence number α(0) for the Kneser graph
0 of type {2, 3} in PG(6, q) for q ≥ 27. We point out that a flag of type {2, 3} of
PG(6, q) is a self-dual object, hence any independent set of 0 can also be seen as an
independent set of the Kneser graph of the same type in the dual space of PG(6, q).
To simplify notation, we also denote a flag {E, S} of type {2, 3} by (E, S) where
E is a plane and S is a solid. We first provide some examples.

Example 1.1. For a hyperplane H of PG(6, q) and a maximal set E of mutually
intersecting planes of H , we denote by 3(H, E) the set of all flags (E, S) of type
{2, 3} of PG(6, q) that satisfy S ⊆ H or E ∈ E . Dually, for a point P of PG(6, q)
and a maximal set S of 3-dimensional subspaces on P any two of which share at
least a line, denote by 3(P,S), the set of all flags (E, S) of type {2, 3} of PG(6, q)
that satisfy P ∈ E or S ∈ S.

Indeed, the following special case of this example was already covered in a more
general setting in [Blokhuis and Brouwer 2017].

Example 1.2. For an incident point-hyperplane pair (P, H) of PG(6, q), denote
by3(P, H) the set of all flags (E, S) of type {2, 3} that satisfy P ∈ E or P ∈ S⊆ H
and let 3(H, P) be the set of all flags (E, S) of type {2, 3} that satisfy S ⊆ H or
P ∈ E ⊆ H .

For an incident point-line pair (P, l) of PG(6, q), let 3(P, l) be the set of all
flags (E, S) of type {2, 3} that satisfy P ∈ E or l ⊆ S.

For an incident pair (U, H) of a 4-dimensional space U and a hyperplane H
of PG(6, q), let 3(H,U ) be the set of all flags (E, S) of type {2, 3} that satisfy
S ⊆ H or E ⊆U .

We shall show in Proposition 3.2 that the sets described in Example 1.1 are maxi-
mal independent sets in the Kneser graph of flags of type {2, 3} in PG(6, q). Notice
that the condition on E means that E is an independent set of the Kneser graph of
planes of H ' PG(5, q) and the condition on S means that S is an independent set
of the Kneser graph of planes of the quotient space P/P ' PG(5, q).

The sets constructed in Example 1.2 are special cases of the ones in Example 1.1
and hence also maximal independent sets. Here we use independent sets E and S
of maximal size. Notice that the first and second examples as well as the third and
forth examples in Example 1.2 are dual to each other.

In order to state our first theorem, we need the Gaussian coefficients
[n

k

]
q , which

are defined (for integer n and k) by[
n
k

]
q
:=

k∏
i=1

qn+1−i
− 1

q i − 1
if 0≤ k ≤ n

and
[n

k

]
q := 0 otherwise.
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Theorem 1.3. For q ≥ 27, the independence number of the Kneser graph of flags
of type {2, 3} of PG(6, q) is [

6
4

]
q
·

[
4
3

]
q
+

[
5
3

]
q
· q3

and the independent sets attaining this bound are precisely the four examples de-
scribed in Example 1.2.

Remarks. 1. The independence number is of order q11. As our proof of this theo-
rem is geometric it also provides a stability result for independence sets. Essentially
it says that, for large values of prime powers q , Example 1.1 describes all maximal
independent sets with at least 27q10 elements. A precise formulation is given in
Theorem 6.5.

2. Since we essentially show that any large independent set on the Kneser graph
of plane-solid flags in PG(6, q) is given by Example 1.1, any Hilton-Milner type
result for the Kneser graph of type {2} in PG(5, q) translates to a Hilton-Milner
type result for the Kneser graph of plane-solid flags in PG(6, q). In particular, in
the main theorem of Section 6 of [Blokhuis, Brouwer and Szőnyi 2012], a Hilton-
Milner type result for the Kneser graph of planes in PG(5, q) is given (the three
largest examples are determined) and thus the second largest maximal EKR-set of
plane-solid flags in PG(6, q) has size[

6
4

]
q
·

[
4
3

]
q
+

([
5
3

]
q
− (q6

− q3)

)
q3.

and its structure can be derived from Example 1.1 and said Hilton-Milner result.
However, note hat the flags provided by the sets E and S in Example 1.1 contribute
only a small amount of flags (order q9) to the total size (order q11) of the maximal
examples.

3. Every upper bound b for the independence number of a graph with n vertices
leads to the lower bound χ ≥ n/b for its chromatic number χ . In our situation
this shows that the chromatic number of the Kneser graph of plane-solid flags of
PG(6, q), q ≥ 27, has chromatic number at least q4

−q2
+2q+1. On the other hand,

if U is a 4-space, then the sets 3(P,∅) with P ∈U are independent sets whose
union covers every vertex, so the chromatic number is at most q4

+q3
+q2
+q+1.

Using independent sets of the form3(P, l) a simple construction given in Section 7
shows that this trivial upper bound can be slightly improved.

4. We keep all estimations in this paper as easy as possible and as such prove
Theorem 1.3 only for q > 27. Only a more detailed approach, especially in
Lemma 4.2, shows that Theorem 1.3 holds for q = 27. This will appear in the
Ph.D. thesis of the second author.
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2. Preliminaries

Let q be a prime power and Fq the finite field of order q. For integer n, d ≥ 0,
the number of d-dimensional subspaces of an Fq-vector space of dimension n is
given by the Gaussian coefficient

[n
d

]
q (see bottom of page 40 for the definition).

If 0≤ d ≤ n, and if D is a d-dimensional subspace of an n-dimensional Fq vector
space V then D has exactly qd(n−d) complements in V . These two facts can be
found in Section 3.1 of [Hirschfeld 1998]. We define

sq(l, k, d, n) := q(l+1)(d−k)
·

[
n−k−l−1

d−k

]
q
.

We also set sq(k, d, n) := sq(−1, k, d, n), sq(d, n) := sq(−1, d, n) and sq(n) :=
sq(0, n) and omit the subscript q in the following.

Lemma 2.1. Given two skew subspaces in PG(n, q) of dimensions k and l respec-
tively and any integer d the number of d-subspaces of PG(n, q) that contain the
k-subspace and are skew to the l-subspace is s(l, k, d, n).

Proof. We prove this for the underlying Fq -vector space V of dimension n+ 1 and
two skew subspaces K and L of dimension k+ 1 and l + 1 respectively, where we
have to count the number of subspaces D of dimension d + 1 that contain K and
are skew to L . Every such subspace D gives rise to a subspace D+ L of dimension
d+ l+2 of V . Going to the factor space V/(K + L), we see that V has

[n−k−l−1
d−k

]
q

subspaces U of dimension d+ l+2 that contain K + L . For such a subspace U we
see in the quotient space U/K that U has q(d−k)(l+1) subspaces D of dimension
d + 1 with U = L + D. �

Lemma 2.2. If n ≥ 5 and if E is a set of planes of PG(n, q) such that any two
distinct planes of E meet in a line, then |E| ≤ s(n− 2).

Proof. If there exists a line contained in all planes of E , then |E| ≤ s(1, 2, n) =
s(n−2). Otherwise there exist planes E1, E2, E3 ∈ E such that E1∩E3 and E2∩E3

are distinct lines, which implies that E3 is contained in the 3-space U := 〈E1, E2〉.
In this case, for every further plane E of E at least two of the lines E ∩ E1, E ∩ E2

and E ∩ E3 are distinct, so E is contained in U . Thus, in this case, every plane of
E is one of the s(2, 3) planes of U . �

The following result has been proven in Theorem 1.4 of [Blokhuis et al. 2010],
where it was formulated in its dual version.

Result 2.3. For q ≥ 3 the independence number α(0) of the Kneser graph 0 of
type {3} in PG(6, q) is given by

α(0)= s(3, 5)= q8
+ q7
+ 2q6

+ 2q5
+ 3q4

+ 2q3
+ 2q2

+ q + 1.
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For each hyperplane H of PG(6, q) the set consisting of all solids of H is an
independent set of 0 with α(0) vertices. Every other maximal independent set has
cardinality at most q6

+ 2q5
+ 3q4

+ 3q3
+ 2q2

+ q + 1.

We shall conclude this section with the following result, which is one specific
case of the main Theorem of [Frankl and Wilson 1986], which solves the Erdős–
Ko–Rado problem for vector spaces in general.

Result 2.4. If E is an independent set of the Kneser graph of type {2} in PG(5, q),
then |E| ≤ s(1, 4) and equality holds if and only if E is the set of all planes on a
point or the set of all planes in a hyperplane of PG(5, q).

3. Sets of flags of type {2, 3}

In this section we study sets of flags of type {2, 3} of PG(6, q). Recall that we also
denote a flag {E, S} of type {2, 3} as the ordered pair (E, S) where E is the plane
and S the solid of the flag. Note that two distinct such flags (E, S) and (E ′, S′) are
adjacent in 0 if and only if E∩S′=∅= E ′∩S. Let π2 and π3 be the maps from the
set of all flags of type {2, 3} to the set of subspaces of PG(6, q) with π2( f ) := E
and π3( f ) := S for all flags f = (E, S) of type {2, 3}. For any set C of such flags,
we define πi (C) := {πi ( f ) : f ∈ C}, i = 2, 3.

Lemma 3.1. Let 0 be the Kneser graph of flags of type {2, 3} of PG(6, q), let C be
an independent set of 0, let H be a hyperplane and let P be a point of PG(6, q).

(i) Let E be the set whose elements are the planes E of H for which there exists
a solid S with (E, S) ∈ C and E = H ∩ S. Then E ∩ E ′ 6=∅ for all E, E ′ ∈ E ,
that is, E is an independent set of the Kneser graph of planes of H. Hence
|E| ≤ s(1, 4).

(ii) Let S be the set whose elements are the solids S for which there exists a flag
(E, S) ∈ C with P ∈ S \ E. Then |S| ≤ s(1, 4).

Proof. (i) For E, E ′ ∈ E let (E, S) and (E ′, S′) be flags of C with S ∩ H = E and
S′ ∩ H = E ′. Then S′ ∩ E = E ′ ∩ E and S ∩ E ′ = E ′ ∩ E . Since C is independent,
it follows that E ∩ E ′ 6= ∅. Thus E is an independent set of the Kneser graph of
planes of H and Result 2.4 shows |E| ≤ s(1, 4).

(ii) This is a special case of the dual statement of part (i). �

In the following proposition we investigate the sets constructed in Example 1.1
up to duality.

Proposition 3.2. Let H be a hyperplane of PG(6, q) and let 0 be the Kneser graph
of flags of type {2, 3} of PG(6, q).

(i) 3(H,∅) is an independent set of 0.
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(ii) The maximal independent sets of 0 that contain3(H,∅) are the sets3(H, E)
for maximal independent sets E of planes of H.

(iii) For every maximal independent set E of the Kneser graph of planes of H we
have

|3(H, E)| = s(3, 5) · s(3)+ |E| · q3

≤ q11
+2q10

+5q9
+7q8

+10q7
+11q6

+11q5
+9q4

+7q3
+4q2

+2q+1.

If equality holds, that is, if |E| = s(1, 4), then either there exists a point P
in H such that E consists of all planes of H that contain P , or there exists
a 4-dimensional subspace of H such that E consists of all planes of this 4-
dimensional subspace.

Proof. (i) This follows from the fact that every solid of H meets every plane of H .

(ii) If E is an independent set of planes in the Kneser graph of planes of H , then
every solid of H meets every plane of E nontrivially and every two planes of E
meet nontrivially. Therefore 3(H, E) is an independent set of 0. In order to
prove the assertion, it therefore suffices to consider an independent set C of 0 with
3(H,∅)⊆ C and to show that C is contained in 3(H, E) for a set E of mutually
intersecting planes of H .

Let C be an independent set with 3(H,∅)⊆ C . Let E be the set of all planes
E of H such that C contains a flag (E, S) with E = S∩ H . Lemma 3.1 shows that
the planes of E are mutually intersecting. It remains to show that C ⊆ 3(H, E).
Suppose on the contrary that there exists a flag (E, S)∈C with S 6⊆ H and H ∩S 6=
E . Then S ∩ H is a plane and E ∩ H is a line of this plane and H contains
a solid S′ that is skew to the line E ∩ H . This implies that S′ meets the plane
S ∩ H in a point and therefore S′ contains a plane E ′ with E ′ ∩ S ∩ H =∅. Then
(E ′, S′) ∈3(H,∅)⊆ C with S′∩ E =∅= S∩ E ′ and since C is independent this
is a contradiction.

(iii) Since H contains s(3, 5) solids all of which contain s(2, 3)= s(3) planes, we
have |3(H,∅)| = s(3, 5) ·s(3). Every plane E of H lies on s(2, 3, 6)−s(2, 3, 5)=
q3 solids S with S ∩ H = E . Hence |3(H, E)| = |3(H,∅)| + |E| · q3. Result 2.4
shows |E| ≤ s(1, 4) with equality if and only if all planes of E contain a common
point of H or lie in a common 4-subspace of H . �

Lemma 3.3. Let C be an independent set of the Kneser graph of type {2, 3} in
PG(6, q) and let ξ ∈ N be such that every solid of PG(6, q) occurs in at most ξ
flags of C. Let (E, S) be an element of C. Then there are at most

s(2) · s(1, 4) · ξ = (q8
+ 2q7

+ 4q6
+ 5q5

+ 6q4
+ 5q3

+ 4q2
+ 2q + 1) · ξ

flags (E ′, S′) ∈ C with E ′ ∩ E =∅ and S′ ∩ E 6=∅.
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Proof. Since C is independent, every flag (E ′, S′) ∈ C with E ′ ∩ E = ∅ and
S′ ∩ E 6= ∅ has the property that S′ ∩ E is a point P with P /∈ E ′. Hence for
every such flag there exists a point P in E with P ∈ S′ \ E ′. Since E has s(2)
points and since every solid occurs in at most ξ flags of C Lemma 3.1(ii) proves
the statement. �

We now proceed to prove our theorem in three steps, where we consider two
special cases in the first two steps: In the first step we only consider independent
sets C in which no plane or solid occurs in more than s(1) flags of C and in the
second step we consider independent sets C in which no plane or solid occurs in
more than s(2) flags of C .

4. The first special case

In this section we consider an independent set C of the Kneser graph of type {2, 3}
in PG(6, q) that has the property that every plane and every solid of PG(6, q)
occurs in at most q+ 1 flags of C . Our aim is to prove an upper bound for |C |. For
every point P we denote the set of all flags (E, S) ∈ C with P ∈ E by 1P(C).

Lemma 4.1. Let P1, P2 and P3 be noncollinear points of PG(6, q).

(i) If

|1P1(C)|> (q + 1)(6q6
+ 10q5

+ 17q4
+ 15q3

+ 15q2
+ 9q + 5), (1)

then there are flags fi = (Ei , Si )∈C for i ∈ {1, 2, 3} with dim(〈E1, E2, E3〉)≥

5, P2, P3 /∈ S1, S2, S3 as well as Ei ∩ E j = P1 and P2, P3 /∈ 〈Ei , E j 〉 for all
distinct i, j ∈ {1, 2, 3}.

(ii) If there are flags f1, f2 and f3 with the properties stated in (i) and if

|1P2(C)|> (q + 1)(6q6
+ 10q5

+ 17q4
+ 18q3

+ 15q2
+ 9q + 5),

then there are flags f ′i = (E
′

i , S′i )∈C for i ∈{1, 2, 3} with dim(〈E ′1, E ′2, E ′3〉)≥
5, P1, P3 /∈ S′1, S′2, S′3, dim(Si ∩ S′j ) ≤ 1 for all i, j ∈ {1, 2, 3} as well as
E ′i ∩ E ′j = P2 and P1, P3 /∈ 〈E ′i , E ′j 〉 for all distinct i, j ∈ {1, 2, 3}.

Proof. (i) We frequently make use of the fact that every plane and every solid
occurs in at most q + 1 flags of C . We also make use of the following properties:

(Q1) There are 2 · s(1, 3, 6)− s(2, 3, 6)= 2 · s(1, 4)− s(3) solids that contain P1

and a point of {P2, P3}.

(Q2) If E is a plane on P1 and P is a point not contained in E , then every plane
E ′ on P1 with E ′∩E 6= P1 or P ∈ 〈E, E ′〉 meets the solid 〈P, E〉 in at least a
line and hence there are at most s(0, 1, 3) · s(1, 2, 6)= s(2) · s(4) such planes
E ′.
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(Q3) If E1 and E2 are planes with E1 ∩ E2 = P1, then there exist less than
s(1, 0, 2, 4)= q4 planes in 〈E1, E2〉 with E ∩ E1 = E ∩ E2 = P1.

From (Q1) and the bound in (1) we see that there exists a flag (E1, S1) in C
with P1 ∈ E1 and P2, P3 /∈ S1. According to (Q1) and (Q2) the number of flags
(E, S)∈1P1(C) for which E1∩ E 6= P1 or for which 〈E1, E〉 or S contains a point
of {P2, P3} is at most

(q+1)(2s(1, 4)−s(3)+2s(2)s(4))= (q+1)(4q6
+6q5

+10q4
+9q3

+9q2
+5q+3)

which is smaller than the right-hand side of (1). Therefore, we find a flag (E2, S2)∈

1P1(C) such that E1 ∩ E2 = P1 and neither of the spaces 〈E1, E2〉 or S2 contains
one of the points P2 and P3. Notice that dim(〈E1, E2〉)= 4, so for the remaining
flag (E3, S3) we need that E3 is not contained in 〈E1, E2〉. Using (Q1), (Q2) and
(Q3) a similar argument shows that at most

(q + 1)(2 · s(1, 4)− s(3)+ 4 · s(2) · s(4)+ q4)

= (q + 1)(6q6
+ 10q5

+ 17q4
+ 15q3

+ 15q2
+ 9q + 5) (2)

flags of1P1(C) do not satisfy all of the properties we want for the final flag (E3, S3).
Since this is the right-hand side of (1) and thus smaller than |1P1(C)| we find a
flag (E3, S3) with the desired properties.

(ii) We can argue analogously to the proof of (i). However, when choosing the flags
(E ′i , S′i ) for i ∈ {1, 2, 3} we additionally have to avoid all flags (E, S) ∈ 1P2(C)
for which S meets one of the solids S1, S2 and S3 in a plane π with P1 /∈ π . For
j ∈ {1, 2, 3} each S j has q3 planes that do not contain P1, so in total there are
at most 3q3 solids S that must not appear in any of our desired flags (E ′i , S′i ) for
i ∈ {1, 2, 3} and were not considered before. Therefore, it is sufficient to check
that the sum of the number in (2) and the number 3q3(q + 1) is the right-hand side
of (1) and thus smaller than |1P2(C)|, which is obviously true. �

Lemma 4.2. Let P1 and P2 be two distinct points of PG(6, q) and let E1, E2 and
E3 be planes such that Ei∩E j = P1 and P2 /∈ 〈Ei , E j 〉 for all distinct i, j ∈ {1, 2, 3}.
Furthermore, let S be the set of all solids of PG(6, q) with P2 ∈ S and S ∩ Ei 6=∅
for all i ∈ {1, 2, 3}. Then we have |S| ≤ 3q6

+ 6q5
+ 7q4

+ 4q3
+ 2q2

+ q + 1.

Proof. Let E be the set of all planes that contain P2 but not P1 and that meet all
the planes E1, E2 and E3. There are s(1, 3, 6) solids on P2 that contain P1. If a
solid on P2 does not contain P1 nor any plane of E , then it meets all the planes E1,
E2 and E3 in unique points (different from P1) and these three intersection points
together with P2 span the solid. Hence, there are at most (q2

+ q)3 such solids.
Finally, each plane of E lies in at most s(0, 2, 3, 6) solids that do not contain P1,



MAXIMAL COCLIQUES IN THE KNESER GRAPH ON FLAGS IN PG(6, q) 47

which shows that the number of solids on P2 that meet E1, E2 and E3 is at most

s(1, 3, 6)+ (q2
+ q)3+ |E| · s(0, 2, 3, 6). (3)

It remains to determine an upper bound on |E|. We put U := 〈E1, E2〉 with P2 /∈U
and if E ∈ E we know from P2 ∈ E and P1 /∈ E that E ∩U is a line. We show that
every point of E3 \ {P1} lies on at most q planes of E . To see this, let Q be a point
of E3 \ {P1} and suppose that Q lies on at least one plane E of E . Since the lines
〈P2, Q〉 and E ∩U of E are distinct, they meet in a unique point R, and E ∩U is
a line on R. Since P2 is not contained in 〈E1, E3〉 nor in 〈E2, E3〉 we have R /∈ E1

and R /∈ E2. This implies that R lies on exactly q lines of U that meet E1 and E2

but do not contain P1. Since every plane of E on Q is generated by P2 and such a
line, we see that Q lies on at most q planes of E . As there are q2

+ q choices for
Q, we find |E| ≤ (q2

+ q)q . Using this upper bound for |E|, the statement follows
from (3). �

Lemma 4.3. Let P be a point and suppose that there are flags (Ei , Si ) ∈1P(C),
for i ∈ {1, 2, 3}, such that Ei ∩ E j = P for distinct i, j ∈ {1, 2, 3}. Then every point
Q with Q /∈ 〈Ei , E j 〉 and Q /∈ Si for all i, j ∈ {1, 2, 3} satisfies

|1Q(C)| ≤ 3q8
+ 12q7

+ 21q6
+ 28q5

+ 26q4
+ 18q3

+ 12q2
+ 8q + 4.

Proof. For i ∈ {1, 2, 3} exactly n := s(0, 2, 6)− s(3, 0, 2, 6) planes on Q meet Si .
Since every plane lies in at most q + 1 flags of C , it follows that there exists at
most 3n(q + 1) flags (E, S) ∈1Q(C) such that E has nonempty intersection with
at least one of the solids S1, S2 or S3.

Every other flag f = (E, S) ∈1Q(C) has the property that its solid S meets E1,
E2 and E3. Lemma 4.2 shows that there at most n′ := 3q6

+ 6q5
+ 7q4

+ 4q3
+

2q2
+ q + 1 such solids. Since each solid lies in at most q + 1 flags of C , there are

at most n′(q + 1) such flags. Therefore |1Q(C)| ≤ (3n+ n′)(q + 1) proving the
desired bound. �

Lemma 4.4. Let S1 and S2 be solids of PG(6, q) with dim(S1 ∩ S2)≤ 1 and let P
be a point that is not contained in S1 ∪ S2. Then the number of planes that contain
P and meet S1 and S2 nontrivially is at most 2q6

+ 2q5
+ 3q4

+ 2q3
+ 2q2

+ q + 1.

Proof. We have d := dim(S1 ∩ S2) ∈ {0, 1}. A line through P meets S1 and S2 if
and only if it meets one and hence both of the subspaces U1 := 〈P, S2〉 ∩ S1 and
U2 := 〈P, S1〉 ∩ S2, that is, if the line is contained in the subspace V := 〈U1, P〉.
The subspaces U1 and U2 have the same dimension u where u = 1 if d = 0 and
u ∈ {1, 2} when d = 1. We have dim(V )= u+ 1.

A plane on P that meets V only in P is spanned by P , a point of S1 \U1 and
a point of S2 \U2, so there are (s(3)− s(u))2 such planes. The number of planes
on P that meet V in a line is equal to the number s(0, 1, u+ 1) of lines of V on
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P multiplied with the number s(1, 2, 6)− s(1, 2, u+ 1) of planes that meet V in
a given line. Finally there are s(0, 2, u+ 1) planes on P that are contained in V .
Hence, the total number of planes on P that meet S1 and S2 nontrivially is

(s(3)− s(u))2+ s(0, 1, u+ 1)(s(1, 2, 6)− s(1, 2, u+ 1))+ s(0, 2, u+ 1)

The larger value occurs for u = 2 and gives the bound in the lemma. �

Lemma 4.5. Let P1, P2 and P3 be noncollinear points of PG(6, q). Suppose that
for i ∈ {1, 2} and r ∈ {1, 2, 3} there exist flags fi,r = (Ei,r , Si,r ) ∈1Pi (C) such that

• ∀r, s ∈ {1, 2, 3} : dim(S1,r ∩ S2,s)≤ 1 and

• ∀i ∈ {1, 2},∀{r, s, t}= {1, 2, 3} : P3−i , P3 /∈ 〈Ei,r , Ei,s〉∪Si,r and Ei,r∩Ei,s = Pi .

Then |1P3(C)| ≤ 24q7
+ 54q6

+ 71q5
+ 67q4

+ 48q3
+ 33q2

+ 22q + 11.

Proof. Because C is independent we know that for every (E, S) ∈ C and every
i ∈ {1, 2} we have S∩ Ei,r 6=∅ for all r ∈ {1, 2, 3} or E ∩ Si,r 6=∅ for at least one
r ∈ {1, 2, 3}. For i ∈ {1, 2} Lemma 4.2 shows that the number of solids of PG(6, q)
that contain P3 and meet Ei,1, Ei,2 and Ei,3 is at most

m := 3q6
+ 6q5

+ 7q4
+ 4q3

+ 2q2
+ q + 1. (4)

For every flag (E, S) ∈ 1P3(C) for which S is not such a solid we know that E
is a plane that meets S1,r and S2,s for some r, s ∈ {1, 2, 3}. For any choice of
r, s ∈ {1, 2, 3}, Lemma 4.4 shows that there exist at most

n := 2q6
+ 2q5

+ 3q4
+ 2q3

+ 2q2
+ q + 1

planes on P3 that meet S1,r and S2,s . Since every plane and every solid occurs in at
most q+ 1 flags of C , it follows that |1P3(C)| ≤ (2m+ 9n)(q+ 1), as claimed. �

Proposition 4.6. Let C be an independent set of the Kneser graph of type {2, 3}
in PG(6, q) with q ≥ 7 that has the property that every plane and every solid of
PG(6, q) is contained in at most s(1)= q + 1 flags of C. Then

|C |≤24q10
+79q9

+155q8
+210q7

+216q6
+187q5

+140q4
+93q3

+51q2
+22q+5.

Proof. Let P1 and P2 be distinct points of PG(6, q) such that |1P1(C)|, |1P2(C)| ≥
|1P(C)| for all points P 6= P1. If every flag (E, S) ∈ C satisfies 〈P1, P2〉∩ E 6=∅,
then

|C | ≤ (s(2, 6)− s(1,−1, 2, 6)) · s(1)

= q10
+ 3q9

+ 5q8
+ 7q7

+ 8q6
+ 8q5

+ 7q4
+ 5q3

+ 3q2
+ 2q + 1

since there are s(2, 6)− s(1,−1, 2, 6) planes that meet the line 〈P1, P2〉 and since
every plane lies in at most q + 1 flags of C . Therefore, we may assume that C
contains a flag f = (E, S) with 〈P1, P2〉 ∩ E =∅ and thus dim(S ∩ 〈P1, P2〉)≤ 0.
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Every flag (E ′, S′)∈C either satisfies E ′∩S 6=∅ or E ′∩S=∅ 6= S′∩E . Lemma 3.3
shows that at most

(q8
+ 2q7

+ 4q6
+ 5q5

+ 6q4
+ 5q3

+ 4q2
+ 2q + 1) · s(1) (5)

flags (E ′, S′) of C satisfy E ′ ∩ S = ∅ 6= S′ ∩ E . Before we count all flags f ′ =
(E ′, S′) with E ′ ∩ S 6=∅ we note that we either have

|1P(C)| ≤ |1P2(C)| ≤ 6q7
+ 16q6

+ 27q5
+ 35q4

+ 33q3
+ 24q2

+ 14q + 5
(6)

for all P ∈ PG(6, q) \ 〈P1, P2〉 or

|1P1(C)| ≥ |1P2(C)|> 6q7
+ 16q6

+ 27q5
+ 35q4

+ 33q3
+ 24q2

+ 14q + 5.

If the second situation occurs, then Lemma 4.1 provides flags fi, j ∈C for i ∈ {1, 2}
and j ∈ {1, 2, 3} required to apply Lemma 4.5 proving

|1P(C)| ≤ 24q7
+ 54q6

+ 71q5
+ 67q4

+ 48q3
+ 33q2

+ 22q + 11 (7)

for all P ∈ PG(6, q) \ 〈P1, P2〉. Since the bound in (7) is weaker than the bound
given in (6) we know that it also holds in the first case. In particular, (7) holds for
all P ∈ S \ (S∩〈P1, P2〉). Note that we chose f such that S∩〈P1, P2〉 is at most a
point. Now, if P̂ := S ∩ 〈P1, P2〉 6=∅, then, since P1 and P2 are distinct, there is
an index i ∈ {1, 2} such that P̂ 6= Pi and, using the flags fi,1, fi,2 and fi,3, we may
apply Lemma 4.3 to see that

|1P̂(C)| ≤ 3q8
+ 12q7

+ 21q6
+ 28q5

+ 26q4
+ 18q3

+ 12q2
+ 8q + 4,

which is weaker than the bound in (7) for q ≥ 7. Therefore, the number of all flags
(E ′, S′) of C with E ′ ∩ S 6=∅ is at most

(s(3)− 1) · (24q7
+ 54q6

+ 71q5
+ 67q4

+ 48q3
+ 33q2

+ 22q + 11)

+ 3q8
+ 12q7

+ 21q6
+ 28q5

+ 26q4
+ 18q3

+ 12q2
+ 8q + 4

=24q10
+78q9

+152q8
+204q7

+207q6
+176q5

+129q4
+84q3

+45q2
+19q+4.

Together with the upper bound in (5) for the remaining flags of C , this provides
the claimed upper bound on the cardinality of C . �

5. The second special case

In this section we generalize the results of Section 4 to Kneser graphs of type {2, 3}
in PG(6, q) with the property that every plane and every solid of PG(6, q) occurs
in at most q2

+ q + 1 flags of C . Let 0 be a Kneser graph with that property.
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Lemma 5.1. Let E be a plane and suppose that the solids S with (E, S) ∈ C span
a subspace H of dimension at least 5. Suppose also that every plane of PG(6, q)
occurs in at most s(2)= q2

+q+1 flags of C. Then the number of flags (E ′, S′)∈C
with E ′ ∩ E =∅ is at most s(1, 4) · s(2) · (s(2)+ 1).

Proof. Let M be the set consisting of all flags (E ′, S′) of C such that S′ ∩ E =∅
and let N be the set consisting of all flags (E ′, S′) of C such that S′ ∩ E 6=∅ and
E ′ ∩ E =∅. Every flag (E ′, S′) ∈ C with E ′ ∩ E =∅ lies in M ∪ N . Lemma 3.3
applied with ξ = s(2) shows that |N | ≤ s(1, 4) · s(2)2. For an upper bound on the
number of flags in M , we let E denote the set of all planes that occur in a flag of
M . The hypothesis of this lemma shows that |M | ≤ |E| · s(2). In order to prove the
statement, it remains to show that |E| ≤ s(1, 4).

Consider E ′ ∈ E . Let S′ be a solid with (E ′, S′)∈ M . Then S′∩E = E ′∩E =∅.
Since C is independent and since S′ ∩ E =∅ the plane E ′ meets every solid S for
which (E, S) ∈ C . Then every such solid S is spanned by E and a point of E ′, so
H ⊆ 〈E, E ′〉. Since H has dimension at least 5, it follows that H has dimension 5
and that H = 〈E, E ′〉 for all E ′ ∈ E . Lemma 3.1 shows that |E| ≤ s(1, 4). �

Proposition 5.2. Let C be an independent set of the Kneser graph of type {2, 3}
in PG(6, q) with q ≥ 8 that has the property that every plane and every solid of
PG(6, q) occurs in at most s(2)= q2

+ q + 1 flags of C. Then

|C |≤24q10
+79q9

+155q8
+210q7

+218q6
+189q5

+142q4
+95q3

+53q2
+22q+5.

Proof. Let E be the set consisting of all planes of PG(6, q) that lie in at least q + 2
flags of C , and let S be the set consisting of all solids of PG(6, q) that lie in at
least q + 2 flags of C . We distinguish three cases.

Case 1. We assume that |E| ≤ s(4) and |S| ≤ s(4). In this case we choose a
subset C ′ of C such that every plane and every solid of C ′ lies in at most q+1 flags
of C ′. Since every plane and solid lies in at most q2

+ q + 1 flags of C , we can
find such a subset with |C ′| ≥ |C |− (|E|+ |S|)q2 and then |C | ≤ |C ′|+2 · s(4) ·q2.
Now the statement follows by applying Proposition 4.6 to C ′.

Case 2. We assume that |E|> s(4). Lemma 2.2 proves the existence of planes
E1, E2 ∈ E satisfying dim(E1 ∩ E2)≤ 0. From Lemma 5.1 we know that at most

2 · s(1, 4) · s(2) · (s(2)+ 1) (8)

flags (E, S) ∈ C satisfy E ∩ E1 = ∅ or E ∩ E2 = ∅. It remains to find an upper
bound on the number of flags in C whose planes meet both E1 and E2. Therefore,
we count the number of planes of PG(6, q) that meet E1 and E2. First consider the
case that E1 ∩ E2 is a point Q. In this case there are s(0, 2, 6) planes on Q, there
are (s(2)− 1)2(s(1, 2, 6)− (2 · s(0, 1, 2)− 1)) planes that do not contain Q and
meet both E1 and E2 in exactly one point and there are 2 · s(0,−1, 1, 2)(s(2)− 1)
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planes that do not contain Q and meet E1 or E2 in a line and the other plane in a
point. Thus, in this case the number of planes that meet E1 and E2 is equal to

n := 2q8
+ 4q7

+ 6q6
+ 4q5

+ 4q4
+ 3q3

+ 2q2
+ q + 1.

If E1 and E2 are skew than a similar calculation shows that there are even less than
n planes that meet E1 and E2, so that n is an upper bound for the number of planes
that meet E1 and E2 in both situations. Since every plane lies in at most s(2) flags of
C , it follows that there are at most n ·s(2) flags (E, S)∈C such that E meets E1 and
E2. Together with the count in (8) we find |C | ≤ n ·s(2)+2 ·s(1, 4) ·s(2) ·(s(2)+1)
and this bound is better than the one in the statement.

Case 3. We assume that |S|> s(4). This is dual to Case 2. �

6. Proof of the theorem

In this section, 0 denotes the Kneser graph of plane-solid flags in PG(6, q) and C
denotes a maximal independent set of 0.

Lemma 6.1. (i) Every solid S of PG(6, q) has a subspace U with the following
property: For every plane E of S we have (E, S) ∈ C if and only if U ⊆ E.

(ii) For every plane E of PG(6, q) there exists a subspace U containing E with
the following property: For every solid S on E we have (E, S) ∈ C if and only
if S ⊆U.

Proof. Since the two statements are dual to each other, it suffices to prove the first
statement. Thus consider a plane E and let S be the set of solids S satisfying E ⊆ S
and (E, S) ∈ C . In the quotient space PG(6, q)/E the set {S/E | S ∈ S} is a set
of points and we have to show that this set is a subspace of PG(6, q)/E . In that
regard, it is sufficient to show for any two distinct solids S1, S2 ∈ S and every solid
S with E ⊆ S ⊆ 〈S1, S2〉 we have S ∈ S. Let S be such a solid. If (E ′, S′) is any
flag of C then either S′ ∩ E 6=∅ or E ′ meets S1 \ E and S2 \ E . In the second case
E ′ meets 〈S1, S2〉 in a line and hence E ′ meets S. Thus for every (E ′, S′) ∈ C we
have E ∩ S′ 6= ∅ or E ′ ∩ S 6=∅. This shows that C ∪ {(E, S)} is an independent
set of 0 and since C is a maximal independent set we have (E, S) ∈ C , that is,
S ∈ S. �

Definition 6.2. A plane E will be called saturated (for C) if (E, S) ∈ C for all
solids S of PG(6, q) that contain E . Dually, a solid S will be called saturated (for
C), if (E, S) ∈ C for all planes E of S.

Lemma 6.3. (i) For every saturated solid S and every flag (E ′, S′) ∈ C we have
E ′ ∩ S 6=∅.

(ii) If S is a solid with S ∩ E ′ 6=∅ for all flags (E ′,C ′) of C , then S is saturated.
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(iii) If S and S′ are saturated solids, then dim(S ∩ S′)≥ 1.

(iv) Let H be a hyperplane of PG(6, q) and suppose that E ⊆ H for all flags
(E, S) ∈ C. Then every solid of H is saturated.

Proof. (i) Suppose that there is a flag (E ′, S′)∈C with E ′∩ S=∅. Since PG(6, q)
has dimension 6, it follows S′ ∩ S is a point P with P /∈ E ′. Let E be a plane of S
with P /∈ E . Then E ∩ S′ =∅. As S is a saturated solid we have (E, S) ∈ C . But
then (E, S) and (E ′, S′) are flags of the independent set C with E ∩ S′ = ∅ and
E ′ ∩ S =∅, a contradiction.

(ii) Let E be a plane of S. We have to show that (E, S) ∈ C . Since S ∩ E ′ 6= ∅
for every flag (E ′, S) of C , the set C ∪ {(E, S)} is independent. Maximality of C
implies (E, S) ∈ C .

(iii) Assume to the contrary that S and S′ only meet in a point P . Choose planes
E of S and E ′ of S′ with P /∈ E, E ′. Then S∩ E ′ =∅= S′∩ E . Hence (E, S) and
(E ′, S′) are adjacent elements of the Kneser graph 0. As C is independent, this is
a contradiction.

(iv) Let S be a solid of H . The dimension formula shows that S ∩ E 6=∅ for all
planes E of H . Therefore part (ii) shows that S is saturated. �

Lemma 6.4. Let C be a maximal independent set of 0. If there are more than
c := q7

+ 2q6
+ 2q5

+ 3q4
+ 2q3

+ 2q2
+ q + 1 saturated solids for C , then

C =3(H, E) for some hyperplane H and some maximal independent set E of the
Kneser graph of planes of H (cf. Example 1.1).

Proof. Let S be the set of saturated solids in 53(C). We have c> q6
+2q5

+3q4
+

3q3
+ 2q2

+ q + 1 and according to Lemma 6.3(iii) we have dim (S1 ∩ S2) ≥ 1
for all S1, S2 ∈ S. Result 2.3 shows that there exists a hyperplane H containing
all saturated solids. If there would be a flag (E, S) ∈ C such that E 6≤ H , then
according to Lemma 6.3(i) all solids of S would have nonempty intersection with
the line E ∩ H and thus

|S| ≤ s(3, 5)− s(1,−1, 3, 5)= q7
+ 2q6

+ 2q5
+ 3q4

+ 2q3
+ 2q2

+ q + 1,

which is a contradiction. Hence E ⊆ H for all planes E ∈52(C). Lemma 6.3(iv)
shows that all solids of H are saturated. This means that3(H,∅)⊆C . Proposition
3.2 now proves the statement. �

Theorem 6.5. Suppose that q ≥ 8 and that C is a maximal independent set in 0
with

|C |>26q10
+83q9

+159q8
+216q7

+222q6
+193q5

+144q4
+97q3

+53q2
+22q+5.
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Then C =3(H, E) for a hyperplane H and a maximal set E of mutually intersecting
planes of H , or C =3(P,S) for a point P and a maximal set S of solids on P any
two of which share at least a line.

Proof. The class of examples described in Example 1.1 is closed under duality.
In view of Lemma 6.4 we may assume that there exists at most c := q7

+ 2q6
+

2q5
+ 3q4

+ 2q3
+ 2q2

+ q + 1 saturated solids, and, dually, that there are at most
c saturated planes. For every saturated plane E choose one hyperplane HE on E ,
and for every saturated solid S choose a point PS of S. Let C ′ be the subset of C
that is obtained from C by removing all flags (E, S) such that E is saturated and
S is not contained in HE and by removing all flags (E, S) such that S is saturated
and E does not contain PS . Then |C ′| ≥ |C | − 2cq3, that is

|C | ≤ 2(q7
+ 2q6

+ 2q5
+ 3q4

+ 2q3
+ 2q2

+ q + 1) · q3
+ |C ′|. (9)

Lemma 6.1 shows that every plane E which is not saturated for C has the property
that the solids S with (E, S) ∈ C span a proper subspace of PG(6, q). Therefore
the construction of C ′ implies that every plane E has the property that the solids S
with (E, S) ∈ C ′ span a proper subspace of PG(6, q). Consequently every plane of
PG(6, q) lies in at most q2

+ q + 1 flags of C ′. Dually, every solid S of PG(6, q)
lies in at most q2

+ q + 1 flags of C ′. Therefore Proposition 5.2 proves an upper
bound for |C ′|. Now (9) proves the bound for |C | that is given in the statement. �

Corollary 6.6. For q > 27 the maximal independent set in the Kneser graph of
flags of type {2, 3} in PG(6, q) with |C | ≥ q11

+ 2q10 are the independent sets
described in Example 1.1.

Theorem 1.3 follows from this corollary and Proposition 3.2(ii) for q > 27 and
for q = 27 consider Remark 4 on page 41.

7. Bounds on the chromatic number of 0

Let 0 be the Kneser graph of flags of type {2, 3} in PG(6, q). The chromatic
number of 0 is the smallest number χ such that the vertex set can be represented
as the union of χ independent sets. Using the upper bound α for the size of such
an independent set this immediately gives the bound χ ≥ n

α
. With the upper bound

from Theorem 1.3 we find

Proposition 7.1. For q ≥ 27, the chromatic number of 0 is at least q4
−q2
+2q+1.

On the other hand, if V is a subspace of dimension 4 of PG(6, q), then the
independent sets 3(P,∅) with P ∈ V comprise all vertices of 0, so we have the
trivial upper bound χ ≤ s(4)= q4

+ q3
+ q2
+ q + 1. We can slightly improve this

bound using the following construction.

Proposition 7.2. The chromatic number χ of 0 satisfies χ ≤ q4
+ q3
+ q2
+ 1.
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Proof. Consider a point P , a line l, a plane E and a 4-space V that are mutually
incident. Let Q be a point of V that is not in E . Let l1, . . . , lq be the lines of plane
〈l, Q〉 with P ∈ li and Q /∈ li , let E1, . . . , Eq be the planes of 〈E, Q〉 with l ⊆ Ei

and Q /∈ Ei , and let S1, . . . , Sq be the solids of V with E ⊆ Si and Q /∈ Si . For
i ∈ {1, . . . , q} put Mi := li ∪ (Ei \ l)∪ (Si \ E). Then |Mi | = q3

+ q2
+ q+ 1 with

Mi ∩M j = P for distinct i, j ∈ {1, . . . , q} and the union of the sets M1, . . . ,Mq is
{P} ∪ V \ 〈P, Q〉. Let {Q1, . . . , Qq} = 〈P, Q〉 \ {P} and consider the independent
set 3(X, 〈X, Qi 〉) for X ∈ Mi and i ∈ {1, . . . , q}. Then for i ∈ {1, . . . , q} all lines
of V on Qi occur in one of these sets and every solid that contains Qi contains
a line 〈X, Qi 〉 with X ∈ Mi . Therefore the union of the sets 3(X, 〈X, Qi 〉) for
i ∈ {1, . . . , q} covers all vertices of 0. �

In some situations, having a Hilton-Milner result for the size of the independent
sets used (here these are Erdős–Ko–Rado sets in PG(6, q)) is a good tool to de-
termine the chromatic number of a graph exactly and with little effort. However,
we are convinced that this is not the case in this situation. The reason is, that the
second largest independent sets are still almost as large as the largest independent
sets, as we have stated in Remark 2 on page 41.

However, one could use the fact that every independent set which is essen-
tially different from the largest examples (that is, different from those given in
Example 1.1) is much smaller. Indeed, we have given this some thought, but are
convinced that this is not quite simple and would go far beyond the scope of this
work.
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