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Abstract

The purpose of this paper is to reveal in geometric terms a decade-old

construction of certain families of graphs with nice extremal properties.

Construction of the graphs in question is motivated by the way in which

regular generalized polygons may be embedded in their Lie algebras, so

that point-line incidence corresponds to the vanishing Lie product. The

only caveat is that the generalized polygons are greatly limited in number.

By performing successive truncations on an infinite root system of type eA1,

we are able to obtain an infinite series of incidence structures which approx-

imate the behavior of generalized polygons. Indeed, the first two members

of the series are exactly the affine parts of the generalized polygons of type

A2 and B2.
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1 Introduction

The material in this paper is based not on recent work but rather on undisclosed

features of work that is now a decade old. At that time, our objective was to

construct graphs which were extremal in the sense of the Turán problem for a

fixed cycle of even length (see Section 2.1). The target asymptotic for this prob-

lem is provided by the upper bound which appears in the Even Circuit Theorem.

However, this bound is known to be sharp in only a handful of cases, each corre-

sponding to the existence of incidence graphs of regular generalized polygons.

Such considerations led F. Lazebnik, V.A. Ustimenko and me to attempt to con-

struct graphs which in some sense approximated the structure and behavior of

these incidence graphs. Ultimately, our goal was realized with the construction

of the doubly infinite family of graphs CD(k, q).
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As it turns out, the geometries which give rise to these approximating graphs

depend on some rather deep and sophisticated algebra. Yet, in all of our papers

on the subject one finds only meager reference to such algebraic underpinnings.

The reason is two-fold. First, it happens that we were able to give a quite

nice, self-contained description of the graphs CD(k, q), making it unnecessary

to divulge information about the algebraic origins of their geometries. Second,

virtually all of our articles appeared in graph theory journals, and we did not

wish to burden that readership with material that might be construed as esoteric

or extraneous.

The current paper is designed to fill this lacuna. In it, our premise is that it

is these underlying geometries, and not their incidence graphs, which are the

objects of primary interest. Accordingly, they deserve their own detailed and

rigorous treatment.

The balance of the paper is organized as follows. Sections 2 and 3 are purely

motivational, providing a comparison of the extremal properties of generalized

polygons with those of our approximating graphs CD(k, q). For the reader who

is interested only in the derivation of the underlying geometries, these sections

may be safely skipped. Section 4 serves as a microcosm of what is to appear

in later sections. There, we provide various models of the generalized 3-gon,

ultimately leading to a method for embedding the 3-gon in the upper Borel

subalgebra of its Lie algebra. Emphasis is placed on a certain embedded sub-

structure called the “affine part”. As we show in Section 5, this embedding

procedure is most general, and can be used to construct Lie algebraic models

for all generalized polygons and their affine parts. In Section 6, we introduce

the affine Lie algebra of type Ã1 and derive its root system. We further justify

a sense in which this root system gives us legitimate hopes for success. Our

desired geometries are constructed in Section 7, via the method of “truncating”

the root system of type Ã1. Finally, in Section 8 we explain how these newly

constructed geometries give rise to the coordinate relations used in Section 3 to

define their incidence graphs CD(k, q).

2 Generalized polygons as extremal structures

2.1 Turán Problem and the Even Circuit Theorem

We begin by introducing a problem from extremal graph theory which served

as the initial impetus for our investigations. By “graph”, we shall always mean

“undirected graph without loops and multiple edges”. We refer to its number of

vertices as the order of the graph, and to its number of edges as the size.
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Let F be a family of graphs, and let ex(v,F) be the greatest size e of any

graph of order v which contains no subgraph isomorphic to a graph from F .

The Turán problem is to determine ex(v,F), or at least the asymptotic behavior

of ex(v,F) (v → ∞), for given F . A more ambitious objective is to classify those

such graphs which are extremal, i.e., of size e = ex(v,F).

Our present interest shall be in the case F = {C2t}, where C2t denotes the

cycle of length 2t. In what follows, we shall write ex(v, 2t) in place of the more

cumbersome ex(v, {C2t}).

The best known upper bound in this case is given by the Even Circuit Theo-

rem (see [3, 10] for proofs, although the result is almost universally attributed

to Erdős). Specifically, the theorem states

ex(v, 2t) = O
(
v1+ 1

t

)
.

The Even Circuit Theorem has led many to speculate that

ex(v, 2t) = Ω
(
v1+ 1

t

)
,

despite the fact that the only cases for which this bound is known to be sharp are

t ∈ {2, 3, 5}. As previously mentioned, these are achieved by incidence graphs

of regular generalized m-gons (where m = t + 1).

As the next well known result shows, these “best performers” are greatly

limited in number.

Theorem 2.1 (Feit-Higman [11]). Thick generalized m-gons exist only for m ∈
{3, 4, 6, 8}. Regular ones exist only for m ∈ {3, 4, 6}.

In fact, we conjecture that there are no other values of t for which the bound

in the Even Circuit Theorem is sharp. Thus, we regard these graphs as artifacts

which falsely inflate one’s perception of what is achievable in the Turán Problem

when the family of forbidden subgraphs is limited to a single fixed cycle of even

length.

2.2 Related problems in extremal graph theory

2.2.1 Cage problem

Fix integers r ≥ 2 and g ≥ 3. An (r, g)-graph is a regular graph of valency r and

girth g. An (r, g)-cage is an (r, g)-graph of minimum order. We denote the order

of an (r, g)-cage by v(r, g).

The cage problem can be simply stated as follows: For given r and g, find all

(r, g)-cages. A softening of this problem is to determine the orders of such cages,
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although this is rarely accomplished without at least one explicit construction.

Another worthwhile endeavor is to provide good bounds on the order of cages,

in particular to determine the asymptotic behavior of v(r, g).

The following theorem of Tutte gives a lower bound on v(r, g).

Theorem 2.2 (Tutte [28]). For any (r, g)-graph of order v the following holds:

v ≥

{
1 + r + r(r − 1) + · · · + r(r − 1)(g−3)/2 (g odd) ;

2
(
1 + (r − 1) + · · · + (r − 1)(g−2)/2

)
(g even) .

Corollary 2.3. Any (r, g)-graph which achieves equality in Theorem 2.2 is auto-

matically an (r, g)-cage.

Discounting the trivial cases (i.e., cycles and complete graphs), it is quite

astonishing how few graphs achieve equality in the Tutte bound.

In the odd girth case we are getting only the Moore graphs, which exist only

when g = 5 and r = 3, 7 and possibly 57. Specifically, when r = 3 we get the

Petersen graph, and when r = 7 we get the Hoffman-Singleton graph. (Both

are uniquely determined, up to isomorphism, by their parameters.) At present,

it is still a mystery as to whether a Moore graph with valency r = 57 exists.

Incidence graphs of regular generalized polygons are the only graphs which

arise in the even girth case. By the Feit-Higman Theorem, this occurs only when

g ∈ {6, 8, 12}. However, for each such value of g there are infinitely many

admissible values of r, namely r = q + 1 where q is any prime power.

While Theorem 2.2 provides the best theoretical lower bound on the order

of cages, finding suitable upper bounds proved historically to be a much more

difficult problem. The earliest such bound was achieved by Sachs [24], who

showed by explicit construction that (r, g)-graphs of finite order always exist.

The obvious implication here is that (r, g)-cages exist for every pair r, g. We

refer to [33] for more a detailed account of cages, see also [4] and the webpage

[23] maintained by G. Royle.

Shortly thereafter, Erdős and Sachs [9] used probablistic methods to derive

a much smaller general upper bound. Their result was later improved, though

slightly, by Walther [31], [32] and by Sauer [26]. The following upper bound

is due to Sauer:

v(r, g) ≤

{
2(r − 1)g−2 (g odd) ;

4(r − 1)g−3 (g even) .
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2.2.2 Dense graphs of large girth

By dense in this context, we mean “having many edges” with respect to a fixed

girth. This is actually another formulation of the Turán Problem, where we

choose the forbidden family F = {C3, C4, . . . , Cg−1} to ensure that the girth be

at least g.

Note that the goals here are the same as in previously stated Turán problem:

to determine ex(v, {C3, . . . , Cg−1}) and, more ambitiously, to find all extremal

graphs.

Interestingly, there is no current evidence to substantiate that the asymptotic

behavior of the function ex(v, {C3, . . . , Cg−1}) differs in the slightest from that

of ex(v, g − 2) provided g is even. To clarify, this is not to say that the two

corresponding “asymptotically equivalent” families of graphs coincide. Indeed,

the Erdős-Rényi graphs [8] are extremal relative to avoiding a 4-cycle, however

they contains 3-cycles. The point is that the number of edges in the Erdős-Rényi

graphs are of the same asymptotic order as those of the (girth 6) generalized

3-gons, though for the former graphs the constant is a bit smaller. (See [15, 18]

for more general occurrences of this phenomenon.)

2.2.3 Families of graphs with large girth

For i ≥ 1, let Gi be a regular graph of valency r, girth gi, and order vi. Following

Biggs [1], we say that {Gi} is a family of graphs with large girth if

gi ≥ γ logr−1(vi)

for some constant γ. It is well known that γ ≤ 2 (e.g., see [2]), but no family

has ever been found for which γ = 2.

For many years the only significant results in this direction were the non-

constructive theorems of Erdős and Sachs with improvements by Sauer, Walther

and others. These produced γ = 1 (see [2, p. 107] for more details and ref-

erences). The first explicit constructions were given by Margulis [21] with

γ ≈ 0.44 for some infinite families with arbitrarily large valency.

At present, the largest value that has been achieved is γ = 4/3. These are

realized by independent constructions of Margulis [21] and Lubotzky, Phillips,

Sarnak [20, 25]. Specifically, they are Cayley graphs of the group PGL2(Zq) with

respect to a set of p + 1 generators, where p, q are distinct primes congruent to

1 mod 4 with the Legendre symbol
(

p
q

)
= −1.

Note that incidence graphs of regular generalized polygons fail to provide

families with large girth because their girth never exceeds 12. Still, we have

introduced this extremal notion for a definite reason, see Section 3.2.
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3 Graphs CD(k, q) and their properties

The graphs CD(k, q) are the incidence graphs of the geometries we describe in

this paper. As previously mentioned, the motivation behind their construction

was to derive graphs which would have extremal properties approaching those

of the incidence graphs of regular generalized polygons, yet be prolific in num-

ber. As it turns out, they are best described in terms of another family of graphs

D(k, q) constructed in [14].

3.1 Constructions of graphs D(q), D(k, q), CD(k, q)

Let q be a prime power, and let P and L be two copies of the countably infinite

dimensional vector space V over GF(q). Elements of P will be called points and

those of L lines. In order to distinguish points from lines we introduce the use

of parentheses and brackets: If x ∈ V , then (x) ∈ P and [x] ∈ L. We adopt the

following coordinate representations for points and lines:

(p) = (p01, p11, p12, p21, p
′
22, p

′′
22, p23, . . . , p

′
ii, p

′′
ii, pi,i+1, pi+1,i, . . .) ,

[l] = [l10, l11, l12, l21, l
′
22, l

′′
22, l23, . . . , l

′
ii, l

′′
ii, li,i+1, li+1,i, . . .) .

We now define an incidence structure (P,L, I) as follows. We say point (p) is

incident to line [l] if the following coordinate relations hold:

p11 − l11 = l10p01

p12 − l12 = l11p01

p21 − l21 = l10p11

...

p′ii − l′ii = l10pi−1,i

p′′ii − l′′ii = li,i−1p01

pi,i+1 − li,i+1 = l′iip01

pi+1,i − li+1,i = l10p
′′
ii

We denote the incidence graph of (P,L, I) by D(q).

Now, for each integer k ≥ 2 we define the incidence structure (Pk, Lk, Ik) as

follows. First, Pk and Lk are obtained from P and L, respectively, by projecting

each vector (point or line) onto its initial k coordinates. Incidence Ik is then

defined by imposing the first k − 1 coordinate relations and ignoring all others.

We denote by D(k, q) the incidence graph of the structure (Pk, Lk, Ik).
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From an extremal point of view, the only discernable weakness of the graphs

D(k, q) is that they become disconnected when k ≥ 6, and continue to dis-

connect thereafter at regular intervals, see [17]. In every such case, however,

the connected components of D(k, q) are pairwise isomorphic. We denote by

CD(k, q) any one of these connected components.

Proofs of the following propositions may be found in [14] and [16], respec-

tively.

Proposition 3.1. Let q be any prime power, and k ≥ 2. Then

(i) D(k, q) is a regular bipartite graph of valency q and order 2qk;

(ii) Aut(D(k, q)) is both vertex- and edge-transitive;

(iii) for even k, the girth of D(k, q) is at least k + 4;

(iv) for odd k, the girth of D(k, q) is at least k + 5.

Proposition 3.2. Let CD(k, q) denote a connected component of D(k, q). Then

(i) CD(k, q) is a regular, bipartite graph of valency q and order 2qk−⌊ k+2

4
⌋+1;

(ii) Aut(CD(k, q)) is both vertex- and edge-transitive;

(iii) for even k, the girth of CD(k, q) is at least k + 4;

(iv) for odd k, the girth of CD(k, q) is at least k + 5.

We believe the reader will concur that such manner of description belies

any deep algebraic principles that may be involved in the construction of these

graphs. Moreover, nondisclosure of such principles is in a sense excusable, since

we are able to derive all important properties of these graphs directly from their

coordinate relations.

3.2 Graphs CD(k, q) as near-extremal structures

We revisit the extremal problems described in Section 2, this time alluding to

various improvements on asymptotics, courtesy of the graphs CD(k, q).

Regarding the two formulations of the Turán Problem, the best known gen-

eral lower bound on each of ex(v, 2t) and ex(v, {C3, C4, . . . , C2t+1}) is provided,

with one exception, by the graphs CD(k, q). Specifically, this bound is

ct

(
v1+ 2

3t−3+ǫ

)
,

where ct is a positive constant and ǫ ∈ {0, 1} depends on the parity of t. The

excepted case, t = 5, is achieved by the regular generalized hexagons.
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Graphs CD(k, q) also lead to a rather marked improvement in bounding the

order of cages. Namely, we have

v(r, g) ≤ 2rq
3g−13

4

where q is the smallest prime power for which r ≤ q.

Finally, for each fixed choice of prime power q we get that {CD(k, q)}k≥2 is

a family of graphs with large girth in the sense of Biggs. Here, one achieves

γ = 4 logq(q − 1)/3.

It is worth pointing out that there is a tacit distinction between the two girth-

related problems of 2.2.2 and 2.2.3. For example, while the graphs of Lubotzky,

Phillips, Sarnak produce the larger value γ = 4/3, making them better in the

sense of 2.2.3, the graphs CD(k, q) have more edges for each fixed choice of

order and girth, so are superior in the sense of 2.2.2.

4 Generalized 3-gons

With this section comes a shift in perspective from the graphs CD(k, q) to their

underlying geometries. It turns out that CD(2, q) coincides with the incidence

graph of the so-called “affine part” of the generalized 3-gon. Thus we con-

centrate first on generalized 3-gons, i.e., projective planes. We construct three

models of the classical projective plane PG(2, q), the first two of which are well

known. We conclude with a far less familiar model, in which the affine part

is highly detectable. This latter model depends on some rather sophisticated

notions from Lie theory, and will be crucial to our exposition.

4.1 Models of PG(2, q)

We start with the most familiar model, in which points and lines correspond to

subspaces embedded in GF(q)3.

4.1.1 Linear algebraic model of PG(2, q)

Fix a 3-dimensional vector space V over GF(q). We take as points all one-

dimensional subspaces of V , and as lines all two-dimensional subspaces. In-

cidence is containment, i.e., point V1 is incident to line V2 if and only if V1 is a

subspace of V2. We refer to any point-line incident pair {V1, V2} as a flag.

Recall that PΓL(3, q) is the full collineation group of PG(2, q). We work in-

stead with its subgroup of central-axial collineations, namely PGL(3, q), which
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is again acting transitively on points, lines and flags. Relative to this subgroup,

it is possible to “internalize” this geometry in the sense of Felix Klein. This yields

our second model.

4.1.2 Group geometric model of PG(2, q)

Let {~e1, ~e2, ~e3} denote the standard basis of the vector space V defined above.

Taking V1 = 〈~e1〉 and V2 = 〈~e1, ~e2〉, we may identify (via left action) the stabi-

lizers of point V1 and line V2 as follows:

Stab(V1) =







∗ ∗ ∗
0 ∗ ∗
0 ∗ ∗








Stab(V2) =







∗ ∗ ∗
∗ ∗ ∗
0 0 ∗








Here, asterisks are used to denote arbitrary values from GF(q), subject of course

to preserving nonsingularity of the matrices.

We now take as points all cosets of Stab(V1) in PGL(3, q), and as lines all

cosets of Stab(V2) in PGL(3, q). Incidence is defined as follows: point xStab(V1)

is incident to line y Stab(V2) precisely when

xStab(V1) ∩ y Stab(V2) 6= ∅ .

It is quite visible from our descriptions of Stab(V1) and Stab(V2) that the inter-

section of these two groups has the form

Stab(V1) ∩ Stab(V2) =







∗ ∗ ∗
0 ∗ ∗
0 0 ∗






 .

This is nothing more than the stabilizer of the flag {V1, V2}.

4.1.3 Lie algebraic model of PG(2, q)

Here, it is necessary that we presume some familiarity with certain notions from

the theory of Lie groups and Lie algebras. Excellent introductory sources with

differing perspectives are [7, 13, 22]. In any case, we believe that even the uni-

tiated reader will reap certain benefits from our presentation, hopefully coming

away with a clear “local” picture of our general paradigm and methodology.
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Let L = L(G) denote the simple Lie algebra for G = GL(3, q) defined over the

field GF(q). Recall that L is a nonassociative algebra with respect to the linear,

skew-symmetric operation of Lie product, denoted [ , ], and that this operation

satisfies the Jacobi identity: [a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0.

Let Π = {r1, r2} be a fundamental basis for L. As usual, we refer to r1, r2 as

the fundamental roots.

The Cartan matrix A = (Aij) of L is given by

A =

(
2 −1

−1 2

)
.

From this matrix, one is able to generate the entire root system of L via linear

extension of the action of the Weyl group W = 〈w1, w2〉 on the fundamental

roots, specifically rwi

j = rj − Aijri. The resulting root system is given by Φ =

Φ+ ∪ Φ−, where

Φ+ = {r1, r2, r1 + r2} and Φ− = {−r1,−r2,−(r1 + r2)} .

We refer to the elements of Φ+ as the positive roots of L with respect to Π, and

to those of Φ− as the negative roots.

Now let Π∗ = {r∗1 , r∗2} be the dual basis of Π, and define the contragredient

action of W on Π∗ via r∗j
w(s) = r∗j (sw−1

). This gives us the dual root system

Φ∗ = {±r∗1 ,±r∗2 ,±(r∗1 − r∗2)} .

Recall the Cartan decomposition of a simple Lie algebra, namely

L = H⊕L+ ⊕ L−,

where H is the Cartan subalgebra of L (maximal self-normalizing subalgebra),

and L+ and L− are the positive and negative root spaces of L, respectively.

Subspaces L+ and L− are a fortiori ideals of L, but they are not subalgebras.

However, the direct sums LU = H⊕L+ and LL = H⊕L− are subalgebras of L,

which we call the upper and lower Borel subalgebras of L, respectively. In what

follows, we shall be mainly concerned with the upper Borel subalgebra LU .

Under the adjoint action of H, each of L+, L− decomposes into a direct

sum of H-invariant subspaces, which we call root spaces. It is well known that

every root space is one-dimensional. For each s ∈ Φ, let es be a corresponding

(nonzero) root vector. In such manner, we get a further decomposition of L into

the direct sum of H with the totality of root spaces. In particular, we see that

{r∗1 , r∗2 , er1
, er2

, er1+r2
} is a basis for LU , presuming once more that L is the Lie

algebra for GL(3, q).
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We are now ready to present our Lie algebraic model of PG(2, q). There are

three types of points and three types of lines; in each case “type” is determined

by the linear functional s∗ ∈ Φ∗ which is showing up as the lead term in each

such expression.

Points: r∗1 (one element)

−r∗1 + r∗2 + λr1
er1

(q elements)

−r∗2 + λr2
er2

+ λr1+r2
er1+r2

(q2 elements)

Lines: r∗2 (one element)

r∗1 − r∗2 + λr2
er2

(q elements)

−r∗1 + λr1
er1

+ λr1+r2
er1+r2

(q2 elements)

Incidence is defined by vanishing of the Lie product, i.e., point p is incident

to line l if and only if [p, l] = 0.

The reader will observe that each point and line is a specific linear combi-

nation relative to the basis {r∗1 , r∗2 , er1
, er2

, er1+r2
} of LU . However, most linear

combinations have been excluded from consideration. This raises the question

as to how such representative elements are chosen.

First, the lead term s∗ ∈ Φ∗ falls into one of two possible orbits under the

action of the Weyl group W on Φ∗, namely {−r∗2}
W and {−r∗1}

W . The choice

here is a bit arbitrary, but we define points and lines in this respective order.

Second, for a fixed s∗ ∈ Φ∗ an expression of the form s∗ + v is an admissible

object (point or line) if and only if s∗ + v lies in the same orbit as s∗ under the

action of the stabilizer B in GL(3, q) of the flag {r∗1 , r∗2}. From our explanation,

the reader will note that there are precisely three orbits of points and three

orbits of lines relative to this action (in each case, of respective sizes 1, q, q2),

which is why we chose to list them separately and distinguish them by “type”.

Observe that restriction of our model to the points r∗1 , −r∗1 + r∗2 , −r∗2 and the

lines r∗2 , r∗1−r∗2 , −r∗1 yields the 6-cycle, i.e., the thin generalized 3-gon. However,

it is a quite different substructure of PG(2, q) with which we will be concerned.

We speak now of the affine part of PG(2, q), which we define presently.

Fix a flag {p, l} in PG(2, q). We define the affine part of PG(2, q) relative to

{p, l} to be the substructure induced on all points of maximum distance from l,

and all lines of maximum distance from p. (In order to interpret “distance”

more succinctly here, it may be convenient to consider the incidence graph of

PG(2, q), where this notion corresponds to the usual one for graphs.) Because

we are working inside a flag-transitive geometry, affine parts relative to different

flags are isomorphic.
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4.1.4 Lie algebraic model of the affine part of PG(2, q)

In terms of our Lie algebraic model of PG(2, q) given in 4.1.3, we may choose the

affine part relative to the flag {r∗1 , r∗2}. Then the points and lines at maximum

distance from this flag correspond to the two largest orbits of B, each of size q2.

This gives us our desired model of the affine part:

Affine points: −r∗2 + λr2
er2

+ λr1+r2
er1+r2

Affine lines: −r∗1 + λr1
er1

+ λr1+r2
er1+r2

We hasten to point out that the affine part of PG(2, q) is not the affine plane

AG(2, q), although both objects share the same point set. Whereas AG(2, q) is

obtained by removing a single line from PG(2, q) (“line at infinity”), the affine

part requires the removal of q + 1 lines (“line at infinity” plus a parallel class).

In particular, the incidence graph of this substructure is regular of valency q.

Example 4.1. We provide Lie algebraic models of the Fano plane PG(2, 2) and

its affine part. In each case, lines are represented as subsets of points (the

latter appear in boldface). The two structures are depicted in Figures 1 and 2,

respectively.

Lines of the Fano plane:

{r∗

1
, −r∗

2
, −r∗

2
+ er1+r2

} = r∗1 − r∗2

{r∗

1
, −r∗

1
+ r∗

2
, r∗

1
+ r∗

2
+ er1

} = r∗2

{r∗

1
, −r∗

2
+ er2

, −r∗

2
+ er2

+ er1+r2
} = r∗1 − r∗2 + er2

{−r∗

2
, −r∗

1
+ r∗

2
+ er1

, −r∗

2
+ er2

+ er1+r2
} = −r∗1 + er1

{−r∗

2
+ er2

, −r∗

1
+ r∗

2
+ er1

, −r∗

2
+ er1+r2

} = −r∗1 + er1
+ er1+r2

{−r∗

1
+ r∗

2
, −r∗

2
+ er2

, −r∗

2
+ er2

+ er1+r2
} = −r∗1 + er1+r2

{−r∗

2
, −r∗

1
+ r∗

2
, −r∗

2
+ er2

} = −r∗1

Lines of the affine part of the Fano plane:

{−r∗

2
, −r∗

1
+ r∗

2
+ er1

, −r∗

2
+ er2

+ er1+r2
} = −r∗1 + er1

{−r∗

2
+ er2

, −r∗

1
+ r∗

2
+ er1

, −r∗

2
+ er1+r2

} = −r∗1 + er1
+ er1+r2

{−r∗

1
+ r∗

2
, −r∗

2
+ er2

, −r∗

2
+ er2

+ er1+r2
} = −r∗1 + er1+r2

{−r∗

2
, −r∗

1
+ r∗

2
, −r∗

2
+ er2

} = −r∗1
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Figure 2: Affine part of Fano plane

5 Generalized m-gons

5.1 Group geometric model

Each rank two Chevalley group G gives rise to a generalized m-gon of order q,

where GF(q) is the field over which G is defined. We have already witnessed this

in the case of GL(3, q). Indeed, GL(3, q) is a rank two Chevalley group defined

over GF(q), and its coset geometry provided us with a group geometric model

of the generalized 3-gon (projective plane) of order q. It turns out that this
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construction is entirely general.

There are seven types of rank two Chevalley groups, viz. A2, B2, G2, 2A3, 2A4,
3D4, 2F4. The first three are said to be of “normal type”, the last four “twisted”.

Generalized 3-gons arise from A2, generalized 4-gons from B2, 2A3 and 2A4,

6-gons from G2 and 3D4, and 8-gons from 2F4. The types for which the gener-

alized m-gons turn out to be regular are A2, B2, G2 and 2A4. However, as the

4-gon coming from 2A4 defined over GF(q) is isomorphic to the one arising from

B2 defined over GF(q2), it suffices to restrict our attention to A2, B2 and G2.

Thus let G be of type A2, B2 or G2 defined over GF(q), where q = pα. Let U

be a fixed Sylow p-subgroup of G, and let B be its normalizer in G. Then, as G

has rank two there are just two subgroups properly situated between B and G.

(In general, a rank r group of Lie type has 2r − 2 such intermediate subgroups,

of which r are maximal.) We denote these subgroups by P1, P2 and call them

(maximal) parabolic subgroups of G. Groups U and B are commonly referred

to as unipotent and Borel subgroups of G, respectively.

We now formulate our group geometric model for generalized m-gons as

follows: Let G be any rank two group of Lie type, and let P1, P2 be the parabolic

subgroups of G relative to a fixed choice of Borel subgroup B. We take as points

all cosets of P1 in G, and as lines all cosets of P2 in G. We define point xP1 to

be incident to line yP2 precisely when xP1 ∩ yP2 6= ∅.

Example 5.1. Let us specialize this setting to the one we have already seen in

4.1.2, where the rank two group is of type A2, that is, GL(3, q). A convenient

choice for Sylow p-subgroup here is the group of all upper triangular matri-

ces with 1’s along the diagonal. (This group has order q3 so is surely a Sylow

p-subgroup of GL(3, q).) In this case, B is simply the group of all upper trian-

gular matrices, which the reader will recall is the stabilizer of a flag. We may

now identify Stab(V1) and Stab(V2) as the two parabolic subgroups P1, P2 of

GL(3, q). Indeed, Stab(V1) and Stab(V2) are the only groups which lie strictly

between B and GL(3, q).

5.2 Lie algebraic model

This is a direct analogue of the Lie algebraic model of PG(2, q) presented in 4.1.3.

Let G be a rank two group of Lie type, and let L be its corresponding Lie alge-

bra. We embed the points and lines of our generalized m-gon in the upper Borel

subalgebra LU as follows:

Points: s∗ + v, where s∗ ∈ {−r∗2}
W and s∗ + v ∈ {s∗}B

Lines: s∗ + v, where s∗ ∈ {−r∗1}
W and s∗ + v ∈ {s∗}B

Incidence is once again defined in terms of the vanishing Lie product, cf. 4.1.3.
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5.3 Lie algebraic model of affine part

Appealing to 4.1.4, we define affine objects to be those at maximum distance

from the flag {r∗1 , r∗2}. Again, these objects comprise the two largest orbits under

the action of the Borel subgroup B of G, i.e., the stabilizer of the flag {r∗1 , r∗2}.

The resulting form of affine points is thus −r∗2 + v, and that of affine lines is

−r∗1 + v, where in each case s∗ + v ∈ {s∗}B for s∗ ∈ {−r∗2 ,−r∗1}.

Example 5.2. We provide Lie algebraic models for the generalized 4-gon of

type B2 and its affine part.

Points: r∗2 (one element)

r∗1 − r∗2 + λr2
er2

(q elements)

−r∗1 + r∗2 + λr1
er1

+ λ2r1+r2
e2r1+r2

(q2 elements)

−r∗2 + λr2
er2

+ λr1+r2
er1+r2

+ λ2r1+r2
e2r1+r2

(q3 elements)

Lines: r∗1 (one element)

−r∗1 + 2r∗2 + λr1
er1

(q elements)

r∗1 − 2r∗2 + λr2
er2

+ λr1+r2
er1+r2

(q2 elements)

−r∗1 + λr1
er1

+ λr1+r2
er1+r2

+ λ2r1+r2
e2r1+r2

(q3 elements)

Affine points: −r∗2 + λr2
er2

+ λr1+r2
er1+r2

+ λ2r1+r2
e2r1+r2

Affine lines: −r∗1 + λr1
er1

+ λr1+r2
er1+r2

+ λ2r1+r2
e2r1+r2

Note that our model for the generalized 4-gon involves four types of points

and four types of lines. As alluded to above, these types correspond to Borel

orbits, the two largest of which render the points and lines of the affine part of

the 4-gon.

A similar model can be constructed for the generalized 6-gon of type G2,

however this exhausts all possibilities available to us. Our problem at this stage

is more metaphysical than pragmatic: How to detect the essence of these struc-

tures so limited in number, and extrapolate on that essence. While we would

like to claim some level of ingenuity in solving this problem, it turns out that

the biggest role was played by the Beauty of Mathematics. It cried out to us

where to look, and fortuitously, Ustimenko heard the message and interpreted

it correctly.

6 Affine Lie algebras

Roughly speaking, the classification of simple Lie algebras runs parallel to that

of Lie groups (over the complex numbers) and groups of Lie type (over finite
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fields). There are some curious pathologies in the latter case, where a twisted

group of Lie type will emerge which has no Lie group “relative”, but such occur-

rences are rare and have been understood for a long time.

Less studied is the class of Kac-Moody algebras, though its subclass of affine

Lie algebras has many important ties with Lie algebras. Both varieties give rise

to (extended) Dynkin diagrams, (affine) Weyl groups and (affine) root systems,

and may be constructed from their Cartan matrices.

Some differences, however, are striking. Whereas the root system of a Lie al-

gebra is finite, that of an affine Lie algebra is infinite. This accounts for infinitely

many root vectors, making affine Lie algebras infinite dimensional graded struc-

tures. Moreover, while all root spaces of a Lie algebra are one-dimensional, in

the case of an affine Lie algebra this dimension may be larger.

The most crucial difference, however, is that for affine Lie algebras the con-

nection to groups is far more tenuous. Still, such connections have been well

studied and are attractively embodied in the general framework of “groups with

a twin root datum (donnée radicielle)”. This notion may be regarded as the

group theoretical counterpart of the Kac-Moody algebra. We refer the reader to

the lecture notes of P.-E. Caprace and B. Rémy [6] as an excellent introductory

source, see also [5, 27].

6.1 Affine Lie algebra of type Ã1

In our preamble, we mentioned Dynkin diagrams. Every Lie algebra and affine

Lie algebra has one. In the case of rank two Lie algebras of normal type, such

diagrams consist of two nodes with some adjoining edges. The number of such

edges conveys immediate information about the root system and Weyl group

structure; ultimately it reveals all about the corresponding Lie algebra and Lie

group. It is one of the most compact modes of description in all of mathematics.

In Figure 3, we give the Dynkin diagrams of all rank two Lie algebras of

normal type. Recall that each such diagram is related to the existence of a

regular generalized polygon.

g gA2 :

g gHH
��B2 :

g gHH
��G2 :

Figure 3: Dynkin diagrams of type A2, B2, G2
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g wÃ1 :

∞

Figure 4: Extended Dynkin diagram of type Ã1

The bad news is we have exhausted all Dynkin diagrams of the classical Lie

algebras. The good news is there is one additional diagram to consider. It is a

rank two “extended” Dynkin diagram, formed by appending an additional node

(corresponding to an imaginary root) to the Dynkin diagram of a rank one Lie

algebra of type A1, see Figure 4. Note that the two nodes are joined by infinitely

many edges, which, in particular, signifies that the corresponding affine Weyl

group will be the infinite dihedral group. Keep in mind that there is no hope of

a new generalized polygon here, as Feit and Higman have demonstrated.

Curiously, despite uniqueness of the diagram of type Ã1, there are two dis-

tinct Cartan matrices which may be associated with it, namely the one indicated

in 6.2 below, and the one in which we disturb only its (1, 2)-entry reassigning

a12 = −3. Some time ago, we convinced ourselves that both produce the same

asymptotics relative to the kinds of properties we were investigating. Thus, we

worked only with the former.

6.2 Affine root system of type Ã1

Here, our mode of construction will closely resemble the one given in 4.1.3, and

its generalization in 5.2.

Let L̃ = L(Ã1) denote the affine Lie algebra under investigation. As L̃ has

rank two, it has a fundamental basis of two independent roots, say Π = {r1, r2}.

Consider the Cartan matrix A = (Aij) of L̃ given by

A =

(
2 −2

−2 2

)
.

From this matrix, one is able to generate the entire root system of L̃ via the

action of the Weyl group W = 〈w1, w2〉, specifically rwi

j = rj − Aijri. The

resulting root system is given by Φ = Φ+ ∪ Φ−, where Φ− = −Φ+ and

Φ+ = {r1, r2, r1 + r2, 2r1 + r2, r1 + 2r2, 2r1 + 2r2, . . . ,

ir1 + (i − 1)r2, (i − 1)r1 + ir2, ir1 + ir2, . . . }

Note that there are infinitely many roots, as predicted.
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Let now Π∗ = {r∗1 , r∗2} be the dual basis for Π, and apply the contragredient

action of W on Π∗ to obtain the dual root system Φ∗. This is difficult to write

down, but fortunately unnecessary. As the reader will see, we shall only need

that −r∗i ∈ Φ∗ for i = 1, 2, which is an obvious fact.

Roots of the form ir1 + ir2 are imaginary, i.e., isotropic with respect to the

Killing form induced by the Cartan matrix A. In such case the corresponding

root spaces are two-dimensional. Hence we use primes to distinguish between

independent root vectors from the same root space, i.e., {e′ir1+ir2
, e′′ir1+ir2

} is a

basis for the root space corresponding to ir1 + ir2 ∈ Φ. All other root spaces are

one-dimensional.

6.3 Crucial observation of Ustimenko

Consider the positive root system Φ+ of L̃ derived above. Ustimenko noticed

that subject to its natural ordering, Φ+ had the property that its first three

members form a positive root system {r1, r2, r1 + r2} of type A2, while its first

four members yield a positive root system {r1, r2, r1 + r2, 2r1 + r2} of type B2.

(Curiously, a positive root system of type G2 does not arise in such manner.)

On the basis of Ustimenko’s observation, we were now in a position to spec-

ulate how one might manufacture actual geometries from these truncated root

systems. In this endeavor, we would again reap the benefits of Ustimenko’s past

experience, see [29]. (See also [30, 12].)

7 Arriving at our generalization

From the outset, we faced a rather difficult and perplexing problem. Although

we clearly had the capacity to define an incidence structure in L̃U in which

incidence would correspond to the vanishing Lie product, what would be the

correct choices for points and lines? In all finite cases, these choices were dic-

tated to us by the Weyl group W and Borel subgroup B. But in the situation in

which we presently found ourselves, that of constructing geometries from trun-

cations of an affine root system of type Ã1, these groups would vanish after the

initial two truncations, never again to reappear.

7.1 Eliminating the role of groups

Recall the roles played by W and B in the finite case. Elements of the form

s∗ + v ∈ LU are points of the m-gon provided s∗ ∈ {−r∗2}
W and s∗ + v ∈

{s∗}B , and they are lines provided s∗ ∈ {−r∗1}
W and s∗ + v ∈ {s∗}B . However,
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in the infinite case it is a difficult matter to describe all elements of {−r∗2}
W

and {−r∗1}
W . So our first decision was to restrict attention to affine parts as

prospective geometries, wherein only −r∗2 and −r∗1 would appear as lead terms.

Now we make a crucial observation. The Borel orbits indicated above may be

described in a manner which is completely void of reference to groups. Namely,

for s∗ ∈ Φ∗ define the set s∗(↓) = {er | r ∈ Φ+, s∗(r) < 0}. Then {s∗}B is

simply the totality of expressions s∗+v for which v is in the GF(q)-span of s∗(↓).
We encourage the reader to corroborate this fact for the already presented Lie

algebraic models of the generalized 3- and 4-gon.

Obviously, s∗(↓) has independent meaning in L̃U . In other words, we have

completely extricated ourselves from our former dependence on groups, allow-

ing us to define our new models in a purely Lie algebraic manner.

7.2 Construction of a universal affine part

We start by defining a model which uses the entire positive root space L̃+ of L̃.

A priori, we understand this geometry cannot be very compelling. Indeed, the

affine Weyl group of L̃ is infinite dihedral, which forces the corresponding Cox-

eter (i.e., thin) geometry to have infinite girth. Nonetheless, it is not any thick

geometry arising from L̃ which holds our interest. It was always our intention

to explore “sections” of L̃U which correspond to truncated root systems. Our

next model serves as a universal object for these.

Fix the field GF(q). Points of our geometry will be all elements of L̃U of the

form −r∗2 + v, where v is in the GF(q)-span of −r∗2(↓). Lines will be elements

of the form −r∗1 + v where v is in the span of −r∗1(↓). As usual, incidence

corresponds to the vanishing Lie product.

As we predicted, the incidence graph of this geometry has infinite girth. As

we hadn’t at the time predicted, it is disconnected. It is in fact the graph D(q)

described in Section 3.1, a regular forest of valency q.

7.3 Construction of truncated affine parts

For each k ≥ 2, let Φ+[k] denote the set consisting of the initial k + 1 roots from

Φ+ subject to its natural ordering. Now define

s∗(↓)[k] = {er | r ∈ Φ+[k], s∗(r) < 0} .

Our model of the “truncated affine part” may now be formulated as follows:

Points: −r∗2 + v, where v is in the GF(q)-span of −r∗2(↓)[k]

Lines: −r∗1 + v, where v is in the GF(q)-span of −r∗1(↓)[k]
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As usual, incidence is defined in terms of the vanishing Lie product.

Incidence graphs of these geometries are none other than the graphs D(k, q)

defined in Section 3.1. In fact, each D(k, q) is a quotient graph of D(q), although

a lot more can be said in a quite broader setting [19].

Certainly, one could make a valid argument that this family of geometries

provides a natural generalization of the affine parts of regular generalized m-

gons. Indeed, its two smallest members coincide with the affine parts of the

3-gon and 4-gon. However, as we have discussed, these geometries disconnect

as k grows.

Thus we turn to the family of connected component subgeometries, i.e., those

for which the incidence graphs are CD(k, q). It turns out these component

subgeometries yield an even better approximation of the behavior of the affine

parts of m-gons than do the full geometries constructed above. For example,

their relative girth is larger. Moreover, the affine parts of the 3-gon and 4-gon

are again appearing as the two smallest members. Nothing has been sacrificed.

This, at long last, is our desired generalization.

There remains but one objective to fulfill. We wish to explain how the co-

ordinate relations of the graphs D(k, q) are obtained from their underlying Lie

algebraic models.

8 Passage to coordinate relations

In this section, we uncloak the mystery surrounding the appearance of such

terms as pij , p′ii, p′′ii, lij , l′ii, l′′ii as coordinates of points and lines in the descrip-

tion of graphs D(k, q) (see Section 3.1). In addition, we illustrate at the level of

example how the coordinate relations for these graphs are derived.

8.1 Subscripts

Recall that points of our geometries are represented as −r∗2 + v, where v is a

linear combination of elements from −r∗2(↓)[k]. The scalar coefficients in this

representation, which we formerly denoted by λs (s ∈ Φ+), may also be de-

noted by pij , where s = ir1 + jr2. The case for lines is entirely analogous.

Example 8.1. Consider the point (p) = (p01, p11, p12, p21), where we assume

k = 4. Here, Φ+(4) = {r1, r2, r1 + r2, r1 + 2r2, 2r1 + r2}, in which case we

correspondingly obtain

−r∗2(↓)[4] = {er2
, er1+r2

, er1+2r2
, e2r1+r2

} .
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Thus the Lie algebraic representation of (p) is given by

−r∗2 + p01er2
+ p11er1+r2

+ p12er1+2r2
+ p21e2r1+r2

.

Let’s now illustrate this same procedure for the line [l] = [l10, l11, l12, l21]. Here

we have

−r∗2(↓)[4] = {er1
, er1+r2

, er1+2r2
, e2r1+r2

} .

The Lie algebraic representation for [l] is thus given by

−r∗1 + l10er1
+ l11er1+r2

+ l12er1+2r2
+ l21e2r1+r2

.

Subscripts of the form {ii} which appear in such terms as p′ii, p′′ii, l′ii, l′′ii are

performing the exact same function. However, because the root space of each

imaginary root ir1 + ir2 is two-dimensional, we need two scalars for each i ≥ 2

to fulfill this role. Thus p′ii and l′ii represent coefficients of e′ir1+ir2
, and p′′11 and

l′′ii represent coefficients of e′′ir1+ir2
, presuming of course that {e′ir1+ir2

, e′′ir1+ir2
}

is the chosen basis for the root space of ir1 + ir2.

8.2 Coordinate relations

The first coordinate relation which appears in the definition of all graphs D(k, q)

is

p11 − l11 = l10p01 .

Our goal is to derive this relation, relying solely on our Lie algebraic model.

Thus we may assume k = 2, in which case point (p) = (p01, p11) and line

[l] = [l10, l11] have respective representations given by

(p) → Xp = −r∗2 + p01er2
+ p11er1+r2

;

[l] → Xl = −r∗1 + l10er1
+ l11er1+r2

.

In terms of our model, Xp and Xl are incident if and only if [Xp,Xl] = 0. So

let’s compute this Lie product in L̃U , and see what happens:

[Xp,Xl] = [−r∗2 ,−r∗1 ] + [p01er2
,−r∗1 ] + [p11er1+r2

,−r∗1 ] + [−r∗2 , l10er1
]

+ [p01er2
, l10er1

] + [p11er1+r2
, l10er1

] + [−r∗2 , l11er1+r2
]

+ [p01er2
, l11er1+r2

] + [p11er1+r2
, l11er1+r2

]

= (p11 − p01l10 − l11)er1+r2

We conclude that [Xp,Xl] = 0 if and only if p11 − p01l10 − l11 = 0, which is

equivalent to the indicated coordinate relation.
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