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1 Introduction

We recall that the alternating forms graph Alt(n+1, q) is the graph the vertices of

which are the alternating bilinear forms on V (n + 1, q), two such forms α and β

being adjacent precisely when rk(α − β) = 2. The following is known:

Theorem 1.1 (Munemasa and Shpectorov [15]). For a prime power q > 2 and

an integer n ≥ 3, let Γ be a graph with the following properties:

(1) Γ is locally the (q − 1)-clique extension of the collinearity graph of the grass-

mannian of lines of PG(n, q);

(2) any two vertices of Γ at distance 2 have exactly q2(q2 + 1) common neigh-

bours.

Then Γ is covered by the alternating forms graph Alt(n + 1, q).
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Needless to say, Alt(n + 1, q) satisfies both (1) and (2). In view of (1), the

maximal cliques of Alt(n + 1, q) have size qn and q3. When n > 3 the qn-cliques

are the largest ones. The intersection of two of them is either empty or a singular

line, namely a q-clique of the form {a, b}⊥⊥ (notation as in Brouwer, Cohen and

Neumaier [3, Appendix A.8]). Let G(Alt(n + 1, q)) be the geometry of rank 3

with the vertices of Alt(n + 1, q) as points, the singular lines as lines and the

qn-cliques as planes. In this paper we will exploit Theorem 1.1 to prove that

G(Alt(n+1, q)) is the unique flag-transitive L.PG
∗-geometry with n-dimensional

affine spaces of order q as planes. That result, combined with the reduction

theorem by Huybrechts [9, Theorem 5.5.9] and the characterization theorems

of Huybrechts and Pasini [11] and Cardinali and Pasini [5], completes the clas-

sification of flag-transitive L.PG
∗-geometries.

We will state our main result in a slightly different and more complete way

at the end of this introduction, after having translated Theorem 1.1 into the

languague of diagram geometry. In view of that translation, we need to recall

the definition and a few properties of certain subgeometries of Dn+1-buildings,

which we call ‘affine half-spin geometries’.

1.1 Notation and terminology

We follow [17] for diagram geometries but for a few minor changes in notation,

as using the symbol TrJ for Tr+
J (see below), the symbol Res for residues and

denoting geometries by capital italics instead of greek letters. We only recall a

few definitions here, which we need as soon as in the next subsection.

Given a geometry G over the type-set I and a nonempty subset J of I, we

denote by TrJ(G) the geometry induced by G on the set of elements of type

j ∈ J and we call it the J-truncation of G. Suppose 0, 1 ∈ I are such that 1 is

the unique type joined to 0 in the diagram graph of G. The {0, 1}-truncation

of G is usually regarded as a point-line geometry, with the 0-elements as points

and the 1-elements as lines and two 0-elements are said to be collinear when

they are incident with the same 1-element. We call the collinearity graph of

Tr{0,1}(G) the 0-graph of G and we denote it by Γ0(G). We use the symbol ⊥ for

the collinearity relation. Accordingly, given a 0-element x, the set x⊥ consists of

x and its neighbours in Γ0(G).

1.2 Affine half-spin geometries

For an integer n ≥ 3 and a prime power q, we denote by Dn+1(q) the building of

type Dn+1 defined over GF(q) (see [21]) and we take the integers 0, 1, . . . , n−1

and the symbol 0∗ as types, as follows:
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Given an ε-element S0 of Dn+1(q), where ε stands for 0 or 0∗ according to

whether n is odd or even, let Far(Dn+1(q)) be the subgeometry of Dn+1(q) far

from S0, namely the geometry formed by the elements of Dn+1(q) that, compat-

ibly with their type, have maximal distance from S0, with the incidence relation

inherited from Dn+1(q) but rectified as follows: a 0∗-element S and an element

X of Far(Dn+1(q)) of type i ∈ {2, 3, . . . , n − 1} are incident in Far(Dn+1(q)) if

and only if they are incident in Dn+1(q) and the flag {S,X} is as far as possible

from S0 (see Blok and Brouwer [2]).

It is easy to see that Far(Dn+1(q)) belongs to the following diagram, which we

call DAf
n+1, where • •

Af stands for the class of affine planes and the integers

q − 1 and q are finite orders, q = ph for a prime p and a positive integer h:

(DAf
n+1) •

Af

• • ..... • •

•

0

0∗

1 2 n − 2 n − 1

q − 1

q

q q q q

The {0, 1, 0∗}-truncation Tr{0,1,0∗}(Far(Dn+1(q))) of Far(Dn+1(q)) will be de-

noted by the symbol TFar(Dn+1(q)) and called affine half-spin geometry of Far-

type and affine rank n. (Recall that the point-line geometry Tr{0,1}(Dn+1(q))

is commonly called ‘half-spin geometry’; note also that Tr{0,1}(Far(Dn+1(q)))

admits a family of maximal singular subspaces isomorphic to the n-dimensional

affine space AG(n, q) over GF(q).)

Clearly, TFar(Dn+1(q)) belongs to the following diagram, where the labels

AG and PG∗ denote the class of affine spaces and, respectively, the class of dual

projective spaces, both being regarded as point-line geometries:

(AG.PG∗) •
AG

• •
PG∗0 1 0∗

q − 1 s q
(s = qn−1 + · · · + q2 + q)

The geometry TFar(Dn+1(q)) inherits the following properties from Dn+1(q):

(LL) no two distinct 0-elements are incident with the same pair of distinct

1-elements;

(T) every 3-clique of the 0-graph is incident to a 0∗-element.
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Furthermore, the 0-graph of TFar(Dn+1(q)) is isomorphic to Alt(n + 1, q) (see

Brouwer, Cohen and Neumaier [3, 9.5.11(ii)]). So, the following also holds in

TFar(Dn+1(q)) (compare condition (2) of Theorem 1.1):

(µ) if two 0-elements a, b have distance 2 in the 0-graph, then |a⊥ ∩ b⊥| =

q2(q2 + 1).

The set H(S0) of 0-elements of Dn+1(q) at non-maximal distance from S0 is

a hyperplane of the half-spin geometry Tr{0,1}(Dn+1(q)) (Shult [20]). Thus,

Far(Dn+1(q)) can be described as the geometry obtained from Dn+1(q) by re-

moving the hyperplane H(S0). More generally, a geometry D \ H belonging to

diagram DAf
n+1 can be obtained from D = Dn+1(q) by removing an arbitrary hy-

perplane H of Tr{0,1}(D). Properties (LL) and (T) hold in Tr{0,1,0∗}(D \ H), no

matter which hyperplane we choose as H. On the other hand, Tr{0,1,0∗}(D \H)

satisfies (µ) if and only if it is of Far-type, namely H = H(S0) for an ε-element

S0. Moreover, as it follows from Proposition 4.1 of this paper (section 4), when

n > 3 then Tr{0,1,0∗}(D \ H) is flag-transitive if and only it is of Far-type. So, in

this paper, we are not going to discuss D \ H for an arbitrary H 6= H(S0) when

n > 3. The case of H 6= H(S0) will be considered only for n = 3.

Assume n = 3. When we regard the elements of D := D4(q) of type 0 and 1

as singular points and totally singular lines of PG(7, q) for a given non-singular

quadratic form f , the elements of D of type 0∗ and 2 are the planes of PG(7, q)

that are totally singular for f . It is known that every geometric hyperplane of

Tr{0,1}(D) is the intersection of the set of 0-elements of D with a hyperplane

of PG(7, q) (Cohen and Shult [7]). Given a hyperplane H of PG(7, q), the com-

plement D \ H of H is the geometry formed by the elements D that are not

contained in H, with the incidence relation inherited from D but rectified as

follows: a {0∗, 2}-flag {X,Y } of D is a flag of D \ H if and only if X ∩ Y 6⊆ H.

If H is tangent to D, namely the form fH induced by f on H is singular,

then H = H(S0), where S0 is the radical point of fH . In this case D \ H is the

subgeometry of D far from S0, whence D\H ∼= Far(D4(q)). On the other hand,

let H be secant, namely fH is non-singular. Then the 0-graph of D \ H does not

satisfy (µ). In fact, we have |a⊥ ∩ b⊥| = q2(q2 + 1) only for some pairs {a, b} of

points at distance 2, whereas |a⊥ ∩ b⊥| = q4 for the remaining pairs.

When H is secant, we put TSec(D4(q)) := Tr{0,1,0∗}(D \ H) and we call it

affine half-spin geometry of Secant-type and affine rank 3.
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1.3 Theorem 1.1 revisited

As remarked in the previous subsection, the 0-graph Γ := Γ0(TFar(Dn+1(q)))

of TFar(Dn+1(q)) is isomorphic to Alt(n + 1, q). On the other hand, the maxi-

mal cliques of Γ correspond to the elements of Far(Dn+1(q)) of type 0∗ and 2.

More explicitly, if X is a 0∗-element, then the set of 0-elements incident to X

is a maximal clique of Γ of size qn whereas, if X has type 2, then the 0-ele-

ments incident to it form a maximal clique of size q3. Furthermore, the set of

0-elements incident to a given 1-element is a singular line of Γ. Thus, when

n > 3, TFar(Dn+1(q)) is isomorphic to the geometry G(Alt(n + 1, q)) defined at

the very beginning of this introduction.

Suppose n = 3. The 1-elements of TFar(D4(q)) still correspond to the singu-

lar lines of Alt(4, q). However, all maximal cliques of Alt(4, q) have size q3, so we

cannot recognize those corresponding to 0∗-elements as the largest ones. Nev-

ertheless, we can still recover a partition of the maximal cliques in two classes,

as follows: Define a graph Λ on the set of maximal cliques of Alt(4, q) by declar-

ing two of them to be adjacent when they meet in a 4-clique. The graph Λ is

connected and bipartite. The two classes of its bipartition correspond to the

types 0∗ and 2, except that we don’t know which class correspond to 0∗ and

which to 2. However, there is no need to know that. Indeed, as D4(q) admits a

non-type-preserving automorphism permuting the types 0∗ and 2, we may pick

any of those two classes, claiming it corresponds to the type 0∗. So, we can still

recover a copy G(Alt(4, q)) of TFar(D4(q)) inside Alt(4, q).

We are now ready to give Theorem 1.1 an openly geometric formulation.

Corollary 1.2. Let G be a geometry belonging to diagram AG.PG∗ with n ≥ 3 and

q > 2 and suppose that properties (LL), (T) and (µ) of subsection 1.2 hold in it.

Then G is a quotient of TFar(Dn+1(q)).

Proof. Properties (LL) and (T) allow us to recover G inside its 0-graph Γ0(G)

just in the same way as we have recovered TFar(Dn+1(q)) as G(Alt(n + 1, q))

in Alt(n + 1, q). As G belongs to AG.PG∗, Γ0(G) satisfies condition (1) of Theo-

rem 1.1. Condition (2) of that theorem is property (µ), which holds by assump-

tion. So, by Theorem 1.1, there exists a covering f : Alt(n + 1, q) → Γ0(G).

However, G can be recovered from Γ0(G), as remarked above. Hence f induces

a covering from G(Alt(n + 1, q)) (∼= TFar(Dn+1(q))) to G. �

1.4 Main results

The automorphism group of Far(Dn+1(q)) is induced by the stabilizer of S0 in

Aut(Dn+1(q)) and acts flag-transitively on Far(Dn+1(q)). The complement of
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a secant hyperplane of D4(q) is also flag-transitive, with automorphism group

isomorphic to Ω7(q).C, where C = Aut(GF(q)). Thus, putting aside properties

(LL), (T) and (µ), we focus on flag-transitivity.

Theorem 1.3. Let G be a flag-transitive geometry belonging to diagram AG.PG∗

with n ≥ 3 and finite orders q − 1, s, q, where q is a prime power and where

s = qn−1 + · · · + q2 + q. Then either G ∼= TFar(Dn+1(q)) or n = 3 and G ∼=
TSec(D4(q)).

In particular:

Corollary 1.4. Suppose n > 3. Then TFar(Dn+1(q)) is the unique flag-transitive

geometry belonging to AG.PG∗ with orders q − 1, s, q as in Theorem 1.3.

We recall that, as proved by Kantor [12], if a subgroup X of PΓLn+1(q) acts

line-transitively on PG(n, q) (n ≥ 3), then either X is flag-transitive or n = 4,

q = 2 and X = Frob(31 · 5), regular on the set of lines of PG(4, 2). Therefore,

if for an AG.PG∗-geometry G of rank n ≥ 3 its automorphism group is transitive

on the set of {0, 1}-flags, then either G is flag-transitive and the conclusions of

Theorem 1.3 hold, or n = 4, q = 2 and the stabilizer in Aut(G) of a 0-element

p acts faithfully and regularly as Frob(31 · 5) on the set of 1-elements incident

to p. (The faithfulness of that action follows from Lemma 2.8 of Huybrechts and

Pasini [10].) A graph-theoretic translation of the above sounds as follows:

Corollary 1.5. Let Γ be a graph satisfying condition (1) of Theorem 1.1, for a

given integer n ≥ 3 and a prime power q, but allowing q = 2. Suppose that

Aut(Γ) acts transitively on the set of pairs (v, L), where v is a vertex and L a

singular line of Γ containing v. Then one of the following occurs:

(1) Γ = Alt(n + 1, q);

(2) n = 3 and Γ is the 0-graph of TSec(D4(q));

(3) n = 4, q = 2 and the stabilizer in Aut(Γ) of a vertex v of Γ is isomorphic

Frob(31 · 5), acting regularly on the neighbourhood of v.

We are not aware of any example as in case (3) of the above corollary. Nev-

ertheless, we have not been able to rule out that case.

We finish this section with a generalization of Theorem 1.3. By combining it

with the characterization theorems of Huybrechts and Pasini [11] and Cardinali

and Pasini [5] and the reduction theorem of Huybrechts [9, Theorem 5.5.9]

(see also Cardinali and Pasini [5, Proposition 2.1]), we immediately obtain the

following:
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Theorem 1.6. Let G be a flag-transitive geometry belonging to the diagram

(L.PG
∗) •

L

• •
PG

∗0 1 0∗

r s q

where the label L denotes the class of linear spaces, q is a prime power, s = qn−1 +

· · · + q2 + q for an integer n ≥ 3 and 1 ≤ r ≤ s. Then one of the following occurs:

(1) r = q and G ∼= Tr{0,1,0∗}(Dn+1(q)) ;

(2) r = q − 1 and G ∼= TFar(Dn+1(q)) ;

(3) r = q − 1, n = 3 and G ∼= TSec(D4(q)) .

The proof of Theorem 1.3 will take the rest of this paper. We outline its

main steps here. We shall firstly consider DAf
n+1-geometries. In section 2, after a

few elementary lemmas, we exploit Corollary 1.2 to obtain a sufficent condition

for a DAf
n+1-geometry to be covered by Far(Dn+1(q)). In section 3 we prove

that, when n > 3, the {0, 0∗, 1, 2}-residues of a flag-transitive DAf
n+1-geometry

are isomorphic to Far(D4(q)). At that stage we can prove that Far(Dn+1(q)) is

the unique flag-transitive DAf
n+1-geometry when n > 3 (section 4). We turn to

diagram AG.PG∗ in sections 5 and 6, proving that every flag-transitive geometry

belonging to that diagram extends to a flag-transitive DAf
n+1-geometry. In view

of the result of section 4, this finishes the proof of Theorem 1.3.

We warn the reader that our proof exploits the classification of finite 2-tran-

sitive groups (see the proof of Proposition 3.6), which in its turn depends on

the classification of finite simple groups.

Note also that q = 2 is allowed in Theorem 1.3. However, as that case

has been settled by Huybrechts and Pasini [11] a few years ago, we will not

spend much time on it in this paper. On the other hand, the assumption q > 2

is essential in Theorem 1.1 and Corollary 1.2, as we will explain in the next

remark.

Remark. We recall that the quadratic forms graph Quad(n, q) has the quadratic

forms on V (n, q) as vertices and adjacency relation defined as follows: two

quadratic forms f and g are adjacent when 1 ≤ rk(f − g) ≤ 2. The graph

Quad(n, 2) is distance-regular with the same local structure and the same inter-

section numbers as Alt(n + 1, 2) (see Brouwer, Cohen and Neumaier [3, 9.6.3]

for the intersection array and Munemasa, Pasechnik and Shpectorov [16, Propo-

sition 3.1] for the local structure). The following is known (Munemasa, Pasech-

nik and Shpectorov [16]): Given a graph Γ satisfying hypotheses (1) and (2) of

Theorem 1.1 but with q = 2, suppose that, for any two vertices a, b at distance 2,
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precisely 15 ·2n−105 of the vertices adjacent to b have distance 2 from a; then Γ

is covered by either Alt(n+1, 2) or Quad(n, 2). Accordingly, in Corollary 1.2, the

geometry G(Quad(n, 2)) of vertices, edges and 2n-cliques of Quad(n, 2) should

be allowed as a possible cover of G when q = 2 and n > 3. (As Quad(n, 2) and

Alt(n + 1, 2) have the same local structure, the maximal cliques of Quad(n, 2)

have size 2n and 8, as in Alt(n + 1, 2).)

As Quad(3, 2) ∼= Alt(4, 2), nothing new arises when n = 3. Suppose n > 3.

Then, in view of Theorem 1.3 and since Quad(n, 2) 6∼= Alt(n+1, 2) (Brouwer, Co-

hen and Neumaier [3, 9.6.4]), the geometry G(Quad(n, 2)) is not flag-transitive.

We can enrich G(Quad(n, 2)) by taking the maximal cliques of size 8 as 2-ele-

ments, stating that a 2n-clique and a maximal 8-clique are incident precisely

when they meet in a 4-clique. Thus, we obtain a geometry G(Quad(n, 2)) for

the following diagram:

•
Af

• •

•

L0

0∗

1 2

1

2

2 t
(t = 2n−2 + · · · + 22 + 2)

Using [6], one can prove that G(Quad(n, 2)) is a truncation of a chamber system

belonging to DAf
n+1, but we do not know if that chamber system arises from a

geometry.

2 Elementary properties of DAf

n+1
-geometries

Throughout this section G is a given geometry belonging to diagram DAf
n+1 with

finite orders q − 1, q, . . . , q. We will denote the incidence relation of G by ∗ and,

for an element x of G, we denote by σ(x) the set of 0-elements incident to x.

We also call the 0- and 1-elements points and lines. The distance between two

points is their distance in the 0-graph Γ0(G).

If x is an element of type i = 2, 3, . . . , n − 2, its residue is the direct sum

Res(x) = Res−(x) ⊕ Res+(x) of an (n − 1 − i)-dimensional projective geome-

try Res+(x) and a geometry Res−(x) over the set of types {0, 0∗, 1, . . . , i − 1}.

Clearly, Res−(x) ∼= AG(3, q) when i = 2. If i > 2, then Res−(x) belongs to DAf

i+1.

Sometimes, in the sequel, we will also take the liberty of writing Res−(x) for

Res(x) for x of type n − 1.

We firstly recall a well known result [17, Theorem 7.57], which settles the

case of n = 3.
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Proposition 2.1. If n = 3 then G = D\H where D = D4(q) and H is a hyperplane

H of D.

We now turn to the general case.

Lemma 2.2. Given a line l and an element x of type i 6= 0, if |σ(l) ∩ σ(x)| > 1,

then l ∗ x.

Proof. By induction on n. It is easy to see that the lemma holds true for com-

plements of hyperplanes of D4-buildings. So, in view of Proposition 2.1, we

may assume n > 3. Suppose first i = n − 1. Given a ∈ σ(l) ∩ σ(x), the el-

ements l and x appear as a line and a hyperplane of the projective geometry

Res(a) ∼= PG(n, q). Hence Res(a) contains a 0∗-element A incident to both l

and x. In the affine geometry Res(A) ∼= AG(n, q) we see l as a line and x as a

hyperplane. Furthermore, σ(l) ⊆ σ(A). Hence l ∗ x, as |σ(l) ∩ σ(x)| > 1.

Assume now 1 ≤ i < n− 1. Pick an (n− 1)-element y ∗ x. Then σ(x) ⊆ σ(y).

Therefore |σ(l) ∩ σ(y)| > 1, whence l ∗ y by the above. Then l ∗ x, by induction

hypothesis on the DAf
n -geometry Res(y).

Finally, suppose x is a 0∗-element. Let m be the line of Res(x) ∼= AG(n, q)

through two given points of σ(l) ∩ σ(x). Thus, |σ(l) ∩ σ(m)| > 1. However, we

have already proved the statement of the lemma for all types i = 1, 2, . . . , n− 1.

In particular, that statement holds for i = 1. Hence l = m, implying l ∗ x. �

Note that property (LL) is contained in Lemma 2.2. So, given two collinear

points a, b, the line through them is unique. We will denote it by ab. The next

lemma is a stronger version of property (T).

Lemma 2.3. Let a, b, c be distinct points forming a 3-clique in the 0-graph of G,

but not in the same line. Then there exists a unique {0∗, 2}-flag incident to all of

a, b, c, ab, bc and ca.

Proof. Given an (n− 1)-element x ∗ bc, Res(b) contains a 0∗-element A incident

to bc and ab. Thus, a, c ∈ σ(A)∩ σ(ac). Hence ac ∗A by Lemma 2.3. So, Res(A)

contains each of the lines ab, bc and ca. A 2-element α incident to all of ab, bc

and cb can be found in Res(A). Clearly, A and α are uniquely determined, as

the lines ab, bc and ca are mutually distinct. �

Lemma 2.4. Suppose n = 3. Then, for any two points a, b at distance 2, the

0-graph of G induces a connected graph on a⊥ ∩ b⊥.

Proof. Easy, by Proposition 2.1 and well known properties of complements of

hyperplanes in D4-buildings. �
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Lemma 2.5. Suppose n > 3 and, for two points a, b at distance 2, let Sa,b be the

set of 3-elements incident to both of them. Then the intersections a⊥ ∩ b⊥ ∩ σ(S)

(S ∈ Sa,b) are the connected components of the graph induced by Γ0(G) on a⊥∩b⊥.

Proof. Given c ∈ a⊥ ∩ b⊥, the lines ac and cb are non-coplanar in the projective

geometry Res(c). Indeed, if otherwise, they are incident to the same 0∗-element

A and in Res(A) we see that a ⊥ b, contrary to our assumptions.

As ac and cb are skew lines of Res(c), they are contained in a unique 3-space S

of the projective geometry Res(c). Clearly, S is a 3-element of G. By Lemma 2.4,

a⊥∩b⊥∩S is contained in a connected component of a⊥∩b⊥. Let d be a point of

a⊥∩b⊥∩c⊥. By Lemma 2.3, there exists a 2-element α incident to ac, ad and cd

and a 2-element β incident to bc, bd and cd. Regarded as planes of the projective

geometry Res(c), α and β meet in the line cd. Hence they are contained in a

3-space S′. However, S is the unique 3-space of Res(c) containing both ac and

bc. Therefore, S′ = S, that is: d ∈ σ(S). So, σ(S) contains the neighbourhood

of c in a⊥ ∩ b⊥. It is now clear that σ(S) ∩ a⊥ ∩ b⊥ is the connected component

of c in a⊥ ∩ b⊥. �

Lemma 2.6. Assume n > 3 and suppose that Res−(S) ∼= Far(D4(q)) for every

3-element S of G. Then, for any two points a, b at distance 2, the 0-graph induces

a connected graph on a⊥ ∩ b⊥.

Proof. Given two distinct non-collinear points c, d ∈ a⊥ ∩ b⊥, for x = c, d let

Sx be the 3-element of Res(x) incident to xa and xb. We shall prove that Sc =

Sd. Then, by Lemma 2.4 in Res−(Sc), the points c and d belong to the same

connected component of a⊥ ∩ b⊥ and we are done.

Suppose n = 4. Then Sc and Sd are hyperplanes of the 4-dimensional projec-

tive geometry Res(a). So, Res(a) contains a plane, namely a 2-element, incident

to both Sc and Sd. Suppose firstly that x⊥ ∩ b⊥ ∩ σ(X) 6= ∅ for x = c or x = d.

For instance, c⊥ ∩ b⊥ ∩ σ(X) 6= ∅. Pick a point z ∈ c⊥ ∩ b⊥ ∩ σ(X). As X ∗ Sd,

z ∈ σ(Sd). Hence zb∗Sd by Lemma 2.2. By Lemma 2.5, c ∈ σ(Sd). Therefore, by

Lemma 2.2, Sd is incident to each of the lines ac and bc. Consequently, Sd = Sc

by the uniqueness of the 3-space of Res(c) on the skew lines ac and bc.

Assume now that c⊥ ∩ b⊥ ∩ σ(X) = d⊥ ∩ b⊥ ∩ σ(X) = ∅. By assumption,

Res(Sc) = D \ H for D = D4(q) and a tangent hyperplane H. So, H ∩ D = p⊥

for a unique point p of D. (Warning: p is not a point of G and we are using

the symbol ⊥ for the collinearity relation of D, too.) Regarded X as a singular

3-space of D, b⊥ ∩ X is a plane of X. However, b⊥ ∩ X 6⊆ H. Indeed, only two

3-spaces of D exist that contain X ∩ H; the space X is one of them, the other

one is contained in H and is spanned by X ∩ H and p, but none of these two

spaces contains b. Thus, turning to G, both β := b⊥ ∩ σ(X) and γ := c⊥ ∩ σ(X)
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are planes of the affine geometry Res−(X) ∼= AG(3, q). Similarly, δ := d⊥∩σ(X)

is a plane of that affine geometry. Furthermore, a ∈ γ ∩ δ. Hence γ and δ are

non-parallel in Res−(X). Consequently, β meets one of them, contrary to the

assumption that both intersections c⊥∩b⊥∩σ(X) and d⊥∩b⊥∩σ(X) are empty.

This proves the equality Sc = Sd when n = 4.

Suppose n = 5. The elements Sc and Sd are 3-dimensional subspaces of the

5-dimensional projective geometry Res(a). So, there exists a line la of Res(a)

incident to both Sc and Sd. Similarly, a line lb incident to Sc and Sd exists in

Res(b). As a 6⊥ b, la 6= lb. If a⊥ ∩ σ(lb) 6= ∅, pick a point x ∈ a⊥ ∩ σ(lb) 6= ∅.

Then x ∈ σ(Sc) ∩ σ(Sd). By Lemma 2.2, both ax and xb are incident with both

Sc and Sd. However, the lines ax and xb are skew in Res(x) and both Sc and Sd

are 3-spaces of Res(x). Hence Sc = Sd.

Similarly, if b⊥ ∩ σ(la) 6= ∅, then Sc = Sd. Suppose now a⊥ ∩ σ(lb) = b⊥ ∩
σ(la) = ∅. By assumption, Res(Sc) = D \ H for D = D4(q) and a tangent

hyperplane H. Regard la and lb as lines of D. Then the hypothesis that a⊥ ∩
σ(lb) = b⊥ ∩ σ(la) = ∅ in G implies that the point of la collinear with b in D
belongs to H. Similarly, the point of lb collinear with a in D belongs to H.

Therefore, every point x of G in σ(la) \ {a} is collinear in G with a unique point

y ∈ σ(b) \ {b}. Put l := xy, for x, y as above. As both la and lb are incident to

both Sc and Sd, we have {x, y} ⊆ σ(Sc) ∩ σ(Sd) and Lemma 2.2 implies that

Sc ∗ l ∗ Sd. As la 6= lb, either l 6= la or l 6= lb. Suppose l 6= la, to fix ideas. The

lines la and l are skew in Res(x). Indeed a 6⊥ y, as a⊥∩σ(lb) = ∅ by assumption.

However, both l and la are incident to both Sc and Sd. Hence Sc = Sd.

Finally, let n > 5. Then Res(a) contains a 3-element S incident with both

ac and ad. In Res(c) we see S and Sc as 3-spaces incident to the same line ac.

Therefore, there exists a 5-element X incident to both S and Sc. All lines ac, bd

and ad are incident to X. Hence bd ∗ X too, by Lemma 2.2. However, Res−(X)

(= Res(X) when n = 6) is a DAf
6 -geometry (case of n = 5) and we have already

proved that the statement of the lemma holds for DAf
6 -geometries. So, a path of

a⊥ ∩ b⊥ going from c to d can be found inside Res(X). �

Corollary 2.7. Assume the hypotheses of Lemma 2.6. Then G satisfies property

(µ) of subsection 1.2.

Proof. The 0-graph of Far(D4(q)) is isomorphic to Alt(4, q). Hence property (µ)

holds in Far(D4(q)). The conclusion follows from this remark and Lemmas 2.5

and 2.6. �

Proposition 2.8. Assume the hypotheses of Lemma 2.6. Then Far(Dn+1(q)) is the

universal 2-cover of G.
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Proof. By Lemmas 2.2 and 2.3 and Corollary 2.7, properties (LL), (T) and (µ)

hold in G. By Corollary 1.2, there exists a covering f : TFar(Dn+1(q)) →
Tr{0,1,0∗}(G). The elements of Far(Dn+1(q)) of type 2 can be recovered in the

0-graph as maximal cliques of size q3. Those of type i = 3, 4, . . . , n−1 can be re-

covered in the 0-graph as distinguished subgraphs isomorphic to Alt(i+1, q), but

we can also regard them as i-dimensional subspaces in residues of points. It is

now clear that f induces a 2-covering from Far(Dn+1(q)) to G. Furthermore,

Far(Dn+1(q)) is 2-simply connected (see [18, Corollary 1.7], or use Propo-

sition 6.1 of Munemasa and Shpectorov [15], combining it with [17, Theo-

rem 12.64] and recalling that Far(Dn+1(q)) satisfies (T)). The conclusion fol-

lows. �

3 Residues of type {0, 0∗, 1, 2}

In this section G is a geometry belonging to the following diagram:

•
Af

• • •

•

L0

0∗

1 2 3

q − 1

q

q q t
(t = qn−3 + · · · + q2 + q)

As in the previous section, we call the elements of type 0 and 1 points and lines

and, for an element x of type t(x) 6= 0, we denote by σ(x) the set of points

incident to it. Note that, when n > 4, we cannot claim that the statement of

Lemma 2.2 holds for i = 3. Actually that statement holds for i = 0∗, 1 and 2 (in

particular, property (LL) holds), as one can easily prove, but we will not make

any use of this fact in this section.

Henceforth we assume that the automorphism group of G is flag-transitive.

Given an element x of G, we denote by Gx the stabilizer of x in G := Aut(G)

and by Kx the elementwise stabilizer of Res(x) in Gx. That is, Gx := Gx/Kx is

the group induced by Gx on Res(x). Clearly, if x, y are incident elements, then

Kx and Ky normalize each other. The next lemma follows from a well known

theorem of Higman [8]:

Lemma 3.1. PSLn+1(q) ≤ Ga ≤ PΓLn+1(q) for every point a.

Lemma 3.2. |KaKS/KS | ≤ 2 for every 3-element S and every point a ∈ σ(S). If

|KaKS/KS | = 2, then q is odd and one of the following occurs:

(1) Res(S) is isomorphic to the complement of a tangent hyperplane of D4(q)

and a is the unique point of σ(S) fixed by Ka ;



Large maximal cliques of the alternating forms graph 93

(2) Res(S) is isomorphic to the complement of a secant hyperplane of D4(q) and

Ka has exactly two fixed-points in σ(S), namely the point a and the unique

point of Res(S) at distance 3 from a .

Proof. By Proposition 2.1, Res(S) ∼= A where A is the complement of a hyper-

plane of D = D4(q).

Given a point a of A, let Ha be the elementwise stabilizer in Aut(A) of the

residue of a in A. It is straightforward to check that Ha = 1 if q is even and

|Ha| = 2 if q is odd. In the latter case, Ha acts semi-regularly on the set of

points of A at distance 1 or 2 from a. When A is the complement of a tangent

hyperplane, then its 0-graph has diameter 2. In that case, a is the unique fixed-

point of Ha. On the other hand, if A is the complement of a secant hyperplane,

then A contains exactly one point a′ at distance 3 from a. In this case Ha

fixes a and a′ and displaces all remaining points. As A = Res(S), we have

KaKS/KS ≤ Ha. �

Lemma 3.3. We have Ka ∩ Gb = 1 for any two distinct collinear points a, b.

Proof. Let l be a line through a and b and m a line on b skew with l := ab

in Res(b). (As noticed at the beginning of this section, (LL) holds, hence l is

unique; but this fact is irrelevant for the sequel.)

In Res(b) ∼= PG(n, q), we find a 3-element S incident to both l and m. By

Lemma 3.2, Ka ∩ Gb ≤ KS . Hence Ka ∩ Gb fixes m, all points of l and all

points of m. However, m is any of the lines of Res(b) skew with l. Therefore

Ka ∩ Gb is contained in Kb and fixes all points collinear with b. So, Ka ∩ Gb =

Ka ∩ Kb = Kb ∩ Ga (by symmetry) and Ka ∩ Kb fixes all points collinear with

either a or b. So, given a point c ⊥ b, Ka∩Kb ≤ Kb∩Gc = Kb∩Kc. By symmetry,

Ka ∩ Kb = Kb ∩ Kc. As the 0-graph is connected, we have Ka ∩ Kb = Kx ∩ Ky

for any two collinear points x, y. This forces Ka ∩ Kb = 1. �

Corollary 3.4. We have Ka ∩ KS = 1 and [Ka,KS ] = 1 for every {0, 3}-flag

{a, S} of G.

Proof. Clearly, Ka ∩ KS ≤ Ka ∩ Gb for any b ∈ σ(S) ∩ a⊥. Hence Ka ∩ KS = 1,

by Lemma 3.3. So, [Ka,KS ] = 1, as Ka and KS normalize each other. �

Henceforth, we denote by p the prime of which q is a power. Given a

GF(q)-vector space V , we will make no distinction between V and its addi-

tive group, thus writing X ∼= V for an elementary abelian p- group X when X

is isomorphic to the additive group of V .
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Lemma 3.5. For every 3-element S of G, KS is a split extension V : L where

V := Op(KS) = V1 ⊗ V2 for V1 = V (4, q) and V2 = V (n − 3, q), and L is a

subgroup of GLn−3(q) acting on V = V1 ⊗ V2 via its natural action on V2, namely

every g ∈ L maps v1 ⊗ v2 onto v1 ⊗ vg
2 . Furthermore,

(1) if n > 4 and q > 2, then L ≥ SLn−3(q) ;

(2) if n = 5 and q = 2, then |L| ≥ 3 ;

(3) if n = 4, then V = V1 (as V2 is 1-dimensional), L is a subgroup of the

multiplicative group GF(q)∗ of GF(q) and acts on V by scalar multiplication;

the index |GF(q)∗ : L| is a common divisor of q − 1 and 10 .

Proof. Given a point a ∈ σ(S), KSKa/Ka is a subgroup of Ga. The latter is

described in Lemma 3.2. On the other hand, KSKa/Ka
∼= KS/(KS ∩Ka) = KS

(as KS ∩ Ka = 1 by Corollary 3.4). So, KS is recognizable inside Ga as a

subgroup of the elementwise stabilizer of Res(a, S), normalized by the stabilizer

Ga,S of S in GS . In view of Lemma 3.2, Ga,S contains a split extension X :=

V : (L1 × L2) of V := V1 ⊗ V2 by subgroups L1 ≤ GL4(q) and L2 ≤ GLn−3(q)

where L1 consists of all (4× 4)-matrices of determinant tn−2 for t ∈ GF(q)∗ and

L1 is formed by the (n− 3)× (n− 3)-matrices of determinant t5 for t ∈ GF(q)∗.

Furthermore, for i = 1, 2 the group Li acts on V via its natural action on Vi.

Explicitly, an element g ∈ L1 (resp. L2) sends v1 ⊗ v2 to vg
1 ⊗ v2 (resp. v1 ⊗ vg

2).

Clearly, V = Op(X) and the group H := V L2 is the elementwise stabilizer of

Res(a, S) in X.

If X ≤ KS , then we are done. Suppose that X 6≤ KS and let X̂ be the

preimage of X in Ga. So, X = X̂/Ka. As X 6≤ KS , X̂ has a non-trivial action in

Res(S). However, as X is contained in the elementwise stabilizer of Res(a, S)

in Ga, X̂ stabilizes all 0∗-elements of Res(S) on a. By the proof of Lemma 3.2,

|X̂KS/KS | = 2. Hence |X/(X ∩KS)| = 2, namely: KS ∩X has index 2 in X. It

is straightforward to check that the subgroups of X of index 2 and normalized

by Ga,S are as in (1), (2) and (3) of the lemma. �

Proposition 3.6. For every 3-element S of G, Res(S) is isomorphic to the comple-

ment of a tangent hyperplane of D4(q).

Proof. When q = 2, the statement follows from Huybrechts and Pasini [11]. So,

we assume q > 2.

Suppose that Res(S) = D \ H for a secant hypeplane H of D = D4(q). Then

the intersection H ∩ D is isomorphic to the non-singular quadric of PG(7, q)

and GS induces a flag-transitive action on H ∩ D. Furthermore, that action

is faithful. Indeed, the pointwise stabilizer of H ∩ D in Aut(D) has order 2
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and permutes the two families of maximal singular subspaces of D, namely it

permutes 0∗-elements with 2-elements. So, it cannot be involved in GS .

By a celebrated theorem of Seitz [19], GS contains a normal subgroup O ∼=
PΩ7(q). Clearly, O normalizes V = Op(KS). However, KS = V L acts as L on

V = V1 ⊗ V2 (notation as in Lemma 3.5). Assume first n > 4. Then, as q > 2 by

assumption, we are in case (1) of Lemma 3.5. In that case, the orbits of L on

V are the subspaces 〈v1〉 ⊗ V2, for v1 ∈ V1. As O normalizes KS and KS acts as

L on V , O permutes the orbits of L. So, O acts on the set P of 1-dimensional

subspaces of V1.

We warn the reader that we cannot claim that O preserves a projective struc-

ture on the set P, as we have not proved that O acts GF(q)-linearly on V1. The

center Z(L) of L indeed acts on V1 by scalar multiplication and it is not difficult

to prove that O preserves multiplication by scalars corresponding to elements

of Z(L), however Z(L) might be smaller than GF(q)∗. (One can only prove that

|Z(L)| = (q − 1)/d for a common divisor d of q − 1 and n + 1.)

Denoted by Oa the stabilizer in O of a point a ∈ σ(S), the family {Oa}a∈σ(S)

generates O. Denoted by Õa the preimage of Oa in GS , the group ÕaKa/Ka

contains the commutator subgroup L′
1
∼= SL4(q) of L1 (notation as in the proof

of Lemma 3.5) and L′
1 acts on V according to its natural action on V1. Thus the

preimage of L′
1 in Ga induces on P the natural action of PSL4(q) on a suitable

copy Sa of PG(3, q). That action is 2-transitive. Hence O, which is isomorphic

to PΩ7(q), acts 2-transitively on P, which has size q3 + q2 + q + 1. (Warning:

we cannot claim that O ≤ PΓL4(q), as the projective structure Sa preserved by

Oa might depend on the choice of a.) However, PΩ7(q) does not admit any

2-transitive action of degree q3 +q2 +q+1 (see Cameron [4]). We have reached

a contradiction.

The case of n = 4 remains to be examined. Regarded L as a subgroup of

GF(q)∗, let R be the subring of GF(q) generated by L and let M be the module

defined on V = V1 by taking R as the ring of scalars. Clearly, the 1-dimensional

submodules of M are minimal among the L-invariant submodules of M , and O

permutes them. So, O acts on the set P0 of 1-dimensional subspaces of M . If

R = GF(q), then P0 is the set of 1-dimensional subspaces of V1 and a contradic-

tion is reached as in the case of n > 4.

Suppose R < GF(q). Then |GF(q) : R| = pr for a positive integer r < h,

where h is such that ph = q. As L is a group, its cosets in the multiplicative

semigroup R∗ of R form a partition of R∗. So, denoted by d1 the number of

cosets of L in R∗ and by d the index of L in GF(q)∗, we have

|L| =
ph−r − 1

d1
=

ph − 1

d
. (1)
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However, according to Lemma 3.5, d is a common divisor of q−1 and 10. Hence

{
ph − 1 ≤ 10(ph−r − 1) if p > 2 ,

2h − 1 ≤ 5(2h−r − 1) when p = 2 .
(2)

The following are the only cases that pass through (2): r = 1 and p = 2, 3, 5 or

7, or r = 2 and p = 2 or 3. On the other hand, (1) also forces |L| to be a common

divisor of ph − 1 and ph−r − 1. When r = 1, the above amounts to say that |L|
divides p − 1. So, (ph − 1)/d (= |L|) divides p − 1, namely 1 + p + · · · + ph−1

divides d. However, this does not fit with the fact that h > 1 and d divides 10

(actually 5, when p = 2). So, r = 2 and p = 2 or 3. The greatest common

divisor of ph − 1 and ph−2 − 1 divides p2 − 1. Hence ph − 1 divides d(p2 − 1).

This forces h = 4 and either p = 2 and d = 5 or p = 3 and d = 10. In any case

d1 = 1, hence L = R∗. In fact, we have either q = 16 and R = GF(4) or q = 81

with R = GF(9). Therefore, q = q2
0 for q0 = 4 or 9, M ∼= V (8, q0) and P0 is the

set of 1-dimensional subspaces of M .

As before, denoted by Oa the stabilizer in O of a point a ∈ σ(S) and by Õa

its preimage in GS , the group ÕaKa/Ka contains the commutator subgroup

of L1. As L1 is linear, we have (λv)g = λvg for any v ∈ M , λ ∈ L and g ∈ L1.

In other words, the actions of L1 and L on M mutually commute. However,

M , regarded as a group, is nothing but Op(KS). So, Oa contains a non-trivial

subgroup which commutes with the action of L on Op(KS). Consequently, the

elements of O that commute with L in their action on Op(KS) form a non-

trivial subgroup of O. Clearly, that subgroup is normal in O. However, O is

simple. Hence the action of O on Op(KS) commutes with the action of L. That

is, O = PΩ7(q) is a group of linear transformations of M = V (8, q0), namely a

subgroup of ΓL8(q0). However this is false, as one can see by comparing orders

(recall that q = q2
0). We have reached a final contradiction. �

4 The flag-transitive DAf

n+1
-geometries

In the next proposition G belongs to diagram DAf
n+1, with orders q − 1 and q.

Proposition 4.1. Suppose G is flag-transitive. Then either G ∼= Far(Dn+1(q)) or

n = 3 and G is isomorphic to the complement of a secant hyperplane of D4(q).

Proof. As the case of n = 3 is classified in Proposition 2.1, we may assume

n > 3. By Propositions 3.6 and 2.8, Far(Dn+1(q)) is the universal 2-cover of G.

By [17, Theorem 12.59], G = Far(Dn+1(q))/D for a suitable subgroup D of

G := Aut(Far(Dn+1(q))) such that NG(D) is flag-transitive on Far(Dn+1(q))
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and D acts semi-regularly on the set of elements of Far(Dn+1(q)) of type 0

and 0∗. (The latter condition follows from the fact that, in view of [17, Proposi-

tion 12.45], the residues of the 0- and 0∗-elements of G are 2-simply connected.)

We recall that Far(Dn+1(q)) is the subgeometry of Dn+1(q) far from an element

S0 of type 0 (when n is odd) or 0∗ (if n is even). So, Aut(Far(Dn+1(q))) is

the stabilizer of S0 in the automorphism group PΓO
+
2n+2(q) of the polar spaces

associated to Dn+1(q). Computing that stabilizer is a routine exercise. It is easy

to see that it does not contain any non-trivial subgroup D satisfying the above

conditions. Hence D = 1. �

5 From AG.PG∗ to DAf

n+1
— first step

In this section G is a flag-transitive geometry belonging to diagram AG.PG∗ with

q > 2. We shall prove that G is the {0, 1, 0∗}-truncation of a geometry belonging

to the following diagram, which we call TDAf
n+1,2:

(TDAf
n+1,2) •

Af

• •

•

L0

0∗

1 2

q − 1

q

q t
(t = qn−2 + · · · + q2 + q)

As in sections 2 and 3, we call the elements of type 0 and 1 points and lines.

Those of type 0∗ will be called dual points. If x is a line or a dual point, then

σ(x) is the set of points incident to x. If x is a line or a point, we denote by

σ∗(x) the set of dual points incident to x. Also, the set of lines incident to a

given point or dual point x will be denoted by σ1(x).

5.1 Property (LL) and the Intersection Property

As noticed by Cardinali and Pasini [5, Remark 3.3], the flag-transitivity of G
implies property (LL). The latter in its turn implies the Intersection Property

[17, Lemma 7.25]. In particular, the dual of (LL) holds, too: |σ∗(l)∩σ∗(m)| ≤ 1

for any two distinct lines l,m. Also: If |σ(A) ∩ σ(l)| > 1 for a dual point A

and a line l, then l ∗ A; if A,B are distinct dual points, then either σ(A) ∩
σ(B) = ∅ or σ(A) ∩ σ(B) = σ(l) for a unique line l ∈ σ1(A) ∩ σ1(B). Dually:

If |σ∗(a) ∩ σ∗(l)| > 1 for a point a and a line l, then a ∗ l; if a, b are distinct

points, then either σ∗(a) ∩ σ∗(b) = ∅ or σ∗(a) ∩ σ∗(b) = σ∗(l) for a unique line

l ∈ σ1(a) ∩ σ1(b).
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5.2 A few lemmas on stabilizers

We keep for the symbols Gx, Kx and Gx the meaning stated in section 3, ex-

tending that notation to flags. Thus, given a flag F , GF is its stabilizer in

G := Aut(G), KF is the elementwise stabilizer of Res(F ) and GF := GF /KF

is the group induced by GF on Res(F ). Furthermore, given a line l, we denote

by K−
l the pointwise stabilizer of σ(l) and by K+

l the elementwise stabilizer of

σ∗(l). So, Kl = K+
l ∩ K−

l and the quotients Gl/K−
l , Gl/K+

l are the groups

induced by Gl on σ(l) and σ∗(l) respectively.

Lemma 5.1. All the following hold:

(1) PSLn+1(q) ≤ Ga ≤ PΓLn+1(q) for every point a ;

(2) PGLn(q) ≤ Ga,A ≤ PΓLn(q) for every {0, 0∗}-flag {a,A} ;

(3) ASLn(q) ≤ GA ≤ AΓLn(q) for every dual point A .

Proof. Claim (1) follows from Higman [8] (compare Lemma 3.1). Note that,

according to [8], if q = 2, one more case should be considered, where n = 3

and Ga is isomorphic to the alternating group of degree 7; but we have assumed

q > 2, so we need not trouble about that exceptional case. Claim (1) implies

(2), which implies (3). (Recall that, by Wagner [22], every flag-transitive auto-

morphism group of a finite affine space contains all translations.) �

Lemma 5.2. We have Ka ∩ KA = 1 for every {0, 0∗}-flag {a,A}.

Proof. Given a dual point B ∈ σ∗(a) \ {A}, let l be the line of Res(a) incident to

both A and B. The group (Ka ∩KA)KB/KB fixes all points of σ(l) and all lines

of Res(a,B). Hence (Ka ∩ KA)KB/KB = 1, that is Ka ∩ KA ≤ KB , namely

Ka ∩ KA ≤ Ka ∩ KB . By symmetry, Ka ∩ KA = Ka ∩ KB .

Given a point b ∈ σ(A) \ {a}, let m be the line of Res(A) through a and b.

By the above, (Ka ∩ KA)Kb/Kb ≤ KBKb/Kb for every dual point B ∈ σ∗(m).

Hence (Ka ∩ KA)Kb/Kb fixes all lines of Res(b) incident to a dual point of

σ∗(m). Consequently, (Ka∩KA)Kb/Kb = 1, namely Ka∩KA ≤ Kb. This forces

Ka ∩ KA = Kb ∩ KA. However, according to the above, Kb ∩ KA = Kb ∩ KB

for any dual point B ∈ σ∗(b). Hence Ka ∩ KA = Kb ∩ KB . By connectedness,

Ka ∩ KA = Kx ∩ KX for any {0, 0∗}-flag {x,X}, that is: Ka ∩ KA = 1. �

Corollary 5.3. The group Ka is cyclic of order d for a given divisor d of q − 1.

Furthermore, for every line l on a, Ka acts semi-regularly on σ(l) \ {a}.

Proof. Given a dual point A ∈ σ∗(a), we have KaKA/KA
∼= Ka/(Ka ∩ KA) =

Ka (as Ka ∩ KA = 1 by Lemma 5.2). Thus, Ka has the same structure and the

same action as KaKA/KA. �
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Comment. The reader might wonder why we have not put Lemma 5.2 and

Corollary 5.3 in section 3. We have not done so because we needed Lemma

3.2 there, which is stronger than Lemma 5.2. Note that Lemmas 3.2, 3.3 and

Corollary 3.4 imply that |Ka| ≤ 2. The statement of Corollary 5.3 is not so

sharp, but it is the best we can obtain now.

5.3 Twin pairs

Given a point a, the lines of Res(a) contained in a given plane of the projective

space Res(a) ∼= PG(n, q) are said to form a (+)-plane. The point a is called

the pole of that (+)-plane. (Note that, by property (LL), a (+)-plane admits

a unique pole.) Similarly, for a dual point A, we say that the lines of Res(A)

incident to a given plane of the affine space Res(A) ∼= AG(n, q) form a (−)-plane

with A as its pole (uniquely determined in view of the dual of property (LL); see

subsection 5.1). For a (+)-plane α+, we put σ∗(α+) := ∪l∈α+σ∗(l) and we say

that a dual point X is incident to α+ if X ∈ σ∗(α+). Similarly, for a (−)-plane

α−, σ(α−) := ∪l∈α−σ(l) is the set of points incident to α−.

For a {0, 0∗}-flag {a,A}, we say that a (+)-plane α+ ∈ Res(a) with A ∈
σ∗(α+) and a (−)-plane α− ∈ Res(A) with a ∈ σ(α−) are twinned if σ1(A) ∩
α+ = σ1(a) ∩ α−. We call the set of lines σ1(A) ∩ α+ = σ1(a) ∩ α− the pencil of

the twin pair (α+, α−). The pole a of α+ and the pole A of α− are the (+)-pole

and (−)-pole of (α+, α−).

Denoted by Ga,α+ the setwise stabilizer of α+ in Ga, we put Ga,l,α+ :=

Ga,α+ ∩ Gl for l ∈ σ1(a) ∩ α+ and Ga,A,α+ := Ga,α+ ∩ GA for A ∈ σ∗(α+).

The groups GA,α− , GA,l,α− and Ga,A,α− are defined in a similar way.

Lemma 5.4. Given a {0, 0∗}-flag {a,A}, the twinning relation induces a bijection

between the set of (+)-planes α+ of Res(a) incident to A and the set of (−)-planes

α− of Res(A) incident to a. Furthermore, a (+)-plane α+ and a (−)-plane α− are

twinned if and only if Ga,A,α+ = Ga,A,α− .

Proof. The setwise stabilizer X of L := σ1(A)∩α+ in Ga,A contains KaKA and

is the stabilizer of a bundle of lines of Res(a) ∼= PG(n, q) with A as the center

and α+ as the support. The quotient group X/Ka is maximal in Ga,A/Ka and,

by Lemma 5.1(1), it induces on L a group containing PGL2(q) and contained

in PΓL2(q). As X/Ka is maximal in Ga,A/Ka, X is maximal in Ga,A, whence

X/KA is maximal in Ga,A/KA. On the other hand, L is also a set of q + 1

lines of Res(A) on a. It is stabilized by X/KA, which is maximal in Ga,A/KA

and induces on L a group contained between PGL2(q) and PΓL2(q). The group

Ga,A/KA is contained between SLn(q) and ΓLn(q) (Lemma 5.1(3)). All maxi-

mal subgroups of such groups are known (Aschbacher [1]; also Kleidman and



100 A. Pasini

Liebeck [13]). In particular, X/KA either belongs to the class C(Y ) of natural

subgroups of Y = Ga,A/KA (see Table 3.5 of [13]) or it is almost simple. In

the latter case, KaKA/KA must be trivial, namely Ka ≤ KA. However, this is a

contradiction with Lemma 5.2 and Corollary 5.3. Therefore X/KA ∈ C(Y ) and,

by checking the various cases listed in Table 3.5 of [13], one can see that X/KA

is the stabilizer of a plane α− of the affine space Res(A). Accordingly, L is the

pencil of lines of that plane with a as the center. Clearly, α+ is the only plane of

the projective space Res(a) stabilized by X. �

Corollary 5.5. For every line l, the pointwise stabilizer K−
l of σ(l) contains a

subgroup L that acts faithfully and 2-transitively as PSL2(q) on σ∗(l) and stabilizes

all (+)-planes of Res(x) on l, for every point x ∈ σ(l).

Proof. Given a ∈ σ(l), it follows from Lemma 5.1(1) that Ga,l contains a sub-

group X such that Ka ≤ X, X/Ka acts faithfully as PSL2(q) on σ∗(l) and X

stabilizes all (+)-planes of Res(a) containing l. Let UA be a Sylow p-subgroup

of the stabilizer XA of A in X, where p is the prime of which q is a power. Then

UA ∩Ka = 1, as |Ka| divides q − 1 (Corollary 5.3). Hence KaUA is a semidirect

product of Ka and UA.

According to the conditions assumed on X/Ka, the group X/Ka is contained

in the commutator subgroup of Ga. Hence X ⊆ G′
aKa, where G′

a is the com-

mutator subgroup of Ga, and KaUA is contained in the stabilizer (G′
aKa)A of A

in G′
aKa. The group induced by (G′

aKa)A on the set of lines incident to the flag

{a,A} sits between PSLn(q) and PGLn(q). Therefore, (G′
aKa)AKA/KA acts in

Res(A) as a subgroup of the stabilizer GL(n, q) of a in AGL(n, q). In particular,

(G′
aKa)A,lKA/KA induces on σ(l)\{a} a subgroup of the cyclic (q−1)-subgroup

C of AGL1(q). However, KaUA ≤ (G′
aKa)A,l and UA, being a p-group, cannot

be involved in C. Therefore UA ≤ K−
l . On the other hand, Ka ∩ K−

l = 1, as

Ka acts semi-regularly on σ(l) (Corollary 5.3). Hence 〈Ka,K−
l 〉 = Ka × K−

l ,

as Ka and K−
l normalize each other. It follows that KaUA = Ka × UA and

UA = (KaUA) ∩ K−
l .

Similarly, given another dual point B 6= A on l and a Sylow p-subgroup UB of

XB , we have KaUB = Ka ×UB and UB ≤ K−
l . Thus, X ∩K−

l ≥ L := 〈UA, UB〉
and, as K−

l ∩Ka = 1, (X∩K−
l )Ka/Ka

∼= X∩K−
l ≥ L. The canonical projection

of X onto X/Ka maps UA and UB onto two distinct Sylow p-subgroups UA and

UB of PSL2(q) ∼= X/Ka and 〈UA, UB〉 = PSL2(q). Therefore, LKa = X and

L acts as PSL2(q) on σ∗(l). As L ≤ K−
l (in fact, L = X ∩ K−

l ), that action is

faithful.

The group L, being contained in X, stabilizes all (+)-planes of Res(a) on l.

It remains to prove that L also stabilizes all (+)-planes of Res(b) on l for every

b ∈ σ(l) \ {a}. The group UA, being a subgroup of L, stabilizes all (+)-planes
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of Res(a) on l. Hence, by Lemma 5.4, it also stabilizes all (−)-planes of Res(A)

on l. Therefore, again by Lemma 5.4, but applied backward from (−)-planes to

(+)-planes, UA stabilizes all (+)-planes of Res(b) on l for every b ∈ σ(l). The

same holds true for UB , for any other dual point B ∈ σ∗(l). As L = 〈UA, UB〉, L

stabilizes all (+)-planes on l. �

5.4 The structure Ext(G)

Let Π be the bipartite graph with the (+)- and (−)-planes as vertices and the

twin pairs as edges. We form an incidence structure Ext(G) of rank 4 with

{0, 0∗, 1, 2} as the type-set, the 0-, 0∗- and 1-elements of G as elements of type

0, 0∗ and 1 respectively and the connected components of Π as 2-elements. The

incidence relation of G induces on the set of elements of type 0, 0∗ and 1 the

incidence relation of Ext(G). A line l and a 2-element S are said to be incident

when l belongs to some (+)- or (−)-plane of S; an element x of G of type 0 or

0∗ is declared to be incident to S when σ1(x) contains a line incident to S. We

shall prove the following:

Proposition 5.6. The structure Ext(G) is a flag-transitive geometry for diagram

TDAf
n+1,2 .

The proof of this Proposition will take the rest of this section. We shall con-

sider the parabolic system naturally associated to a given chamber of Ext(G)

and, after having studied some of its properties, we recognize three possible

cases. Proposition 5.6 holds in one of them. We shall show that the other two

cases are impossible, thus finishing the proof.

5.5 The parabolic system ({P0, P ∗

0
, P1, P2}, B)

Given a twin pair α := (α+, α−), let a and A be its (+)- and (−)-pole, l a

line in the pencil of α and S the 2-element of Ext(G) containing α+ ∪ α−. We

have Ga,A,α+ = Ga,A,α− (Lemma 5.4). So, we may write Ga,A,α for Ga,A,α+

or Ga,A,α− . With that notation, we define the minimal parabolics P0, P
∗
0 , P1, P2

and the Borel subgroup B as follows:

P0 := GA,l,α− , P ∗
0 := Ga,l,α+ , P1 := Ga,A,α, P2 := Ga,A,l, B := Ga,A,l,α.

Denoted by GS the stabilizer of S in G = Aut(G), we put Ga,S := Ga ∩ GS ,

GA,S := GA ∩ GS , and so on. Clearly, Ga,α+ ≤ Ga,S and GA,α− ≤ GA,S . The

claims gathered in the following lemma are obvious:
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Lemma 5.7. The Borel subgroup B is the intersection of any two minimal parabol-

ics and all the following hold:

Ga,α+ = 〈P ∗
0 , P1〉, GA,α− = 〈P0, P1〉;

Ga,A = 〈P1, P2〉;

P ∗
0 P2 = P2P

∗
0 , P0P2 = P2P0;

Ga = 〈P ∗
0 , P1, P2〉, GA = 〈P0, P1, P2〉;

G = 〈P0, P
∗
0 , P1, P2〉 .

It remains to describe 〈P0, P
∗
0 〉 and 〈P0, P

∗
0 , P1〉. We focus on 〈P0, P

∗
0 〉 first.

We put Q := 〈P0, P
∗
0 〉 (≤ Gl), Q0 := Q∩GA (≤ GA,l) and Q∗

0 = Q∩Ga (≤ Ga,l).

Lemma 5.8. We have P ∗
0 Q0 = Q0P

∗
0 and P0Q

∗
0 = Q∗

0P0 .

Proof. As the {0, 0∗}-residues of G are generalized digons, Ga,lGA,l = GA,lGa,l.

So, given g ∈ P ∗
0 and f ∈ Q0, we have gf = f1g1 for suitable elements f1 ∈

GA,l and g1 ∈ Ga,l. Note that g1(α
+) might be different from α+. However,

Ga,A,l is transitive on the set of (+)-planes of Res(a) incident to A (compare

Lemma 5.1(1)). Hence we can pick an element g0 ∈ Ga,A,l sending g1(α
+)

back to α+. So, g2 := g0g1 ∈ P ∗
0 and f2 := f1g

−1
0 ∈ GA. However, f2 =

gfg−1
2 ∈ Q. Therefore f2 ∈ Q ∩ GA = Q0 and gf = f2g2 ∈ Q0P

∗
0 . The equality

P ∗
0 Q0 = Q0P

∗
0 is now evident. The equality P0Q

∗
0 = Q∗

0P0 can be proved in a

similar way. �

Corollary 5.9. Q = P ∗
0 Q0 = P0Q

∗
0 = Q0Q

∗
0 = Q∗

0Q0 .

Proof. As Q = 〈P0, P
∗
0 〉, Lemma 5.8 implies that Q = P ∗

0 Q0 = P0Q
∗
0. Also,

Q ⊇ Q0Q
∗
0 ⊇ P0Q

∗
0 = Q. Hence Q0Q

∗
0 = Q. Similarly, Q∗

0Q0 = Q. �

Lemma 5.10. Either P0P
∗
0 = P ∗

0 P0 or P0 < Q0 = GA,l, P ∗
0 < Q∗

0 = Ga,l and

Q = Gl .

Proof. In view of Lemma 5.1(1), the group P ∗
0 = Ga,l,α+ is maximal in Ga,l.

Therefore, either Q∗
0 = P ∗

0 or Q∗
0 = Ga,l. In the first case, P0P

∗
0 = P ∗

0 P0 by the

equality P0Q
∗
0 = Q∗

0P0 of Lemma 5.8. Suppose Q∗
0 = Ga,l. Then Q∗

0 ∩ GA =

Ga,A,l. So, Q0 = Q ∩ GA ≥ 〈P0, Ga,A,l〉 = 〈GA,l,α− , Ga,A,l〉 = GA,l. Therefore

Q0 = GA,l and Q = Gl. Clearly, GA,l,α− < GA,l, namely P0 < Q0. �

Lemma 5.11. P0P
∗
0 = P ∗

0 P0 .

Proof. Suppose the contrary. Then, by Lemma 5.10, Q = Gl and the subgroups

Q0 and Q∗
0 of Q form the parabolic system associated to the generalized digon

Res(l). However, P0 and P ∗
0 also form a parabolic system in Q, hence they also
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define a geometry R of rank 2 admitting Q as a flag-transitive automorphism

group. Taken {0, 0∗} as the type-set of R, the 0-elements of R correspond to the

cosets gP ∗
0 of P ∗

0 in Q and may be regarded as the pairs (x, ξ+) for x ∈ σ(l) and

ξ+ a (+)-plane of Res(x) containing l. The 0∗-elements of R are pairs (X, ξ−)

for X ∈ σ∗(l) and ξ− a (−)-plane of Res(X) containing l, and correspond to

the cosets gP0. Two pairs (x, ξ+) and (X, ξ−) are incident in R precisely when

ξ+ and ξ− are twinned. (This happens precisely when the corresponding cosets

of P ∗
0 and P0 meet non-trivially.) We emphasize that R, being a geometry, is

connected. (Indeed, every incidence structure arising from a parabolic system

is connected, whence it is a geometry if that system has rank 2.)

Given two 0-elements (b, β+) and (c, γ+) of R incident with the same 0∗-el-

ement, let L be the group considered in Corollary 5.5. As Q = Gl, we have

L ≤ Q. Thus, L is a subgroup of Aut(R). Therefore, as L fixes both (b, β+)

and (c, γ+), it permutes the 0∗-elements of R incident to (b, β+) and (c, γ+).

However, L acts transitively on σ∗(l). So, we get (q + 1) 0∗-elements of R in-

cident to both (b, β+) and (c, γ+). On the other hand, as |P ∗
0 : B| is equal

to |Ga,l,α+ : Ga,A,l,α| = q + 1, every 0-element of R is incident to precisely

(q + 1) 0∗-elements of R. Thus, we have proved that, if two 0-elements of R
are incident to the same 0∗-element, then they are incident with just the same

0∗-elements of R. As R is connected, the above forces R to be a generalized

digon. Hence P0 and P ∗
0 commute, contrary to our initial assumption. �

Lemma 5.12. The group GS acts transitively on the set of edges of Π contained in

S and we have GS = 〈P0, P
∗
0 , P1〉.

Proof. Clearly, GS ≥ X := 〈P0, P
∗
0 , P1〉. We shall prove the following first:

(∗) for every twin pair (ξ+, ξ−) with ξ+, ξ− ∈ S, there exists an element g ∈ X

sending α+ to ξ+ and α− to ξ−.

Let Σ be the graph defined on the set of twin pairs of S by stating that two twin

pairs (β+, β−) and (γ+, γ−) of S are adjacent when either β+ = γ+ or β− = γ−.

As S is connected as an iduced subgraph of Π, Σ is connected, too. So, we can

prove (∗) by induction on the distance d of (ξ+, ξ−) from (α+, α−).

When d = 0, there is nothing to prove. Suppose d > 0 and let (υ+, υ−) be a

twin pair of S adjacent with (ξ+, ξ−) and at distance d− 1 from (α+, α−). Then

(υ+
d−1, υ

−
d−1) = (g(α+), g(α−)) for some g ∈ X, by the inductive hypothesis.

Consequently, (g−1(ξ+), g−1(ξ−)) is adjacent with (α+, α−) in Σ. So, either

g(ξ+) = α+ or g(ξ−) = α−. Suppose g(ξ+) = α+, to fix ideas. (If g(ξ−) = α−

an argument quite similar to the following can be used.) The point a is the pole

of g(ξ+). Let B be the pole of g(ξ−). Then B ∈ σ∗(m) for a suitable line m ∈ α+.
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However, 〈P ∗
0 , P1〉 = Ga,α+ by Lemma 5.7 and Ga,α+ is transitive on the point-

line flags of the plane α+ of the projective space Res(a). So, f(B) = A and

f(m) = l for some f ∈ 〈P ∗
0 , P1〉. However, fg−1(ξ+) = g−1(ξ+) = α+, because

f ∈ Ga,α+ . Hence fg−1(ξ−) is twinned with α+. Therefore fg−1(ξ−) = α−,

as A = f(B) is the pole of fg−1(ξ−) and α− is the unique (−)-plane of Res(A)

twinned with α+, by Lemma 5.4. Thus, gf−1 maps (α+, α−) onto (ξ+, ξ−).

Claim (∗) is proved.

The transitivity of GS on the set of twin pairs of S follows from (∗). It remains

to prove the equality GS = X. Given f ∈ GS , the twin pair (f(α+), f(α−))

belongs to S. By (∗), (f(α+), f(α−)) = (g(α+), g(α−)) for an element g ∈
〈P0, P

∗
0 , P1〉. Hence g−1f stabilizes both α+ and α−, namely it belongs to

Ga,A,α = P1. Therefore, f ∈ X. �

In the next lemma σ(S) and σ∗(S) are the set of points and the set of dual

points that are incident to S.

Lemma 5.13. Every point of σ(S) is the pole of a (+)-plane of S and every dual

point of σ∗(S) is the pole of a (−)-plane of S.

Proof. We will only prove the part dealing with points. The dual claim can be

proved in the same way.

By definition, if x ∈ σ(S) then x ∗ l for a line l of a (+)- or (−)-plane ξ ∈ S.

If ξ is a (−)-plane, then the conclusion follows from Lemma 5.4 applied to the

flag {x,X}, where X is the pole of ξ. Suppose ξ is a (+)-plane and let y be its

pole. If x = y, there is nothing to prove. Suppose x 6= y and, given X ∈ σ∗(l),

let ξ− be the (−)-plane of Res(A) twinned with ξ (Lemma 5.4 applied to the

flag {y,X}). Then x is the pole of the (+)-plane of Res(x) twinned with ξ−. �

Lemma 5.14. The group GS acts transitively on σ(S) and σ∗(S).

Proof. This is obvious, by Lemma 5.13 and the first claim of Lemma 5.12. �

Lemma 5.15. One of the following holds:

(1) Ga,α+ = Ga,S and GA,α− = GA,S ;

(2) Ga,S = Ga and GA,S = GA. In this case 〈P0, P
∗
0 , P1〉 = Aut(G) ;

(3) Ga,S = Ga,α+ , |GA,S : GA,α− | = qn−2 and GA,S is the stabilizer in GA of

the parallel class of the plane α− in the affine space Res(A) .

Proof. As Ga,α+ is maximal in Ga and Ga,α+ ≤ Ga,S ≤ Ga, either Ga,α+ = Ga,S

or Ga,S = Ga. Suppose the latter. Then Ga,A,S = Ga,A. Hence GA,S ≥ Ga,A.

However, Ga,A is maximal in GA. Therefore, either GA,S = GA or GA,S = Ga,A.
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On the other hand, GA,S contains GA,α− , which transitively permutes the points

of α−. So, GA,S 6= Ga,A. Consequently, GA,S = GA, as in case (2). The

equality 〈P0, P
∗
0 , P1〉 = Aut(G) follows from the fact that Ga and GA generate

G = Aut(G), by the flag-transitivity of G and the residual connectedness of G.

Assume that Ga,S = Ga,α+ . If GA,S = GA,α− , then we have (1). Suppose

that GA,S > GA,α− . The stabilizer in GA of the parallel class of α− in Res(A)

is the unique group between GA,α− and GA. So, either we have case (3) or

GA,S = GA. In the latter case, Ga,A,S = Ga,A. However, Ga,A > Ga,A,α+ =

Ga,A,S (as Ga,S = Ga,α+ by assumption), and we get a contradiction. �

5.6 End of the proof of Proposition 5.6

Every parabolic system defines a chamber system [17, 12.4]. Let C be the

chamber system arising from the parabolic system ({P0, P
∗
0 , P1, P2}, B) of G =

Aut(G). By Lemmas 5.7 and 5.11 we obtain the following:

Lemma 5.16. The chamber system C belongs to diagram TDAf
n+1,2.

If we have case (1) of Lemma 5.15, then Lemmas 5.7 and 5.12 imply that

Ext(G) is the geometry associated to C and Proposition 5.6 follows.

Suppose we have case (2) or (3) of Lemma 5.15 and let Cα be the {0, 0∗, 1}-

residue of C containing the chamber B. That is, Cα is the chamber system

associated to the parabolic system ({P0, P
∗
0 , P1}, B) of GS (= 〈P0, P

∗
0 , P1〉, by

Lemma 5.12). As C belongs to TDAf
n+1,2, Cα belongs to the same diagram as

AG(3, q):

•
Af

• •
0 1 0∗

q − 1 q q

Let V0(Cα) be the set of 0-vertices of Cα, namely the set of cells of Cα of type

{1, 0∗}.

Lemma 5.17. |V0(Cα)| ≤ q3.

Proof. If the chamber system Cα arises from a geometry, then that geometry is

necessarily a copy of AG(3, q), the 0-vertices of Cα correspond to the points of

AG(3, q) and we get |V0(Cα)| = q3. However, Cα might be non-geometric. So,

we must argue differently.

We define a graph Γ0 on V0(Cα) by stating that two 0-vertices V,W of Cα

are adjacent in Γ0 when c ∼0 d for some c ∈ V and some d ∈ W . (Needless

to say, the symbol ∼i means i-adjacency, for i = 0, 1, 0∗.) Let (V1,W, V2) be
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a path of Γ0 of length 2. Then c1 ∼0 d1 and d2 ∼0 c2 for suitable chambers

c1 ∈ V1, d1, d2 ∈ W and c2 ∈ V2. As W , regarded as a {1, 0∗}-residue, is

isomorphic to the chamber system of PG(2, q), it contains two chambers x1 and

x2 such that d1 ∼0∗ x1 ∼1 x2 ∼0∗ d2. As ci ∼0 di for i = 1, 2 and, in view

of Lemma 5.11, 0- and 0∗-adjacencies commute, we also have c1 ∼0∗ y1 ∼0 x1

and x2 ∼0 y2 ∼0∗ c2 for suitable chambers y1, y2. Clearly, y1 ∈ V1 and y2 ∈ V2.

Furthermore, as y1 ∼0 x1 ∼1 x2 ∼0 y2, the chambers y1 and y2 belong to the

same {0, 1}-residue W ′ of Cα. The residues of Cα of that type are isomorphic

to the chamber systems of AG(2, q). Therefore there exist chambers z1, z2 ∈ W ′

such that y1 ∼1 z1 ∼0 z2 ∼1 y1. As zi ∼1 yi ∈ Vi, zi ∈ Vi for i = 1, 2. As

z1 ∼0 z2, V1 and V2 are adjacent in Γ0.

So far, we have proved that Γ0 is a complete graph. A vertex V0 of Γ0, being

isomorphic to the chamber system of PG(2, q), contains (q2 + q + 1)(q + 1)

chambers. Each of them is 0-adjacent to q − 1 more chambers. Furthermore,

given a 0-vertex V1 and a 1-vertex W with V0 ∩ W 6= ∅ 6= W ∩ V1, both V0 ∩ W

and W ∩ V1 contain at least q + 1 chambers and every chamber of V0 ∩ W is 0-

adjacent to a chamber of W ∩ V1. (Recall that W , regarded as a {0, 0∗}-residue,

is the chamber system of a generalized digon with q elements of type 0 and q+1

elements of type 0∗). It follows that V0 has at most

(q2 + q + 1)(q + 1)(q − 1)/(q + 1) = q3 − 1

neighbours in Γ0. As Γ0 is a complete graph, |V0(Cα)| ≤ q3. �

The next corollary finishes the proof of Proposition 5.6.

Corollary 5.18. Cases (2) and (3) of Lemma 5.15 are impossible.

Proof. The 0-vertices of Cα are the (right) cosets of 〈P1, P
∗
0 〉 in 〈P0, P

∗
0 , P1〉.

However, 〈P ∗
0 , P1〉 = Ga,α+ and 〈P0, P

∗
0 , P1〉 = GS , by Lemma 5.7 and 5.12.

Therefore,

|GS : Ga,α+ | ≤ q3 (i)

by Lemma 5.17. This inequality immediately rules out case (2), as in that case

GS = G whereas

|G : Ga,α+ | ≥
qn(qn+1 − 1)(qn − 1)(qn−1 − 1)

(q3 − 1)(q2 − 1)(q − 1)
.

Indeed G has at least qn points and the number of (+)-planes in the residue of

a point is [(qn+1 − 1)(qn − 1)(qn−1 − 1)]/[(q3 − 1)(q2 − 1)(q − 1)].

In case (3), |GA,S : GA,α− | = qn−2. As |GA,α− : Ga,A,α| = q2 (which is the

number of points of Res(A) in α−) and

|GS : Ga,A,α| = |GS : GA,S | · |GA,S : GA,α− | · |GA,α− : Ga,A,α| ,
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we obtain |GS : Ga,A,α| = qn · |GS : GA,S |. We also have Ga,S = Ga,α+ and

|Ga,α+ : Ga,A,α| = q2 + q + 1. Therefore,

|GS : Ga,A,α| = |GS : Ga,S | · |Ga,α+ : Ga,A,α| = (q2 + q + 1) · |GS : Ga,S | .

So far, |GS : Ga,A,α| = qn · |GS : GA,S | = (q2 + q + 1) · |GS : Ga,S |. Comparing

this with (i) and recalling that Ga,S = Ga,α+ , we get

q3(q2 + q + 1) ≥ (q2 + q + 1)|GS : Ga,S | = qn · |GS : GA,S | . (ii)

By Lemma 5.14, GS is transitive on σ∗(S). Hence |σ∗(S)| = |GS : GA,S |. By

Lemma 5.4, every dual point of σ∗(α+) is the pole of a (−)-plane twinned

with α+. So, |σ∗(S)| ≥ q2 + q + 1. Therefore (ii) forces n = 3 (recall that

n ≥ 3 by assumption) and |σ∗(S)| = q2 + q + 1. Hence σ∗(x) ⊇ σ∗(S) for every

x ∈ σ(S), because all q2 + q + 1 dual points of the (+)-plane of S having x as

its pole belong to σ∗(S). Consequently, |σ∗(x) ∩ σ∗(y)| ≥ q2 + q + 1 for any

two distinct points x, y ∈ σ(S). This is in contradiction with the Intersection

Property, which holds in G, as noticed in subsection 5.1. �

6 From AG.PG∗ to DAf

n+1
— continuation

In this section G is a flag-transitive geometry belonging to the following diagram

of rank m + 2, where q > 2, 2 ≤ m < n − 1 and s = qn−m + · · · + q2 + q :

(TDAf
n+1,m) •

Af

• ..... • • •

•

L0

0∗

1 m − 2 m − 1 m

q − 1

q

q q q s

The integer n + 1, uniquely determined by m and the orders q and s, will be

called the virtual rank of G. Accordingly, we call m + 2 the actual rank of G.

Note that the residues of the points and the residues of the dual points

of G are isomorphic to truncations of PG(n, q) and AG(n, q), respectively [17,

Corollaries 7.11, 7.13, 7.15 and Exercise 7.1]. We shall prove that G is the

{0, 0∗, 1, . . . ,m}-truncation of a geometry belonging to a diagram like the above,

with the same virtual rank as G but of actual rank m + 3:

(TDAf
n+1,m+1) •

Af

• ..... • • •

•

L0

0∗

1 m − 1 m m + 1

q − 1

q

q q q t
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Clearly, t = qn−m−1+ · · ·+q2+q = (s−q)/q. We keep for 0-, 1- and 0∗-elements

the terminology and the notation of section 5. Furthermore, for a flag F of type

{1, 2, . . . ,m}, we denote by σ(F ) (resp. σ∗(F )) the set of (dual) points incident

to F and, given a point or a dual point x, we denote by σ[1,m](x) the set of

{1, 2, . . . ,m}-flags incident to x. The symbols Gx, Kx and Gx keep the meaning

stated in the previous sections. Clearly, Lemma 5.1 remains valid. We will freely

use it in the sequel with no explicit reference.

6.1 Twin pairs and the structure Ext(G)

Given a point a, the flags of Res(a) of type {1, 2, . . . ,m} contained in a given

(m+1)-space of the projective space Res(a) are said to form an (m+1)+-space.

The point a is called the pole of that (m+1)+-space. Similarly, for a dual point A,

we say that the {1, 2, . . . ,m}-flags of Res(A) incident to a given (m + 1)-space

of the affine space Res(A) form an (m + 1)−-space with A as the pole. For an

(m+1)+-space α+, we put σ∗(α+) := ∪F∈α+σ∗(F ) and we say that a dual point

belongs to α+ if it belongs to σ∗(α+). If an element x of G of type 1, 2, . . . or m

belongs to a flag F ∈ α+, then we say that x belongs to α+. Similarly, for an

(m + 1)−-space α−, σ(α−) := ∪F∈α−σ(F ) is the set of points contained in α−

and ∪F∈α−F is the set of elements of type i ∈ {1, 2, . . . ,m} that belong to α−.

For a {0, 0∗}-flag {a,A}, we say that an (m + 1)+-space α+ ∈ Res(a) with

A ∈ σ∗(α+) and an (m + 1)−-space α− ∈ Res(A) with a ∈ σ(α−) are twinned

if σ[1,m](A) ∩ α+ = σ[1,m](a) ∩ α−. We call the set of flags σ[1,m](A) ∩ α+ =

σ[1,m](a) ∩ α− the {1, 2, . . . ,m}-pencil of the twin pair (α+, α−). The pole a of

α+ and the pole A of α− are the (+)-pole and (−)-pole of (α+, α−).

Denoted by Ga,α+ the setwise stabilizer of α+ in Ga, we put Ga,F,α+ :=

Ga,α+ ∩GF for F ∈ σ[1,m](a)∩ α+ and Ga,A,α+ := Ga,α+ ∩GA for A ∈ σ∗(α+).

Similarly for α−. The following can be proved in the same way as Lemma 5.4.

Lemma 6.1. Given a {0, 0∗}-flag {a,A}, the twinning relation induces a bijection

between the set of (m + 1)+-spaces α+ of Res(a) containing A and the set of

(m + 1)−-spaces α− of Res(A) containing a. An (m + 1)+-space α+ and an

(m + 1)−-space α− are twinned if and only if Ga,A,α+ = Ga,A,α− .

Let Π be the bipartite graph with the (m + 1)+- and (m + 1)−-spaces as

vertices and the twin pairs as edges. We form an incidence structure Ext(G) of

rank m + 3 with {0, 0∗, 1, . . . ,m,m + 1} as the type-set, the 0-, 0∗-, 1-, . . . , m-

elements of G as elements of type 0, 0∗, 1, . . . ,m and the connected components

of Π as elements of type m + 1. The incidence relation of G induces on the set

of elements of type 0, 0∗, 1, . . . ,m the incidence relation of Ext(G). An element

x of type 0, 0∗, 1, 2, . . . ,m and an (m + 1)-element S of Ext(G) are said to be
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incident when x belongs to an (m+1)−- or (m+1)−-space of S. We shall prove

the following:

Proposition 6.2. The structure Ext(G) is a flag-transitive geometry for diagram

TDAf
n+1,m+1 .

We will exploit induction on the virtual rank n + 1. We have already proved

this proposition when n = 3. Indeed, in that case, m = 1 and Proposition 6.2

reduces to Proposition 5.6. So, we assume the following induction hypothesis:

(I1) For every flag-transitive geometry G0 belonging to diagram TDAf

k,h with k ≤ n

and 1 ≤ h < k − 2, the structure Ext(G0) is a flag-transitive geometry and

belongs to diagram TDAf

k,h+1 .

By repeatedly applying (I1) we obtain that, if G0 is as in (I1), then it is a trunca-

tion of a flag-transitive geometry of rank k belonging to DAf

k . In view of Propo-

sition 4.1, we can rephrase our induction hypothesis as follows:

(I2) Let G0 be a flag-transitive geometry for TDAf

k,h with k ≤ n and 1 ≤ h < k−2.

Then either G0 is the {0, 0∗, 1, . . . , h}-truncation of Far(Dk(q)) or k = 4 and

G0
∼= TSec(D4(q)) .

6.2 The parabolic system ({P0, P ∗

0
, P1, . . . , Pm+1}, B)

Given a twin pair α := (α+, α−), let a and A be its (+)- and (−)-pole, F a flag

in the {1, 2, . . . ,m}-pencil of α and S the (m + 1)-element of Ext(G) containing

α+ ∪ α−. For i = 1, 2, . . . ,m, we denote by Fi the subflag of F formed by

the elements of type different from i and, for i, j = 1, 2, . . . ,m, we put Fi,j :=

Fi ∩ Fj .

We have Ga,A,α+ = Ga,A,α− (Lemma 6.1). So, we may write Ga,A,α for

Ga,A,α+ or Ga,A,α− . With that notation, we define the minimal parabolics P0, P
∗
0 ,

P1, . . . , Pm+1 and the Borel subgroup B as follows:

P0 := GA,F,α− , P ∗
0 := Ga,F,α+ , Pm+1 := Ga,A,F ,

Pi := Ga,A,α ∩ GFi
for i = 1, 2, . . . ,m, B := Ga,A,F,α.

As in section 5, we denote by GS the stabilizer of S in G = Aut(G) and we put

Ga,S = Ga ∩ GS , GA,S := GA ∩ GS , and so on. The following is the analogous

of Lemma 5.7:
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Lemma 6.3. The Borel subgroup B is the intersection of any two minimal parabol-

ics and all the following hold:

Ga,Fi,α+ = 〈P ∗
0 , Pi〉, GA,Fi,α− = 〈P0, Pi〉;

Ga,A,Fi
= 〈Pi, Pm+1〉 for i = 1, 2, . . . ,m;

Ga,A,Fi,j ,α = 〈Pi, Pj〉 for 1 ≤ i < j ≤ m;

Ga,F = 〈P ∗
0 , Pm+1〉, GA,F = 〈P0, Pm+1〉;

Ga = 〈P ∗
0 , P1, . . . , Pm, Pm+1〉, GA = 〈P ∗

0 , P1, . . . , Pm, Pm+1〉;

G = 〈P0, P
∗
0 , P1, . . . , Pm, Pm+1〉 .

Lemma 6.4. P0P
∗
0 = P ∗

0 P0.

Proof. As the {0, 0∗}-residues of G are generalized digons, we have Ga,F GA,F =

GA,F Ga,F . So, given g ∈ P ∗
0 and f ∈ P0, gf = f1g1 for suitable elements f1 ∈

GA,F and g1 ∈ Ga,F . Furtermore, Ga,A,F is transitive on the set of (m + 1)+-

spaces of Res(a) containing A. Let g0 ∈ Ga,A,F map g1(α
+) back to α+. Then

g2 := g0g1 ∈ P ∗
0 and f2 := f1g

−1
0 ∈ GA,F ≤ GA,l, where l is the 1-element (line)

of F . It remains to prove that f2 ∈ P0.

Let F(l) be the set of {1, 2, . . . ,m}-flags containing l. Then both g and g−1
2

stabilize F(l) ∩ α+ and f stabilizes F(l) ∩ α−. However, all flags of F(l) are in-

cident to both a and A. So, as α+ and α− are twinned, F(l) ∩ α+ = F(l) ∩ α−.

Consequently f2, which is equal to gfg−1
2 , stabilizes F(l) ∩ α+. Hence f2 stabi-

lizes α−, as α− is the unique (m + 1)−-space of Res(A) that contains F(l)∩α−.

So, f2 ∈ P0. (Note that the assumption m > 1 is essential for this argu-

ment.) �

The proofs of the next four statements are quite similar to those of Lem-

mas 5.12, 5.13, 5.14 and 5.15. We leave them for the reader.

Lemma 6.5. The group GS acts transitively on the set of edges of Π contained

in S and we have GS = 〈P0, P
∗
0 , P1, . . . , Pm〉.

Lemma 6.6. Denoted by σ(S) and σ∗(S) the set of points and the set of dual

points incident to S, every point of σ(S) is the pole of an (m + 1)+-space of S and

every dual point of σ∗(S) is the pole of an (m + 1)−-space of S.

Lemma 6.7. The group GS acts transitively on σ(S) and σ∗(S).

Lemma 6.8. One of the following holds:

(1) Ga,α+ = Ga,S and GA,α− = GA,S ;

(2) Ga,S = Ga and GA,S = GA. In this case, 〈P0, P
∗
0 , P1, . . . , Pm〉 = Aut(G) ;
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(3) Ga,S = Ga,α+ , |GA,S : GA,α− | = qn−m−1 and GA,S is the stabilizer in GA

of the parallel class of the (m + 1)-space α− in the affine geometry Res(A) .

6.3 Proof of Proposition 6.2

In this subsection, C is the chamber system arising from the parabolic system

({P0, P
∗
0 , P1, . . . , Pm+1}, B) of G = Aut(G). Lemmas 6.3 and 6.4 imply the

following:

Lemma 6.9. The chamber system C belongs to diagram TDAf
n+1,m+1.

In case (1) of Lemma 6.8, Lemmas 6.3 and 6.5 imply that Ext(G) is the

geometry associated to C and Proposition 6.2 follows from Lemma 6.9.

Suppose now that we are in case (2) or (3) of Lemma 5.15. Let Cα be the

{0, 0∗, 1, . . . ,m}-residue of C containing the chamber B. That is, Cα is the cham-

ber system associated to the parabolic system ({P0, P
∗
0 , P1, . . . , Pm}, B) of GS .

(We recall that GS = 〈P0, P
∗
0 , P1, . . . , Pm〉, by Lemma 6.5.) As C belongs to

TDAf
n+1,m, Cα belongs to DAf

m+2. We will obtain a contradiction as in the proof

of Proposition 5.6, but firstly we need to show that Cα is geometric, namely it

is the chamber system of a geometry. We consider the {0, 1, 0∗}-truncation of

Cα first, that is the chamber system Tr(Gα) associated to the parabolic system

({Q0, Q1, Q
∗
0}, B) where

Q0 := GA,l,α− , Q∗
0 := Ga,l,α+ , Q1 := Ga,A,α , B := Ga,A,l,α ,

l being the 1-element of the flag F . Note that Q0∩Q1 = Q1∩Q∗
0 = Q∗

0∩Q0 = B.

So, Tr(Cα) is well defined.

Lemma 6.10. The chamber system Tr(Cα) belongs to diagram AG.PG∗ with order

q − 1, s, q where s = qm + · · · + q2 + q.

Proof. The definition of Q0, Q1 and B makes it clear that the residues of Tr(Gα)

of type {0, 1} are chamber systems of (m + 1)-dimensional affine spaces of or-

der q. Similarly, the {0∗, 1}-residues are chamber systems of (m+1)-dimensional

projective spaces of order q. It remains to prove that the residues of type

{0, 0∗} are generalized digons, namely Q0Q
∗
0 = Q∗

0Q0. In view of the dia-

gram of Cα and the definition of Q0 and Q∗
0, we have Q0 = P0B = BP0

and Q∗ = P ∗
0 B = BP ∗

0 . These equalities and the equality P0P
∗
0 = P ∗

0 P0 of

Lemma 6.4 imply that Q0Q
∗
0 = Q∗

0Q0. �

Lemma 6.11. The chamber system Tr(Gα) is geometric.
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Proof. According to Meixner and Timmesfeld [14], Tr(Cα) is geometric if and

only if all the following hold:

(1) 〈Q∗
0, Q1〉 ∩ Q0 = B , (4) 〈Q0, Q

∗
0〉 ∩ 〈Q0, Q1〉 = Q0 ,

(2) 〈Q0, Q1〉 ∩ Q∗
0 = B , (5) 〈Q∗

0, Q0〉 ∩ 〈Q∗
0, Q1〉 = Q∗

0 ,

(3) 〈Q0, Q
∗
0〉 ∩ Q1 = B , (6) 〈Q1, Q0〉 ∩ 〈Q1, Q

∗
0〉 = Q1 .

Properties (1), (2), (3) and (6) easily follow from the definitions of Q0, Q
∗
0, Q1

and B. Turning to (4) and (5), we recall that 〈Q0, Q
∗〉 = Q0Q

∗
0 = Q0Q

∗ by

Lemma 6.11 and, as remarked in the proof of that lemma, Q0 = P0B = BP0

and Q∗ = P ∗
0 B = BP ∗

0 . So, we can rewrite (4) and (5) as follows:

(4’) P ∗
0 ∩ 〈P0, Q1〉 ⊆ P0B, (5’) P0 ∩ 〈P ∗

0 , Q1〉 ⊆ P ∗
0 B.

However it is clear that P ∗
0 ∩ 〈P0, Q1〉 = B and P0 ∩ 〈P ∗

0 , Q1〉 = B. Properties

(4) and (5) are proved. �

Lemma 6.12. The chamber system Cα is geometric and, denoted by Gα its under-

lying geometry, either Gα
∼= Far(Dm+2(q)) or m = 2 and Gα is isomorphic to the

complement of a secant hyperplane of D4(q).

Proof. Let T be the underlying geometry of Tr(Cα) (Lemma 6.11). Then T has

the same diagram and orders as Tr(Cα). By the Inductive Hypothesis (I2) of

section 6.1, T = Tr{0,1,0∗}(Gα) where Gα is either Far(Dm+2(q)) or the com-

plement of a secant hyperplane of D4(q). The chamber system C(Gα) of Gα is

associated to the the same parabolic system as Cα. Hence Cα
∼= C(Gα). �

Lemma 6.13. The number of 0-vertices of Cα is either q(m+2)(m+1)/2 or q3(q3+1),

with m = 2 in the latter case.

Proof. The 0-vertices of Cα are the 0-elements of its underlying geometry Gα

and, by Lemma 6.12, the latter is either Far(Dm+2(q)) or the complement of a

secant hyperplane of D4(q). The 0-elements of Far(Dm+2(q)) are the vertices of

the graph Alt(m + 2, q), which has q(m+2)(m+1)/2 vertices. The complement of a

secant hyperplane of D4(q) has q3(q3 + 1) points. �

The following finishes the proof of Proposition 6.2.

Corollary 6.14. Cases (2) and (3) of Lemma 6.8 are impossible.

Proof. The 0-vertices of Cα are the right cosets of 〈P ∗
0 , P1, . . . , Pm〉 in the group

〈P0, P
∗
0 , P1, . . . , Pm〉 namely, by Lemmas 6.3 and 6.5, the right cosets of Ga,α+

in GS . Similarly, the 0∗-vertices are the right cosets of GA,α− in GS . So, by



Large maximal cliques of the alternating forms graph 113

Lemma 6.13, either |GS : Ga,α+ | = q(m+2)(m+1)/2 or m = 2 and |GS : Ga,α+ | =

q3(q3 + 1). This immediately rules out case (2), since GS = G in that case, and

|G : Ga,α+ | ≥
qn

∏m+1
i=0 (qn+1−i − 1)

∏m+1
i=0 (qm+2−i − 1)

.

In case (3), |GA,S : GA,α− | = qn−m−1 and GA,α− is the stabilizer in GS of a

0∗-element of the geometry Gα associated to Cα. Also, Ga,S = Ga,α+ . Therefore

|σ(S)| = |GS : Ga,α+ |, by Lemma 6.7. Suppose first that Gα = Far(Dm+2(q)).

Then,

|σ(S)| = q(m+2)(m+1)/2 . (i)

We recall that Far(Dm+2(q)) is formed by the elements of the building D :=

Dm+2(q) that, compatibly with their type, have maximal distance from a given

element S0 of type 0 (if m is even) or 0∗ (when m is odd). The automorphism

group of Far(Dm+2(q)) is the stabilizer of S0 in PΓO
+
2m+4(q). It contains a flag-

transitive subgroup Ω with the following properties:

(a) The group Ω is the semidirect product V : L of the additive group V of

V (m + 2, q) ∧ V (m + 2, q) with the group L induced by the irreducible

natural action of SL(m + 2, q) on V (m + 2, q) ∧ V (m + 2, q).

(b) |Aut(Far(Dm+2(q))) : Ω| divides (q − 1) · |Aut(GF(q)|.

(c) If either m > 2 or q > 2, then Ω is contained in every flag-transitive

subgroup of Aut(Far(Dm+2(q))).

(Property (c) follows from the theorem of Higman [8] applied to residues of

0-elements.) According to (c), and since q > 2 by assumption,

GS ≥ Ω . (ii)

We now turn to the polar space P associated to D. The 0- and 0∗-elements of D
are the maximal singular subspaces of P and the 0-elements of Far(Dm+2(q))

correspond to the maximal singular subspaces of P that meet S0 trivially. The

0∗-elements of Far(Dm+2(q)) are the maximal singular subspaces of P that meet

S0 in precisely one point. If X is one of them, computing the stabilizer ΩX of

X in Ω is a routine exercise, which we leave for the reader. The following can

be obtained as a byproduct of that computation:

(d) V ΩX is the unique proper subgroup of Ω that properly contains ΩX and

we have |Ω : V ΩX | = qm+1 + · · · + q + 1 and |V ΩX : ΩX | = q(m+1)m/2.

The group GA,α− is indeed the stabilizer in GS ≤ Aut(Far(Dm+2(q))) of a 0∗-el-

ement of Far(Dm+2(q)). According to (ii), GA,α− ≥ ΩA. However, GS contains
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GA,S and |GA,S : GA,α− | = qn−m−1 ≥ q, as m < n − 1. In view of (d) and (b),

we get n − m − 1 = (m + 1)m/2. So, σ(X) = σ(S) for every X ∈ σ∗(S) and

we get a contradiction as in the proof of Corollary 5.18. (Note that Tr{0,1,0∗}(G)

is a geometry as considered in section 5, whence it satisfies the Intersection

Property.)

Finally, suppose m = 2 with Gα the complement of a secant hyperplane

of D4(q). Then Gα has q3(q3 + 1) points, each point is incident to q3 + q2 + q + 1

dual points and every dual point of Gα is incident to q3 points. Therefore,

Gα has (q3 + 1)(q3 + q2 + q + 1) dual points. Accordingly, |GA : GA,α− | =

(q3 + 1)(q3 + q2 + q + 1). On the other hand, |GA,S : GA,α− | = qn−m−1 = qn−3.

Hence qn−3 divides (q3+1)(q3+q2+q+1), that is n = 3. However, 2 = m < n−1

by assumption. We have reached a final contradiction. �

7 End of the proof of Theorem 1.4

When q > 2, we obtain Theorem 1.3 by applying Proposition 5.6 first, then

Proposition 6.2 as many times as we need and, finally, Proposition 4.1 (or 2.1,

if n = 3). When q = 2, the statement of Theorem 1.3 is the main result of

Huybrechts and Pasini [11].
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