
Innovations in Incidence Geometry
Volume 8 (2008), Pages 147–169

ISSN 1781-6475

ACADEMIA

PRESS

Dimensional dual hyperovals associated with

quadratic APN functions

Satoshi Yoshiara

Abstract

From each quadratic APN function f on GF(2d+1) with f(0) = 0, we

construct a d-dimensional dual hyperoval Sd+1[f ] over GF(2). This provides

many new examples of d-dual hyperovals over GF(2) with ambient spaces

of dimension 2d + 2. The automorphism group of Sd+1[f ] is a semidirect

product of a normal subgroup acting regularly on the members of Sd+1[f ]

with the stabilizer of a member. Some methods are provided to analyse the

structure of the stabilizer. Based on them, Aut(S10[f ]) for an APN function

f on GF(210) found in [3] is determined.
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1 Introduction

Let U be a vector space over a finite field GF(r) with r elements. A family A of

(d + 1)-dimensional subspaces of U is called a d-dimensional dual arc (abbrevi-

ated to d-dual arc) over GF(r) if it satisfies the following conditions.

(1) dim(X ∩ Y ) = 1 for every distinct members X and Y of A.

(2) X ∩ Y ∩ Z = {0} for mutually distinct members X,Y,Z of A.

The subspace V of U spanned by the members of A is called the ambient space

of A. An automorphism of the projective space PG(V ) associated with V is

called an automorphism of A, if it sends each member of A to a member of A.

The group of all automorphisms of A is denoted Aut(A).

It is easy to see that a d-dual arc has at most ((rd+1 − 1)/(r − 1)) + 1 mem-

bers. If the upper bound is attained, A is called a d-dimensional dual hyperoval
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(abbreviated to d-dual hyperoval). If d = 1, the notion of 1-dual arcs coincides

with the classical notion of dual arcs in the projective plane over GF(r).

Let q = 2d+1, a power of 2 with d ≥ 1. Recall that a map f from GF(q) to

itself is called APN (almost perfect nonlinear) if the following property holds:

∣

∣{f(x + a) + f(x) | x ∈ GF(2d+1)}
∣

∣ = q/2 for every a ∈ GF(q)× .

It is called quadratic if

f(x + y + z) + f(x + y) + f(y + z) + f(z + x) + f(x) + f(y) + f(z) = f(0)

for all x, y, z ∈ GF(q) .

In this paper, every quadratic map f is assumed to satisfy f(0) = 0.

APN maps (functions) are important for applications in cryptography so that

many researches have been done on this subject. As for quadratic APN maps,

until recently the only known examples are functions equivalent to the power

map f(x) = x2m+1 with m coprime to d + 1. Two new examples were found

in 2005 [3] and then an infinite family of quadratic APN maps which are not

equivalent to power mappings were constructed in [1].

In this paper, we construct a d-dimensional dual hyperoval over GF(2) from

each quadratic APN map f on GF(2d+1), which is denoted Sd+1[f ]. It is observed

that Aut(Sd+1[f ]) has the group T of translations, so that it is transitive on

the members of Sd+1[f ] for every quadratic APN map f (Theorem 2.1). In

section 3, it is shown that Sd+1[f ] is covered by the Huybrechts dual hyperoval,

but Sd+1[f ] is not isomorphic to any known d-dual hyperoval over GF(2) with

ambient space of dimension 2d + 2, except possibly Sd+1
σ,σ [8].

Section 4 provides some results on the structure of Aut(Sd+1[f ]) for an ar-

bitrary quadratic APN map f . We can show that Aut(Sd+1[f ]) is a semidirect

product of T with the stabilizer A of a member X(0) (Corollary 4.7). Sev-

eral methods to analize the structure of A are provided. Based on them, in

section 5 we determine Aut(S10[f ]) for the APN function f(x) = x3 + ux36

(u ∈ GF(210) \ GF(25)) found in [3] (Proposition 5.1). This explicitly shows

that the dual hyperoval S10[f ] is not isomorphic to any 10-dual hyperoval in

PG(19, 2) known before. In principle, many arguments there can be applied to

examine Aut(Sd+1[f ]) for every APN function f , if the explicit shape of f is

given.
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2 Construction

Let d be a positive integer and set q = 2d+1. We regard GF(q) as a vector space

of dimension d + 1 over GF(2). Then

V := GF(q) ⊕ GF(q) = {(x, y) | x, y ∈ GF(q)} (1)

is a vector space of dimension 2(d + 1) over GF(2).

Take a quadratic APN map f on GF(q). Then the map bf from GF(q) × GF(q)

to GF(q) given by

bf (x, y) := f(x + y) + f(x) + f(y) (2)

for x, y ∈ GF(q) is a symmetric GF(2)-bilinear map. In particular, we have

bf (x, 0) = bf (0, x) = 0 for all x ∈ GF(q). Thus f(0) = f(0 + 0) + f(0) + f(0) =

bf (0, 0) = 0. Furthermore, for all x ∈ GF(q) we have

bf (x, x) = f(0) + f(x) + f(x) = 0 . (3)

For each each t ∈ GF(q)×, we set

Ht := {bf (x, t) | x ∈ GF(q)} . (4)

As bf is bilinear, Ht is a subspace of GF(q), regarded as a vector space over

GF(2). It follows from equation (3) that the map βt sending x of GF(q) to

bf (x, t) ∈ Ht is a GF(2)-linear surjection satisfying βt(x + t) = bf (x + t, t) =

bf (x, t)+bf (t, t) = bf (x, t) = βt(x) for all x ∈ GF(q). From the defining property

of an APN function, the subset {f(x+ t)+f(x) | x ∈ GF(q)} has cardinality q/2,

whence the cardinality of Ht = {f(x + t) + f(x) + f(t) | x ∈ GF(q)} is q/2 = 2d

as well. Thus Ht is a hyperplane of GF(q) for each t ∈ GF(q)×. This also implies

that the kernel of the GF(2)-linear map βt coincides with {0, t}. That is, for

every t ∈ GF(q)× we have

bf (x, t) = 0 ⇐⇒ x = 0 or x = t . (5)

For each t ∈ GF(q), we now define a subspace X(t) of V as follows.

X(t) := {(x, bf (x, t)) | x ∈ GF(q)} . (6)

As bf is bilinear, X(t) is a subspace of V . Since (x, bf (t, x)) 6= (y, bf (t, y)) for

distinct x, y ∈ GF(q), the subspace X(t) is of dimension d + 1 over GF(2). We

denote the collection of these subspaces by Sd+1[f ]:

Sd+1[f ] := {X(t) | t ∈ GF(q)} . (7)

Notice that X(0) = {(x, 0) | x ∈ GF(q)}.
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Theorem 2.1. Let f be a quadratic APN function on GF(q), q = 2d+1. With the

notation above, the following statements hold.

(1) The family Sd+1[f ] is a d-dimensional dual hyperoval over GF(2).

(2) The ambient space of Sd+1[f ] is either V or the hyperplane GF(q)⊕H1 of V .

The latter case holds if and only if Ht = H1 for all t ∈ GF(q)×.

(3) For each a ∈ GF(q), define a map ta on V by

(x, y)ta := (x, y + bf (x, a)) (8)

for x, y ∈ GF(q). Then ta ∈ Aut(Sd+1[f ]) and X(t)ta = X(t + a) for

t ∈ GF(q). The group T := {ta | a ∈ GF(q)} is an elementary abelian

2-group of order 2d+1 which acts regularly on the members of Sd+1[f ] .

Proof. (1) As we already saw above, X(t) is a (d+1)-dimensional subspace of V

for all t ∈ GF(q). Take any two distinct s, t ∈ GF(q). Then (x, y) belongs

to X(s) ∩ X(t) if and only if y = bf (x, s) = bf (x, t). As bf is bilinear,

this is equivalent to the equation bf (x, s + t) = 0. Thus it follows from

equation (5) that we have either x = 0 and y = bf (s, 0) = 0 or x = s + t

and y = bf (s, s + t) = bf (t, s + t) = bf (s, t). Hence we have

X(s) ∩ X(t) = {(0, 0), (s + t, bf (s, t))} (9)

for each s 6= t ∈ GF(q). This shows that X(s) ∩ X(t) ∩ X(u) = {(0, 0)}

for any mutually distinct elements s, t, u of GF(q). Thus Sd+1[f ] is a d-dual

arc over GF(2). As Sd+1[f ] consists of q = 2d+1 = ((2d+1 − 1)/(2 − 1)) + 1

members, it is a d-dual hyperoval over GF(2).

(2) For t ∈ GF(q)×, the subspace 〈X(0),X(t)〉 of V spanned by X(0) and X(t)

is

{(y, bf (t, x)) | x, y ∈ GF(q)} = {(a, b) | a ∈ GF(q), b ∈ Ht} , (10)

which is isomorphic to the hyperplane GF(q) ⊕ Ht of V . Thus if there are

s, t ∈ GF(q)× with Hs 6= Ht, then the ambient space of Sd+1[f ] contains

both 〈X(0),X(s)〉 = GF(q) ⊕ Hs and 〈X(0),X(t)〉 = GF(q) ⊕ Hs, whence

it coincides with V = GF(q) ⊕ GF(q). Otherwise, we have Ht = H1 for all

t ∈ GF(q)×. In this case, the ambient space is the hyperplane GF(q) ⊕ H1

of V .

(3) The bilinearity of bf shows that

(x1 + x2, y1 + y2)
ta = (x1 + x2, y1 + y2 + bf (a, x1 + x2))

= (x1 + x2, y1 + y2 + bf (a, x1) + bf (a, x2))

= (x1, y1 + bf (a, x1)) + (x2, y2 + bf (a, x2))

= (x1, y1)
ta + (x2, y2)

ta



Dimensional dual hyperovals from quadratic APN Functions 151

for all xi, yi ∈ GF(q) (i = 1, 2). Thus ta is GF(2)-linear. From definition (8),

we have

(x, y)tatb = (x, y + bf (a, x))tb = (x, y + bf (a, x) + bf (b, x))

= (x, y + bf (a + b, x)) = (x, y)ta+b

for all x, y ∈ GF(q) and a, b ∈ GF(q). Thus

tatb = ta+b (11)

for a, b ∈ GF(q). In particular, t−1
a = ta is a bijection, as t0 is the identity

map on V . Equation (11) also shows that the group T is an elementary

abelian group of order q = 2d+1 via the isomorphism sending a ∈ GF(q) to

ta ∈ T .

For each typical vector (x, bf (t, x)) of X(t), we have

(x, bf (t, x))ta = (x, bf (t, x) + bf (a, x)) = (x, bf (t + a, x)) (12)

by the bilinearity of bf . This shows that

X(t)ta = X(t + a) (13)

for all t, a ∈ GF(q). Thus ta sends each member X(t) of Sd+1[f ] to a mem-

ber X(t + a) of Sd+1[f ]. Hence ta ∈ Aut(Sd+1[f ]) for each a ∈ GF(q). The

regularity of the group T on Sd+1[f ] follows from equation (13). �

Proposition 2.2. If d ≥ 2, then the ambient space of Sd+1[f ] coincides with V .

Proof. We denote by tr the trace function for the field extension GF(q)/GF(2):

tr(y) =
∑d

i=0 y2i

(y ∈ GF(q)). For each a ∈ GF(q), we denote by Ta the

GF(2)-linear map from GF(q) to GF(2) sending x ∈ GF(q) to tr(ax). Recall

that every GF(2)-linear map from GF(q) to GF(2) is of the form Tb for some

b ∈ GF(q), and that every hyperplane of GF(q) is the kernel of Ta for some

a ∈ GF(q)×.

Assume that the ambient space of Sd+1[f ] is not V . We shall first show that

there are elements a ∈ GF(q)× and b ∈ GF(q) such that the function g defined

by g(x) = af(x) + bx (x ∈ GF(q)) satisfies tr(g(x)) = 0 for all x ∈ GF(q).

From Theorem 2.1(2), we have H1 = Ht for all t ∈ GF(q). As H1 is a hy-

perplane of GF(q), the second remark in the first paragraph of the proof implies

that there exists a ∈ GF(q)× such that Ht is the kernel of Ta for all t ∈ GF(q).

Thus tr
(

a(bf (x, t))
)

= tr
(

af(x + t) + af(x) + af(t)
)

= 0 for every x, t ∈ GF(q).

This implies that the map h sending x ∈ GF(q) to tr(af(x)) is a GF(2)-linear

map onto GF(2). Hence there exists some b ∈ GF(q) such that h = Tb from the
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first remark in the above paragraph. Thus 0 = h(x)+Tb(x) = tr(af(x)+ bx) for

all x ∈ GF(q).

Hence the above claim is verified. It is straightforward to verify that the

function g in the claim is a (quadratic) APN function as well (this is a special

case of [2, Proposition 2]).

It now suffices to show that there is no APN function g on GF(2d+1) such that

tr(g(x)) = 0 for al x ∈ GF(2d+1), if d ≥ 2. To this end, we adopt the coding

theoretic approach to APN functions introduced in [2, section 3]. I thank the

referee of the previous version of the paper for his/her suggestion to use [2,

Corollary 1(i)].

We review the definition of code Cg associated with the APN function g on

GF(q), q = 2d+1 (see [2, Theorem 5]). Let n = 2d+1−1, and let α be a generator

of the cyclic group GF(q)×. Fix a basis (b0, . . . , bd) of GF(q), regarded as a vector

space over GF(2). We associate each element x =
∑d

i=0 xibi of GF(q) with the

column vector ρ(x) := t(x0, . . . , xd) over GF(2). Let Hg be the 2 by n matrix

over GF(q) defined by

Hg :=

(

1 α α2 · · · αn−1

g(1) g(α) g(α2) · · · g(αn−1)

)

,

and let ρ(Hg) be the 2(d + 1) by n matrix over GF(2) obtained from Hg by re-

placing each entry x of Hg by ρ(x). Now Cg is defined to be the GF(2)-subspace

of GF(2)n consisting of vectors c = (c0, . . . , cn−1) (cj ∈ GF(2), j = 0, . . . , n) sat-

isfying ρ(Hg)
t
c = 0. (Note that Cg does not depend on the choice of a basis for

GF(q), because the condition ρ(Hg)
t
c = 0 holds if and only if

∑n−1
j=0 cjα

j = 0

and
∑n−1

j=0 cjg(α)j = 0.) In particular, dimGF(2)(Cg) = n − r, where r denotes

the rank of the matrix ρ(Hg) over GF(2).

From [2, Corollary 1(i)], the dimension over GF(2) of Cg is n − 2(d + 1),

if d ≥ 2. (Notice that the restriction on d is not explicitly stated there, but

[2, Theorem 5] states that Cg has the minimum weight 5. As the minimum

weight 5 should not exceed the length n = 2d+1 − 1, the result holds only when

d ≥ 2.) Thus the rank of ρ(Hg) is 2(d + 1), the number of rows. In particular,

the d + 1 row vectors of the submatrix (ρ(g(1)), ρ(g(α)), . . . , ρ(αn−1)) of ρ(Hg)

are linearly independent.

On the other hand, take a normal basis (b0, . . . , bd) of GF(q) over GF(2) and

set g(αj) =
∑d

i=0 xijbi, or equivalently ρ(g(αj)) = t(x0j , x1j , . . . , xdj) (with

j = 0, . . . , n − 1). As tr(bi) = 1 for all i = 0, . . . , d, we have

0 = tr(g(αj)) =

d
∑

i=0

xij tr(bi) =

d
∑

i=0

xij
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for all j = 0, . . . , n − 1. This implies that the sum of all rows of the matrix

(ρ(g(1)), . . . , ρ(g(αn−1)) coincides with the zero vector, which contradicts the

conclusion in the above paragraph. Hence there is no APN function g over

GF(d + 1) with tr(g(x)) = 0 for all x ∈ GF(q), if d ≥ 2. �

Remark 2.3. If d = 1, S2[f ] is a dual hyperoval in the classical sense, so that its

ambient space has dimension 3, whence it is a proper subspace of V .

In fact, every quadratic APN fucntion on GF(22) is of the form f(x) = a1x +

a2x
2 + a3x

3 (x ∈ GF(4)) with a1, a2 ∈ GF(4) and a3 ∈ GF(4)×. Then Ht =

{bf (x, t) | x ∈ GF(4)} = {0, a3} = H1 for every t ∈ GF(4)×. For a := a−1
3 and

b := a−1
3 a1+a3a

2
2, the map g on GF(4) defined by g(x) := af(x)+bx (x ∈ GF(4))

satisfies that tr(g(x)) = 0 for all x ∈ GF(4).

3 Relations with known examples

The d-dual hyperoval Sd+1[f ] constructed for a quadratic APN function f on

GF(2d+1) is not new, in the sense that it is covered by the known d-dual hy-

peroval over GF(2) with ambient space of dimension (d + 1)(d + 2)/2. See [9,

subsection 2.5] for the notion of covers. For the Huybrechts dual hyperoval, see

[9, subsection 5.3] or [5, subsection 6.2].

Proposition 3.1. For any quadratic APN function f , the d-dual hyperoval Sd+1[f ]

constructed in Theorem 2.1 is covered by the Huybrechts dual hyperoval.

Proof. The proof is exactly the same as one given for [5, Proposition 6.8]. The

letters n and e there are d + 2 and d + 1, respectively, with our notation. There

we showed that a map (denoted f) gives a cover of dual hyperoval Sd+1
m,m by

the Huybrechts dual hyperoval (denoted S there, but we use the letter H in this

paper). To define a covering map from H onto Sd+1[g] for a quadratic APN map

g on GF(2d+1), just replace the definition of this map f (in the latter part of

equation (1)) by

f((0, ei ∧ ej)) := (0, bg(fi, fj))

for 1 ≤ i < j ≤ d + 1. Then, verbatim repetition of the arguments there

shows that this modified map gives a cover of Sd+1[g] by the Huybrechts dual

hyperoval H. �

However, Sd+1[f ] is new, in general, among d-dual hyperovals over GF(2)

with ambient space of dimension 2d + 2. Notice that the known examples of

such dual hyperovals are the Yoshiara dual hyperovals Sd+1
σ,φ (see [9, subsec-

tion 5.5]) and the Taniguchi dual hyperovals Tσ over GF(2) with ambient space
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of dimension 2d + 2 (see [9, subsection 5.6] and [6]), where σ are generators

of the Galois group of the field extension GF(2d+1)/GF(2) and φ are bijections

on GF(2d+1) induced by o-polynomials.

Proposition 3.2. Let σ be a generator of the Galois group of GF(2d+1)/GF(2),

and let φ be a bijection on GF(2d+1) induced by an o-polynomial.

(1) The dual hyperoval Tσ over GF(2) with ambient space of dimension 2d+2 is

not isomorphic to Sd+1[f ] for every quadratic APN function f on GF(2d+1).

(2) The dual hyperoval Sd+1
σ,φ is isomorphic to Sd+1[f ] for a quadratic APN func-

tion f on GF(2d+1) if and only if σ(x) = φ(x) = x2m

(x ∈ GF(2d+1)) for an

integer m with 1 ≤ m ≤ d coprime with d + 1. In this case, Sd+1
σ,φ coincides

with Sd+1[f ] for the Gold function f(x) = x2m+1 (x ∈ GF(q)).

Proof. Recall that for any d-dual hyperoval S over GF(2) we can construct an

incidence geometry Af(S), the affine expansion of S, which is a semibiplane.

Then we can define an integer w(S), called the wrapping number of S, to be

the wrapping number of the c.c∗-geometry associated with Af(S). See [5, sub-

section 1.1]. Notice that if S is covered by a d-dual hyperoval S ′ over GF(2),

then w(S) = w(S ′) (see e.g. [5, Proposition 1.2]).

The wrapping numbers of Sd+1
σ,τ for generators σ and τ of the Galois group of

GF(2d+1)/GF(2) are calculated in [5]. From Proposition 1.3 and Theorem 1.11

of [5], we have w(Sd+1
σ,τ ) = 1 if and only if σ = τ . As σ(x) = x2m

(x ∈ GF(2d+1))

for some m coprime with d + 1, we verify that Sd+1
σ,σ coincides with Sd+1[g]

for the Gold function g(x) = x2m+1, which is a classical example of quadratic

APN functions. Since the latter dual hyperoval is covered by the Huybrechts

dual hyperoval H by Proposition 3.1, we have w(H) = w(Sd+1[g]) = 1. Then,

applying Proposition 3.1 again, we have 1 = w(H) = w(Sd+1[f ]) for every

quadratic APN function f .

Now we will establish claim (1). By [10, Proposition 1], Tσ is coverd by the

Veronesean dual hyperoval. Further, the wapping number of the latter, which

is equal to w(Tσ), is calculated to be 2 [10, Corollary 4]. Hence Tσ is never

isomorphic to Sd+1[f ] for every quadratic APN map f on GF(2d+1). (Claim

(1) is also established by comparing the automorphism groups, because we can

show that Aut(Tσ) fixes a special member, while Aut(Sd+1[f ]) is transitive by

Theorem 2.1(3).)

Next we establish claim (2). Assume that Sd+1
σ,φ is isomorphic to Sd+1[f ]

for a quadratic APN function f on GF(2d+1). If φ is not a generator of the

Galois group of GF(2d+1)/GF(2), then it follows from [7] that Aut(Sd+1
σ,φ ) fixes a

special member. As Sd+1[f ] admits the group of translations (Theorem 2.1(3)),

in this case Sd+1
σ,φ is never isomorphic to Sd+1[f ]. Thus we may assume that
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φ is also a generator τ of Gal(GF(2d+1)/GF(2)). However, as w(Sd+1[f ]) = 1,

the d-dual hyperoval Sd+1
σ,τ isomorphic to Sd+1[f ] has the wrapping number 1

as well. As we remarked above, this is possible only when σ = τ . Conversely,

Sd+1
σ,σ = Sd+1[g] for the Gold function g(x) = x2m+1, where σ(x) = x2m

. �

We conclude this section with two open problems.

The first one is the isomorphism problem among d-dual hyperovals Sd+1[f ]:

given quadratic APN functions f and g on GF(2d+1), find a necessary and suffi-

cient condition for Sd+1[f ] to be isomorphic to Sd+1[g], in terms of f and g.

Here is an easy observation. Recall that two APN functions f and g on GF(q),

q = 2d+1, are called affinely equivalent if there are GF(2)-linear bijections σ and

τ on GF(q) and elements c and c′ of GF(q) such that g(x) = f(xσ + c)τ + c′ for

all x ∈ GF(q). Notice that if f and g are quadratic, then c′ = f(c)τ , because we

assume that f(0) = g(0) = 0.

Lemma 3.3. Let f and g be quadratic APN functions on GF(q), q = 2d+1, which

are affinely equivalent to each other. Then Sd+1[f ] is isomorphic to Sd+1[g].

Proof. Choose GF(2)-linear bijections σ and τ on GF(q) and an element c of

GF(q) such that g(x) = f(xσ + c)τ + f(c)τ for all x ∈ GF(q). Then, for each

t, x ∈ GF(q), we have

bg(t, x) = g(t + x) + g(t) + g(x)

= f(xσ + tσ + c)τ + f(tσ + c)τ + f(xσ + c)τ + f(c)τ

= (f(xσ + tσ) + f(tσ) + f(xσ))τ = bf (tσ, xσ)τ ,

because f is quadratic. Define a GF(2)-bijection ρ on V = GF(q) ⊕ GF(q) by

ρ((x, y)) := (xσ−1

, yτ ) (x, y ∈ GF(q)). Then a vector (xσ, bf (tσ, xσ)) (x, t ∈

GF(q)) of a member X(tσ) of Sd+1[f ] is sent by ρ to (x, bf (tσ, xσ)τ ), which is

equal to (x, bg(t, x)) by the above equation. Hence ρ((xσ, bf (tσ, xσ))) lies in

a member X(t) of Sd+1[g]. Thus ρ induces an isomorphism of Sd+1[f ] with

Sd+1[g] sending each member X(tσ) of Sd+1[f ] to a member X(t) of Sd+1[g].

�

The second open problem is: given a quadratic APN function f on GF(q),

q = 2d+1, if Sd+1[f ] is isomorphic to Sd+1
σ,σ , where σ is a Galois automorphism

σ(x) = x2m

(x ∈ GF(q)) for some m coprime with d + 1, can we conclude

that f is affinely equivalent to the Gold function g defined by g(x) = x2m+1

(x ∈ GF(2d+1))?

We conjecture that the answer is yes, because Aut(Sd+1[f ]) are observed to

be transitive but not doubly transitive on Sd+1[f ] for many explicit quadratic
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APN functions f other than those affinely equivalent to the Gold function. (See

also the last paragraph in section 5.)

4 Some results on automorphisms

Let Sd+1[f ] be the d-dual hyperoval over GF(2) constructed in section 2. We

use the same notation as in section 2. In particular, we write q = 2d+1 and

V = GF(q)⊕GF(q). We refer to ta (a ∈ GF(q)) as translations of Sd+1[f ]. As the

group T of translations acts regularly on the members of Sd+1[f ], we have

Aut(Sd+1[f ]) = TA and T ∩ A = 1 , (14)

where A denotes the stabilizer of member X(0) = {(x, 0) | x ∈ GF(q)} in

Aut(Sd+1[f ]). Notice that, at the present stage, we do not know whether T is

normal in Aut(Sd+1[f ]).

In this section, we denote by U the ambient space of Sd+1[f ]. We also use the

letter H to denote the subspace of GF(q) spanned by bf (t, x) for all t, x ∈ GF(q).

We also set

Y := {(0, y) | y ∈ H} .

Then it follows from Theorem 2.1(2) that

U = GF(q) ⊕ H = {(x, y) | x ∈ GF(q), y ∈ H} = X(0) ⊕ Y .

Notice that one of the following holds:

• H = GF(q), U = V and dim(U) = 2d + 2 ; or

• H = Ht = {bf (t, x) | x ∈ GF(q)} for every t ∈ GF(q)×, U = GF(q) ⊕ H1

and dim(U) = 2d + 1 .

We shall analyze the structure of the stabilizer A of X(0). Take any ele-

ment g of Aut(Sd+1[f ]). As it is a GF(2)-linear bijection on U , there are four

GF(2)-linear maps α(g) : GF(q) → GF(q), β(g) : H → H, γ(g) : H → GF(q) and

δ(g) : GF(q) → H such that

(x, y)g =
(

xα(g) + yγ(g), xδ(g) + yβ(g)
)

for all x, y ∈ GF(q). If g stabilizes X(0), then (x, 0)g =
(

xα(g), xδ(g)
)

∈ X(0),

whence xδ(g) = 0 for all x ∈ GF(q). Thus if g ∈ A, we have

(x, y)g =
(

xα(g) + yγ(g), yβ(g)
)

for all x, y ∈ GF(q). Notice that α(g) and β(g) are bijections (with inverse maps

α(g−1) and β(g−1)) on GF(q) and H respectively. In particular, we have

(x, 0)g = (xα(g), 0)
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for all x ∈ GF(q).

This determines the action of A on Sd+1[f ] \ {X(0)} as follows. From equa-

tion (9), we have X(0) ∩ X(t) = 〈(t, 0)〉 for each t ∈ GF(q)×. As Sd+1[f ] is

a d-dual hyperoval, this implies that the unique member of Sd+1[f ] \ {X(0)}

intersecting X(0) at 〈(t, 0)〉 is X(t). Thus, with the notation above, we have

X(t)g = X
(

tα(g)
)

. (15)

The map α sending an element g of A to α(g) is a homomorphism from A

into GL(X(0)) ∼= GLd+1(2). Identifying X(0) with GF(q) via the map sending

(x, 0) to x, α gives a representation of A on GF(q).

We claim that A acts faithfully on GF(q) via α. In particular, A is isomorphic

to a subgroup α(A) of GL(GF(q)) ∼= GLd+1(2). If an element g ∈ A satisfies

α(g) = idGF(q), g stabilizes all members of Sd+1[f ] by equation (15) and hence it

fixes all 1-subspaces of each member X(t), as they are intersections X(t)∩X(s)

for s ∈ GF(q) \ {t}. As Sd+1[f ] is defined over GF(2), g fixes all vectors of each

X(t), and hence fixes each vector of the ambient space U .

Proposition 4.1. The stabilizer A acts on Y .

Proof. Fix any element g ∈ A, and use the notation in the paragraphs previous

to the proof. We shall show that γ(g) is the zero map on H. We abbreviate α(g),

β(g) and γ(g) by α, β and γ respectively.

Take a typical vector (x, bf (x, t)) of a member X(t) of Sd+1[f ]. As X(t)g =

X(tα) by equation (15), the image
(

x, bf (x, t)
)g

=
(

xα +bf (x, t)γ , bf (x, t)β
)

lies

in X(tα). Hence we have

bf (x, t)β = bf

(

xα + bf (x, t)γ , tα
)

(16)

for every x, t ∈ GF(q). Take any two elements s and t in GF(q). Applying

equation (16) to x and s + t, we have

bf (x, s + t)β = bf

(

xα + bf (x, s + t)γ , (s + t)α
)

. (17)

By the bilinearity of bf and the linearity of α and γ, the right hand side of

equation (17) is rewritten as

bf

(

xα + bf (x, s)γ + bf (x, t)γ , sα + tα
)

= bf

(

xα + bf (x, s)γ , sα
)

+ bf

(

xα + bf (x, t)γ , tα
)

+ bf

(

bf (x, s)γ , tα
)

+ bf

(

bf (x, t)γ , sα
)

.

On the other hand, the left hand side of equality (17) is bf (x, s)β + bf (x, t)β ,

which is equal to bf

(

xα + bf (x, s)γ , sα
)

+ bf

(

xα + bf (x, t)γ , tα
)

by equation (16)
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applied to (x, s) and (x, t). Hence we have the following equality for all x, s, t ∈

GF(q):

bf

(

bf (x, s)γ , tα
)

= bf

(

bf (x, t)γ , sα
)

.

In particular, for x = s, we have

0 = bf (0, tα) = bf

(

bf (s, s)γ , tα
)

= bf

(

bf (s, t)γ , sα
)

.

By equation (5), this occurs only when bf (s, t)γ = 0 or bf (s, t)γ = sα. In the

latter case, from equation (16) applied to x = s and t, we have

bf (s, t)β = bf

(

sα + bf (s, t)γ , tα
)

= bf (0, tα) = 0 .

As β is a bijection, this implies that bf (s, t) = 0 for all s, t ∈ GF(q), which is

impossible. Thus we have bf (s, t)γ = 0 for all s, t ∈ GF(q).

As H is generated by bf (s, t) (s, t ∈ GF(q)), the above conclusion implies that

γ = γ(g) is the zero map on H. Then (x, y)g =
(

xα(g), yβ(g)
)

for any x ∈ GF(q)

and y ∈ H, whence an arbitrary element g of A acts on Y = {(0, y) | y ∈ H}. �

Proposition 4.1 shows that the map β sending g ∈ A to β(g) is a homo-

morphism from A to GL(Y ) (∼= GLd+1(2) or GLd(2), according as U = V or

U = GF(q) ⊕ H1; see Theorem 2.1(2)). Identifying Y with H via the map

(0, y) 7→ y, via β we obtain a representation of A on H (which is GF(q) or Ht for

all t ∈ GF(q)× according as U = V or GF(q) ⊕ H1). While α is injective, β may

not be injective, as we shall see below.

In the remainder of this section, the letters α and β denote these representa-

tions of A, namely, for g ∈ A, α(g) and β(g) are the GF(2)-linear bijections on

GF(q) given by

(x, y)g =
(

xα(g), yβ(g)
)

for (x, y) ∈ U .

In view of equation (8), we find that the group T of translations fixes each

vector of Y . In particular, T acts on Y . By Proposition 4.1, the stabilizer A

acts on Y as well. As Aut(Sd+1[f ]) = TA by equation (14), the automorphism

group Aut(Sd+1[f ]) acts on Y . If we denote the kernel of this action by KY , we

have KY = T (A ∩ KY ), as T ≤ KY . Hence we obtained the following.

Corollary 4.2. The automorphism group Aut(Sd+1[f ]) acts on Y . The kernel KY

of the action contains T , whence KY = T (A ∩ KY ).

We next determine the kernel Z := A ∩ KY of the action of A on Y . To this

end, we make some observations.

Let g be an element of A. Then it acts on both X(0) and Y by Proposition 4.1.



Dimensional dual hyperovals from quadratic APN Functions 159

Lemma 4.3. Let g be any element of A. For every x, s ∈ GF(q) we have

bf (x, s)β(g) = bf

(

xα(g), sα(g)
)

. (18)

Proof. A vector (x, bf (x, s)) of X(s) (x ∈ GF(q)) is sent by g to (x, bf (x, s))g =
(

xα(g), (bf (x, s))β(g)
)

. On the other hand, as g ∈ Aut(Sd+1[f ]), the last vector

is contained in X(s)g = X(sα(g)) by equation (15). Thus it coincides with
(

xα(g), bf (xα(g), sα(g))
)

. This gives equation (18). �

Lemma 4.4. The group T acts trivially on the factor space U/Y . In particular, for

any t ∈ T , g ∈ A and (x, y) ∈ U we have

(

(x, y) + Y
)tg

=
(

xα(g), yβ(g)
)

+ Y . (19)

Proof. As T and A act on Y , they act on the factor space U/Y . Let t = ta be any

element of T (a ∈ GF(q)). From (8), each vector (x, y)+Y = (x, 0)+Y of U/Y

is sent by ta to (x, y + bf (x, a)) + Y = (x, 0) + Y . Thus (x, y) + Y is fixed by ta.

Then ((x, y) + Y )tag = ((x, y) + Y )g =
(

xα(g), yβ(g)
)

+ Y for each g ∈ A. �

Proposition 4.5. Assume that d ≥ 2. Let Z = KY ∩ A be the kernel of the action

of A on Y . Then |Z| = 1 or 3. Furthermore, if |Z| = 3, then Z acts fixed point

freely on X(0).

Proof. Choose any 1 6= z ∈ Z and write α = α(z) for simplicity. We have

(x, y)z = (xα, y) for all x ∈ GF(q) and y ∈ H, as β(z) = idH . Then it follows

from equation (18) that for x, t ∈ GF(q) we have

bf (x, t) = bf (x, t)β(z) = bf (xα, tα).

Assume that z fixes distinct nonzero vectors (t, 0) and (s, 0) of X(0). Then

tα = t and sα = s. Choose any x ∈ GF(q). Then the above equation applied

to t and x yields bf (x, t) = bf (xα, t), or equivalently bf (x + xα, t) = 0 by the

bilinearity of bf . From equation (5), we have x + xα = 0 or t. By a similar

argument applied to s and x, we have x + xα = 0 or s. Thus we should have

x = xα, because s and t are distinct nonzero elements of GF(q). As this holds

for every x ∈ GF(q), we conclude that z acts trivially on X(0), and so on U . This

contradicts that z 6= 1. Hence z fixes at most one nonzero vector of X(0).

As (d + 1)/2 = dimX(0)/2 > 1, this shows that z is not of order 2, because

in general an involution w acting on an elementary abelian 2-group W satisfies

W/CW (w) ∼= [W,w] ≤ CW (w), and so dim(CW (w)) ≥ dim(W )/2. As z is any

nontrivial element of Z, we conclude that Z is of odd order.

We next show that z does not fix any nonzero vector of X(0). On the contrary,

suppose (t, 0), t ∈ GF(q)×, is fixed by z. Then it follows from the argument in
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the above paragraph that x + xα = 0 or x + xα = t. Applying this conclusion to

xα, we have xα + xα2

= 0 or xα + xα2

= t. As we have xα = xα2

if and only

if x = xα, we have x + xα = t if and only if xα + xα2

= t. Thus if x + xα = t,

then we have x + xα2

= t + t = 0, namely x is fixed by α2. However, α = α(z)

is a nontrivial automorphism of GL(GF(q)) of odd order, as we remarked in the

above paragraph. Thus 〈α〉 = 〈α2〉 and x is fixed by α as well. This contradiction

shows that x = xα for all x ∈ GF(q). However, this implies that α = idGF(q) and

z = 1, a contradiction. Hence we conclude that every nontrivial element z

of Z does not fix any nonzero vector of X(0). That is, Z acts fixed point freely

on X(0). In particular, every Sylow p-subgroup for each prime divisor p of |Z|

is a cyclic group (e.g. [4, Theorem 18.1(iv)]).

Next we shall show that z is of order at most 3. Take any x ∈ GF(q)×. Then

bf (x, xα) = bf (x, xα)β(z) = bf

(

xα, xα2)

by equation (18). As bf is symmetric and bilinear, we have bf

(

xα, x + xα2)

= 0.

Notice that xα 6= 0 and x + xα2

6= 0, because Z acts fixed point freely on X(0)

and α2 6= 1. It then follows from equation (5) that xα = x + xα2

. Thus xα2

=

x + xα and xα3

= (x + xα)α = xα + xα2

= x. As x is an arbitrary element of

GF(q)×, this shows that α3 = α(z3) is trivial on X(0), whence z3 = 1 on U .

Since z is any nontrivial element of Z, the above conclusion first shows that

Z is a 3-group. The above conclusion also shows that there is no element of

order 9 in Z. As we already showed that Z is cyclic, it follows that Z is of order

1 or 3. This completes the proof of the proposition. �

Remark 4.6. Proposition 4.5 does not hold if d = 1.

In this case, as we saw in the last remark in section 2, the ambient space

of S2[f ] is X(0) ⊕ Y for a 1-dimensional space Y . Thus A acts trivially on Y ,

whence Z = A. If we take f(x) = x3 (x ∈ GF(4)), S2[f ] coincides with S2
σ,σ,

where xσ = x2 (x ∈ GF(4)), whence Z = A ∼= GL2(2) ∼= S3.

Corollary 4.7. The automorphism group Aut(Sd+1[f ]) = T : A is a semidirect

product of the normal subgroup T of translations with the stabilizer A of X(0).

Proof. If d = 1, Aut(S2[f ]) is a subgroup of the symmetric group S4 acting

on the four members of S2[f ]. As T acts regularly on S2[f ], T corresponds

to the Klein four subgroup O2(S4), whence T is normal in Aut(S2[f ]) and

Aut(S2[f ]) = T : A. Thus we may assume that d ≥ 2.

As KY = TZ by Corollary 4.2, if Z = 1 then KY = T is a normal subgroup

of Aut(Sd+1[f ]). Assume that Z 6= 1, whence |Z| = 3 by Proposition 4.5. Let
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z be an element of order 3 in Z. Then Z = {1, z, z2}, whence KY = TZ =

T ∪ Tz ∪ Tz2.

We shall show that T is the unique Sylow 2-subgroup of KY . Suppose not.

Then the subset Tz ∪ Tz2 contains an involution tg (t ∈ T , g = zi, i = 1, 2)

which is a conjugate of an involution in T . Then it follows from equation (19)

that we have

(x, 0) + Y = ((x, 0) + Y )(tg)2 =
(

(xα(g), 0) + Y
)tg

=
(

xα(g2), 0
)

+ Y .

As X(0) ∩ Y = {(0, 0)}, this implies that (x, 0) =
(

xα(g2), 0
)

. However, as α

is a faithful representation, α(g) is an element of GL(GF(q)) ∼= GLd+1(2) of or-

der 3. Moreover, it acts fixed point freely on GF(q) by Proposition 4.5. Thus

x 6= xα(g)2 = xα(g2) for x ∈ GF(q)×, which is a contradiction. Hence T is

the unique Sylow 2-subgroup of TZ = KY . As the kernel KY is normal in

Aut(Sd+1[f ]), this implies that T is normal in Aut(Sd+1[f ]) as well. By equa-

tion (14), Aut(Sd+1[f ]) is a semidirect product of T with A. �

We examine the subspace of U fixed by an involution of A.

Lemma 4.8. Let q = 2d+1, and let g be an involution of A. We use the abbrevia-

tions α := α(g) and β := β(g) so that (x, y)g = (xα, yβ) for (x, y) ∈ V .

Then we have dimCU (g) = dimCGF(q)(α) + dimCH(β) and exactly one of

the following holds, where case (2) or (3) occurs only when U = V (whence

H = GF(q)):

(1) d + 1 is even, dim CGF(q)(α) = dimCH(β) = (d + 1)/2 ;

(2) d + 1 is even, dim CGF(q)(α) = (d + 1)/2 and dim CGF(q)(β) = (d + 3)/2 ;

(3) d is even, dimCGF(q)(α) = dim CGF(q)(β) = (d + 2)/2 .

Proof. As (x, y)g = (xα, yβ) (x ∈ GF(q), y ∈ H), the centralizer CU (g) is the

direct sum of centralizers CGF(q)(α) and CH(β). Thus we have dim CU (g) =

dim CGF(q)(α) + dimCH(β).

As g is an involution of the stabilizer A and A acts faithfully on X(0), there

exists t ∈ GF(q) such that (t, 0) 6= (t, 0)g = (tα, 0). Then s := t+tα 6= 0. Consider

the hyperplane Hs = {bf (s, x) | x ∈ GF(q)} of GF(q), which is a subspace

of H. We examine the centralizer CHs
(β) of β in Hs. From equation (18),

bf (x, s) ∈ Hs lies in CHs
(β) if and only if bf (xα, sα) = bf (x, s). Remark that

α2 = 1 as g is an involution, and hence α fixes s = t + tα. Thus we have

bf (xα, s) = bf (x, s) from the above equation. Then bf (x + xα, s) = 0 by the

bilinearity of bf . It follows from equation (5) that x + xα = 0 or x + xα =

s = t + tα. Thus x lies in CGF(q)(α) or the coset t + CGF(q)(α). Observe that
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〈CGF(q)(α), t〉 = CGF(q)(α) ∪ (t + CGF(q)(α)) is a subspace of GF(q) of dimension

dim(CGF(q)(α)) + 1. Summarizing, we have

CHs
(β) =

{

bf (x, s) | x ∈ 〈CGF(q)(α), t〉
}

.

Thus the map ζ sending x of 〈CGF(q)(α), t〉 to bf (x, s) ∈ CHs
(β) is a linear

surjection. By equation (5), the kernel of ζ coincides with {0, s} (Observe that

s ∈ CGF(q)(α)). Thus

dim(CHs
(β)) = dim(CGF(q)(α)) + 1 − 1 = dim(CGF(q)(α)) . (20)

In particular, since H contains Hs,

dim(CH(β)) ≥ dim(CHs
(β)) = dim(CGF(q)(α)) . (21)

Here we make standard remarks. For an automorphism γ of an elementary

abelian 2-group W of order at most 2, we have

2 dim([W,γ]) ≤ dim(W ) = dim(CW (γ)) + dim([W,γ])

≤ 2 dim(CW (γ)) . (22)

Applying the latter part of inequality (22) to W = GF(q) and γ = α, it follows

from equation (21) that

dim(CU (g)) = dim(CGF(q)(α)) + dim(CH(β))

≥ 2 dim(CGF(q)(α)) ≥ d + 1 . (23)

On the other hand, note that [X(t), g] = {(x, y)+(x, y)g | (x, y) ∈ X(t)} is the

image of X(t) by the linear map sending (x, y) of U to (x, y) + (x, y)g ∈ [U, g].

The kernel of this map is CX(t)(g) = X(t) ∩ X(t)g, which is 1-dimensional over

GF(2), as Sd+1[f ] is a d-dual hyperoval. Then we have

dim[X(t), g] = dim(X(t)) − 1 = d ≤ dim([U, g]) ≤ dim(U)/2 ≤ d + 1 ,

by applying the former part of inequality (22) to W = U and γ = g. Thus we

have either
(

dim([U, g]),dim(CU (g))
)

= (d, d + 1), (d, d + 2) or (d + 1, d + 1),

because dimU = dim [U, g] + dim CU (g) = 2d + 1 or 2d + 2.

In the first and third cases, we have equality in inequality (23), and hence

in inequality (21). Thus d + 1 is even and dim(CGF(q)(α)) = dim(CH(β)) =

(d + 1)/2. This is case (1) in the claim.

In the second case, we have U = V , H = GF(q) and dim(CGF(q)(β)) =

dim(CGF(q)(α)) + δ for some nonnegative integer δ by equation (21). Then it

follows from the first part of inequality (23) that d+2 = 2dim(CGF(q)(α))+δ. As

2 dim(CGF(q)(α)) ≥ d + 1, applying the above standard inequality to W = GF(q)

and γ = α, we have d+2 ≥ d+1+δ. Hence δ = 0 or 1. We have case (2) or (3),

according to δ = 1 or δ = 0. �
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Corollary 4.9. Assume that the kernel Z of A on Y is a subgroup of order 3. If

d+1 ≡ 2 (mod 4), then CA(Z) is a normal subgroup of A of odd order with index

at most 2.

Proof. As A acts on Y by Proposition 4.1, Z and CA(Z) are normal subgroups

of A. Then A/CA(Z), being isomorphic to a subgroup of Aut(Z), has order at

most 2.

Suppose that CA(Z) contains an involution g. Then we may apply Lemma 4.8.

As d + 1 is even, we have case (1) or (2) in Lemma 4.8. In particular, we have

dim
(

CGF(q)(α(g))
)

= (d + 1)/2. As Z = 〈z〉 commutes with g, the automor-

phism α(z) on GF(q) induced by z preserves CGF(q)(α(g)). Notice that α(z) is

an element of order 3 acting fixed point freely on GF(q)× by Proposition 4.5.

Then we conclude that dim
(

CGF(q)(α(g))
)

= (d + 1)/2 is even. This contra-

dicts the assumption that d + 1 ≡ 2 (mod 4). Thus CA(z) does not contain any

involution. �

5 Automorphisms of S
10[f ] for f(x) = x3 + ux36

In this section, we determine the automorphism group Aut(S10[f ]) for the APN

function f(x) = x3 + ux36 on GF(210) found in [3, Theorem 2], where u is an

element of GF(210)× not belonging to subfield GF(25). We have GF(210)× =

〈ω〉×〈η〉×〈ζ〉, where ω and η are elements of order 3 and 11 respectively, and ζ

is a generator of GF(25)×. Since 3 = 1 + 2 and 36 = 22 + 25, for x, y ∈ GF(q) we

have (x+y)3 = (x+y)1+2 = (x+y)(x2+y2) and (x+y)36 = (x22

+y22

)(x25

+y25

),

whence

bf (x, y) = (x + y)1+2 + u(x + y)2
2+25

+ x1+2 + ux22+25

+ y1+2 + uy22+25

= xy2 + x2y + u(x22

y25

+ x25

y22

) .

Proposition 5.1. Let f be the quadratic APN function on GF(210) given by f(x) =

x3 + ux36 for some u ∈ GF(210) \ GF(25). Then1 Aut(S10[f ]) is isomorphic to

210 : ((Z3 × Z11) : Z5) or 210 : (Z3 × Z11), according as u = ω±1 or u 6∈ 〈ω〉,

where 210, Z3 × Z11 and Z5 correspond respectively to the group of translations,

the group of multiplications mb for b ∈ GF(210)× with b33 = 1 and the group of

field automorphisms generated by x 7→ x4 (x ∈ GF(210)).

We set d + 1 = 10 and q = 2d+1 = 210. The notation in section 2 will be used

without further reference. We divide the proof into several steps.

1See, however, the correction added in proof on page 168.
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Step 1. For b, c ∈ GF(q)×, the map

µ : U ∋ (x, y) 7→ (bx, cy) ∈ U (24)

is an automorphism of S10[f ] if and only if b33 = 1 and c = b3.

Proof. Assume that µ is an automorphism of S10[f ] given by equation (24) for

some b, c of GF(q)×. Take any t ∈ GF(q)×. As (t, 0)µ = (bt, 0), we have X(t)µ =

X(bt) by equation (15). Thus a vector
(

x, xt2 + x2t + u(x4t32 + x32t4)
)

of X(t)

for any x ∈ GF(q) is sent by µ to a vector of X(bt). As the first component of
(

x, xt2 + x2t + ω(x4t32 + x32t4)
)µ

is bx, we have

c
(

xt2 + x2t + u(x4t32 + x32t4)
)

= (bx)(bt)2 + (bx)2(bt) + u
(

(bx)4(bt)32 + (bx)32(bt)4
)

by comparing the second components. Rewriting this equality as a polynomial

of x, we have

(c + b3)t2x + (c + b3)tx2 + u(c + b36)t32x4 + u(c + b36)t4x32 = 0 .

As this holds for all x ∈ GF(q), the polynomial

Pt(X) = (c + b3)t2X + (c + b3)tX2 + u(c + b36)t32X4 + u(c + b36)t4X32

of degree 32 in GF(q)[X] has at least q = 210 distinct solutions. Thus all coeffi-

cients of Pt(X) are 0, whence

(c + b3)t2 = (c + b3)t = (c + b36)t32 = (c + b36)t4 = 0 .

As this holds for every t ∈ GF(q)×, we have c = b3 and b33 = 1.

Conversely, the above calculation shows that the map sending each element

(x, y) of U to
(

ωηx, (ωη)3y
)

is an automorphism of S10[f ] which sends X(t) to

X(ωηt) for every t ∈ GF(q). Recall here that ωη generates 〈ω〉 × 〈η〉. �

Step 2. The following map φ lies in Aut(S10[f ]) if and only if u = ω±1.

φ : V ∋ (x, y) 7→ (x4, y4) ∈ V . (25)

Proof. Observe that φ stabilizes X(0), and that φ sends the unique nonzero vec-

tor (t, 0) of X(0)∩X(t) to the unique nonzero vector (t4, 0) of X(0)∩X(t4). Thus

if φ lies in Aut(S10[f ]), then we have X(t)φ = X(t), whence
(

x, bf (x, t)
)φ

=
(

x4, bf (x, t)4
)

∈ X(t4) for every x ∈ GF(q) and every t ∈ GF(q)×. Then
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bf (x, t)4 = bf (x4, t4) for all x, t ∈ GF(q). Conversely, if this condition is sat-

isfied then X(t)φ = X(t) for all t ∈ GF(q), whence φ lies in Aut(S10[f ]). Hence

φ ∈ Aut(S10[f ]) if and only if bf (x, t)4 = bf (x4, t4) for all x, t ∈ GF(q).

As bf (x, t)4 = bf (x4, t4) is equivalent to (u4 + u)
(

(x + t)36 + x36 + t36
)

= 0,

this is satisfied for all x, t ∈ GF(q) if and only if u4 = u, namely u = ω±1. �

We set F := 〈φ〉, which is a group of order 5 acting faithfully on X(0). For

elements b of B := 〈ωη〉, we define mb to be the following automorphism of

S10[f ].

mb : U ∋ (x, y) 7→ (bx, b3y) ∈ U . (26)

Then the map sending b ∈ B to mb is a homomorphism from B to A. The

image m(B) := {mb | b ∈ B} is a cyclic subgroup of order 33 of A. Observe

that z := mω acts trivially on Y , so that the kernel Z of the action of A on Y

coincides with 〈z〉 by Proposition 4.5.

Step 3. (1) The ambient space of S10[f ] is V = X(0) ⊕ Y . The group m(B)

acts irreducibly on both X(0) and Y .

(2) The centralizer CAut(X(0))(z) of z = mω in Aut(X(0)) is isomorphic to a

subgroup of GL5(4) of odd order, containing m(B)F . Furthermore, m(B) =

CA(m(B)).

Proof. (1) As m(B) acts on Y with kernel Z, the factor group m(B)/Z acts

faithfully on Y . From Proposition 2.2, the ambient space of S10[f ] is V ,

whence dim(X(0)) = dim(Y ) = 10. Furthermore, no nonzero proper sub-

space of X(0) or Y is invariant under m(B), as 11 divides 210 − 1 but not

2i − 1 for any i = 1, . . . , 9.

(2) As m(B) is a cyclic group containing z = mω, we have m(B) ≤ CA(z).

From equations (25) and (24), we have φ−1mbφ = mb4 . Thus F normalizes

m(B) and centralizes z = mω. As both m(B) and F act faithfully on X(0),

the group m(B)F ∼= Z33 : Z5 is isomorphic to a subgroup of Aut(X(0)) ∼=
GL10(2) centralizing z. As z corresponds to the scalar matrix α(z) = ωI in

GL5(4), CAut(X(0))(z) is isomorphic to a subgroup of GL5(4).

As 10 ≡ 2 modulo 4, we can apply corollary 4.9 to conclude that |CA(z)|

is odd. The action of m(B) on GF(q) via α is the multiplication by some

elements of GF(q)×. As this action is irreducible on GF(q) by claim (1), the

centralizer of α(m(B)) in GL(GF(q)) ∼= Aut(X(0)) coincides with the group

of multiplications of all elements of GF(q)× (see e.g. [4, p.244, Proposi-

tion 19.8]). The same argument applied to the action of m(B) on GF(q)

via β shows that the centralizer of β(m(B)) in GL(GF(q)) ∼= GL(Y ) is also
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given by the multiplications by all elements of GF(q)×. In particular, ele-

ments of α(CA(m(B))) and β(CA(m(B)) are multiplications by some ele-

ments of GF(q)×. Thus each element of CA(m(B)) is of the form in equa-

tion (24) in Step 1. By the conclusion of Step 1, it lies in m(B). Thus

CA(m(B)) = m(B). �

Step 4. The proof of Proposition 5.1.

Proof. It follows from Corollary 4.7 that Aut(S10[f ]) = T : A, where T is an

elementary abelian group of order 210. Thus it remains to determine the sta-

bilizer A of X(0) (and Y ). As 〈z〉 is normal in A, the centralizer CA(z) is a

normal subgroup of A of index at most 2. As CA(z) is isomorphic to a subgroup

of CAut(X(0))(z), it follows from Step 2 and Step 3(2) that CA(z) is isomorphic

to a subgroup of GL5(4) of odd order which contains m(B)F or m(B) according

as u = ω±1 or not.

We will show that CA(z) coincides with m(B)F or m(B), according as u =

ω±1 or not. Let Q = 〈mη〉 be the subgroup of m(B) of order 11. We claim

that Q = O11(CA(z)), where Op(X) for a prime p denotes the largest normal

p-subgroup of a finite group X.

First, we verify that O3(CA(z)/〈z〉) = 1. Suppose O3(CA(z)/〈z〉) = H/〈z〉 =

H is nontrivial. For a subgroup X of CA(z), we write X = X〈z〉/〈z〉. As H is

normal in CA(z), Q acts coprimely on H. As H is isomorphic to a subgroup of

a Sylow 3-subgroup of GL5(4), |H| is of order at most 36/3 = 35. Notice that Q

does not centralize H, for otherwise Q centralizes H from a standard property of

coprime action, whence H ≤ CA(〈z〉×Q) = CA(m(B)) = m(B), but this would

imply that H ≤ 〈z〉. As 11 does not divide 3i − 1 for all i = 1, . . . , 4, this implies

that H is an elementary abelian 3-group of order 35 on which Q acts fixed

point freely. Then |H| = 36, whence H is isomorphic to a Sylow 3-subgroup

T of GL5(4). We may take T to be a subgroup of GL5(4) generated by the

diagonal matrices di (i = 1, . . . , 5) and a permutation matrix π corresponding

to (123), where di has diagonal entries ω and four 1’s with ω at (i, i)-entry.

Notice that 〈ωI〉 is a subgroup of T corresponding to 〈z〉. As [d1, π] = d−1
1 d2

does not lie in 〈ωI〉, H/〈z〉 = H is not abelian. This contradiction shows that

O3(CA(z)/〈z〉) = 1.

As CA(z) is of odd order, we have Op(CA(z)/〈z〉) 6= 1 for some prime p by

the odd order theorem (or more explicit arguments in GL5(4)). By the above

paragraph, p 6= 3. Then we have Op(CA(z)) 6= 1 on which Q acts. Notice

that the odd part of |GL5(4)| is 36527 · 11 · 17 · 31. Thus for each possible odd

prime divisor p 6= 3, the group Q of order 11 acts trivially on Op(CA(z)). As

Q〈z〉 = m(B) = CA(m(B)), this implies that p = 11 is the unique possibility.

Thus O11(CA(z)) = Q, as we claimed.
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Then CA(z) and F are subgroups of CAut(X(0))(z) normalizing Q. Thus

CA(z) and F correspond to subgroups of the normalizer N in GL5(4) of a Sy-

low 11-subgroup (corresponding to Q) by Step 3(2). It is easy to see that N is

isomorphic to (Z3 × Z11 × Z31) : Z5, which corresponds to (m(B) × 〈mζ〉)F .

Thus CA(z) is a subgroup of (m(B) × 〈mζ〉)F . By Step 1 and Step 2, we have

CA(z) = ((m(B) × 〈mζ〉)F ) ∩ CA(z) = m(B)F or m(B) according as u = ω±1

or not.

Now it remains to show that A = CA(z), or equivalently there is no involu-

tion of A inverting z. Suppose that g is an involution of A inverting z. Then

A = CA(z)〈g〉 and g normalizes m(B) = 〈z〉 × Q. As d + 1 = 10 is even, we

have case (1) or (2) in Lemma 4.8. In particular, g does not act trivially on Y .

By Step 3(1), the group m(B) : 〈g〉 acting on Y has a normal irreducible cyclic

group m(B). As the action of m(B) on Y is given by the multiplication of el-

ements in GF(q)×, then it follows from [4, p.244, Proposition 19.8] that there

exists an element β ∈ GF(q)× such that (0, y)g = (0, βy25

) for all y ∈ GF(q).

As g2 = 1, we have β33 = 1. The same argument applied to X(0) shows that

(x, 0)g = (αx25

, 0) for some α ∈ GF(q)× with α33 = 1. Hence h = gm−1
α is an

automorphism of S10[f ] such that (x, y)h = (x25

, γy25

) for some γ ∈ GF(q)×

with γ33 = 1. Then h is an involution with CX(0)(h) = {(x, 0) | x ∈ GF(25)}.

For s 6= t ∈ GF(25), it then follows from equation (15) that X(s) and X(t)

are stabilized by h. Thus h fixes the unique nonzero vector
(

s + t, bf (s, t)
)

in

X(s) ∩ X(t). This implies that bf (s, t) = (st2 + s2t) + u
(

s4t32 + s32t4
)

satisfies

γbf (s, t)2
5

= bf (s, t) for every s, t ∈ GF(25). Then we have (γ + 1)(st2 + ts2) =

(γu2 + u)(s4t + st4), as u25

= u2 and s31 = t31 = 1. Thus we have γ + 1 =

(γu2 + u)(s2 + st + t2) for all s 6= t ∈ GF(25)×. This is impossible. Thus A does

not contain any involution, whence A = CA(z). �

Using Proposition 5.1, we can verify that S10[f ] is not isomorphic to any

9-dual hyperoval in the classes S10
σ,φ and Tσ, where σ is a generator of the

Galois group of GF(210)/GF(2) and φ is a bijection on GF(210) induced by an

o-polynomial. In fact, by Proposition 3.2, the only d-dual hyperoval in these

classes which could possibly be isomorphic to S10[f ] is S10
σ,σ for some σ. How-

ever, the latter admits the automorphism group acting doubly transitively [8],

but Aut(S10[f ]) is not doubly transitive by Proposition 5.1. Hence S10[f ] is, in

fact, a new 9-dual hyperoval over GF(2) with ambient space of dimension 20.

For a quadratic APN fuction f other than the Gold function f(x) = x2m+1

(x ∈ GF(2d+1)), m being coprime with d+1 (possibly its equivalents), it is likely

that the stabilizer A in Aut(Sd+1[f ]) of X(0) is generated by a proper subgroup

of a Singer cycle Z2d+1−1 and possibly the field automorphisms. In particular,

Aut(Sd+1[f ]) is not doubly transitive, and hence not isomorphic to Sd+1
σ,φ for any
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generator σ of Gal(GF(2d+1)/GF(2)) and any bijection φ on GF(2d+1) induced

by an o-polynomial. The above observation on the structure of A is verified for

some APN functions belonging to the families found in [1]. However, the results

obtained so far are partial and do not cover all the members in a family.

Correction added in proof

In Proposition 5.1, the automorphism group Aut(S10[f ]) for an APN map f(x) =

x3 + ux36 on GF(210) with u 6= ω±1 should be 210 : ((Z3 ×Z11) : Z5), in place of

210 : (Z3×Z11). In fact, it is shown that the APN maps of form f(x) = x3 +ux36

on GF(210) for some u ∈ GF(210) \ GF(25) are extended affine equivalent to

each other, and hence the automorphism groups Aut(S10[f ]) are isomorphic.

The claim in the second paragraph of the proof of Step 4 (page 166) is incorrect

in the case u 6= ω±1: it is proved in the last line of the first paragraph on

page 167 by just referring to Step 1 and Step 2, but this does not work.

I thank Dr. Edel for pointing out the error.

References

[1] L. Budaghyan, C. Carlet, P. Felke and G. Leander, An infinite class of

quadratic APN functions which are not equivalent to power mappings,

Proceedings of IEEE Intern. Symposium on Information Theory 2006, Seat-

tle, USA, Jul. 2006.

[2] C. Carlet, P. Charpin and V. Zinoviev, Codes, bent functions and per-

mutations suitable for DES-like cryptosystems, Des. Codes Cryptogr. 15

(1998), 125–156.

[3] Y. Edel, G. Kyureghyan and A. Pott, A new APN function which is not

equivalent to a power mapping, IEEE Trans. Inform. Theory 52 (2006),

744–747.

[4] D. S. Passman, Permutation Groups, Benjamin, New York, 1968.

[5] A. Pasini and S. Yoshiara, On a new family of flag-transitive semibi-

planes, European J. Combin. 22 (2001), 529–545.

[6] H. Taniguchi, A family of dual hyperovals over GF(q) with q even, Euro-

pean J. Combin. 26 (2005), 195–199.



Dimensional dual hyperovals from quadratic APN Functions 169

[7] H. Taniguchi and S. Yoshiara, On dimensional dual hyperovals Sσ,φ,

Innov. Incidence Geom. 1 (2005), 197–219.

[8] S. Yoshiara, A family of d-dimensional dual hyperovals in PG(2d + 1, 2),

European J. Combin. 20 (1999), 589–603.

[9] , Dimensional dual arcs — a survey, in Finite Geometries, Groups,

and Computation, eds. A. Hulpke, B. Liebler, T. Penttila, and A. Seress,

Walter de Gruyter, Berlin-New York, 2006, 247–266.

[10] , Note on Taniguchi’s dimensional dual hyperovals, European J.

Combin. 28 (2007), 674–684.

Satoshi Yoshiara

DEPARTMENT OF MATHEMATICS, TOKYO WOMAN’S CHRISTIAN UNIVERSITY, SUGINAMI-KU, TOKYO

167-8585, JAPAN

e-mail: yoshiara@lab.twcu.ac.jp


