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Abstract

A d-dimensional dual hyperoval can be regarded as the image S = ρ(Σ)

of a full d-dimensional projective embedding ρ of a dual circular space Σ.
The affine expansion Exp(ρ) of ρ is a semibiplane and its universal cover is
the expansion of the abstract hull ρ̃ of ρ.

In this paper we consider Huybrechts’s dual hyperoval, namely ρ(Σ)

where Σ is the dual of the affine space AG(n, 2) ⊂ PG(n, 2) and ρ is induced
by the embedding of the line grassmannian of PG(n, 2) in PG

((
n+1

2

)
− 1, 2

)
.

It is known that the universal cover of Exp(ρ) is a truncation of a Coxeter
complex of type D2n and that, if Ũ is the codomain of the abstract hull ρ̃ of
ρ, then Ũ is a subgroup of the Coxeter group D of type D2n , |Ũ | = 22n−1

but Ũ is non-commutative. This information does not explain what the
structure of Ũ is and how Ũ is placed inside D. These questions will be
answered in this paper.
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exterior algebras
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1 Introduction

Throughout this paper we adopt the notation of [5] for groups, thus using the
colon “:” for split extensions, the symbol 2n to denote an elementary abelian
2-group of order 2n, and so on. We refer to [12] for basics on diagram geometry.
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1.1 Dimensional dual hyperovals

Dimensional dual hyperovals have been introduced by Yoshiara [18] and Huy-
brechts and Pasini [10], mainly in connection with the investigation of AG.c∗-ge-
ometries (in particular c.c∗-geometries with (IP), namely semibiplanes; see Pa-
sini and Yoshiara [14]). In particular, a 2-dimensional dual hyperoval of size 22,
living inside the hermitian variety H(5, 4) and admitting 3·Aut(M22) as its aut-
morphism group, naturally gives rise to an AG.c∗-geometry for 212:3·Aut(M22),
thoroughly investigated in [10]. However, dimensional dual hyperovals have
soon appeared to be relevant in other respects than strict diagram geometry or
the investigation of semibiplanes. For instance, they play a role in the charac-
terization of Veronesean varieties by Thas and Van Maldeghem [16], [17]. They
are quite naturally linked with distance regular graphs, semi-partial geometries
and codes (Cooperstein and Thas [6], Pasini and Yoshiara [15]). In particular,
new distance regular graphs have been discovered with the aid of dimensional
dual hyperovals (Pasini and Yoshiara [15]). Interesting connection also exist
between certain dimensional dual hyperovals and Steiner systems (Huybrechts
[9], Buratti and Del Fra [4], Del Fra and Yoshiara [8]).

In view of the above, it is not surprising that dimensional dual hyperovals
have soon been regarded as objects interesting in themselves. The earliest thor-
oughful investigation of their geometrical properties is due to Del Fra [7], but
many progresses have been done since then. We refer the reader to Yoshiara
[20] for a survey of this topic, updated at 2005. We shall only recall a few
essentials here.

Let V := V (N, q), the N -dimensional vector space over GF(q). According to
the usual definition, for a positive integer d < N , a d-dimensional dual hyperoval
of PG(V ) is a family S of d-dimensional subspaces of PG(V ) such that:

(DH1) |X ∩ Y | = 1 for any two distinct members X,Y ∈ S;

(DH2) every point of PG(V ) belongs to either none or just two members of S;

(DH3) 〈⋃X∈S X 〉 = PG(V ).

Clearly, (DH3) implies N ≥ 2d+ 1. An upper bound for N has been discovered
by Yoshiara [19] (see also Del Fra [7] for the case of d = 2).

Proposition 1.1. If either q > 2 or d ≤ 2 then N ≤
(
d+2

2

)
. If q = 2 and d > 2

then N ≤
(
d+2

2

)
+ 2.

Actually, N ≤
(
d+2

2

)
in all known examples. So, one might conjecture that

N ≤
(
d+2

2

)
even when q = 2.



Huybrechts dual hyperoval 123

1.2 Dimensional projective embeddings

It readily follows from (DH1) and (DH2) that S, regarded as an abstract com-
binatorial structure, is nothing but the dual Σ of the circular space on θ :=

qd + qd−1 + · · · + q + 2 points. (We recall that Σ is the point-block geometry
with θ(θ − 1)/2 points and θ blocks, where every point belongs to precisely two
blocks, every block has θ − 1 points and any two blocks have just one point in
common.) Accordingly, we may regard S as the image of a (full) d-dimensional
projective embedding ρ : Σ → PG(V ) of Σ in PG(V ). Explicitly, ρ is a mapping
from the set P of points of Σ to the set of 1-dimensional linear subspaces of V
such that:

(PE1) ρ is injective;

(PE2) for every block B of Σ, the set ρ(B) :=
⋃
p∈B ρ(p) is a (d+ 1)-dimensional

linear subspace of V ;

(PE3) ρ(P ) spans V .

Clearly, S = ρ(B) = {ρ(B)}B∈B, where B is the block-set of Σ, but we prefer to
say that S is the image of Σ, thus writing S = ρ(Σ) even if these conventions
are slightly abusive.

The point of view we have thus chosen makes it easier to define morphisms
of dimensional dual hyperovals, by exploiting the usual machinery set up for
embeddings (see Pasini [13]; compare Yoshiara [20, section 2.5]). So, if ρ′ :

Σ → PG(V ′) is another d-dimensional projective embedding of Σ, a morphism
from S ′ = ρ′(Σ) to S is a morphism from ρ′ to ρ, namely a semi-linear mapping
f : V ′ → V such that fρ′ = ρ. Needless to say, an isomorphism is an invertible
morphism. In spite of the above, Aut(S) is not defined as the same as the
group of all automorphisms of ρ. Every automorphism of ρ acts trivially on S,
whereas one would like to see some action of Aut(S) on S. The stabilizer of
S in PΓL(N, q) is perhaps the most natural choice for Aut(S), but it is more
convenient to define Aut(S) as the (setwise) stabilizer of S in ΓL(N, q), which
is the same as the group of all isomorphisms from ρα to ρβ, where α, β range
over Aut(Σ). We shall follow this convention.

It is well known that every d-dimensional projective embedding ρ : Σ →
PG(V ) admits a projective hull, namely a pair (ρ̂, f̂) uniquely determined up to
isomorphisms by the following conditions (see Pasini [13]):

(PH1) ρ̂ : Σ→ PG(V̂ ) is a d-dimensional projective embedding of Σ and f̂ : ρ̂→
ρ is a morphism from ρ̂ to ρ;

(PH2) for any other d-dimensional projective embedding ρ′ : Σ → PG(V ′), if
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there is a morphism f : ρ′ → ρ then a morphism g : ρ̂ → ρ′ also exists
such that fg = f̂ .

The image Ŝ = ρ̂(Σ) of Σ by ρ̂ will be called the projective hull of S = ρ(Σ).
We say that S is projectively dominant if ρ̂ ∼= ρ, namely f̂ is an isomorphism.
In short, S is projectively dominant if it is its own projective hull. Clearly, if N
attains the upper bound of Proposition 1.1, then S is projectively dominant.

1.3 Expansions

Given Σ = (P,B) as above, let ρ : Σ → PG(V ) be a d-dimensional projective
embedding and put S := ρ(Σ). The affine expansion of Σ by ρ (also called the
expansion of ρ, for short, or the expansion of S) is the geometry Exp(ρ) of rank
3 defined as follows:

Taken the integers 0, 1, 2 as types for Exp(ρ), the 0-elements of Exp(ρ) (also
called points) are the vectors of V , the 1-elements (lines) are the cosets of the
subspaces ρ(p) of V for p ∈ P and the 2-elements (blocks) are the cosets of the
subspaces ρ(B), for B ∈ B. The incidence relation is the natural one, namely
inclusion.

The residues of the points of Exp(ρ) are isomorphic to Σ whereas the residues
of the blocks of Exp(ρ) are (d + 1)-dimensional affine spaces over GF(q). So,
Exp(ρ) belongs to the following diagram, where the label AG denotes the class
of affine spaces and c∗ the class of dual circular spaces:

(AG.c∗) • • •
AG c∗

In particular, when q = 2 then Exp(ρ) is a semibiplane. In this case its diagram
can be depicted as follows:

(c.c∗) • • •
c c∗

Let U be the translation group of the affine geometry AG(V ) of V . Then Aut(S),
regarded as a subgroup of the automorphism group Aut(AG(V )) of AG(V ),
normalizes U . The semidirect product U :Aut(S) is the stabilizer of Exp(ρ) in
Aut(AG(V )) = AΓL(N, q). We shall denote that stabilizer by Autρ(Exp(ρ)).
Clearly, Autρ(Exp(ρ)) is point-transitive on Exp(ρ), and it is flag-transitive if
and only if Aut(S) acts doubly-transitively on S. In principle, Autρ(Exp(ρ))

might be smaller than the full automorphism group of the geometry Exp(ρ).
Actually, we are not aware of any example like that, but examples of this kind
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are met frequently when we switch from d-dimensional projective embeddings
to (d, q)-embeddings (to be defined in the next subsection).

Every morphism f : ρ′ → ρ induces a covering Exp(f) from Exp(ρ′) to
Exp(ρ). In particular, if (ρ̂, f̂) is the projective hull of ρ, then Exp(f̂) is a
covering from Exp(ρ̂) to Exp(ρ). It also follows from the definition of ρ̂ that
Aut(S) lifts to the stabilizer of ker(f) in Aut(Ŝ), where Ŝ := ρ̂(Σ). Accordingly,
Autρ(Exp(ρ)) lifts to a subgroup of Autρ̂(Exp(ρ̂)). However, in general, Exp(ρ̂)

is not the universal cover of Exp(ρ). This unpleasant asimmetry can be repaired
by generalizing the notion of embeddings, as we shall do in the next subsection.
The definition we shall give is borrowed from [13]. It is not so general as in
[13], but it suites our present needs.

1.4 Abstract embeddings and their expansions

An abstract (d, q)-embedding (a (d, q)-embedding for short) of Σ = (P,B) in a
group U is a mapping ρ from P into the subgroup lattice of U such that:

(AE1) ρ(p) is an elementary abelian subgroup of U of order q, for any p ∈ P ;

(AE2) we have ρ(e1) ∩ ρ(e2) = 1 for any two distinct points e1, e2 ∈ P ;

(AE3) ρ(B) :=
⋃
p∈B ρ(p) is an elementary abelian subgroup of U of order qd+1,

for every block B ∈ B;

(AE4) the set
⋃
p∈P ρ(p) spans U .

We call U the target group of the (d, q)-embedding ρ. The family ρ(Σ) :=

{ρ(p)}p∈P ∪ {ρ(B)}B∈B will be called the image of Σ by ρ. We write ρ : Σ→ U

when we want to recall that ρ is a (d, q)-embedding of Σ in U .

Given another (d, q)-embedding ρ : Σ → U , a morphism from ρ to ρ is a
homomorphism f : U → U such that, for every element (point or block) X of
Σ, f induces an isomorphism from ρ(X) to ρ(X). The kernel of the morphism f

is its kernel ker(f) as a homorphism from U to U .

Clearly, d-dimensional projective embeddings are (d, q)-embeddings (with
additive groups of vector spaces as target groups) and morphisms of d-dimen-
sional projective embeddings are morphisms in the above sense. Hulls of (d, q)-
embeddings are defined in the same way as projective hulls of d-dimensional
projective embeddings. We refer to [13] for details. We only recall how the
hull (ρ̃, f̃) of a (d, q)-embedding ρ : Σ → U is constructed. The image ρ(Σ)

of Σ is actually an amalgam of groups. Let Ũ be the universal completion of
that amalgam and f̃ : Ũ → U be the canonical projection of Ũ onto U . For
every element (point or block) X of Σ, let us denote by ρ̃(X) the subgroup of
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Ũ corresponding to the member ρ(X) of ρ(Σ). Namely, ρ̃(X) is ρ(X) itself, but
regarded as a subgroup of Ũ rather than of U . Taking Ũ as the target group of
ρ̃, we define ρ̃(X) := ρ̃(X). Clearly, the canonical projection f̃ : Ũ → U is a
morphism from ρ̃ to ρ. We call (ρ̃, f̃) the abstract hull of ρ (also the hull of ρ, for
short). The group Ũ will be called the universal representation group of ρ. (This
terminology is motivated by some resemblance with representation groups in
the sense of Ivanov and Shpectorov [11].) We say that ρ is abstractly dominant
(for short, dominant) if it is its own abstract hull. By a little abuse, we extend
this terminology to ρ(Σ), thus calling Ũ the universal representation group of
ρ(Σ), for instance.

The expansion Exp(ρ) of a (d, q)-embedding ρ : Σ→ U is defined in the same
way as the expansion of a d-dimensional projective embedding: the elements of
U are the points of Exp(ρ), the lines of Exp(ρ) are the right cosets u · ρ(p) for
p ∈ P and u ∈ U , the blocks are the right cosets u · ρ(B) for B ∈ B. The target
group U , acting on itself by left multiplication, acts regularly on the point-set
of Exp(ρ). We call it the translation group of Exp(ρ). Let Aut(ρ(Σ)) be the
set-wise stabilizer of ρ(Σ) in Aut(U). Then Aut(ρ(Σ)) can be regarded as a
subgroup of Aut(Exp(ρ)). It stabilizes the point 1 ∈ U of Exp(ρ) and normal-
izes the translation group U . The semi-direct product U :Aut(ρ(Σ)), regarded
as a subgroup of Aut(Exp(ρ)), will be denoted by Autρ(Exp(ρ)). In general,
Autρ(Exp(ρ)) < Aut(Exp(ρ)).

Every morphism f : ρ→ ρ induces a covering Exp(f) from Exp(ρ) to Exp(ρ)

and ker(f), regarded as a subgroup of the translation group of Exp(ρ), is the
deck group of the covering Exp(f). The following is proved in [13]:

Proposition 1.2. The universal cover of the geometry Exp(ρ) is the expansion
Exp(ρ̃) of the abstract hull ρ̃ of ρ. In particular, Exp(ρ) is simply connected if and
only if ρ is abstractly dominant.

For quite a few d-dimensional dual hyperovals S = ρ(Σ) the expansion
Exp(ρ) is known to be simply connected (see Pasini and Yoshiara [14] and
[15]). In those cases, the d-dimensional projective embedding ρ is abstractly
dominant. However, this is not always the case. For instance, let Σ22 be the
dual of the circular space with 22 points and S22 = ρ(Σ22) be its realization as
a 2-dimensional dual hyperoval of PG(5, 4) with Aut(S22) = 3·Aut(M22), men-
tioned in Subsection 1.1 (see [20, 5.1] for more details). As the ambient space
of ρ attains the upper bound of Proposition 1.1, ρ is projectively dominant. How-
ever, the geometry Γ := Exp(ρ) is not simply connected, but it admits a simply
connected double cover Γ̃ (Huybrechts and Pasini [10]). Accordingly, ρ is not
abstractly dominant and Γ̃ is the expansion of the abstract hull ρ̃ : Σ22 → Ũ of
ρ. The universal representation group Ũ of ρ is non-commutative. In fact, Ũ is
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the extraspecial group 21+12
+ . (We warn the reader that Ũ is sloppily described

as 213 in [10].)

1.5 The problem discussed in this paper

Let q = 2 and ρ : Σ → PG(V ) be a d-dimensional projective embedding of Σ,
with V = V (N, 2). It may happen that the universal cover Γ̃ of Γ := Exp(ρ) is a
truncated Coxeter complex of type DM , where M = 2d+1:

•points of Γ̃ �
�
�
•lines of Γ̃

•blocks of Γ̃
@
@
@ • ..... • •

︸ ︷︷ ︸
types to truncate

If this is the case then we say that the dimensional dual hyperoval S = ρ(Σ) is
Coxeter-like, for short. Suppose that S is indeed Coxeter-like. Then Γ̃ has 2M−1

points. The universal representation group Ũ of S acts regularly on the point-
set of Γ̃. Hence |Ũ | = 2M−1. However, if d > 2 then M − 1 >

(
d+2

2

)
+ 2 and, if

d = 2 then M − 1 >
(
d+2

2

)
. So, if d > 1 then Ũ is non-commutative. Indeed, if

Ũ were commutative, then it would be an elementary abelian 2-group, whence
a GF(2)-vector space, contrary to the bounds stated by Proposition 1.1. On the
other hand, Ũ is a subgroup of the Coxeter group W := WDM of type DM , since
Aut(Γ̃) = W . We recall that W = O2(W ):Sym(M) with O2(W ) = 2M−1. Thus,
Ũ cannot be a subgroup of O2(W ). So, we should cut Ũ off ofW , but keeping in
mind that Ũ , being non-commutative, cannot be entirely contained in O2(W ).
This is the problem we shall tackle in this paper.

Before to go on, we get rid of the case d = 1. In this case Γ = Exp(ρ) is
the geometry obtained from PG(3, 2) by removing all points and lines of a given
plane π and all points and planes through a distinguished point p of π. It is well
known (and easy to check) that this geometry is simply connected. Hence ρ is
abstractly dominant.

Assume now d > 1. For N =
(
d+2

2

)
, only two Coxeter-like dimensional

dual hyperovals are known with ambient vector space V (N, 2). They are those
denoted by S(∅) and S(V \ {0}) in [4] and [8]. In this paper, we shall de-
note them by SH and SBDF respectively, where the subscript H is meant to
record C. Huybrecths, who has studied this dimensional dual hyperoval in [9],
whereas BDF should remind us of Buratti and Del Fra [4]. Several Coxeter-like
d-dimensional dual hyperovals are known with ambient vector space of dimen-
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sion less then
(
d+2

2

)
, but all of them turn out to be homorphic images of SH

(Pasini and Yoshiara [15]). So, as far as our knowledge presently goes, SH and
SBDF are the most interesting Coxeter-like examples, and SH is perhaps the
most interesting of the two.

In this paper we shall focus on SH . In Section 2 we shall describe SH and its
expansion. Denoting by ρH the d-dimensional projective embedding giving rise
to SH , in Section 3 we shall describe the abstract hull ρ̃ of ρH . As a by-product
of our construction, we will obtain that ρH is projectively dominant (as already
proved by Buratti and Del Fra [4]). Finally, in Section 4 we shall show how the
universal representation group of SH is placed inside the Coxeter group W of
type DM .

A warning, before to finish: in [13, Theorem 8.5] it is claimed that the uni-
versal representation group of SH is abelian. Clearly, that claim is wrong.

2 SH and its expansion

2.1 Huybrechts’s construction of SH
Let V = V (n + 1, 2) (n ≥ 2) and V0

∼= V (n, 2) be a hyperplane of V . Denoting
by A the affine geometry PG(V ) \ PG(V0), let Σ = (P,B) be the dual of the
point-line system of A. Thus, P is the set of lines of A and B is the point-set
of A. As the point-line system of A is a circular space with 2n points, Σ is a
dual circular space. Turning to the line-grassmannian Gr(PG(V )) of PG(V ), the
members of B are maximal singular subspaces of Gr(PG(V )), of (projective)
dimension d = n − 1, whereas P is a set of points of Gr(PG(V )). Let ρgr be
the natural projective embedding of Gr(PG(V )) into PG(V ∧ V ) and ρH be the
mapping induced by ρgr on Σ = (P,B). Then ρH(P ) spans PG(V ∧ V ) and the
image SH = ρH(B) of B by ρH is a d-dimensional dual hyperoval of PG(V ∧ V ).
This is indeed the dimensional dual hyperoval discovered by Huybrechts [9].

2.2 Aut(SH) and AutρH(Exp(ρH))

The automorphism group Aut(A) of the affine geometryA is the stabilizer of V0

in Ln+1(2), namely ASL(n, 2) = T :L, where T is the translation group of A and
L ∼= Ln(2). Clearly, also Aut(SH ) ∼= ASL(n, 2). Accordingly, AutρH (Exp(ρH )) =

U :AH , where U := V ∧ V (the latter being regarded as an elementary abelian
2-group) and AH := Aut(SH). Clearly AH = TH :LH , where TH ∼= T and
L ∼= Ln(2). The group A acts on U = V ∧V as a subgroup of the group Ln+1(2)

of linear transformations of V , in its natural action on V ∧ V . More explicitly,
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recall that AH is the stabilizer of V0 in Ln+1(2). Accordingly, the subgroup LH
of AH is the stabilizer of V0 and a vector v∞ ∈ V \ V0. As V = 〈v∞〉 ⊕ V0,
we can split V ∧ V as (v∞ ∧ V0) ⊕ (V0 ∧ V0). The group LH , acting on V ∧ V
as a subgroup of Ln+1(2), stabilizes both v∞ ∧ V0 and V0 ∧ V0. Moreover, on
each of these two subspaces, the action of LH is that induced by its action on
V0. The elements of TH can be identified with the vectors of V0. The subspace
V0 ∧ V0 is centralized by TH whereas, if τz ∈ TH corresponds to z ∈ V0, then
τz(v∞ ∧ x) = v∞ ∧ x+ x ∧ z for every x ∈ V0.

The expansion Exp(ρH) can also be described as follows. Let ∆ be the build-
ing of type Dn+1 over GF(2) and F = {M+,M−} be a flag of ∆ of type {+,−},
where types are given as below and, for ε = + or −, M ε is the element of F of
type ε.

•
−
�
�
�
•
n− 2

•
+

@
@
@ •

n− 3
..... •

1
•
0

Then Exp(ρH ) is isomorphic to the subgeometry Γ of ∆ formed by the elements
of type +,− and n − 2 at maximal distance from F (see Pasini and Yoshiara
[14, section 6]). The incidence relation of Γ is inherited from ∆ except that
two elements X+, X− of Γ of type + and −, incident in ∆, are declared to
be incident in Γ if and only if the flag {X+, X−} has maximal distance from
F . The elements of Γ of type n − 2 correspond to the lines of Exp(ρH ). We
can take the elements of type + as points and those of type − as blocks, but
we can also interchange the roles of + and −, thus taking (−)-elements as
points and (+)-elements as blocks. This makes it clear that Γ admits a duality δ,
contributed by a graph automorphism of Aut(∆). The group AutρH (Exp(ρH))

is just the stabilizer of F in Aut(∆). Its subgroup LH also stabilizes a unique
flag opposite to F , whereas TH acts trivially on one of the two members of F ,
say M+. The subgroup v∞ ∧ V0 of U acts trivially on M−, whereas V0 ∧ V0

acts trivially on both M+ and M−. The above mentioned duality δ normalizes
AutρH (Exp(ρH)). It can be chosen in such a way as to normalize both LH and
V0∧V0 and interchange TH with v∞∧V0. Accordingly, δ permutes M+ and M−

and stabilizes the flag opposite to F stabilized by LH .
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2.3 The universal cover of Exp(ρH)

With Γ = Exp(ρH) as above, let Γ̃ be its universal cover. Then Γ̃ is a truncated
Coxeter complex of type D2n (Baumeister, Meixner and Pasini [1]; see also
Pasini and Yoshiara [14] or Baumeister and Stroth [3]). So, SH is Coxeter-like.

Let π : Γ̃ → Γ be the covering projection from Γ̃ onto Γ and K be the deck
group of π. By comparing the number of chambers of Γ̃ with the number of
chambers of Γ we immediately obtain that

|K| = 22n−(n+1
2 )−1.

Note that if n = 2 then K = 1, namely Γ̃ = Γ. So, henceforth we assume n > 2.

In order to describe K more precisely we need to recall a few facts on the
Coxeter groups of type D2n and C2n . Let S be a set of size 2n and US be
the GF(2)-vector space with S as a basis. Namely, the vectors of US are the
functions from S to GF(2). The support of such a vector f is the set S(f) :=

{p ∈ S | f(p) = 1} and the weight w(f) of f is the size |S(f)| of S(f). If
X = S(f), we shall write f = fX . In particular, if p ∈ S then f{p}, also denoted
by fp, is the vector with S(f) = {p}. The vectors of even weight form a maximal
subspace U+

S of US. Clearly, US = U+
S ⊕ 〈fp〉 for any p ∈ S. Note also that, for

every X ⊆ S, we have fX =
∑

p∈X fp.

The group Sym(S) of all permutations of S can quite naturally be regarded as
a group of linear transformations of US . The Coxeter group C of type C2n is the
semidirect product US :Sym(S). Clearly, Sym(S) stabilizes U+

S . The subgroup
D := U+

S :Sym(S) of C is the Coxeter group of type D2n .

As |S| = 2n, we can regard S as the point-set of an affine space. Let us choose
such an affine space AS on S. For every k = 0, 1, . . . , n, let U(k) be the subspace
of US spanned by the vectors fX , for X a k-dimensional affine subspace of AS .
Clearly,

U(0) = US > U(1) = U+
S > U(2) > · · · > U(n−1) > U(n) = 〈fS〉.

Note that U(1) and U(n) are normalized by Sym(S). On the other hand, the
following is clear:

Lemma 2.1. If 1 < k < n then the normalizer of U(k) in Sym(S) is the automor-
phism group Aut(AS) ∼= AGL(n, 2) of AS .

So, Aut(AS) acts on U(k)/U(k+1). We can say more on this action, but we
need a few preliminaries. Pick an independent spanning set p0, p1, . . . , pn of
AS , take p0 as the null vector and the family B := {{pi}}ni=1 as a basis of a
vector space V0

∼= V (n, 2) associated to AS , so that AS = AG(V0). Thus, every
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point p ∈ S can be regarded as a vector vp of V0. Needless to say, vp0 is the null
vector of V0 and, if p, q are distinct points of AS \ {p0} and {p0, p, q, r} is the
plane of AS spanned by {p0, p, q}, then vp + vq = vr. The k-dimensional linear
subspaces of V0 are the k-dimensional affine subspaces of AS that contain p0.
We write vi for vpi .

Let L = Aut(V0) be the stabilizer of p0 in Aut(AS) < Sym(S). Clearly, the
action of Sym(S) on US induces an action of L on US , and L stabilizes U(k) for
every k = 0, 1, . . . , n. Hence L acts on the quotient U(k)/U(k+1)

∼= U[k]. On the
other hand L = Aut(V0) also acts on ∧kV0. The following statement is implicit
in the calculations of [1], but we shall give a more perspicuos proof of it in
Section 4:

Theorem 2.2. For every k = 1, 2, . . . , n−1, ∧kV0 and U(k)/U(k+1) are isomorphic
as L-modules.

The L-module ∧kV0 is irreducible. Therefore:

Corollary 2.3. The L-module U(k)/U(k+1) is irreducible, for k = 1, 2, . . . , n− 1.

Consequently,

Corollary 2.4. The sequence 0 < U(n) < · · · < U(2) < U(1) < US is a composition
series for Aut(AS).

We shall now analyze the structure of US more thoroughly. We firstly state a
few conventions. If J ⊆ {1, 2, . . . , n}, we put vJ =

∑
j∈J vj . In particular, v∅ = 0

(the null vector of V0). It is also clear that, for every I ⊆ {1, 2, . . . , n}, the set
SI := {vJ}J⊆I is a linear subspace of V0 of dimension |I | (but not all linear
subspaces of V0 have this form). In particular, S1,2,...,n = V0. For k = 0, 1, . . . , n,
put Sk(B) = {SJ}|J|=k. Then the set {fX | X ∈ Sk(B)} spans a linear subspace
U[k] of US . Clearly, U[0] and U[n] are 1-dimensional. The following statement
is also implicit in the calculations of [1], but we shall obtain it in a more clear
way:

Lemma 2.5. dim(U[k]) = dim(∧kV0) =
(
n
k

)
, for every k = 0, 1, . . . , n.

Proof. By definition, the elements fX , withX ∈ Sk(B), span U[k]. Their number
is
(
n
k

)
. It remains to prove that they are independent, namely that any X =

〈vi1 , . . . , vik 〉 is not the symmetric difference of other elements in Sk(B). This is
evident since vi1 + · · ·+ vik , which belongs to X , does not belong to any other
element of Sk(B).

Theorem 2.6. U(k) =
⊕n

i=k U[i] for every k = 0, 1, 2, . . . , n.
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Proof. Every fX with X a subset of V0 can be obtained as a sum of suitable
members of ∪ni=0U[i]. Indeed, letX = {vJ1 , . . . , vJr}. Put X = {Ji}ri=1 and letm
be the maximal size of a member of X . We form a set Y = Ym∪Ym−1∪· · ·∪Y0 as
follows: Ym contains all subsets of members of X of sizem and Yi−1 contains all
subsets of members of Y i := ∪mj=iYj that have size i−1 and either are contained
in an odd number of members of Y i but do not belong to X , or are contained
in an even number of members of Y i and belong to X . It is not difficult to see
that fX =

∑
Y ∈Y fY ∈ ∪mi=0U[i].

By the above, ∪k≥0U[k] spans US. However, dim(U[k]) =
(
n
k

)
by Lemma 2.5.

As dim(US) = 2n and
∑n
k=0

(
n
k

)
= 2n, we obtain that US = ⊕nk=0U[k].

Clearly, U(k) contains the span of ∪ni=kU[i]. The latter is isomorphic to⊕ni=kU[i],
by the above. By Theorem 2.2 and Lemma 2.5, dim(U(k)/U(k+1)) = dim(U[k]) =(
n
k

)
. So, dim(U(k)) =

∑n
i=k

(
n
i

)
= dim(⊕ni=kU[i]). Therefore U(k) = ⊕ni=kU[i].

By the above, U(k)/U(k+1)
∼= U[k] (as vector spaces). However, when 1 < k < n,

L does not stabilize the subspace U[k] of US (but it stabilizes the 1-dimen-
sional subspaces U[0] and U[n]). Indeed, L maps the Sk(B) onto the set of
k-dimensional subspaces of V0, and the latter spans U(k) (see the proof of The-
orem 2.6). So, the previous isomorphism is not an isomorphism of L-modules
and the decomposition US = ⊕nk=0U[k] is not preserved by L.

We turn to K, now.

Theorem 2.7. K = U(3) =
⊕n

i=3 U[i].

Proof. This statement is implicit in the computations of Baumeister, Meixner
and Pasini [1, section 5], but we can also obtain it as follows. It is known
that Γ admits a quotient Γ, which can be described as the canonical gluing of
two copies of the affine space AG(n, 2) (see [1]; also Baumeister and Pasini
[2]). Let K be the deck group of the covering projection from Γ̃ onto Γ. Then
K = U(2), as proved by Baumeister and Pasini [2] (see also Baumeister, Meixner
and Pasini [1, section 5]). However, K < K and, by comparing orders, we
see that [K : K] =

(
n
2

)
. Moreover, K is normalized by Aut(AS). In view of

Corollary 2.4, we now see that K = U(3) is the unique possibility.

Theorem 2.8. If n = 3 then Aut(Exp(ρH)) ∼= D/K = 26:Sym(8). If n > 3 then
Aut(Exp(ρH)) = 2(n+1

2 ):AGL(n, 2) = AutρH (Exp(ρH)).

Proof. This follows from Lemma 2.1 and the fact that Aut(Γ) lifts through π to
the normalizer of K in Aut(Γ̃) (see [12, chapter 12]).
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We warn the reader that the above theorem should not be read as if it claimed
that π maps U+

S onto V ∧ V and the translation group TS of AS onto TH . In
fact, as we will see later, π indeed maps U(2) onto the subgroup V0∧V0 of V ∧V
and U(1)TS onto (V ∧ V )TH , but it maps U(2)TS onto V ∧ V .

2.4 What remains to do

With ρH as in Subsection 2.1, let ρ̃ be the hull of ρH and Ũ be the target group
of ρ̃. By Proposition 1.2, the universal cover Γ̃ of Γ = Exp(ρH) is the expansion
Exp(ρ̃) of ρ̃ and the kernel of the projection of Ũ onto U is the deck group K of
the covering projection π : Γ̃→ Γ. Therefore Ũ is a subgroup of the lifting G̃ of
G := AutρH (Exp(ρH)) to Γ̃ through π, andKEŨ . Moreover, Ũ/K ∼= U = V ∧V .
On the other hand, Ũ is a normal subgroup of G̃, which in its turn is an extension
of U+

S by Aut(AS) = AGL(n, 2). Note that U+
S = U[1]⊕U[2]⊕K ∼= (V ∧ V )⊕K

(indeed V ∧ V ∼= V0 ⊕ (V0 ∧ V0), V0
∼= U[1] and V0 ∧ V0

∼= U[2]). However, Ũ is
non-commutative when n > 2, as remarked in Subsection 1.5. So, when n > 2

the group Ũ is certainly different from U+
S (but Ũ 6= U+

S even when n = 2, as it
will turn out from the computations of Section 4). So, we must still describe Ũ
and determine how it sits inside G̃. We shall do this in the next two sections.

3 The abstract hull of ρH

Throughout this and the next section Σ, ρH , SH , Γ and Γ̃ are as in Section 2,
and n = d+ 1 > 2.

Given a basis {v∞, v1, . . . , vn} of V = V (n + 1, 2), let V0 = 〈v1, . . . vn〉 and
V ∗0 = V0 − {0}. We may assume that the basis {v1, . . . , vn} coincides with that
defined in Subsection 2.3. Every element of V can be written as εv∞ + x, with
x ∈ V0 and ε ∈ {0, 1}. Since (εv∞ + x) ∧ (ε′v∞ + x′) = (εx′ + ε′x) ∧ v∞ +

x ∧ x′, the exterior product U = V ∧ V is isomorphic to V0 ⊕ (V0 ∧ V0) via the
isomorphism v∞ ∧ V0

∼= V0, as we have already remarked in Section 2, but we
warn the reader that, in spite of these isomorphisms, he should resist temptation
of regarding v∞ ∧ V0 as the same thing as V0 and, accordingly, U as the same
thing as V0 ⊕ (V0 ∧ V0). Indeed U will turn out to be a quotient of the group

Ũ = [(V0 ∧ V0)⊕ (V0 ∧ V0 ∧ V0)⊕ . . . ]T̃

to be defined later in this section. In the projection of Ũ onto U , v∞ ∧ V0 is the
image of the subgroup T̃ < Ũ , which is not the same thing as V0.

The points of Σ, regarded as lines of AG(V0), are classes [(x, y)] of ordered
pairs (x, y), with x ∈ V0, y ∈ V ∗0 , via the equivalence relation (x, y) ∼ (x+y, y).
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Accordingly, a block of Σ is a set described as {[(x, y)]}y∈V ∗0 , for x ∈ V0. The
d-embedding ρH : Σ→ U is defined as follows:

ρH [(x, y)] = {(x+ v∞) ∧ y, 0}, x ∈ V0, y ∈ V ∗0 .

From now on ρH will be simply written as ρ. The image by ρ of a block B of
Σ is a subspace of PG(V ∧ V ) described as {(x + v∞) ∧ y}y∈V ∗0 ∪ {0}. Such a
subspace will be denoted by Bx.

Consider the graded algebra

E := 1⊕ V0 ⊕ (V0 ∧ V0)⊕ (V0 ∧ V0 ∧ V0)⊕ · · · ⊕ (V0 ∧ · · · ∧ V0︸ ︷︷ ︸
n times

)

where 1 := ∧0V0 (a 1-dimensional vector space over GF(2)).

For any x ∈ V0, x =

n∑

i=1

aivi, we call support of x the set S(x) := {i : ai 6= 0}.

So, x =
∑

i∈S(x)

vi.

For every x ∈ V0, define the following elements x̂, x ∈ E:

x̂ =
∑

K⊆S(x),K 6=∅

∧

k∈K
vk, if x 6= 0 and 0̂ = 0.

x = 1 + x̂ =
∑

K⊆S(x)

∧

k∈K
vk,

using the convention
∧

k∈∅
vk = 1.

Lemma 3.1. x+ y = x ∧ y, ∀x, y ∈ V0.

Proof. Let X = S(x) and Y = S(y). Then, denoting by 4 the symmetric differ-
ence of sets, we have S(x+ y) = X4Y . We get:

x+ y =
∑

Z⊆X4Y

∧

l∈Z
vl

x ∧ y = (
∑

K⊆X

∧

k∈K
vk) ∧ (

∑

H⊆Y

∧

h∈H
vh) =

∑

K⊆X,H⊆Y
K∩H=∅

∧

i∈K∪H
vi

A subset Z of X4Y is a union of two disjoint subsets of X and Y , respectively.
More precisely Z = H∪K, with H = Z∩X and K = Z∩Y . Thus the statement
follows.
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By induction, the previous result can be extended as follows:

Lemma 3.2.
t∑

i=1

xi =

t∧

i=1

xi, ∀x1, . . . xt ∈ V0.

Lemma 3.3. x̂+ y = x̂+ ŷ + (x̂ ∧ ŷ), ∀x, y ∈ V0.

Proof. By Lemma 3.1, we have:

x̂+ y = x+ y + 1 = x ∧ y + 1 = (1 + x̂) ∧ (1 + ŷ) + 1 = x̂+ ŷ + (x̂ ∧ ŷ).

Put T̃ := {tx}x∈V0 and define in T̃ the following product: txty = tx+y. Thus
T̃ is a group isomorphic to V0. Define an action of T̃ on E in the following way:
tx • u = u + u ∧ x̂, ∀u ∈ E, x ∈ V0. This definition is well posed, since the
following equalities hold:

tx • (ty • u) = tx+y • u, tx • (u+ v) = tx • u+ tx • v, t0 • u = u.

Consider the semidirect product E : T̃ with respect to the above action of T̃
on E.

Denote by I the following sub-algebra of E:

I := (V0 ∧ V0)⊕ (V0 ∧ V0 ∧ V0)⊕ · · · ⊕ (V0 ∧ · · · ∧ V0︸ ︷︷ ︸
n times

)

Restricting to I the action of T̃ we get the group I : T̃ . Denote it by Ũ . This
might look as a notational abuse, as the symbol Ũ has already been used in
Section 2 to denote the target group of the hull ρ̃ of ρ = ρH . However, this
abuse is quite harmless. Indeed we shall soon prove that Ũ , defined as above,
is indeed that target group.

Note first that Ũ is non-commutative. Indeed, given u ∈ I , tx ∈ T̃ and
denoting by (u, tx) their commutator, we have

(u, tx) = u−1t−1
x utx = u(tx • u) = u ∧ x̂

which is non-zero in general.

Define the embedding ρ̃ : Σ −→ Ũ in the following way:

ρ̃[(x, y)] = 〈(x̂, ty)ty〉 = {(x̂ ∧ ŷ)ty, 0}.

This definition makes sense since x̂+ y ∧ ŷ = (x̂ + ŷ + (x̂ ∧ ŷ)) ∧ ŷ = x̂ ∧ ŷ,
by Lemma 3.3. Note that the elements (x̂, ty)ty are involutions. In fact, since x̂
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and ty are involutions, we have (ty, x̂) = tyx̂tyx̂, therefore (ty, x̂)ty = tyx̂tyx̂ty.
It follows that

(ty, x̂)ty(ty , x̂)ty = tyx̂tyx̂tytyx̂tyx̂ty = 1.

The image by ρ̃ of a block B of Σ is a set described as

{(x̂, ty)ty}y∈V ∗0 ∪ {0} = {(x̂ ∧ ŷ)ty}y∈V ∗0 ∪ {0}.

Such a set will be denoted by B̃x.

Lemma 3.4. ρ̃ is an embedding.

Proof. Condition (AE1) is obviously satisfied. Let [(x, y)], [(x′, y′)] such that
ρ̃([(x, y)])∩ρ̃([(x′, y′)]) 6= {0}. Since these groups have order 2, then ρ̃([(x, y)]) =

ρ̃([(x′, y′)]), namely (x̂ ∧ ŷ)ty = (x̂′ ∧ ŷ′)t′y, whence

(x̂′ ∧ ŷ′) + (x̂ ∧ ŷ) = t′yty.

This implies {
x̂′ ∧ ŷ′ = x̂ ∧ ŷ
t′y = ty

The second equality implies y′ = y, then it follows (x̂+ x̂′)∧ ŷ = 0 from the first
equality, namely
( ∑

K⊆S(x),K 6=∅

∧

k∈K
vk +

∑

K′⊆S(x′),K′ 6=∅

∧

k′∈K′
vk′

)
∧

∑

H⊆S(y),H 6=∅

∧

h∈H
vh = 0.

This implies for the lower grade:
( ∑

k∈S(x)

vk +
∑

k′∈S(x′)

vk′

)
∧
∑

h∈S(y)

vh = 0.

i. e. (x + x′) ∧ y = 0. It follows that either x = x′ or y = x+ x′. Thus (x′, y′) =

(x, y) or (x′, y′) = (x′, y) = (x+ y, y). In both cases we have [(x, y)] = [(x′, y′)].
Then (AE2) holds.

Note that

(ty , x̂)ty = tyx̂tyx̂ty = tyx̂(ty • x̂) = tyx̂(x̂+ x̂ ∧ ŷ) = ty(x̂ ∧ ŷ) = ty(ty, x̂)

Thus:
(ty, x̂)ty = ty(ty, x̂) (1)
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For any x ∈ V0, consider (x̂ ∧ ŷ)ty , (x̂ ∧ ŷ′)ty′ . By (1) and Lemma 3.3, we have:

(x̂ ∧ ŷ)ty(x̂ ∧ ŷ′)ty′ = ty(x̂ ∧ ŷ)(x̂ ∧ ŷ′)ty′ = ty(x̂ ∧ (ŷ + ŷ′))ty′

= ty(x̂ ∧ (ŷ + ŷ′))tytyty′ = ty(x̂ ∧ (ŷ + ŷ′))tyty+y′

= (ty • (x̂ ∧ (ŷ + ŷ′)))ty+y′

= (x̂ ∧ (ŷ + ŷ′) + x̂ ∧ (ŷ + ŷ′) ∧ ŷ)ty+y′

= (x̂ ∧ (ŷ + ŷ′) + x̂ ∧ ŷ′ ∧ ŷ))ty+y′

= (x̂ ∧ (ŷ + ŷ′ + ŷ ∧ ŷ′))ty+y′ = (x̂ ∧ ŷ + y′)ty+y′ .

This proves that B̃x is a group isomorphic to V0, thus (AE3) is satisfied. Clearly,
condition (AE4) also holds.

Consider the map f̃ : Ũ −→ U defined in the following way. For any wty ∈ Ũ ,
with w =

∑
aij(vi ∧ vj) +

∑
aijk(vi ∧ vj ∧ vk) + · · · ∈ I and ty ∈ T̃ , set

w∗ =
∑
aij(vi ∧ vj), the grade 2 part of w, and define

f̃(wty) = w∗ + v∞ ∧ y.

Theorem 3.5. (ρ̃, f̃) is the abstract hull of ρ.

Proof. Since the dimension of I equals
d+1∑

i=2

(
d+ 1

i

)
= 2d+1 − d− 2 = M−d−2,

then |Ũ | = |I · T̃ | = 2M−d−22d+1 = 2M−1, which is the correct size of the
universal representation group of ρ (see Section 2).

It remains to prove that f̃ ρ̃ = ρ. We have, for any x ∈ V0, y ∈ V ∗0 :

f̃ ρ̃([x, y]) = f̃((x̂ ∧ ŷ)ty) = x ∧ y + v∞ ∧ y = ρ([x, y]).

Therefore f̃ ρ̃ = ρ.

The next proposition follows from the previous description of Ũ and f̃ .

Proposition 3.6. Ker(f̃) is equal to the commutator subgroup of Ũ .

Corollary 3.7. The embedding ρH is projectively dominant.



138 A. Del Fra • A. Pasini

4 Recovering the L−module Ũ inside the Coxeter
group

In order to describe the lifting of Aut(Exp(ρ)), we need to identify E with US ,
preserving their respective decompositions. Consider, for any k = 1, . . . , n, the
map σ : ∧kV0 −→ U[k], obtained by linear extension of the following:

σ(
∧

j∈K
vj) = fSK , ∀K ⊆ {1, . . . , n}, |K| = k.

Since US = ⊕nk=0U[k], this provides an isomorphism, also called σ, between E
and US as graded algebras. In particular σ sends

⊕
h≥k

∧h
V0 to U(k).

We have:

Lemma 4.1. σ(v) = fv, ∀v ∈ V0.

Proof. Let v = vi1 + · · ·+ vik and set K = S(v) = {i1, . . . ik}. We have:

σ(v) = σ(
∑

J⊆K

∧

j∈J
vj) = σ(1 +

∑

j∈K
vj +

∑

J⊆K,|J|=2

∧

j∈J
vj + · · ·+

∧

j∈K
vj) =

= f∅ +
∑

J⊆K,|J|≤1

fvJ +
∑

J⊆K,|J|≤2

fvJ + · · ·+
∑

J⊆K
fvJ

In the sum above, every J ⊆ K appears 2k−|J| times, thus fvK , namely fv, is
the only surviving summand.

Lemma 4.2. σ(x̂ ∧ ŷ) = f{v0,x,y,x+y}, ∀x, y ∈ V0.

Proof. We have x̂ ∧ ŷ = (x+ 1) ∧ (y + 1) = 1 + x+ y + x+ y, by Lemma 3.1.
The statement follows from Lemma 4.1.

Extending in obvious way the isomorphism σ to E : T̃ , we define the product
US : T̃ . Given wtx ∈ Ũ , let A be such that σ(w) = fA. Often, it will be useful
to pass from wtx to the corresponding σ(w)tx = fAtx. In that case, whenever it
will not cause any ambiguity, we set, by abuse of notation, wtx = fAtx.
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4.1 Autρ(Exp(ρ))

Consider Exp(ρ), affine expansion of ρ.

The elements of type 0 of Exp(ρ) are the elements of U ,

v∞ ∧ q +
∑

aijvi ∧ vj .

The elements of type 1 of Exp(ρ) are the right cosets

〈(v∞ + x) ∧ y〉+ v∞ ∧ q +
∑

aijvi ∧ vj .

The elements of type 2 of Exp(ρ) are the right cosets

{(v∞ + x) ∧ y}y∈V0 + v∞ ∧ q +
∑

aijvi ∧ vj .

Recall that Aut(Exp(ρ)) = U : (TH : LH) (Section 2.2). We describe the
actions of these subgroups on Exp(ρ) in detail.

Action of U . The group U acts on the elements of Exp(ρ) by sum.

Action of TH . Denoting by τz the element of TH , corresponding to the trans-
lation by the vector z, we get:

τz

(
v∞ ∧ q +

∑
aijvi ∧ vj

)
= (v∞ + z) ∧ q +

∑
aijvi ∧ vj

for the elements of type 0;

τz

(
〈(v∞ + x) ∧ y〉+ v∞ ∧ q +

∑
aijvi ∧ vj

)

= 〈(v∞ + x+ z) ∧ y〉+ (v∞ + z) ∧ q +
∑

aijvi ∧ vj

for the elements of type 1;

τz

(
{(v∞ + x) ∧ y}y∈V0 + v∞ ∧ q +

∑
aijvi ∧ vj

)

= {(v∞ + x+ z) ∧ y}y∈V0 + (v∞ + z) ∧ q +
∑

aijvi ∧ vj

for the elements of type 2.
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Action of LH . Given α ∈ L (see Section 2.2), we denote by α[x] the image
of a vector x in V0. By abuse of notation we also call α the element of LH
corresponding to α in the isomorphism L ∼= LH . The element α ∈ LH acts as
follows:

α
(
v∞ ∧ q +

∑
aijvi ∧ vj

)
= v∞ ∧ α[q] +

∑
aijα[vi] ∧ α[vj ]

for the elements of type 0;

α
(
〈(v∞ + x) ∧ y〉+ v∞ ∧ q +

∑
aijvi ∧ vj

)

= 〈(v∞ + α[x]) ∧ α[y]〉+ v∞ ∧ α[q] +
∑

aijα[vi] ∧ α[vj ]

for the elements of type 1;

α
(
{(v∞ + x) ∧ y}y∈V0 + v∞ ∧ q +

∑
aijvi ∧ vj

)

= {(v∞ + α[x]) ∧ α[y]}y∈V0 + v∞ ∧ α[q] +
∑

aijα[vi] ∧ α[vj ]

for the elements of type 2.

The structure of U : (TH :LH). The actions of LH on TH , of TH on U and of
LH on U are as follows:

α • τz = τα[z] ;

τz •
(
v∞ ∧ q +

∑
aijvi ∧ vj

)
= (v∞ + z) ∧ q +

∑
aijvi ∧ vj ;

α •
(
v∞ ∧ q +

∑
aijvi ∧ vj

)
= v∞ ∧ α[q] +

∑
aijα[vi] ∧ α[vj ] .

4.2 Autρ̃(Exp(ρ̃))

Consider Exp(ρ̃), affine expansion of ρ̃.

The elements of type 0 of Exp(ρ̃) are the elements wtx of Ũ = I : T̃ ;

the elements of type 1 of Exp(ρ̃) are the right cosets〈(p̂ ∧ ŷ)ty〉wtx ;

the elements of type 2 of Exp(ρ̃) are the right cosets {(p̂ ∧ ŷ)ty}y∈V0wtx .

Action of Ũ . The group Ũ is trivially a subgroup of Aut(Exp(ρ̃)), its action
being defined by right product:

utz(wtx) = wtxutz = (w + u+ u ∧ ẑ)tx+z
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for the elements of type 0;

utz(〈(p̂ ∧ ŷ)ty〉wtx) = (〈p̂ ∧ ŷ)ty〉wtxutz = 〈(p̂ ∧ ŷ)ty〉(w + u+ u ∧ ẑ)tx+z

for the elements of type 1;

utz({(p̂ ∧ ŷ)ty}y∈V0wtx) = {(p̂ ∧ ŷ)ty}y∈V0 wtxutz

= {(p̂ ∧ ŷ)ty}y∈V0 (w + u+ u ∧ ẑ)tx+z

for the elements of type 2.

The group T ′. Denote by T ′ the set {ẑtz|z ∈ V0}. T ′ is a subgroup of E : T̃ ,
since the elements ẑtz are involutions and

ẑtzŷty = ẑtzŷtztzty = (ẑ + ŷ + ŷ ∧ ẑ)tz+y = (ẑ + y)tz+y.

T ′ is isomorphic to the translation groups T and TH (see Section 2.2). We define
the following action of T ′ on Exp(ρ̃):

ẑtz(wtx) = ẑtzwtx(ẑtz)
−1 = ẑtzwtxtz ẑ = ẑtzwtztxẑtxtx

= (w + w ∧ ẑ + ẑ ∧ x̂)tx

for the elements of type 0;

ẑtz(〈(p̂ ∧ ŷ)ty〉wtx) = ẑtz〈(p̂ ∧ ŷ)ty〉wtxtz ẑ
= ẑtz〈(p̂ ∧ ŷ)ty〉tz ẑẑtzwtxtz ẑ
= 〈(p̂ ∧ ŷ + p̂ ∧ ŷ ∧ ẑ + ẑ ∧ ŷ)ty〉(w + w ∧ ẑ + ẑ ∧ x̂)tx

= 〈((p̂+ z) ∧ ŷ)ty〉(w + w ∧ ẑ + ẑ ∧ x̂)tx

for the elements of type 1;

ẑtz({(p̂ ∧ ŷ)ty}y∈V0wtx) = ẑtz{(p̂ ∧ ŷ)ty}y∈V0wtxtz ẑ

= {((p̂+ z) ∧ ŷ)ty}y∈V0(w + w ∧ ẑ + ẑ ∧ x̂)tx

for the elements of type 2.

The group L. We shall now define the action of L on E. We shall exploit the
isomorphism σ : E −→ US in such a way that the action of L on US will be
reproduced on E. In short we want E and US to be isomorphic as L-modules,
too. The action of L that we are going to define is based on the equalities
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α(fp) = fα[p], α(tx) = tα[x], extended to the three types of Exp(ρ̃). More
explicitly, given wtx in Ũ :

wtx = (
∑

{i,j}
aijvi ∧ vj +

∑

{i,j,k}
aijkvi ∧ vj ∧ vk + · · · )tx .

σ maps this element onto the following:

(
∑

{i,j}
aij

∑

J⊆{i,j}
fvJ +

∑

{i,j,k}
aijk

∑

J⊆{i,j,k}
fvJ + · · · )tx .

With the abuse of notation announced at the beginning of Section 4, we define:

α(wtx) = α

((∑

{i,j}
aij

∑

J⊆{i,j}
fvJ +

∑

{i,j,k}
aijk

∑

J⊆{i,j,k}
fvJ + · · ·

)
tx

)

=
(∑

{i,j}
aij

∑

J⊆{i,j}
fα[vJ ] +

∑

{i,j,k}
aijk

∑

J⊆{i,j,k}
fα[vJ ] + · · ·

)
tα[x]

for the elements of type 0;

α
(
〈(p̂ ∧ ŷ)ty〉wtx

)

= α

(
f{v0,p,y,p+y}ty

(∑

{i,j}
aij

∑

J⊆{i,j}
fvJ +

∑

{i,j,k}
aijk

∑

J⊆{i,j,k}
fvJ + · · ·

)
tx

)

= f{v0,α[p],α[y],α[p]+α[y]}tα[y]

(∑

{i,j}
aij
∑

J⊆{i,j}
fα[vJ ]+

∑

{i,j,k}
aijk

∑

J⊆{i,j,k}
fα[vJ ] +· · ·

)
tα[x]

for the elements of type 1;

α
(
{p̂ ∧ ŷ)ty}y∈V0wtx

)

= α

(
{f{v0,p,y,p+y}ty}y∈V0

(∑

{i,j}
aij

∑

J⊆{i,j}
fvJ +

∑

{i,j,k}
aijk

∑

J⊆{i,j,k}
fvJ + · · ·

)
tx

)

= {f{v0,α[p],α[y],α[p]+α[y]}tα[y]}y∈V0

(∑

{i,j}
aij
∑

J⊆{i,j}
fα[vJ ]+

∑

{i,j,k}
aijk

∑

J⊆{i,j,k}
fα[vJ ]+· · ·

)
tα[x]

for the elements of type 2.

A candidate for Autρ̃(Exp(ρ̃)). We define in obvious way an action of L on
Ũ and of T ′ on Ũ :

ẑtz • wtx = (w + w ∧ ẑ + ẑ ∧ x̂)tx ;

α • wtx = α •
(∑

{i,j}
aij

∑

J⊆{i,j}
fvJ +

∑

{i,j,k}
aijk

∑

J⊆{i,j,k}
fvJ + · · ·

)
tx

=
(∑

{i,j}
aij

∑

J⊆{i,j}
fα[vJ ] +

∑

{i,j,k}
aijk

∑

J⊆{i,j,k}
fα[vJ ] + · · ·

)
tα[x] .
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In order to define an action of L on T ′, we need some supplementary results.

Lemma 4.3. α(u ∧ w) = α(u) ∧ α(w), ∀α ∈ L, ∀u,w ∈ I.

Proof. By the linearity of α, it is enough to prove that

α(
∧

j∈J
vj) =

∧

j∈J
α(vj).

By the isomorphism between US and E, the definition of α and its linearity, we
have:

α(
∧

j∈J
vj) = α(

∑

K⊆J
fvK ) =

∑

K⊆J
fα[vK ].

Note that, by Lemma 4.1:

α(vj) = α(1 + vj) = α(fv0 + fvj ) = fα[v0] + fα[vj ] = 1 + α[vj ].

Set |J | = t and denote by
(
J
s

)
the set of s-tuples of distinct elements in J . We

have by Lemma 3.2:
∧

j∈J
α(vj) =

∧

j∈J
(1 + α[vj ]) =

= 1 +
∑

j∈J
α[vj ] +

∑

{j1,j2}∈(J2)

α[vj1 ] ∧ α[vj2 ] + · · ·

+
∑

{j1,...,jt−1}∈( J
t−1)

α[vj1 ] ∧ . . . ∧ α[vjt−1 ] +
∧

j∈J
α[vj ]

= 1 +
∑

j∈J
α[vj ] +

∑

{j1,j2}∈(J2)

α[vj1 ] + α[vj2 ] + · · ·

+
∑

{j1,...,jt−1}∈( J
t−1)

α[vj1 ] + · · ·+ α[vjt−1 ] +
∑

j∈J
α[vj ]

= 1 +
∑

j∈J
fα[vj ] +

∑

{j1,j2}∈(J2)

fα[vj1 ]+α[vj2 ] + · · ·

+
∑

{j1,...,jt−1}∈( J
t−1)

fα[vj1 ]+···+α[vjt−1
] + fα[vJ ]

=
∑

K⊆J
fα[vK ] .

Lemma 4.4. α(u) = α[u], ∀α ∈ L, ∀u ∈ V0.

Proof. α(u) = α(fu) = fα[u] = α[u].
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It immediately follows:

Lemma 4.5. α(û) = α̂[u], ∀α ∈ L, ∀u ∈ V0.

We warn the reader that Lemma 4.3 does not imply that
∧k

V0 is stabilized
by α. In fact α(

∧k
V0) 6= ∧k

V0, because α(
∧k

V0) in general involves contri-
butions from

∧h
V0, with h > k. However,

⊕
h≥k

∧k
V0/

⊕
h>k

∧h
V0 is stable

under the action of α. Actually, on that quotient, that action is the natural one.
Theorem 2.2 immediately follows from this remark.

Now, we define the following action of L on T ′:

α • ẑtz = α̂[z]tα[z], ∀α ∈ L, ∀z ∈ V0 .

The actions defined above allow to construct the product Ũ ·(T ′ ·L). All products
involved here are semi-direct. Accordingly we will write Ũ : (T ′ : L) instead of
Ũ · (T ′ · L).

Proposition 4.6. Ũ : (T ′ : L) is an automorphism group of Exp(ρ̃).

Proof. We have to prove that the structure of the product of Ũ : (T ′ : L) is
compatible with the actions defined in every single factor. The only non-trivial
check concerns the factor T ′ : L. For any wtx in Ũ , we have, by Lemmas 4.3
and 4.5:

αẑtzα
−1(wtx) = αẑtz

(
α−1(w)tα−1 [x]

)

= α
((
α−1(w) + α−1(w) ∧ ẑ + ẑ ∧ α̂−1[x]

)
tα−1[x]

)

=
(
w + w ∧ α(ẑ) + α(ẑ) ∧ αα−1(x̂)

)
tx

=
(
w + w ∧ α̂[z] + α̂[z] ∧ x̂

)
tx

that coincides with the action of α̂[z]tα[z] on wtx. This proves the compatibility
with the action of T ′ : L on the elements of type 0. The control on the elements
of type 1 and 2 is similar.

We claim that the group defined above is the lifting of Autρ(Exp(ρ)), namely:

Theorem 4.7. Autρ̃(Exp(ρ̃)) = Ũ : (T ′ : L)

In the sequel we shall prove Theorem 4.7 by defining a suitable projection of
Ũ : (T ′ : L) onto U : (TH : LH).
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The projection. We recall the projection f̃ : Ũ −→ U defined in Section 3:

f̃(wtx) = v∞ ∧ x+ w∗, ∀w ∈ I, ∀x ∈ V0 .

Note that, given vi ∧ vj ∈ I , since vi ∧ vj = 1 + fvi + fvj + fvi+vj (with the
usual abuse of notation), we have f̃(1 + fvi + fvj + fvi+vj ) = vi ∧ vj ∈ U . This
equality can be generalized in the following way:

Proposition 4.8. f̃(1 + fp + fq + fp+q) = p ∧ q, for all p, q ∈ V0.

Proof. Set p =
∑

i∈S(p)

vi and q =
∑

i∈S(q)

vi. We get:

1 + fp + fq + fp+q = 1 + p+ q + p+ q

= 1 + 1 +
∑

i∈S(p)

vi +
∑

{i,j}∈(S(p)
2 )

vi ∧ vj + · · ·

+ 1 +
∑

i∈S(q)

vi +
∑

{i,j}∈(S(q)
2 )

vi ∧ vj + · · ·

+ 1 +
∑

i∈S(p+q)

vi +
∑

{i,j}∈(S(p+q)
2 )

vi ∧ vj + · · ·

It follows:

f̃(1 + fp + fq + fp+q)

=
∑

{i,j}∈(S(p)
2 )

vi ∧ vj +
∑

{i,j}∈(S(q)
2 )

vi ∧ vj +
∑

{i,j}∈(S(p+q)
2 )

vi ∧ vj .

Since S(p+ q) = S(p)4S(q), we can delete the summands vi ∧ vj with:

i, j belonging to S(p) ∩ S(q), as common to the first and the second sum,

i, j belonging to S(p)− S(q), as common to the first and the third sum,

i, j belonging to S(q)− S(p), as common to the second and the third sum.

Thus:

f̃(1 + fp + fq + fp+q)

=
∑

i∈S(p)∩S(q)
j∈S(p)−S(q)

vi ∧ vj +
∑

i∈S(p)∩S(q)
j∈S(q)−S(p)

vi ∧ vj +
∑

i∈S(p)−S(q)
j∈S(q)−S(p)

vi ∧ vj .
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On the other hand

p ∧ q =
∑

i∈S(p)

vi ∧
∑

j∈S(q)

vj

=


 ∑

i∈S(p)∩S(q)

vi +
∑

i∈S(p)−S(q)

vi


 ∧


 ∑

j∈S(p)∩S(q)

vj +
∑

j∈S(q)−S(p)

vj




=
∑

i∈S(p)∩S(q)
j∈S(p)−S(q)

vi ∧ vj +
∑

i∈S(p)∩S(q)
j∈S(q)−S(p)

vi ∧ vj +
∑

i∈S(p)−S(q)
j∈S(q)−S(p)

vi ∧ vj .

Now, we introduce a projection π from Ũ : (T ′ : L) to U : (TH : LH), which
extends f̃ . It is enough to define the images by π of the elements of T ′ and L.
We do it in the following natural way:

π(ẑtz) = τz , π(α) = α .

We have to check that this projection reproduces the actions defined in the
semi-direct products.

The action of T ′ on Ũ is projected on the action of TH on U . In fact, since
(w + w ∧ ẑ + ẑ ∧ x̂)∗, the grade 2 part of w + w ∧ ẑ + ẑ ∧ x̂, equals w∗ + z ∧ x,
we have:

π(ẑtz) • π(wtx) = τz • (v∞ ∧ x+ w∗) = (v∞ + z) ∧ x+ w∗

= π((w + w ∧ ẑ + ẑ ∧ x̂)tx) = π(ẑtz • wtx) .

The action of L on Ũ is projected on the action of LH on U . Indeed, using
the notation on the isomorphism between US and E and Proposition 4.8:

π(α) • π(wtx) = α •
(
v∞ ∧ x+

∑

{i,j}
aijvi ∧ vj

)

= v∞ ∧ α[x] +
∑

{i,j}
aijα[vi] ∧ α[vj ]

= π

((∑

{i,j}
aij
(
fv0 + fα[vi] + fα[vj ] + fα[vi]+α[vj ]

)
+ · · ·

)
tα[x]

)

= π

((∑

{i,j}
aij

∑

J⊆{i,j}
fα[vJ ] + · · ·

)
tα[x]

)
= π(α • wtx) .

The action of L on T ′ is projected on the action of LH on TH . In fact:

π(α) • π(ẑtz) = α • τz = τα[z] = π(α̂[z]tα[z]) = π(α • ẑtz) .
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Finally, a straightforward computation shows that the actions of the groups
Ũ , T ′, L on the three types of Exp(ρ̃) are respectively projected by π on the
actions of U , TH , LH on the three types of Exp(ρ). So, Theorem 4.7 is proved.
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