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Floer cohomology, multiplicity and
the log canonical threshold

MARK MCLEAN

Let f be a polynomial over the complex numbers with an isolated singularity at 0.
We show that the multiplicity and the log canonical threshold of f at O are invariants
of the link of f* viewed as a contact submanifold of the sphere.

This is done by first constructing a spectral sequence converging to the fixed-point
Floer cohomology of any iterate of the Milnor monodromy map whose E! page is
explicitly described in terms of a log resolution of f. This spectral sequence is a
generalization of a formula by A’Campo. By looking at this spectral sequence, we get
a purely Floer-theoretic description of the multiplicity and log canonical threshold

of f.
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1 Introduction
Let f: C"t1 — C be a polynomial with an isolated singular point at 0 where n > 1.

Let S¢ € C"*1 be the sphere of radius € centered at 0. The link of f at 0 is the
submanifold Ly = f ~1(0)N S¢ C S, where € > 0 is sufficiently small. One can ask
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the following question: What is the relationship between the link of f and various
algebraic properties of f ? For instance, Zariski in [23] asked whether the multiplicity
of f at 0 depends only on the embedding Ly C Se¢. Another important invariant
is the log canonical threshold (see Atiyah [3], Musta [30] or Definition 2.1). Again
one can ask if this is an invariant of Ly C Se (see Budur [8, Section 1.6]). We will
answer weaker versions of these questions. If € > 0 is small enough, it turns out that
Ly is naturally a contact submanifold of Se (see Varchenko [42]). If g: C ntl_, C
is another polynomial with isolated singularity at O then we say that f and g have
embedded contactomorphic links if there is a contactomorphism ®: S¢ — S sending
Ly to Lg. Varchenko [42] showed that if there is a holomorphic change of coordinates
sending f to g then they have embedded contactomorphic links. One of the goals of
this paper is to prove the following theorem:

Theorem 1.1 Suppose that f,g: C"T1 — C are two polynomials with isolated sin-
gular points at 0 with embedded contactomorphic links. Then the multiplicity and the
log canonical threshold of f and g are equal.

We will prove this theorem by finding formulas for the multiplicity and log canonical
threshold in terms of a sequence Floer cohomology groups. The key technical result of
this paper proving the above theorem will be a natural generalization of a formula by
A’Campo [2].

For all € > 0 small enough, there is a smooth fibration

arg(f): Se = f1(0) > R/27Z, arg(f)(z) = arg(f(2)),

called the Milnor fibration associated to f (see Milnor [29, Chapter 4]). A fiber
My = arg(f )~1(0) is called the Milnor fiber of f. By choosing an appropriate
connection on this fibration, there is a natural compactly supported diffeomorphism
¢: My — My given by parallel transporting around the circle R/277Z, called the
Milnor monodromy map. The Lefschetz number A(¢™) of ¢™ is defined to be

o0
A@™) =) (=D Te(@l: Hj(My: Z) — Hj(My: L)),
Jj=0
and this is an invariant of the embedding Ly C S, for each m > 0. A’Campo [2]
computed these numbers in the following way. Let 7r: ¥ — C"*! be a log resolution
of the pair (C"*1, f=1(0)) at 0. Let (E ' )j ¢ be the prime exceptional divisors of this
resolution and define E, to be the proper transform 7=1(f~1(0) —0) of f~1(0).
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Floer cohomology, multiplicity and the log canonical threshold 959

Let SVE S U{xg}. Define E](.) = Ej —Ujes—;y Ei forall j € S and define Sy, =
{i € S :ordy(E;) divides m} for all m > 0. A’Campo showed that

(1-1) A(p™) = Z ords (E;)x(E{) forall m> 0.

i€SHm
The key technical result of this paper (Theorem 1.2) is a spectral sequence converging
to a group whose Euler characteristic is naturally equal to the left-hand side of (1-1)
multiplied by (—1)" and such that the Euler characteristic of the E! page is naturally
equal to the right-hand side multiplied by (—1)". We will now explain this result.

For € > 0 small enough, the Milnor fiber My is naturally a symplectic manifold and ¢
can be made to be a compactly supported symplectomorphism (see Section 3). For any
compactly supported symplectomorphism i satisfying some additional properties, one
can assign a group HF* (v, +), called the Floer cohomology group of ¥ (see Seidel
[37, Section 4] or Section 4 of this paper). The Euler characteristic of this group is
(—1)" multiplied by the Lefschetz number of ¥ (see property (HF1) in Section 4).
As a result, we have a sequence of groups HF*(¢™, +) whose Euler characteristic is
(=D A(¢™) for all m > 0. All of these groups are invariants of the link of f up to
embedded contactomorphism (see Lemma B.17). The log resolution 7: ¥ — C"*1
is called a multiplicity m separating resolution if ords(E;) + ords (E;) > m for all
i,j €S satisfyingi # j and E; NE; # 2.

Theorem 1.2 Suppose that w: Y — C"*1 is a multiplicity m separating resolution
for some m € Nx¢. Let (w;), g be positive integers such that _ZieS‘ w; E; is ample.
Let a; be the discrepancy of E; (see Definition 2.1) and define k; = m/ords (E;) for
all i € Sy, . Then there is a cohomological spectral sequence converging to HF* (¢™, +)
with E' page
EP? = @ Hn—(P‘i‘Q)_Zki(ai-i‘l)(Elp; Z),
{ieSy:kjiw;=—p}

where El" is an m; —fold cover of El" forall i € S;,. The cover El" is constructed as
follows: Let U; be a neighborhood of El" inside Y —|_J ies—i E; which deformation
retracts onto E;, let v;: U; — El" — U; be the natural inclusion map and define

firUi—E} > C*, fi(x) = f(x(x)).

Then Ef is a disjoint union of connected covers corresponding to a normal subgroup
G; = (1)« (ker((f)x)) C m1(U;) = m1(EY)

and the number of such covers is m; divided by the index of G; in w1 (E?).
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Figure 1

The covers Elo are described in an explicit algebraic way by Denef and Loeser
[12, Section 2.3]. Intuitively, we should think of E ¢ in the following way: if U; were a
“nice” tubular neighborhood of E7 and we had a “nice” projection map Q;: U; — E?
then Q;: (fom) Y (e)NU; — E? would be a covering map onto its image homotopic
to El" for € > 0 small enough (see the proof of Lemma 5.40). See Figure 1.

By Lemma 2.4 combined with Hironaka [20; 21], a resolution satisfying the properties
stated in the above Theorem exists for each m > 0. By looking at this spectral sequence
above, one gets the following corollary:

Corollary 1.3 For each m > 0, define v,, = sup{a : HF*(¢™, +) # 0} and define
Um =inflk;(a; +1):i € S,,}, where k; and a; are defined as in Theorem 1.2 above.
Then

Vi =n—2WUy, forall m > 0.

In particular, HF* (¢™, +) vanishes if and only if [, = co. Also, the numbers [i,, are
invariants of the link up to embedded contactomorphism since the groups HF* (¢™, +)
are.

We will prove this corollary in Section 6. Note that the numbers u,, have also appeared
in Ein, Lazarsfeld and Musta [15, Corollary 2.4]. We have an immediate corollary
of Corollary 1.3, proving a conjecture of Seidel [38] regarding the multiplicity of a
singularity.

Corollary 1.4 The multiplicity of f is the smallest m >0 such that HF* (¢™, +) #0.
The log canonical threshold of f at 0 is

leto(f) = lgr_l)iglof(inf{—% THF (¢, +) £ 0 or —5— = 1})
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Floer cohomology, multiplicity and the log canonical threshold 961

Since HF*(¢™, +) is an invariant of the link of f up to embedded contactomorphism
by Lemma B.17, we get that Theorem 1.1 follows immediately from Corollary 1.4.

For each m > 0, Denef and Loeser [12] constructed natural spaces y,;,1 whose Euler
characteristic is A(¢"™). Therefore, it is natural to ask: What is the relationship between
these spaces and the groups HF*(¢™, +), if any? Such a question was considered by
Seidel (see [12, Remark 2.7]). It might be interesting to see if there is a similar spectral
sequence converging to Hy(ym,1:Z) since these spaces admit a natural stratification
induced by the strata of the log resolution . A possible proof would exploit the
spectral sequence — see Petersen [33, Formula (3)] — combined with [12, Lemma 2.2]
(see also the calculations in the proof of [12, Lemma 2.5]).

1.1 Sketch of the proof of Theorem 1.2

We will now state one of the key properties of the group HF*(y/, +) that will be used
in this proof. This property is stated precisely in (HF3) in Section 4 and proven in
Appendix C.

Spectral sequence property Suppose that the set of fixed points of i is a disjoint
union of connected codimension 0 submanifolds By, ..., B; with boundary and corners
and suppose that ¥ behaves in a particular way near the boundary of B; for each i.
Then there is a grading CZ(B;) € Z for each B; and there is a specific function
t: {1,...,1} — N such that there is a spectral sequence converging to HF* (v, +) with
E! page equal to

EP? = D Hy—(p+q)—cz2(¢.8;)(Bi: Z).
{ie{1,...1}u(@)=p}
The spectral sequence above is an example of a Morse—Bott spectral sequence (see Bott
[5, Corollary 2] and Hutchings [22, Section 6.4] for other similar examples). Therefore,
in order to prove Theorem 1.2 it would be sufficient for us to deform the monodromy
symplectomorphism ¢™ so that the set of fixed points is a union of codimension 0
submanifolds homotopic to Eiop for each i € {1,...,/}. The problem is that we
cannot quite do this, but we can construct a new symplectomorphism with the required
fixed-point sets without changing HF*(¢™, 4). Also, Theorem 1.2 really requires a
specific ordering of the submanifolds E l‘; corresponding to the sequence of positive
integers (w;);es , but we will ignore this detail here, as the main applications of this
paper do not need such an ordering. We will now explain how to modify ¢™ without
changing HF*(¢™, +) so that it has this fixed-point property. This is done in Section 5.
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962 Mark McLean

We have a natural symplectic form wy on Y that comes from the ample divisor
—> ies Wi E;. This symplectic form gives us a natural Ehresmann connection on
x*f away from (7*f)~!(0) and hence gives us a monodromy map. First of all, we
deform wy so that it behaves well with respect to 7*f (see Sections 5.1 and 5.2). The
key idea is that since 7*f locally looks like []7Z; z;", we can deform wy so that
it basically looks like the standard symplectic form in these local charts (with a few
modifications). The next step is to show that the corresponding monodromy map
satisfies HF* (y™, +) = HF*(¢™, +) (see Sections 5.3 and 5.4 and Appendix A).
Here we are using the fact that these Floer cohomology groups are invariants of the
mapping tori of ¢ and ™, respectively, along with an additional contact structure on
these tori and some additional data. Finally we need to compute the fixed points of the
monodromy map, so that we can apply our spectral sequence property (see Section 5.5).

Plan of the paper

In Section 2 we construct algebraic invariants of (C"*1, f=1(0)) which will be used
to tell us the smallest nonvanishing degree of HF*(¢™, +) for each m. These invari-
ants are constructed by looking at the multiplicities and discrepancies of the prime
exceptional divisors (E;);es of a resolution.

In Section 3 we give some basic definitions of the main objects in symplectic and
contact geometry that will be used in this paper. These include Liouville domains,
(abstract) open books, contact mapping cylinders and gradings. In Section 4 we give
a definition via Floer cohomology of a symplectomorphism. We also state the three
main properties (HF1)—(HF3) of the Floer cohomology group HF* (v, +) that will be
needed for this paper. These properties will be proven in Appendices B and C.

Section 5 is the largest section of the paper. This section is used to construct a
monodromy symplectomorphism nice enough that we can use the properties from
Section 4 to prove Theorem 1.2. This section heavily relies on results and notation
from Tehrani, Mclean and Zinger [40]. Section 6 contains a proof of Theorem 1.2 and
Corollary 1.3.

Appendix A deals with gradings. It enables us to compute the quantities CZ(B;) stated
in the spectral sequence property in the sketch of the proof of Theorem 1.2 earlier.
Appendix B proves that the groups HF*(¢™, +) only depend on the link Ly C S as
a contact submanifold. This relies heavily on results of McLean [27]. In Appendix C
we prove the spectral sequence property of HF* (y, +) described above.
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Floer cohomology, multiplicity and the log canonical threshold 963

Conventions

If (M,w) is a symplectic manifold and 6 is a 1-form then its w—dual Xg is the
unique vector field satisfying w(X,Y) = 6(Y) for all vectors Y. Sometimes we just
write Xy instead of X¢’ if it is clear from the context that the symplectic form we are
using is w. For a smooth function H: M — R, we define Xg = X_yg . The time ¢
flow of X_ ;4 will be denoted by ¢,H : M — M (this is called the time t Hamiltonian
flow of H).

Also if f: B’ — B is a smooth map and 7: V — B is a vector bundle then we will
write elements of the pullback bundle f*(V) as pairs (b’,v) € B’ x V satisfying
f(b") = m(v). For any fiber bundle 7: £ — B and any subsets N C E and C C B,
we define N|c = N Nz~ 1(C). To avoid cluttered notation, we will not distinguish
between an element of a set and a subset of size 1 when the context is clear (eg i
will quite often mean {i}). We also write Dom( ) and Im( f) for the domain and
image of a map f . For any set /, we define Nio to be the set of tuples (k;);c; where
ki € N>0.

Acknowledgements Many thanks to Mircea Mustata for suggesting the connection
with log canonical threshold. Also many thanks to Paul Seidel for answering some of
my questions. This paper is supported by the NSF grant DMS-1508207.

2 Multiplicities and discrepancies of exceptional divisors

In this section we will introduce some of the basic tools that are needed from algebraic
geometry. We will define the multiplicity and log canonical threshold of an isolated
hypersurface singularity as well as some more general invariants. We will also explain
how to compute these invariants in terms of certain resolutions, called multiplicity m
separating resolutions, and show how such computational techniques do not depend on
the choice of resolution.

Let f: C"*1 — C be a polynomial with an isolated singular point at 0.
Definition 2.1 A log resolution at 0 of the pair (C"*1, £=1(0)) is a proper holomor-

phic map 7: ¥ — C"T1 from a complex manifold ¥ such that there is some open set
U c C"*1 containing 0 satisfying:

(1) 77X f~1(0)NU) is a finite union of smooth transversally intersecting hyper-
surfaces (E;)ics. We will call such divisors resolution divisors. Each E;
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964 Mark McLean

satisfying 7 (E;) = {0} is called a prime exceptional divisor. We require that the
prime exceptional divisors be connected. We also require that there be a unique
element xg € S where E,; =7~ 1(f~1(0) —0) (E.g need not be connected).
We call E,g the proper transform of f~1(0).

(2) 71w \{op: a1 (U \{0}) = U \ {0} is a biholomorphism.

Since the only singularities in this paper will be at 0 € C**!, we will just call a log
resolution at 0 of f a log resolution of (C*T1, £=1(0)).

The multiplicity of f along Ej;, denoted by ords(Ej), is the order of 7*f along E; .
In other words, choose some local coordinate chart zy, ..., z, centered at a generic
point of E; so that E; = {z; = 0} and define ords(E) = k, where k € Z satisfies
a*f = gz’f in this coordinate system for some holomorphic function g satisfying

g(0) #0.

The discrepancy of Ej;, denoted by a(E;), is calculated as follows: Choose local
holomorphic coordinates y1,...,y, on Y centered at a point on £; and holomorphic
coordinates xi,...,x, on C"*1 centered at 0. Then a(E ) is the order of the
Jacobian determinant of f along E; expressed in these coordinates. This quantity
does not depend on the choices of such holomorphic coordinates. The multiplic-
ity of f at O is min{ords(E;) : j € S — x5} and the log canonical threshold is
min{(a(E;) + 1)/ ords(Ej) : j € S}.

Throughout this paper, we will define E to be [ jer Ej foreach I C S.If [ is the
empty set then Ej is the entire manifold Y.

Definition 2.2 Let 7: Y — C"T! be a log resolution of (C"*!, £=1(0)) as above.
For each m € N+ ¢, we define the minimal multiplicity m discrepancy to be

inf{ija(Ej) 1 CS, I #xg, (kj)jel € Nio, E; # @, ij ordf(Ej) =mg.
jel jel
Our convention here is that infimum of the empty set is co. Later on, in Lemma 2.6, we

will show that mdy, (7, f) does not depend on 7 and hence we can define md,,(f) =
md, (7, f) for some choice of log resolution 7.

A morphism 7: Y — C**1 is a multiplicity m separating resolution if it is a log
resolution of (C"*1, £=1(0)) such that for any two resolution divisors E and F of &
satisfying £ N F # &, the sum of the multiplicities of f along E and F is greater
than m.
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Multiplicity m separating resolutions make it much easier for us to compute the minimal
multiplicity m discrepancy.

Lemma 2.3 If n: Y — C"T! is a multiplicity m separating resolution of the pair
(C"+1 f=1(0)) and (Ej);es are its resolution divisors, then

mdy, (7, f) =inf{ka(E;) :k € Nsg, j € S —*g, kords(E;) = m}.

Proof This follows from the fact that if > jer kjords(Ej) =m and Ep # & for
some I CS—xg and (kj)jer eNiO,then || =1. O

Lemma 2.4 If we have any log resolution then we can blow such a resolution up
along strata of | J;cg E; inside 7~ 1(0) so that it becomes a multiplicity m separating
resolution.

Proof Let 7: Y — C"T! be a resolution with resolution divisors (E i)jes - Define
= mi . ) - — A I
ay = mm{ZkJ ordf(E;): 1 CS, |I|=2, Ef #2, (kj)jer € N>0}.
jel
Let by be the number of elements in the set
By = %1 CS:|I|=2 Ef #@. ) kjords(Ej) =ay}.
jel

Since by > 1, choose I € By . Let Y’ be the blowup of Y along E;. Then ay —by is
strictly smaller than ay’—by . Hence, by induction we can blow up Y along subsets of
the form E; until we get a log resolution 7”: Y” — C of (C"*1, £=1(0)) such that

ay» —by» >m. Since by~ > 1, we get that ay~» > m. Hence, 7" is a multiplicity m
separating resolution. a

Lemma 2.5 Let n: Y — C"*1 be a log resolution of (C**!, f=1(0)) and I C S a
subset satisfying |I| > 2. Let 7: Y — C"*1 pe the log resolution of (C"**1, £=1(0))
obtained by blowing up Y along Ej. Then

l‘ndm(ff, f) = md, (7, f)

Proof Let (Ej)jes be the resolution divisors of 7. Let E ; be the proper transform
of E; in Y forall j € S. Then

-1 a(Ej)=a(E;) and ords(E;) = ords(E;).
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966 Mark McLean

Let E be the exceptional divisor of the blowdown map Y — Y. Then, by looking at a
local model of the blowdown map and using the chain rule we get

(2-2) a(E)=|I|-1+) a(Ej). ords(E)=Y ords(E)).
Jel jel

Suppose, for some Ics satisfying E; # &, some k € Nx¢ and (k; ) j € N

>0’
have

kordf(E)—i-Zk,-ordf(E,-)zm
jef
Then, by equations (2-1) and (2-2), we have
(2-3) ka(E)+ ) kja(E))
jel
=k(I|-D)+ Y ka(Ep+ Y (k+kpa(Ep+ Y kja(E)).
jel—1 JeInr jel-I

Also, equations (2-1) and (2-2) tell us that

(2-4) kords(E)+ Y _ kjords(Ej)

jei
Z kords(E;)+ Z (k +kj)ords(Ej) + Z kjords(Ej).
je]—f je]ﬂi jef—]
Equations (2-3) and (2-4) tell us that md,, (77, f) = md,, (7, f). O

Lemma 2.6 The minimal multiplicity m discrepancy does not depend on the choice
of log resolution w: Y — C"+1 of (C**1, £=1(0)).

Proof Let 7: Y — C"t! and #: ¥ — C"*! be two such resolutions. Lemma 2.5
tells us that blowing up along strata does not change the minimal multiplicity m
discrepancy. Hence, by Lemma 2.4, we can assume that 7 and 7 are multiplicity m
separating resolutions.

Since 7 and 7 are birational morphisms, we have that there is a birational morphism
®: Y —-> Y suchthat 7 = 7% o ®. Let (Ej)jes be the resolution divisors of 7 and
(E J) < the resolution divisors of 7. Suppose that ords(Ej) divides m for some
J € S —*g. Let I C S be the largest subset satisfying ®(Ej) C E

Geometry & Topology, Volume 23 (2019)



Floer cohomology, multiplicity and the log canonical threshold 967

Since ® is well defined outside a subvariety of codimension > 2, we have a point p € E;
and holomorphic charts yq,...,y, in Y and xq,..., X, in Y centered at p and ®(p),
respectively, where ® is well defined. We will also assume that E; = {y; = 0}
and Ey = {Xa(k) = 0} for all k € [ and some a: I — {1,...,n}. Let J be the

Jacobian of 7w (y1,...,¥n), J the Jacobian of 7(x1,...,x,) and Jg the Jacobian of
®(y1,...,yn). Then
(2-5) ords (Ej) =Y 0rdy, o0 (Ex) ords (Ex)
and kel
ordy(E;) =ordj,(E;) + Z ordy,, 0@ (Ex) orde(Ek).
kel

By (2-5) combined with the fact that 77 is a multiplicity m separating resolution,
I = {k} for some k € S — . Hence, ords (Ej) = Kordf(Ek) and a(E;) > Ka(Ek),
where k = ordy,,0e(E;). Therefore, by Lemma 2.3, md;, (7, f) > mdp, (7, f).
Similarly, md,, (7, ) > md,, (s, ) and hence md,, (, f) = md,, (77, f). O

3 Liouville domains, symplectomorphisms and open books

In this section we give basic definitions of Liouville domains and graded symplecto-
morphisms and open books. We will also explain the correspondence between open
book decompositions and graded symplectomorphisms of Liouville domains. All of the
material here is contained in [17], with the exception of gradings, which is contained
in [36]. For more details on open book decompositions see [13].

Definition 3.1 An exact symplectic manifold is a pair (M, 0p7) where M is a manifold
and 07 is a 1-form such that wps = dOys is symplectic. A Liouville domain is an exact
symplectic manifold (M, 637) where M is a compact manifold with boundary and
the wps—dual Xp,, of s points outwards along dM. The 1—form 6y is called the
Liouville form. The contact boundary of M is the pair (0M, apr) where apr = Oprlonr -
Here ay is a contact form. Since Xy,, points outwards along dM, we get that the
backwards flow

(Pr: M —> M)te(—o00,0]

of Xg,, exists for all time 7. By considering the smooth embeddings ¢(r,,)laar for
rym € (0, 1], we can construct a standard collar neighborhood (0, 1] x dM C M of oM
where

Ot l(0,11xaM = M -
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968 Mark McLean

Here rps is the coordinate given by the natural projection rps: (0, 1] x OM — (0, 1]
and is called the cylindrical coordinate on M.

An exact symplectomorphism ¢: M — M is a diffeomorphism such that ¢*6y; =
Om + dFy for some smooth function Fg: M — R. Technically we want to think of
this as a pair (¢, Fy), but we will suppress Fy from the notation and just write ¢. The
support of such an exact symplectomorphism is the region

{x € M :¢p(x) # x or dFg(x) # 0}.

We now need to define graded symplectomorphisms as in [36]. This is needed so that
we can define their Floer cohomology groups in the next section.

Definition 3.2 We define (R?”, Qqq) to be the standard symplectic vector space.
Let Sp(2n) be the space of linear symplectomorphisms of (R?”, Qgq4) and §1’)(2n)
its universal cover. Let 7: E — V be a symplectic vector bundle with symplectic
form Qg whose fibers have dimension 2n. Sometimes we will write (E, Q) or
just E for such a symplectic vector bundle when the context is clear. Define the
symplectic frame bundle Fr(E) to be an Sp(2n) bundle whose fiber at x € V' is the
space of linear symplectomorphisms from (R?", Qqq) to (77 1(x), Qg|x). A grading
on a symplectic vector bundle 7: £ — V is an §f)(2n) bundle Isf(E ) — V together
with a choice of isomorphism of §f)(2n) bundles

(3-1) i Fr(E) X SP(2n) = Fr(E).

This is just a choice of reduction of the structure group of E from Sp(2n) to §f)(2n).
A symplectic vector bundle with a choice of grading is called a graded symplectic
vector bundle. Suppose that 7: E—>Visa symplectic vector bundle and ,g -E—>E
is a bundle morphism covering a smooth map B: V — V such that E restricted to each
fiber is a linear symplectomorphism. Let

B E— BX(E), B@) = (%), @),
be the natural isomorphism between this bundle and the pullback bundle. Then E has

a natural grading
B*(Fr(E) —~ V.

it B (Fr(E)) X551 SP@0) = B* (Fr(E) X555,y SP(21)) — Fr(E),

(0, w) = 3_1((5, t(w))) forall ¥ €V, weFr(E) X§o(2ny SP(21),

called the grading on E pulled back by E .
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The simplest example of a grading is the natural grading on the trivial bundle VxCk v
given by
Fr(V x C*) = V x Sp(2n),
L lsf(I} X (Ck) X (2m) Sp(2n) = V x (§f)(2n) X (2m) Sp(2n)) = V x Sp(2n)
— Fr(V x Ck).
We will call such a grading the trivial grading.

Remark 3.3 In this paper we are only interested in gradings up to isotopy and so we
will sometimes regard isotopic gradings as the same grading. If we have a smooth
connected family of symplectic vector bundles then, if one of them has a grading, then
all of them have a natural choice of grading up to isotopy. For more information about
this see Appendix A.

Definition 3.4 Suppose that
7'[12E1—>V1, T E2—>V2

are graded symplectic vector bundles and F: Ey — E; is a symplectic vector bundle
isomorphism covering a diffeomorphism V; — V5. Then a grading on F is an §[’)(2n)
bundle isomorphism

F: Fr(E1) — Fr(E,)

covering the Sp(2n) bundle morphism Fr(E) — Fr(E;) induced by F.

Let (X, wy) be a 2n—dimensional symplectic manifold. A grading on (X, w) is a
choice of grading on the symplectic vector bundle 7X. A symplectic manifold with a
choice of grading is called a graded symplectic manifold

A grading of a symplectomorphism ¢ between two graded symplectic manifolds
(X1, wx,) and (X2, wy,) is a choice of grading for the symplectic bundle isomorphism
dp: TX1 — TX5. A graded symplectomorphism is a symplectomorphism with a
choice of grading.

We also wish to have a notion of grading for contact manifolds.

Definition 3.5 Recall that a cooriented contact manifold (C,&c) is a manifold C
of dimension 2n — 1 with a cooriented hyperplane distribution éc with the property
that there is a 1-form ¢ whose kernel is £¢ respecting this coorientation and such
that ac A (dac)? ! is a volume form on C. The 1-form ac is called a contact
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form compatible with £c . A coorientation-preserving contactomorphism between two
cooriented contact manifolds is a diffeomorphism preserving their respective hyperplane
distributions and coorientations. A contact submanifold B C C is a submanifold such
that (B, £p = &c NTB) is a cooriented contact manifold with the induced coorientation
from &c.

A grading on a contact manifold (C, ¢ ) consists of a choice of contact form a¢c com-
patible with £c and a choice of grading on the symplectic vector bundle (§c, dac|g. ).
A cooriented contact manifold with a choice of grading is called a graded contact
manifold. Since the space of contact forms compatible with £c is contractible, we get
an induced grading on (§c ., dalg.) for any other contact form o compatible with ¢,
which is unique up to isotopy. Hence, from now on we will regard this as the same
grading.

A grading of a coorientation-preserving contactomorphism ¢ between two graded
contact manifolds (Cy, &) and (C», &2) consists of a grading on the symplectic vector
bundle isomorphism d¢| ke, éc, — &c, where the symplectic forms on ¢, and &c,
come from contact forms ac, and «c, compatible with ¢, and &c,, respectively,
satisfying ac, = ¢*ac, with induced gradings. A graded contactomorphism is a
coorientation-preserving contactomorphism with a choice of grading.

In this paper, we will only deal with cooriented contact manifolds and coorientation-
preserving contactomorphisms. So, from now on, a contact manifold is a cooriented
contact manifold and a contactomorphism is a coorientation-preserving contactomor-
phism.

Definition 3.6 Suppose that (C,&c) is a contact manifold and B is a contact sub-
manifold. The normal bundle of B is a symplectic vector bundle
nxeB: NcB=(TC|p)/TB — B

with symplectic form defined as follows: Choose a compatible contact form o¢c on
(C,&c) and define

T1B ={veéc|lx:xe€B, dac(v,w)=0 forall w € éc|x N TB|x}.

Then T1B is a symplectic vector bundle with symplectic form dac|yLpg. The
symplectic structure on N¢ B is the pushforward of the above symplectic form under
the natural bundle isomorphism 7+ B — N¢ B.
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Since the space of compatible contact forms is contractible, the choice of symplectic
form on the N¢ B is unique up to symplectic bundle isomorphism and any two choices
of such isomorphism are homotopic. As a result, we will refer to this bundle as the
normal bundle as we are only concerned with isomorphisms of such bundles up to
homotopy.

Definition 3.7 A contact pair with normal bundle data (B C C,&c, ®p) consists of
a contact manifold (C, éc) where B is a codimension 2 contact submanifold along
with a symplectic trivialization

(DB: N CB — B xC
of its normal bundle. A contactomorphism between two such triples
(3-2) (B1 CCi,6¢c,, ®By), (B2CCa,éc,, PaB,)

is a contactomorphism W: C; — C, sending B to By such that the composition

d‘IJ|Bl By (\plBl)_IXid(C
N¢, By —— N¢, B — B, xC —— B1 xC
is homotopic through symplectic bundle trivializations to ®pg, . If there exists such a
contactomorphism between the pairs as in (3-2) then we say that they are contacto-

morphic.

A contact pair with normal bundle data (B C C, {c, @p) is graded if there is a choice of
grading on C — B. A graded contactomorphism between two graded contact pairs with
normal bundle data as in (3-2) consists of a contactomorphism W between these contact
pairs and a choice of grading of the contactomorphism W|c,—p,: C1 —B1 — C,— B>.
If a graded contactomorphism exists between two graded contact pairs with normal
bundle data then we say that they are graded contactomorphic.

The main example of a contact pair with normal bundle data comes from singularity
theory.

Example 3.8 Fix n > 0. Let f: C"™! — C be a holomorphic function with an
isolated singularity at 0 and let Jo: TC"*! — TC"*! be the standard complex
structure on C**1. Let S¢ C C"*! be the sphere of radius € > 0 and let &5, =
T'Se N JoTSe be the standard contact structure on S¢. Define Ly = f ~L0) N Se.
Then a result by Varchenko [42] tells us that for all sufficiently small € >0, Ly C S¢
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is a contact submanifold, called the link of f at 0. Also, df gives us an induced map
df: Ns. L # — C and hence a trivialization
(Df = (ide,W)I NSGLf — Lf x C.

The contact pair with normal bundle data (L C Se, £s,, @) is called the contact pair

associated to f .

We also need a grading on this contact pair. It turns out, by the discussion in
Definition A.7, that every contact manifold with trivial first and second homology
groups has a unique grading up to homotopy. This means that £s. has a grading,
giving us an induced grading on the contact pair associated to f. We will call this the
standard grading.

We will now define open book decompositions and also graded open book decomposi-
tions. Let D C C be the unit disk with polar coordinates (r, ).

Definition 3.9 An open book is a pair (C, ) where

e (C is a smooth manifold,

e 7: C—B —R/Z is asmooth fibration where B is a codimension 2 submanifold,
and

e there is a tubular neighborhood B xID C C of B = B x {0} in C such that &
satisfies

7lpx@-0): Bx(D—0)—>R/Z, n(x,(r,0))=2n0.

The submanifold B is called the binding of the open book and a page of the open book
is the closure of a fiber of = which is a submanifold with boundary equal to B.

We now want open books to be compatible with contact pairs.

Definition 3.10 A contact pair with normal bundle data (B C C, éc, ®p) is supported
by an open book (C, m) if
(1) there is a contact form ac compatible with §c¢ such that dac|,-1¢) is a
symplectic form for all t e R/Z,

(2) the trivialization of N¢ B induced by the choice of tubular neighborhood from
Definition 3.9 is homotopic through orientation-preserving bundle trivializations
to ®p (this does not depend on the choice of such a tubular neighborhood).
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We will write (C, éc, ) for a contact pair supported by an open book and we will
call it a contact open book. Note that B and ®p are not included in the notation as
B =C —Dom(rr) and ®p is determined by the open book due to the fact that the space
of orientation-preserving trivializations of N¢ B is weakly homotopic to the space of
symplectic trivializations of N¢ B. The contact pair (B C C,&c, ®p) is called the
contact pair associated to (C, Ec, m). If the contact pair associated to (C, &c, ) is
graded then we call this a graded contact open book.

An isotopy between two contact open books (Ci,éc,,m1) and (Cz,&c,.m2) is a
contactomorphism ®: C; — C, between the respective contact pairs with normal
bundle data together with a smooth family of maps (17;: Dom(w1) — R/Z)e[1,2]
joining w1 and 73 o @ such that (Cy, &c,, ;) is a contact open book for all ¢ € [1, 2].
Such an isotopy is graded if we have a smooth family of graded contact open books
and @ is a graded contactomorphism.

The main example of a contact open book will come from singularity theory.

Example 3.11 Let f: C"*1 — C, n > 1 be a holomorphic function with an isolated
singularity at 0 and let (Ly C Se,&s., ®r) be the contact pair associated to f as in
Example 3.8. Let arg(f): C"*! — f71(0) — R/27Z be the argument of f. Then,
by [9, Proposition 3.4], we have that (Se, s, % arg(f )|S€) is a contact open book
for all € > 0 small enough. This open book is supported by the contact pair associated
to f from Example 3.8 and it has a grading coming from the standard grading. This is
a graded contact open book, called the Milnor open book of f .

Definition 3.12 An abstract contact open book consists of a triple (M, Op7, ¢) where
(M, Bpr) is a Liouville domain and ¢ is an exact symplectomorphism with support in
the interior of M. A graded abstract contact open book is an abstract contact open book
(M, 6p1, ¢) with a choice of grading on (M, d6ps) and a graded symplectomorphism ¢ .

An isotopy between abstract contact open books (My, Ou,, ¢1) and (M2, O, ¢2)
consists of a diffeomorphism ®: M; — M5, a smooth family of 1—forms (6;);¢[0,1]
joining 6y, and ®*6yy, and a smooth family of diffeomorphisms (¢1) t€[1,2] joining
¢1 and o lo ¢2 o © such that (M, 6;, dst) are all abstract contact open books and
the support of qvﬁt is contained inside a fixed compact subset of the interior of M. If
both of our abstract contact open books are graded then such an isotopy is a graded
isotopy if all the abstract contact open books (M7, 0;, qvﬁt) are graded so that these
gradings smoothly depend on ¢ € [0, 1] and the grading on (M, 6o, Po) coincides
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with the grading on (M1, 0, . ¢1) and the grading on (M, 61, qvﬁl) coincides with the
grading on (M2, O, . ¢2) pulled back by ®.

From an abstract contact open book (M, 07, ¢), we wish to construct a contact open
book. This construction is referred to as a generalized Thurston—Winkelnkemper
construction in [13, Section 2.2.1]. To do this we need the following definition:

Definition 3.13 Let (M, 0p7, ¢) be an abstract contact open book. Let Fg: M — R
be the smooth function with support in the interior of M satistying ¢p*0pr = Opr +dFp.
Let p: [0, 1] — [0, 1] be a smooth function equal to 0 near 0 and 1 near 1.

The mapping torus of (M, 0pz, ¢) is a smooth map
JTT¢IT¢—>R/Z, T¢EMX[0,1]/~,
together with a contact form «r, on Ty, where

e ~ identifies (x, 1) with (¢(x),0),

e ar, =0y +d(p(t)Fp) + C dt, where C > 0 is large enough to ensure that
ar, 1s a contact form, and

e nr,(x,t) =t forall (x,1) € Ty = M x[0,1]/~.
For § > 0 small enough, we have that the subset
(1—=6,1]x0M C (0,1] x oM

of the collar neighborhood of dM is disjoint from the support of ¢. This means that
there is a natural embedding

(1—8.11x0M xR/Z C Ty,

which we will call the standard collar neighborhood of Ty . Note that ar, is equal to
rypapyr + C dt in the standard collar neighborhood where rps (resp. t) is the natural
projection map to (1 — 6, 1] (resp. R/Z) and apr = O s -

If (M, 0y, @) is a graded abstract contact open book then we get a natural grading on
(Ty. ker(ar,)) as follows: Since the kernel of dar, is transverse to the fibers of T,
€1, = ker(ag,) is isotopic through hyperplane distributions H; for 7 € [0, 1] to the
vertical tangent space TV Ty = ker(Dmy) of mr, with the property that dar,|g, is
nondegenerate for all ¢ € [0, 1]. Therefore, it is sufficient to construct a grading for
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the symplectic vector bundle (7' Ty, dar, ). Consider the symplectic vector bundle
(pr*TM, pr*(dfys)) where
pr: M x[0,1] > M

is the natural projection map. We have that the symplectic vector bundle (7" Ty, da,)
is isomorphic to the symplectic vector bundle on (pr*TM/~, pr*(d6yr)) where ~
identifies pr*TM |prx¢1y With pr*TM |prx 0y using the map

D¢: TM =pr*TM |prxq1y = TM = pr* TM |prx403-

Since (TM, dBs) has a natural grading, we get that (pr*7TM, pr*(dfys)) has an
induced grading
Fr(pr*TM) x& ., . Sp(2n) = Fr(pr*TM)

Sp(2n)
pulled back via pr. The map D¢ gives us an induced map
Fr(pr* TM)|prx1y = Fr(pr* TM ) | px oy
and, since ¢ is a graded symplectomorphism, the map above lifts to a map
Fr(pr* TM) a1y — Fr(pr* TM) |a oy
Hence, by using the above gluing map, we get a grading on the quotient

(pr*TM/~,pr*(dfp))

and therefore a grading on (TV*'Ty,dar,). In turn this gives us a grading on the
contact manifold (7, ker(ar,)). We will call this the induced grading on Ty .

We will now construct a contact open book from an abstract contact open book. Let
D(p) C C be the closed disk of radius p > 0 with polar coordinates (r, }).

Definition 3.14 Let (M, 0j7, ¢) be an abstract contact open book decomposition and
let
nr,: Ty > R/Z

be the associated mapping torus with contact form a4 and standard collar neighborhood
(1=06,1]x0M xR/Z C Ty

as in Definition 3.13. Define Cy = (M x D(§)) U Ty/~, where ~ identifies
(x,(r,9)) € M xID(8) with

9
(1—r,x,ﬂ) €(1—-8,1]xIM xR/Z C T,.
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We define By = IM x {0} C 0M xID () C Cy and

nc,: Cp— By = Ty — 0Ty — R/Z, TCy = 7TT¢|T¢,—8T¢-
Let

(3-3) hi,hy:[0,8) = R
be a pair of smooth functions such that
o hi(r) <0, h,(r) =0 forall r >0,

o hi(r)=1—r?and ha(r) = %,,2 for small r, and

e hi(r)=1—r and hy(r) = %C for r € [%5,5)2

The above conditions ensure that

hi(r)ap + ha(r)dd  inside M xD(18),

o =
Co ar, inside T, —0M x D (16),

is a contact form whose restriction to By is also a contact form and that the restriction
of dac, to 7 1(¢t) is symplectic for all 1 € R/Z. Define £c » =ker(ac,). The tubular
neighborhood oM x ID)(%S) of By gives us a trivialization ®pg, of its normal bundle
and hence we get a contact pair with normal bundle data (By C Cy,éc,, ©p, ), which
we will call the contact pair associated to (M, 0pz, ¢). This contact pair with normal
bundle data is supported by the open book (Cyp, 7c, ). Hence,

OBD(M, 0. ¢) = (Cg. éc,. C,)

is a contact open book, which we call the open book associated to the abstract contact
open book (M, Oy, @).
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Now suppose that (M, 6y, ¢) is a graded abstract contact open book. Then, since the
contact manifold (Cy — By, &c,|c,—B,) 18 isotopic through contact manifolds to Ty,
we get that the induced grading on Ty gives us a grading on (Cy — By, éc,|cy—By)-
Hence, we have a relative grading on (By C Cy.éc,, Pg), which we will call the
induced grading.

It is fairly straightforward to show that if two abstract contact open books are (graded)
isotopic then their respective contact open book decompositions are (graded) isotopic.
Hence, we get a map

OBD: {(graded) abstract contact open books}/isotopy
— {(graded) open books}/isotopy.

The theorem below is a result of Giroux [17].
Theorem 3.15 The above map OBD is a bijection.

A detailed construction of the inverse of OBD is contained in the proof of [13, Theorem
3.1.22]. As aresult of this theorem, we have the following definition:

Definition 3.16 The monodromy map of a (graded) contact open book (C, &c, 1) is
defined to be the (graded) contactomorphism ¢: M — M, where (M, Opr, ¢) is the
abstract contact open book OBD™!((C, &c, 7)).

Technically, this monodromy map is only defined up to isotopy, and so the monodromy
map is really just a choice of representative in this isotopy class.

4 Fixed-point Floer cohomology definition

Definition 4.1 Let (M, 0)7) be a Liouville domain. An almost complex structure J
on M is cylindrical near dM if it is compatible with the symplectic form d6ys (ie
dOy (-, J(+)) is a Riemannian metric) and if drys o J = —aps near dM inside the
standard collar neighborhood (0, 1] x dM.

An exact symplectomorphism ¢: M — M is nondegenerate if for every fixed point p
of ¢ the linearization of ¢ at p has no eigenvalue equal to 1. It has small positive slope
if it is equal to the time 1 Hamiltonian flow of §rps near dM, where § > 0 is smaller
than the period of the smallest periodic Reeb orbit of a3y (this means that it corresponds
to the time § Reeb flow near dM ). If ¢ is an exact symplectomorphism, then a small
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positive slope perturbation ¢V> of ¢ is an exact symplectomorphism (,iv) equal to the
composition of ¢ with a C® small Hamiltonian symplectomorphism of small positive
slope. The action of a fixed point p is —Fg(p), where Fy is a function satisfying
¢*0p = Oy + dFy . The action depends on a choice of Fy, which has to be fixed when
¢ is defined, although usually Fy is chosen so that it is zero near dM (if possible).
All of the symplectomorphisms coming from isolated hypersurface singularities will
have such a unique Fy. An isolated family of fixed points is a path-connected compact
subset B C M consisting of fixed points of ¢ of the same action and for which there
is a neighborhood N D B where N \ B has no fixed points. Such an isolated family
of fixed points is called a codimension 0 family of fixed points if in addition there is
an autonomous Hamiltonian H: N — (—o0, 0] such that H~!(0) = B is a connected
codimension 0 submanifold with boundary and corners, the time ¢ flow of Xg is well
defined for all t € R and ¢|nx: N — N is equal to the time 1 flow of H. The action
of an isolated family of fixed points B C M is the action of any point p € B.

Before we define Floer cohomology, we need some definitions, so that we can give
it a grading. To any path of symplectic matrices (A;);e[q,5] We can assign an index
CZ(A;), called its Conley—Zehnder index. The Conley—Zehnder index of certain paths
of symplectic matrices A; was originally defined in [11]. It was defined for a general
path of symplectic matrices in [34] and also in [19]. We will not define it here as we
will only use the following properties (see [19, Proposition 8]):

(CZ1) CZ((e")refo,om) = 2.

(CZ2) (—1)"~CZ((40):cr0.1) = sign detg (id — A1) for any path of symplectic matrices
(At)ref0,1]-

(CZ3) CZ(A; ® By) = CZ(A;) + CZ(By).

(CZ4) The Conley—Zehnder index of the catenation of two paths is the sum of their
Conley—Zehnder indices.

(CZ5) If A; and B; are two paths of symplectic matrices which are homotopic relative
to their endpoints then they have the same Conley—Zehnder index. Also, such an
index only depends on the path up to orientation-preserving reparametrization.

Definition 4.2 Let (M, 0y, ¢) be a graded abstract contact open book. The Conley—
Zehnder index CZ(p) of a fixed point p of the graded symplectomorphism ¢ is
defined as follows: Since (T'M, d6yy) is a graded symplectic vector bundle, we have
an associated §f)(2n) bundle

Fr(TM) > M
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together with a choice of isomorphism of §f>(2n) bundles

i Fr(TM) Xy SP(21) = Fr(TM).

Now choose an identification of §f)(2n) torsors
@1 Sp(2n) = Fr(TM)],.
The symplectomorphism ¢ has a choice of grading, giving us a natural map
$: Fr(TM)|, — Fr(TM)|,
and hence, by (4-1), a map
$: Sp(2n) — Sp(2n).

Since §f>(2n) is the universal cover of Sp(2n), its elements correspond to paths of
symplectic matrices starting from the identity up to homotopy fixing their endpoints and
so let B be the path corresponding to ¢(id) € %(211). We define CZ(¢, p) = CZ(p).

If we have an isolated family of fixed points B C X, then we define its Conley—Zehnder
index CZ(¢, B) to be the Conley—Zehnder index of some b € B. Since B is path-
connected, this does not depend on the choice of b € B by property (CZ5) above.

In Appendix A, we also have a different way of computing the Conley—Zehnder index by
looking at the mapping torus Ty of ¢. This will be useful in the proof of Theorem 5.41.

Definition 4.3 Let (M, 0)7.¢) be an abstract contact open book. Let (J¢)s¢[0,1] be a
smooth family of almost complex structures with the property that ¢*Jo = J;. A Floer
trajectory of (¢, J¢)e[o,1]) joining p—, p+ € M is a smooth map u: R x [0, 1] — M
such that dsu + J;d;u = 0, where (s, ) parametrizes R x R/Z, u(s,0) = ¢ (u(s, 1))
and such that limg_, 4 o0 u(s,¢) = p+ forall ¢ € [0, 1]. We write M(¢, J¢, p—, p+) for
the set of such Floer trajectories and define M (¢, J;, p—., p+) = M(¢. J;. p—. p+)/R,
where R acts by translation in the s coordinate.

Let (M, 0pr, @) be a graded abstract contact open book. We will now give a sketch
of the definition of the Floer cohomology group HF*(¢, +) (see [37]). Let qvﬁ be a
small positive slope perturbation of ¢. This can be done so that qVS is C* close to ¢
and so that the fixed points of qVS are nondegenerate (see [35, Theorem 9.1] in the case
where dv) is Hamiltonian; the general case is similar [14, page 586]). We can also ensure
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that (,iv) is a graded symplectomorphism due to the fact that it is isotopic to ¢ through
symplectomorphisms.

We now choose a C*° generic family (J¢);¢[o,1] of cylindrical almost complex struc-
tures satisfying ¢* Jo = J1. The genericity property then tells us that J\_/[(qvﬁ Je, p—, p+)
is a compact oriented manifold of dimension O for all fixed points p— and p4 of ¢
satisfying CZ(p—) —CZ(p+) = 1 [14, Theorem 3.2]. We define #EM(P, Jr, p—, p+)
to be the signed count of elements of JVE(J), J¢, p—, p+). Let CF* (qg) be the free
abelian group generated by fixed points of ¢ and graded by the Conley—Zehnder index

taken with negative sign. The differential 9 3.1, on CF* ((j;) is a Z-linear map

— €l0.1] v
satisfying 803 D) rero 1](er) =D p #EM(J;, p—, p+) p— for all fixed points p of ¢,
where the sum is over all fixed points p_ satisfying (—CZ(p-)) — (—CZ(p4+)) = 1.

Because (J);e[o,1] is C*° generic, one can show [14, Theorem 3.3(1)] that

02 =
é.(Jt)ter0.1]

and we define the resulting homology group to be HF* ((;VS, (J1)tefo,11)- We define
HF*(¢, +) =HF* (dva, (J1)te0,17) - This does not depend on the choice of perturbation ¢v>
or on the choice of almost complex structure (J¢)s¢[o,1] [14, Theorem 3.3(2)]. Our
conventions then tell us that, if ¢: M — M is the identity map with the trivial grading
and dim(M) = n, then HF* (¢, +) = H"t5(M:; 7).

We will only use the following properties of these Floer cohomology groups:

(HF1) For a graded abstract contact open book (M, Opr, ¢), the Lefschetz number
A(¢) of ¢ is equal to the Euler characteristic of HF*(¢p, +) multiplied by
(=)™ (which follows from (CZ2)).

(HF2) Suppose that (M1, Op,.¢1), (M2, 0p,. ¢2) are graded abstract contact open
books such that the graded contact pairs associated to them are graded contac-
tomorphic. Then HF*(¢g, +) = HF*(¢1, +) (see Appendix A).

(HF3) Let (M, 0, ¢) be a graded abstract contact open book where dim(M) = 2n.
Suppose that the set of fixed points of a small positive slope perturbation 95
of ¢ is a disjoint union of codimension 0 families of fixed points Bj,..., By
and let ¢: {1,...,/} — N be a function where

e (i) =u(j) if and only if the action of B; equals the action of B;, and

e (i) <u(j) if the action of B; is less than the action of B;.
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Then there is a cohomological spectral sequence converging to HF*(¢, +)
whose E; page is equal to

B @ Hicuon)(BiD)
{ie{1,....01}()=p}
(see Appendix C).

5 Constructing a well-behaved contact open book

The aim of this section is to modify the Milnor monodromy map so that the set of
fixed points is a union of codimension 0 families of fixed points, so that we can apply
(HF3) above. We will do this by constructing such a nice symplectomorphism whose
mapping torus is isotopic to the mapping torus of the Milnor monodromy map.

5.1 Some preliminary definitions

The aim of this section is to construct a symplectic form on the resolution which behaves
well with respect to the resolution divisors. To do this we need a purely symplectic
notion of smooth normal crossing divisor. We will introduce some notation from [40].

If V C X is a submanifold of a manifold X then we will use the notation
TX|y
TV

for the normal bundle of V. If (V;);es is a finite collection of submanifolds of X and

I CS,let
wzﬂw

iel

(5—1) TNy V- NxVE -V

Also, by convention we define Vg = X. The collection (V;);es intersects transversally
if for every subset / C S and every x € Vr,

codimy, x ( () Tx V,) = codimr, x (TxcV}).
iel iel
If V C X is a submanifold and X is oriented then an orientation on V' induces an
orientation on Ny V' and conversely an orientation on Ny /' induces an orientation on V
using (5-1) (if V' is odd-dimensional, this depends on a sign convention, but we will not
need this since the manifolds that we will be dealing with are even-dimensional). If X is
oriented and (V;);egs is a collection of oriented transversally intersecting submanifolds,
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then the submanifold V; has a natural orientation called the intersection orientation
since Nx V7 = @;¢; Nx V; is oriented.

Definition 5.1 Suppose that (X, ) is a symplectic manifold. Then (V;);cs is called
a symplectic crossings divisor or SC divisor if (V;);es are transversally intersecting
codimension 2 symplectic submanifolds such that V7 is also symplectic and such that
the symplectic orientation on V; agrees with its corresponding intersecting orientation
for all / C S. We will also assume that S is a finite set.

We now want to define SC divisors with particularly nice neighborhoods. We call
. (L,p,V)—=>V

a Hermitian line bundle if m: L — V is a complex line bundle, p is a Hermitian metric
and V is a p—compatible Hermitian connection on L. We define p® and p'R to be
the real and complex parts of the Hermitian metric p. We will also use the notation p
to denote square of the norm function on L. If we view L as an oriented real vector
bundle then we can recover the complex structure i, from the metric oR using the fact
that for all x € V and W € L|x —0, i,(W) is the unique vector making W, i,(W)
into an oriented orthonormal basis of L|,. Hence, we can define a Hermitian structure
(p, V) on any oriented 2—dimensional real vector bundle L — V' to be a pair (p, V)
making (L,i,) into a Hermitian line bundle.

For any such triple (L, p, V) we have an associated Hermitian connection 1-form
apv € Q 1(L — V). This is the pullback of the associated principal U(1)-connection
on the unit circle bundle of (L, p) (see [4] or [40, Appendix A)). If (L;, p;, V(")),-e I
is a finite collection of Hermitian line bundles over a symplectic manifold (V, ) and
prr.;: @;ey Li — L; is the natural projection map then we define

(5-2) W(p; WYy, =T 0+ % Zpr}‘;i d(pa,, vi)-

iel
This is a symplectic form in some small neighborhood of the zero section. Given a
2—dimensional symplectic vector bundle L — V with symplectic form €2, an Q-
compatible Hermitian structure on L is a Hermitian structure (p, V) where the complex
structure i, is compatible with £2.

Suppose that W: V—>Visa diffeomorphism and suppose 7: (Li, pi, V@)jef =V
and 7: (Z,i , Di s ?("))ie I — V are two collections of Hermitian line bundles; then a
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product Hermitian isomorphism is a vector bundle isomorphism
\AI}Z @ Z, [ ad @ Ll'
iel iel
covering W and respecting the direct sum decomposition such that the induced map
U (I:,-,ﬁi, 6(")) — (Li, pi, V%) is an isomorphism of Hermitian line bundles for
all i e 1.

Definition 5.2 Let VV C X be a submanifold of a manifold X. A regularization is a
diffeomorphism W: N — X from a neighborhood N C Nx V' of the zero section onto
its image such that W(x) = x for all x € V' and such that the map

U Ne V] = Ny VD, de¥() = 0(D¥(%w)| ).

is the identity map, where Q: TX |y — Nx V is the natural quotient map.

We also need a notion of regularization compatible with the symplectic form. Because
of this we first need to talk about connections induced by closed 2—forms. Recall
that an Ehresmann connection on a smooth submersion 7: £ — B is a distribution
H CTE suchthat Drr|g,: Hx — Ty(x)B is an isomorphism for all x € E.

Definition 5.3 Let 7: E — B be a smooth submersion and let 2 be a 2—form on E
whose restriction to each fiber is nondegenerate. Then the symplectic connection
associated to 2 is an Ehresmann connection H C TE, where H is the set of vectors
which are 2—orthogonal to the fibers of . In other words,

H={VelTyE:xeE QUV,W)=0 forall W e T;*E},
where T/E = ker(D) is the vertical tangent bundle.
If (X, w) is a symplectic manifold and V' C X is a symplectic submanifold then Ny V'
is a symplectic vector bundle on V. We write |, 1 for the symplectic form on this
vector bundle and |, for the restriction of w|n, v to L, where L is any subbundle

L C Nx V. The following definition differs in notation from [39, Definition 2.8] but it
defines the same object.

Definition 5.4 Let (X, w) be a symplectic manifold, V' a symplectic submanifold
and let

(5-3) NyV = @ L;

iel
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be a splitting into 2—dimensional subbundles such that |z, is nondegenerate for
all i € I. A tuple ((p;j)ier, V) is called an w—regularization for V in X if W is a
regularization for V' in X and p; is a map p;: Im(¥) — [0, co) such that there is an
w|; —compatible Hermitian structure (p;, V®) on L; satisfying

*  Dilpom(w) = pi oY forall i € I where p; is (by abuse of notation) the pullback
of p; by the natural projection map P;¢; L; — Li,

o VO restricted to Dom(W¥) N L; coincides with the symplectic connection asso-
ciated to w|y, forall i € I, and

(5-4) V0 = 0, v, Ipom(w)
foreach i € I.

The splitting (5-3) is called the associated splitting and the |y ; —compatible Hermitian
structure (p;, VD) is called the associated Hermitian structure on L; . This Hermitian
structure is uniquely determined by p; and W. Also, since p; gives us a complex
structure on L; for each i € I, we get a natural complex structure on Ny V' which we
will call the complex structure associated to the w—regularization ((p;)iecy, V).

We wish to extend Definitions 5.2 and 5.4 to transverse collections of submanifolds
and SC divisors, respectively. To do this we need some preliminary notation. Let X be
a manifold and (V;);es transversely intersecting submanifolds. We have a canonical
identification

(5-5) NxVr = nf.; Ny, Vi)

for each I’ C I, where
mr; - Ny, Vi—Vp

is the natural projection map. Note that (5-5) is not an identification of bundles since
the base of the left-hand bundle is V; whereas the base of the right-hand bundle is
NVI_ 7 Vr.

Definition 5.5 Let X be a manifold and (V;);cs a transverse collection of submani-
folds. A system of regularizations is a tuple (V7);cs, where Wy is a regularization
for V7 such that

(5-6) Uy (NVIrVI N Dom(¥y)) = Vi NIm(¥y)

forall I'Cc I CS.
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Define
L% * (5-5 _d
L N[;[/(NV,/VI) — Tnl;l,(NV,,VI) =" TNxVr, i(x,v)= E(X’[v) o’
Using the inclusion map ¢ above, define
DV wrp Nv, VD ly—1 v,y = Nx (Ve N Im(87)),
DY (w) = (DY (L (w))),

where O: TX|y,, nmw;) = Nx (V- N Im(Wy)) is the natural projection map.

(5-7)

Using the equality (5-5), ®W¥y.;/ identifies the normal bundle of NV,_ ;/ V1 inside
Nx Vi near 0 with the normal bundle of V7 near V; using the derivative of the
regularization Wy. The map ©®W;.;/ is also a bundle isomorphism covering the
diffeomorphism

Vrly-1v,: U (V) — Vi NIm(¥y).

The definition below tells us that Wy, and W; should be equal under the identification
(5-7).

Definition 5.6 Let X be a manifold and (V;);cs a transverse collection of submani-
folds of X. Then a regularization for (V;);ecs is a system of regularizations (¥7)7cs
for (V;)ies such that

(5-8) DYr;1/(Dom(¥y)) = Dom(¥1) |y, Ammey;)s Y1 = Y1 oDV 1/ |pom(w;)-

The following definition differs from [39, Definition 2.11] for the same reasons that
Definition 5.4 differs from [39, Definition 2.8]. Apart from that, this definition is exactly
the same. This structure also appears in [26, Lemma 5.14] although the regularization
maps have particular domains and it is defined in a slightly different way.

Definition 5.7 Let (X, w) be a symplectic manifold and (V;);es an SC divisor. An
w-—regularization is a pair of tuples

((pi)ies, (¥YDrcs)s
where

(1) (¥y)7cs is aregularization for (V;);es as in Definition 5.6 and

pir U Im(¥r) —[0.00)
ielCS
is a smooth map,
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(@) ((pilim(w;))ier, Y1) is an w-regularization for V7 in X for each / C S asin
Definition 5.4, and

(3) the maps ®Wy. s from (5-7) are product Hermitian isomorphisms for all 7’ C
I C S with respect to the natural splittings

771*;1/(NV1/ VI)l\Il,—I(V,/) = @ n;;j/(NXVi|V1)|\p1—1(V1/)»

iel’

Nx (Vi N Im(¥7)) = @5 Nx Vil Atm(w,)-

iel’

We are only interested in regularizations near (V;);es and so we want a notion of
equivalence to reflect this.

Definition 5.8 Two w-regularizations

((pi)ies, (WD)ics),  ((Bi)ies, (¥D)ics)

for (V;)ies are germ equivalent if there is an open set
Ur; Cc Dom(¥y)N Dom(\ill)

containing V7 such that Wy |y, = \iJI|U1 and p; |y, w,) = Pilw, w,) foreachi eI CS.

A real codimension 2 submanifold with an oriented normal bundle should be thought
of as the differential geometric analogue of a smooth divisor in algebraic geometry. We
wish to construct complex line bundles from such submanifolds in the same way that
line bundles are constructed from Cartier divisors in algebraic geometry. The following
line bundle associated to a codimension 2 submanifold V' of a manifold X will depend
on a choice of regularization W: N— X of V and a complex structure i on Ny V
and it will come with a canonical section sy: V — Ox (V) whose zero setis V. We
define

(5-9) Ox (V) = ((73, yNx (V) Ipom(w) U (X = V) x C)/~,

where

(73 v Nx (V) Ipom(w;) > (v, cv) ~ (¥(v),¢0) € (X = V) xC
forall ve NxV -V, ceC.
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The corresponding fibration is defined in the following natural way:

moxv): Ox (V) > X,
Ty )V, w) =¥(v) forall (v,w) € ”;&XV(NX V),
Tox (V) (X, ¢) = X for all (x,c) e (X —V)xC.

This is a line bundle satisfying the following important canonical identities:
(5-10) Ox(My =Nx(V), Ox(V)|[x-v =(X-V)xC.

We will call W the associated regularization. The canonical section sy: X — Ox (V)
of this line bundle is defined as follows:

(U (), UH(x)) € (7%, y Nx (V) Ipomew)  if x € Im(¥y),

(5'11) SV()C)E (x,])E(X_V)X(C leE(X_V)

We also define Ox(0) = Ox = X x C to be the trivial bundle. This is also Ox (9),
where @ is the empty submanifold.

5.2 Trivializing line bundles

In the previous section, we constructed a line bundle from any codimension 2 sub-
manifold with oriented boundary. As a result, we can construct line bundles from any
SC divisor. In this subsection we show that if such a line bundle is trivial and if our
SC divisor admits a regularization, then our line bundle admits a trivialization which
behaves well with respect to this regularization. This trivialization will be used later
to construct a map from a neighborhood of our SC divisor to C with nice parallel
transport maps away from the singularities.

Let (X, w) be a symplectic manifold and (V;);es an SC divisor on X admitting an
w-regularization

R = ((pi)ies, (¥r)ics)

as in Definition 5.7. Let (m;);es be natural numbers indexed by S. For all i € §, let
Ox (V;) be the line bundle with associated regularization ¥; and complex structure
associated to the w-regularization (p;, ¥;). Recall that these have natural sections
sy;: X = Ox(V;) as in (5-11). Define Ox (3°; m;i Vi) = Q;es Ox (Vi)®™i and let

(5-12) S(m;)ies = ®S§;mi
ieS
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be the canonical section of this bundle. Using the identity (5-10) we have
Ox(Vi)ly, =NxVily, foralliel CS,
and hence we get the following maps:

My,.;: Nx Vi = @NXVHV[ — Ox (Vi)lv,,
jel

Vi if i el

sy (x) if i gl

Therefore, we get a (not necessarily fiberwise linear) map

(vj)jelﬁ{ for all (vj)jer € NxVilx, x € V].

’

Vi

Mmyies,r: NxVr — Ox (Z mi Vi)
(5-13) i
;)50 () = ) Ty;.r ()™ for all v € Ny V7.

ieS
One can think of the above map as a section of Oy (Zl m; V,) ! v, along with nontrivial
infinitesimal information in the normal direction of VJ.

Below is a definition of a trivialization of O(Zi m; V,) with the property that locally
around each point of V7, the canonical section sy, ., of Ox (Zl m;j Vi) looks ap-
proximately like the map (z1,...,z,) = [[;e7(zia(|zi])/|z:|)™ in some local chart
Z1,...,Zn,Where I C{l,...,n} and a: R — R has the following graph:

1

We need to use the above function a to ensure that we have good dynamical properties
(see Section 5.5). See [40, Definition 3.8] for a related definition.

Definition 5.9 For each r > 0, we define the radius r tube of Vj to be the set
(5-14) T = ){x € Im(Wy): pi(x) <7}

iel
over V7. Let B C X be any set. The tube radius of R along B is the largest radius r
tube of V7 along B that can “fit” inside the image of W; for each I C S. More
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precisely, it is the supremum of all » > 0 with the property that 7, ; N (Im(W¥y)|x) is a
compact subset of X forall x e BNV; and I C S.

Let U C X be an open set. Now suppose that the tube radius of R along U is positive
and let R > 0 be any constant smaller than the tube radius and also smaller than 1. We
let ag: [0, 00) — [0, 00) be a smooth function satisfying

(1) ap(x) >0 for x € [0, 2R),

(2) ar(x)=x for x < 3R,

BlW A=

(3) ar(x)=1for x> 3R

A bundle trivialization

= (7, Dy): OX(ZmiVi) — X xC
i

is radius R compatible with R along U N Vy if

- l—[ Vagr(pi(x))\"
(5-15)  P2(Stmy);es (X)) = P2 m;); 5,1 (W 1( ) (aR—)
2 S( ) X 2( (m;) I 7 X )iEI pi(x)

forall x € Tg,1 N (Im(\IJ1)|VmU_Ul,€S_1 T3R/4,i)'

and where the norm of the linear map

®m;
(5-16) q)2|®i61(NXVi|x)®mi: (®NXV"|’C) —C

iel
isequal to 1 forall x € V; NU —|J;cs_1 T3r/4,; using the identification (5-10).

We say that @ is radius R compatible with R along U if it is radius R compatible
with R along U N'Vy for each I C S. Itis compatible with R along U if it is radius R
compatible with R along U for some R smaller than the tube radius of R.

One should think of (5-15) as saying that the trivialization ¢ identifies the canonical
section of Ox (}_; m;V;) with the “infinitesimal” section I, ), ;7 multiplied by a
particular factor near V;. This particular factor that we are multiplying by is actually
equal to 1 if we are very near V;. Note also that (5-15) tells us that the norm of
@3 (S(m;);es (x)) only depends on (p;(x));er and if p; (x) > %R for some i € I then
this norm does not depend on p; (x) for all x € Im(W7) —|J;c5_7 T3R/4,i - As aresult,
the above definition is consistent with the stated norm property of the linear map (5-16).
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Lemma 5.10 Suppose Ox (}_; m;V;) admits a trivialization ® andlet U C X be a
relatively compact open set. Then there is a trivialization of Ox (Zl m; V,-) compatible
with R along U which is homotopic to ® through trivializations of Ox (>_; m; V;).

Proof Just as in the proof of [40, Definition 3.9] we will proceed by induction on the
strata of (J; Vj. Before we do this though we will need to construct certain natural

maps that identify IT(;,).cg:7 With $¢, near V7. Define

dies
(5-8)
Ni,1 = Dom(¥)|y; nmmw; ;) = PWruii (Dom(Yry;)),
Wi =V (Dom(¥y)|y,-v;),
Di;p = Wi;r UV (Ni;p)
forall i € § and I C S. By (5-9), we have the natural identification
(5-17) Ox (Vlw; i) = ey v, Nx Vi) v,
and by (5-6) and (5-10) we have the identity
(5-18) Ox (Vi)lw,,, = Wisr xC
forall i € S and I C S. By using the natural projections

pry; - Nx Vr —>NxV[/|V, forall I' C I C S,

we have a map
Hy,.r: Ox(Vd)lp,. — Ox(Vly,

forall i € § and I C S, whose restriction to W; (N;.r) is defined by the equation

My, (v, w) = (prryi @Vl (). prrvi OV (W)

for all (v, w) € (7, v, Nx (Vi))In;.,
by using the identity (5-17) and whose restriction to W;.y is defined by
My, (x,¢) = (mng v, (P57 H(x)),¢) € (V= Vi) xC  forall (x,c) € Wiy xC

by using the identity (5-18). One should think of this map as a way of canonically
identifying the bundle Oy (V;) near V; with its pullback along the natural projection
map from D;.; to Vj induced by my, v, © \IJI_I. By (5-9) and (5-11),

(5-19) Mv;1ly1(p,.,) = Dvsrosy oWy forallieS, I CS.
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Also, by (5-8) and the fact that ®Wy.;/ is a product Hermitian isomorphism for all
I'clcs,

(5-20) My,roMy,.rlp,, =y, forallieS, I'cIcCS.

We can define similar maps for the line bundle Ox (Zl m; V,) in the following way:

ﬁmmmsuiox(E:ﬂHW)‘ —éox(EznuW)
i Mies Di:r i
ﬁ(mi)ies§1( ® vi’j) = ® ﬁVl—;I(vi,j) forall I C S.

ieS, je{l,...m;} i€eS, je{l,....m;}

’

Vi

Equations (5-19) and (5-20) give us the equations

A~

(52D H(mi)ieszl|\117‘(ﬂies Diy) = m)iesst ©S(mi)ies © YINcs Dis
forall I C S
and

(5-22) ﬁ(mi)ieS;I °© ﬁ(mi),-es;l’hes Dj.y = ﬁ(mi)i€S§I forall I"CICS.

Using these equations, we will now prove our lemma by induction on the set of subsets
of S. Let < be a total order on the set of subsets of S with the property that if |I’| <|I|
then 7 < I'. We write I < I’ when I < I" and I # I'. Since U is relatively compact,
the tube radius of R along U is positive and hence we can choose any constant R > 0
smaller than this tube radius.

Suppose that there is some /* C S and a trivialization
O~ = (7, D5): OX(ZmiVi) — X xC
i

which is radius R compatible with R along U N Vy for all I < I* and which is
isotopic to @ through trivializations of Ox (>_; m;V;). We now wish to modify the
trivialization @~ so that these properties hold for all 7 < I*. Let T, s be the radius r
tube of V7 asin (5-14) and define LS =J; ;+ Tr.1-

First of all, let
g Vs — L3<R/4 — (0, 00)

be a smooth function whose value at x € Vy« — L;R /4 is equal to the norm of the linear
map

®m,~
q’2<|®i61*<wxmx)®mi3 ( ® NXVi|x) — C.

iel*
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Since the map Ily;;; restricted to each fiber of pry.;_; is an isometry for all i €
I C S, we getthat g(x) =1 forall x € Vj» N (Lg — L3<R/4) by our induction
hypothesis. Combining this with the fact that ag(s) =1 for all s > %R, we can choose
a smooth function f: X — (0, c0) which is equal to 1 in the region L% and equal to
(Tony Ve © W) (é) inside TR r+ N Wrx (Dom(\IJI*)|V1*_L3<R/4). This implies that
the norm of the linear map

®m;
623 0%, arien: (@Nehil) > C

iel
is 1 for all 7 < I*. Hence, (5-16) holds for f®> forall 7 < I*.

We now wish to modify f®~ so that (5-15) for this new trivialization holds as well.

We let
O~ = (1, DF): OX(ZmiVi) — X xC,
i

Im(\IJI*)

- <6 Var(pi () \™
(5-24) D= (v) = f(xX)O™ T (), i1 (—)
(W) = f(X)O™ (M (m,);e5:1 (v))il;[* o

for all v € Oy (Z miVi)
i

be a smooth trivialization. Equation (5-22) combined with the fact that <I>2< is radius R

given by

, x € Im(Wyx)

X

compatible with R along U NV; forall I < I* implies that &5 is radius R compatible
with R along U N (Lz — L;R/4) N Vr=. Hence, by (5-24), we have

O3 (v) = P53 (v) forall veTgr+N (LR _L;R/4)'

Combining this with the fact that T 7+ deformation retracts onto Vz+ U (Tg 7+« NLY%),
we can construct a smooth trivialization

O= = (7, DF): OX(ZmiVi) - XxC
i
homotopic to @~ so that
(5-25) 3|2 =0 [ < and |7, . = D77, ..

Equations (5-21), (5-24) and (5-25) tell us that ®= is radius R compatible with R along
U N Vy«. Also, since ®= = &= along L7, we get that ®= is radius R compatible
with R along U NV forall I < I'*. Hence, ®= is radius R compatible with R along
UNVy forall I <T*.
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Because the norm of the linear map (5-23) is 1 for all 7 < I'*, we have by (5-24) and
(5-25) that the norm of the linear map

®m,-
A AR (®Nsz|x) > C

iel

is equal to 1 for all 7/ < I*. Hence, we are done by induction. a
5.3 Links of divisors and open books

In this subsection, we first give a purely symplectic definition of a divisor which looks
like the resolution divisors of a log resolution of an isolated hypersurface singularity. We
then construct the “link” of this resolution divisor, which corresponds to the embedded
link of our isolated singularity. Finally we construct an open book decomposition of
this resolution divisor corresponding to the Milnor open book of our hypersurface
singularity.

We have the following definition from [26]:

Definition 5.11 Let (X, w) be a symplectic manifold of dimension 2n and let 8 €
QU(X — K) satisfy df = w|y_g for some compact K C X. Suppose that K admits
an open neighborhood U which deformation retracts onto K. Let p: X — [0, 1] be a
smooth function equal to 0 along K and equal to 1 outside a compact subset of U.
Then the dual

c(a), 9) € Hzn_z(K; R) = Hzn_z(U; R)

of (w, 0) is defined to be the Lefschetz dual of (w —d(pf))|y € H2(U).

Now suppose that K = ;g Vi, where (V;);es is an SC divisor and each V; is con-
nected and compact. Then a Mayer—Vietoris argument tells us that Hy,—» (Ul es Vi ]R)
is freely generated by the fundamental classes [V;] and hence there are unique real
numbers (w;);es such that c¢(w,0) = —) ; w;[V;]. The wrapping number of 6
around V; is defined to be w(6,V;) = w;.

The wrapping number does not depend on the choice of neighborhood U or bump
function p. We can calculate the wrapping number w(, V;) in the following way
(see the discussion after Definition 5.4 in [28]): Let D C X be a small symplectically
embedded disk with polar coordinates (r, ) which intersects V; positively once at
0 € D and does not intersect V; for all j € § —i. Then the wrapping number w; is
the unique number such that (w; /27w)d ¢ is cohomologous to

Olp—o — 2r2dv

Geometry & Topology, Volume 23 (2019)



994 Mark McLean

inside H'!(D—0;R). The computation of the wrapping number using the disk D above
enables us to define wrapping numbers in the case when each V; is properly embedded
but not necessarily compact. We will need this broader definition of wrapping number
in the proof of Lemma 5.23 below.

The next definition is supposed to be a way of describing a log resolution of a pair
(C™**1, £71(0)) (as in Definition 2.1) in a symplectic way. The key motivating example
for such a definition is given in Example 5.14 below.

Definition 5.12 A resolution divisor is a pair (X, (V;);es) where (V;);ecgs are transver-
sally intersecting properly embedded codimension 2 submanifolds of a manifold X
such that there is a unique element *g € S with the property that Vi is noncompact
and V; is compact for all i € S —*g. We also require that (_J; V; is connected and that
Vi is connected for each i € S — g (although Vi is allowed to be disconnected).

A model resolution is a triple (Ox (3_;cg mi Vi), ®.6) where X is a manifold, (V;);es
are codimension 2 submanifolds, 0 € Q! (X —Uies—sg V,-) and @ is a trivialization

of
OX(ZmiVi) = ®OX(V1')®m[»

ieS ieS

where (m;);es are positive integers satisfying:

(1) (X, (Vi)ies) is a resolution divisor as above.

(2) db = a)|X_Ul,€S_*S y; for some symplectic form @ on X.

(3) (Vi)ies is an SC divisor with respect to w.

(4) mug =1 and the wrapping number w(0, V;) is positive forall i € § — xg.
The form w is called the symplectic form associated to (OX (Zies m; V,-), D, 9). A
Vi,a)).

grading on this model resolution is a grading on (X —Uies—sg

Definition 5.13 Two model resolutions
v=(ox(Tmn).es). 7=(og( Tai)
ieS
are isotopic if there is

e a bundle isomorphism ¥: Oy (Zies miVi) — O)?(ZieS‘ n?lIZ) covering a
diffeomorphism ¥: X — X,
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e abijection ¢: S — S sending xg to *g, and
e a smooth family of 1-forms (6; € Q! (X — Uses— s V,))te[0 1] joining 6

and W*@ and trivializations (Pr)sefo,1] of Ox (Zles m,Vl) joining @ and
DoWo (U1 xide)

such that m; =, ;) and W(V;) = I’/\L(,-) forallie S and Y; = (Ox (X ;g miVi). ®s.6;)
is a model resolution for all z € [0, 1].

These model resolutions are graded isotopic if they are isotopic as above with the
additional property that the model resolutions Y; all admit gradings that smoothly
depend on ¢ € [0, 1] and where the grading on Yy coincides with the grading on Y and
the grading on Y7 coincides with the grading on Y under the identification W.

We will now give an example of a model resolution.

Example 5.14 Let f: C"*! — C be a polynomial with an isolated singularity
at 0 and let U C C"™! be an open set containing 0 such that f|y_q is regular.
Let 7: Y — C"*! be a log resolution of (C"*!, £~1(0)) obtained by a sequence
of blowups along smooth loci and define X = 7! (U) (such a resolution exists
by [20; 21]). Let (E});es be the resolution divisors of this resolution and let E,; C X
be the proper transform of f~1(0) N U. Because such a resolution is obtained by a
sequence of blowups along smooth loci, there are positive integers (w;);jes—«g such
that A=—-) ;cq_, ¢ Wi E; is ample on X. By the divisor line bundle correspondence,
let L — X be the corresponding ample line bundle with a meromorphic section
satisfying (s) = A. Choose a Hermitian metric || - || on L whose curvature form
is a positive one-to-one form. Define 8 = —d € In(||s||). The 2—form d6 extends
uniquely to a Kéhler form w on X. The wrapping number of 6 around E; is w; for
all j € S —xg.

We also let m; € N5 be the multiplicity of f along E; for all i € S. Since
Y ies mi E; is the divisor defined by f o m|xy we get, by the divisor line bundle
correspondence, that the holomorphic line bundle Oy (Zie §Mmj E,-) has an induced
trivialization ®: Oy (Zie smi E i) =~ X x C such that the section s corresponding to
the holomorphic function f o |y satisfies pr,o®os = fom|y, where pry: X xC —C
is the natural projection map. Then (OX (Zie S ml-Ei), P, 9) is a model resolution,

called a model resolution associated to f .

Such a resolution also has a grading as follows: Let X=X- U E;. Since

i€ES—x*g

|y X >U-0ccrtl
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is a biholomorphism, we get a canonical holomorphic trivialization
®: TX - X xCH!

as a unitary vector bundle coming from the trivialization on 7C”*!. The grading on
TX is equal to the trivial grading on X xCntl pulled back by ®. We will call this
the standard grading.

We now wish to associate a pair of contact manifolds with normal bundle data to a
model resolution. In the case of Example 5.14, this is the link of our singularity (as
defined in the introduction) with some additional data.

Definition 5.15 Let (X, (V;);es) be a resolution divisor. A tuple of regularizations
(Wi)ieS—xg
is compatible with V, ¢ if W; is a regularization of V; foreach i € § —xg and
V; (Dom(¥i)|v, ny;) C Vg forall i €5 —xg.

In other words, W; restricted to Dom(\IJ,')|V*Sm/i is a regularization of V; N Vg
inside V, forall i € S —xg.

Definition 5.16 Let ¥ and W be regularizations of a submanifold V' of a manifold X.
Then a smooth family of regularizations W; of V' connects V and W if W is germ
equivalent to Wy and U is germ equivalent to Wy .

Lemma 5.17 Let (X, (V;)ies) be a resolution divisor. For any two tuples of regular-
izations (¥;)ies—«g and (\ifi),-es_*s compatible with Vi, there is a smooth family
of such regularizations

(lpf)ieS—*s’ 1 €[0,1],

compatible with V, ¢ which connects (V;);es—«g and (\i',-)ies_*s.

Proof Choose a metric making Vi into a totally geodesic submanifold. Define
T"X C TX to be the set of tangent vectors of length at most r. Fix i € S. Choose a
relatively compact neighborhood W; of V; in X and let § > 0 be small enough that
the exponential map restricted to Tf, X is a diffeomorphism onto its image for all w
in W;. Let W; C lIJZ._I(W,') N (\ill-)_l(Wl-) be a small enough neighborhood of V; that
the distance d(v) between W;(v) and 0 (v) is less than § for all v € W; . Now let
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yv: [0, d(v)] = X be the unique geodesic of length < § joining ¥;(v) and W, (v) for
all v e W, Define

U W — X, U(v) =yy(td(v)) forall £ €[0,1].

Since d, ¥ and d, W from Definition 5.2 are both the identity map, we get that d, @f
is also the identity map for all v € V;. Hence, there is a neighborhood Wi/ c W
of V; such that W! = \13; |77, is a diffeomorphism onto its image for all ¢ € [0, 1].
Hence, (\Ilf )tefo,1] is @ smooth family of regularizations compatible with V¢ which
connects W; and ‘I/,'. Therefore, (\Illt )ieS—xg for t €0, 1] connects (¥;);es—«g and
(Ui)ies—xs- a

Definition 5.18 Let X be a smooth manifold and let (V;), ¢ be transversely inter-
secting compact codimension 2 submanifolds of X. A smooth function

fix-Jvi-nRr
ieS
is compatible with (V;), . ¢ if there is
e aregularization W; of V;,
e areal number b; > 0, and

e asmooth function g;: Dom(W;) — [0, 1] equal to the square of some norm on
Nx Vi near V;, equal to 1 outside a compact subset of Dom(¥;) and nonzero
on Dom(W¥;) —V;

for each i € S and a smooth function 7: X — R such that
f= Zbi log(gi o W; 1) + 1,
ieS
where log(g; o ;1) is defined to be 0 outside Im(¥;) for each i € S. We will call

the regularizations (W;);es—«g associated regularizations of f .

Now suppose that we have an additional smooth submanifold V. of X such that
(Vi)ies becomes a resolution divisor, where S = S U{xs}. Wesay that f is compatible
with (V;);es if it is compatible with (V;);es—«¢ as above with the additional property
that the associated regularizations of f are compatible with V. As a consequence
of this we have that flV*s is compatible with (V; N Vig)ieS—sg -

We say that f is strongly compatible with (V;);es if in addition 7 = 0.
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Lemma 5.19 Let (X, (V;)ies) be a resolution divisor and let
fgXx— ) Vi—>R
ieS—xg

be a pair of smooth functions compatible with (V;);ecs . Then there is a smooth family
of functions

friox— |J vi>R refo1]

i€ES—x*g

compatible with (V;);jes suchthat fo = f and fi =g
Proof Forall i € S —x«g, there are regularizations W; and \ifi of V;, smooth functions
gi: Dom(¥;) — [0,1], gi: Dom(\i/i) —[0,1]

equal to the square of a norm near V;, equal to 1 outside a compact set and nonzero
outside V;, real numbers b;, b; > 0 and smooth functions 7, 7: X — R such that

f= Z bilog(gioW; ) +7 and g= Z b; log(éiolf!i_l)+%.
i€ES—*g ieS—x*g
First of all, we can smoothly deform f and g through smooth functions compatlble

with (V;);es by changing g;, g;, b;, b and t and 7 such that g; = ¢;, b; = b and
7 =7 = 0. Hence, we can assume that

f= Z bilog(gio¥: ') and g= Z bi log(qi o\ili_l).
i€ES—xg i€ES—*g
Lemma 5.17 tells us that there is a smooth family of regulations (\Ilf )ieS—xg for
t € [0, 1] compatible with V., connecting (¥;);es—+y and (\Ivli)ies—*g and hence
we get a smooth family of functions
> bilog(gio (W)™
ieS—xg

compatible with (V;);es (after possibly shrinking the region on which ¢; is not equal
to 1 so that it fits inside (,¢[g,1] Dom(¥,)). This is a smooth family of functions
compatible with (V;);es joining f and g. a

Lemma 5.20 Let (X,w) be a symplectic manifold with a choice of grading and
C C X a contact hypersurface with a contact form oo compatible with the contact struc-
ture satisfying do = w|c . Then (C,ker(a)) has a natural induced choice of grading.

We will call such a grading the induced grading on C.

Geometry & Topology, Volume 23 (2019)



Floer cohomology, multiplicity and the log canonical threshold 999

Proof Let X, be a smooth section of the bundle TX |¢c — C equal to the w—dual
of «. Since da = w|c and « is a contact form, we get that X, is transverse to C.
Let R be the Reeb vector field of o and define §¢c = ker(«). Let H C TX|c be the
2—dimensional symplectic vector subbundle spanned by X, and R. Then we have the
direct sum decomposition of symplectic vector bundles

(TM,C())|C = (SC,dOl)@(H,CU“—I)

Since Xy, R is a symplectic basis for H at each point of C, we have a natural
symplectic trivialization of (H, w|g) sending X, and R to the standard symplectic
basis vectors on C. Hence, we have a natural isomorphism

(5-26) (TM,w)|c = (§c.da) & (C, wg).

Now choose an almost complex structure J on M compatible with @ such that its
restriction to TM |¢ is equal to J¢ @i with respect to the splitting (5-26), where J¢
is an almost complex structure on ¢ compatible with dalg. and i is the standard
complex structure on C.

Now we will use the natural correspondence between gradings and trivializations of
the canonical bundle as stated in Appendix A. Let ®: k; — X x C be the choice of
trivialization of the canonical bundle of (T'M, J) associated to the grading on (X, w)
(see Definition A.7). Since J|¢c = J¢ @i under the splitting (5-26), we get a natural triv-
ialization ®c: kj. — C xC induced from the trivialization ®|c . The induced grading
on (C, &c) is then the grading associated to the trivialization ®¢ as in Definition A.7.

O

We wish to use functions compatible with a resolution divisor to construct its “link”.
The following proposition tells us how to at least start doing this.

Proposition 5.21 Let (Ox (Y ;cgmiV;), ®.6) be a model resolution. Define K =
Uies—sg Vi- Let f: X—K — R be a smooth function compatible with (V;);es . Then
there is a smooth function g: X — K — R and an open neighborhood U of K such that
df(Xé”+dg)|U > 0 and df*(Xgi:Ldg*ﬂUmV*S > 0, where w is the symplectic form
associated to our model resolution, wx = wly, ., fx = flv. -k and g« =glv, .-k -

The proof of this proposition is almost exactly the same as the proof of Proposition 5.8
of [28]. The only difference is that we have to take into account the additional sub-
manifold Vg . For the sake of completeness we have produced the proof below. We
also have a parametrized version of the proposition above.
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Proposition 5.22 Let M; = (Ox(X_;egmiVi), ®.6;) for t € [0,1] be a smooth
family of model resolutions. Define K = J;eg_,¢ Vi- Let fi: X — K — R for
t € [0, 1] be a smooth family of functions compatible with (V;);cs. Then there is a
smooth tamily of functions g;: X — K — R for ¢ € [0, 1] and an open neighborhood U
of K such that dft(Xeerg )lu > 0 and df;, f(Xe Ldg.
is the symplectic form associated to M;, w,; = CUt|V*S Jar = ft|V*S—K and

)|UﬂV*s > 0, where w;
Gut = g’|V*s—K forall t € [0, 1].

The proof of this proposition is almost exactly the same as the proof of Proposition 5.21
except that all variables are now parametrized by ¢. Therefore, for notational simplicity
we will just prove Proposition 5.21. Before we prove this we need a few preliminary
technical lemmas. The following lemma is very similar to [28, Lemma 5.12]. This
lemma should be thought of as a local version of Proposition 5.21.

Lemma 5.23 Let (OX (Zies m;j Vi), o} 6) be a model resolution and fix a metric
|- || on X. Define K = Uies_*s Vi. Fix I C S and let w be the symplectic form
associated to our model resolution. Let U C K be an open set with the property that
U NV is contained inside a contractible Darboux chart of Vi, forall I’ C S and such
that UNV; = @ forall i € S —1.

Then there is a smooth function g: X —K — R such that for any function f: X —K —R
compatible with (V;);es, we have

(1) df(X0+dg)|Wf > crll0 + dg||||df||‘W for some constant cy > 0 and some
small neighborhood Wy of unvy,

@) dfi(Xg" g MWy > crl0x + dgpallldfellly, . where fu = flv, k.
Wf* = Wf* N Vg, O, = elV*S_K and g, = |V*S_K’ and

(3) ailldf|| < |6 +dg| <az|df | inside Wy for some constants ay,az > 0.

Proof Define [ = I — *g and let n be the dimension of X divided by 2. Since
U NV; is contained inside a contractible Darboux chart we have, by a Moser argument,
symplectic coordinates x’i, y’i, e )c,’1 y,iz defined on some neighborhood W; of U NV;
in X such that V; N W; = {x’i = y’i = 0} foreach i € I. We can also choose W
sothat W;NV; = & forall j € §—1 and so that Wi is a compact contractible
codimension 0 submanifold of X with boundary such that dW; and (V;);es are
transversely intersecting. Define W/ = W; — V; and let P;: Wi/ — Wl./ be the cover

1
corresponding to the subgroup of 71 (W) generated by loops wrapping around V;
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near V; for each i € I. In other words, the cover corresponding to the image of
w1 (T; = V;) in m(Wl-'), where 7; is a small tubular neighborhood of V; N W; in W;.
Let r;: W/ — R and 9;: W/ — R /27 Z be functions satisfying x’i =Ti cos(?¥;) and
yi=ri s1n(z§‘) Define p; = 2(r,) pi = Ppi, yJ =P’y ’ and X; = P*x for
all i €I and jef{l,...,n}. Let i W/ — R be a smooth functlon whose Value
mod 27 is equal to P.*19 . Alsolet o = P (@|w;) and 6= P Olw)).

Then & = d(p;) A d(l?’) + ZJ —d(X ) ANd(Y ) Therefore, there is a natural sym-
plectic embedding of ¢;: W’ s Cntl1 such that the standard symplectlc coordinates
X1, V1s++.»Xn, Yu in C” restricted to W’ are 0;, 19, , xz, y2, .. xn, yn, respectively.
Let Ijl\/l.’ (C”+1 be the closure of P~ I(Wi’ ) inside C"*1 and let Vl/—i be the closure
of Pl._l(VI_l-) inside C"*1. Then Ijl\/l.’ is a codimension 0 submanifold of C"*1 with
boundary and corners and f/\ll—i is a codimension 2(|/|—1) submanifold of 171\// with
boundary and corners where one part of the boundary is Vi = {x1 =0}N 171/—1‘

Let W; be the closure of W; in X. The map P; extends to a map P;: 171\// — W;
whose fibers over W; N V; are 1-dimensional. Also 171_,~ is equal to ISi_l(VI) and
171/—1' = P71 (Vy—;). See Figure 2.

Let w; > 0 be the wrapping number of 6 around V;. Let H C T(C”+1|V[ » be a

2—dimensional symplectic subbundle over Vi_i containing

ker D P; |I7, = Span(ail)

such that H is contained in TI71’ Let TJ-V’ be the set of vectors which are
symplectically orthogonal to TI71/ ; and define H Ho TJ-

il
Choose a smooth function g;: C"*! — R so that
@ &i(x1. Y1, Xnyn) = i (X1, Y1 + 27, X2, Y2, ... Xn, Yn) + Wi,
(b) dx1(Xgz,) > 0 at each point of Vi_;,and
(c) the wgn+1|g—dual of dg;| g is tangent to 171/—1' at each point of Vi_i, where

wen+1 is the standard symplectic structure on C"*+1,

Condition (c) implies that X4z, is tangent to 171/—1' at each point of 171_,- . By (a) there
is a closed 1-form B; € Q' (W/) whose pullback to Wi’ isequal to dg; |VT/."
Define W' =(._; W;. Let 6 € Q1(W’) be any 1-form of bounded norm satisfying
d91 = a)|W/. Define

OcQ'W-K). ©=6i+) B

iel
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Figure 2

By (a), we get that the wrapping number of ©® around V; N W' is w; for all i € I
Hence (after shrinking (W;), .7 so that W' deformation retracts onto W’ N K), there
is a function g: X — K — R such that (8 + dg)|w' = Olw-.

Let f: X — K — R be compatible with (V;);es and let (W;);es—+ be its associated
regularizations. Then, by definition, f|w: =), _;bilog(gi © \I’i_l) + 7, where
e 1: W/ — R is a smooth function and b; > 0 are constants for all i € f,
e ¢;: Dom(¥;) — R is equal to a square norm near V;, equal to 1 outside a
compact subset of Dom(W;) and nonzero on Dom(¥;) — V;, and

e log(gio V¥, 1) is defined to be zero outside Im(¥;).
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Define s; =log(g; o\IJi_l) and s; « = s; IV*S—K‘ Define B; » = Bi |V*Sﬂ(W/_K). Since

C1 (6} C1 (6]
(5-27) —<lBill <=, —<ldsill <—=
ri ri ri T

1 1

for some ¢1,c2 > 0 and ||f; || is bounded, part (3) of our lemma holds.

Since ||z|| and ||61]| are bounded and since (5-27) holds, it is sufficient for us to prove
the following statements:

(1) ds; (Zjel X,gl) > Cf/(r,) inside some small neighborhood Wy of W/ N V7
and some constant ¢y > 0 for all i € I.

2) dsi,*(zjei Xﬂj'*) > Cf/(ri inside Wy NV, forall i € I.

Let V, s be closure of Pl._l(V* ) inside C"*1 Let |-| be the standard norm on C"*1!.
Since there is a diffeomorphism ®;: W; — W; which is the identity on V; N W},
fixing V; NW;, forall j € I —i, which is also isotopic to the identity through such
diffeomorphisms and, pulling back s; to log(p;), we have that inequalities (1) and (2)
above can be deduced from

(1) dp; d pi (Dq) (Xqz,)) > c inside Wf P 1(V;) for some small neighborhood
Wf of VI _; and some constant ¢’ > 0, where CID W/ — Wl/ is a lift of
Pl W/ — W/,

(2) dpi(DP; (Xpi*ﬁ/)) — 0 as we approach Vi_; for all j € I—i,and

(3) Xgg; 1s tangent to 17*5 along Vi_i foralli .

These properties follow from (a)—(c) above. m|

Lemma 5.24 Let ((‘)X (Zies miVl-), o, 9) be a model resolution and fix a metric
| -1 on X. Define K =J;cg_,¢ Vi and let f: X — K — R be a smooth function
compatible with (V;);es . Then there is a smooth function h: X — K — R and constants
ai,az > 0 such that a1 ||df || < |10 + dh|| < az|df | near K.

Proof We will use Lemma 5.23(3) and an induction argument to do this. Choose open
sets Uy, ...,Uy in X along with subsets I1,... 1, C S such that

« UiL,Uinv)=K
e U j N Vp is contained inside a contractible Darboux chart of V7 forall I’ C S
and j €{l,...,m}, and

e UinVy=o forall ke S—1I; andall j €{l,...,m}.
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Let U 1. (7,,, be open sets of X such that the closure of lV]i is contained inside U;
for all i € {I,...,m} and U;"=1(lv]j NVi) = K. Define Ut = J; 4 U;j and
U<k = U] <k Uj

Suppose, by induction, there is a smooth function #<: X — K — R and constants
at, a5 >0 such that

(5-28) ar |df | <110 +dh<| <azlldf |

on a neighborhood N C U_; of the closure of U-; NK for some k € {1,...,m}. By
Lemma 5.23, there is a function 7—: X — K — R and constants a",a5 > 0 such that

(5-29) ap |df |l <110 +dh<+dh=| <a3 ||df |

on a neighborhood Wy of Uy N K in X. Now let p: X — [0, 1] be a smooth function
equal to 0 on a neighborhood of U<k N K and which is 1 outside a compact subset
of N. Define h< = h< + ph—. Equations (5-28) and (5-29) tell us that ||dh_|| <
(a5 +a2 Y|df || near Uy N (N —U~y) N K, which implies that [h=| < C|f|+ C near
(N — U<k) N K for some C,C > 0. Hence,

aildf | <116 +dh<| <a3lldf |

near U<k+1 N K for some alf, c125 > 0 and so we are finished by induction. |

Proof of Proposition 5.21 By Lemma 5.24 we can add an exact 1-form to € so that

(5-30) billdf I <1101l < b2|ldf |l

inside a neighborhood N of K for some constants by, b, > 0. By Lemma 5.23 we
can find open sets W1,..., W, of X covering K, smooth functions g;: X — K - R
fori =1,...,m, and a constant ¢ > 0 such that

(1) df (X, g0 ), > el +dgilldf 1] ..

2) dfu(Xg", g )lw. >0 +dgi,*||||df*|||m*, where fi = flv, .~k Wix =
Wi N V*S, 6, = 0|V*S_K and gix = gi|V*S_K’ and

B3) clldf | <16 +dgil|l <<|ldf | inside W; for some constants ¢, ¢ > 0.

Now choose smooth functions p; fori =1,...,m so that Z;":l pilgk =1and p; =0
outside a compact subset of W; foreach i =1,...,m. We define

m
g X-K—R, gEZPigi-
i=1
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We define g, = g|V*S_ K- vale inequality (5—v30) combined with property (3) above
tells us that |g;| < C|f|+ C for some C,C > 0 near W; N K. This means that
df(Xg, 4¢) > cll0 +dgllldf || near K, df(Xg | ;. ) > cllOx + dg«lllldf | near
Vig N K and ay||df || < ||6 + dg|| < az||df | near K for some constants aj,as > 0.

O

Definition 5.25 The link of a model resolution ((‘)X (Zie smi V,-), o, 9) is a contact
pair with normal bundle data (B C C, £c, ®p) defined as follows: By [39, Lemma 4.1],
there is a tuple of regularizations (W;);cs—«s compatible with V¢ as in Definition 5.15.
Define K =|J;c5_4¢ Vi- Let f: X — K — R be a smooth function compatible with
(Vi)ies such that (¥;);es—« are associated regularizations of f. Then f, = f |V*s
is a smooth function compatible with (V; N Vig);es—«g. Hence, by Proposition 5.21
we have that df (Xg444) >0 and df«(Xg, +4g,) > 0 in an open neighborhood U of K
for some smooth function g: X — K — R, where g, = g|V*S_K and 6, = glV*s—K‘
Let ¢ < —1 be a constant satisfying f~!(c) C U. Define

C=/f""), B=CnV., & =ker(d+dglc.

Finally, the trivialization ®p of the normal bundle of B in C is induced from the
trivialization @ since the normal bundle of B is naturally isomorphic as an oriented
vector bundle to Nx V, ¢ | g, which in turn is naturally isomorphic to Ox (3,5 mi Vi) | B
since myg = 1.

If (Ox(X;esmiVi),®.0) has a grading then this gives us an induced grading on
the link as in the proof of Lemma 5.20 since C — B is a contact hypersurface of
(X — Uies—»« s Vi,a)), where  is the symplectic form associated to our model
resolution. We will call this the induced grading on (B C C,&c, Op).

The link does not depend on the choice of neighborhood U, constant C or function f
by the following lemma:

Lemma 5.26 Suppose that (Ox (}_;es miVi), ®.6) and (Of(ziegiﬁiﬁi), o, 5)
are (graded) isotopic. Then their links are also (graded) isotopic for any choice of
neighborhood U, constant C or function f chosen for each of these two model

resolutions.

Proof This follows from Lemma 5.19 and Proposition 5.22. a
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5.4 Constructing a contact open book from a model resolution

The aim of this section is to construct a contact open book for each model resolution
such that the contact pair associated to this open book is the link of our model resolution.

Definition 5.27 Let (Ox () ;cgmiVi). @, 0) be a model resolution with associated
symplectic structure w. Suppose (V;);es admits an w-regularization

(5-31) R=((pi)ies. (¥Y1)ics)

with associated Hermitian structures (pr;;, v{ 5i)) on NxV;|y, foreachi e I C S.
Letaj,; =« pr:i VUi € Q' Ny V; |y, — V1) be the associated Hermitian connection
1—form on Nx V;|y, . Define K = J;c5_
around V; foreach i € § —xg and define a.¢ = 0. Let

Vi. Let w; be the wrapping number of 6

(5-32) pry.: Nx Vi — NxVily,

be the natural projection map for all / C S. We say that 8 is compatible with R if the
restriction of
"
(5-33) (¥7)*0 — ;Pf;‘;i ((Pl;i + ﬁ)al;i)
1

to each fiber of my, v, |\Il,—‘(X—K) is O for every I C S.

Lemma 5.28 Let ((‘)X (Zies mj Vi), D, 9) be a model resolution such that (V;);es

admits an w-regularization R. Define K = | J Vi . Then there is a smooth

i GS—*S
function g: X — K — R such that 6 +dg is compatible with R for some regularization

R which is germ equivalent to R.

Proof This is done by induction on the strata of | J; ;. We will use the notation from
Definition 5.27 above. Let < be a total order on the set of subsets of .S with the property
that if |7’| < |I| then I < I’. We write I < I’ when I < I’ and I # I’. Suppose, for
some /* C S, we have constructed open sets U~ inside Dom(W;) containing V7 for
all I < I'* and a smooth function g~: X — K — R with the property that

Wi
(Un)*(6-+dg) - Y i ((m;i n ﬁ)am)
iel
vanishes along each fiber of myy v, |UI< ADom(w,) forall I <TI*.

We now want these properties to hold for all / < I*. For each I < I* let U If C
Dom(Wy) be an open set containing V7 whose closure is compact such that the closure
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of U} is contained in U;* when I < I* and such that 7y v, |y= has contractible
fibers for all 1 < I'*. Since the wrapping number of 6 around V; is w; forall i € I
and since (W1)*(d0) = ©(,,.. vy, Ipom(w;)» We get that the restriction of

Wi
A= (Wr)*(0+dg™) — Z Prye. ((pz*;,- + ﬁ)al*;i)

iel*
to each fiber of 7ny v, [pom(w,«) is exact. Also, by our induction hypothesis, the
restriction of A to the fibers of Ty v, [(w,.)~1 (v, W) is 0 for all I & I*. This
means that there is a smooth function g=: X — K — R such that g~ restricted
to a small neighborhood of the closure of W;(U 15) is 0 for all 7 € I'* and such
that A + (W7+)*dg™ restricted to each fiber of vy v,. |U]§* ADom (¥, +) is 0. Define
g2 =g~"+g~. Then

W
W* O +dg®) - Y pit, ((m;i n 2—’)%)

iel T
vanishes along each fiber of wy, v, |U,f ADom(¥;) for all I < I'*. Hence, by induction
we have shown that there is a smooth function g: X — K — R and open subsets
Ur C Im(¥y) containing V7 such that

W)* (6 +dg)— Y pri ((pz;,- n %)al;i)

iel
vanishes along each fiber of 7xy v, |y, npom(w,) for all I C S. By [39, Lemma 5.5],
we can shrink these open subsets Uy so that R = ((oi|w, v;))ies. (Yrlu;)ics) is a
regularization. O

M= (OX(ZmiVi),QD,G)

ieS

Definition 5.29 Let

be a model resolution with associated symplectic form @ and let U C X be an open set.
A regularization of M of radius R along U for some R < 1 is an w-regularization R
of (V;)ies asin (5-31) such that

(1) the line bundle Oy (Zie s Mmi V,-) is also defined using the regularization maps
(Vi)ies from R,

(2) @ isradius R compatible with R along U as in Definition 5.9, and

(3) @ is compatible with R.

A regularization of M along U is a regularization of M of radius R along U for
some R < 1 smaller than the tube radius of R along U.
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We wish to show that every model resolution is isotopic to one admitting a regularization
as above. Before we do this we need a preliminary lemma.

Lemma 5.30 Let X be a smooth manifold with a smooth family of cohomologous
symplectic forms (w¢)se[o,1] and (V;)ies a compact SC divisor on X with respect
to w; for all ¢t € [0,1]. Define K = | J;cg V: and let 6 be a 1-form on X — K
satisfying df) = wo|x -k . Then there exists a smooth family of 1—forms (¢);e[0,1] on
X — K such that d6; = w;|x—k forall t € [0, 1] and such that the wrapping number
of 6; around V; does notdependont € [0, 1] forall j € S.

Proof Since w; — wq is exact for all ¢ € [0, 1], there is (by exploiting the Hodge
decomposition theorem for differential forms) a smooth family of 1-forms (B¢)s¢[o0,1]
on X suchthat dfB; = ws—wyp. Let U C X be a neighborhood of K whose closure is a
compact manifold with boundary which deformation retracts onto K and p: X — [0, 1]
a smooth function equal to 0 near K and equal to 1 outside a compact subset of U.
Define ,ét =0+ B € QUX — K) for all ¢ € [0,1]. Since pB, = 0 near K, we
can think of this as a smooth 1-form on X by defining it to be 0 along K. Let
cr = [a),—d(p,é,)] e H>(X, X —U;R) forall ¢ €[0, 1] and define ¢ = [wg—d(ph)] €
H?*(X,X —U:R). Since H*(X,X —U;R) = H*(X, X — K:;R), we have the long
exact sequence

HY (X —K:R) %> H2(X, X —U;R) %> H2(X:R) - H2(X — K R).

Since @(cy) = d@(c) = [wo] for all ¢ € [0, 1], we have a smooth family closed 1-forms
by € Q1(X — K) such that a(b;) = ¢ — ¢, forall ¢ € [0, 1]. Let §; = B; + b;. Then
[welu —d(pb;)] € H2(U;R) is independent of ¢, which proves our lemma. O

Lemma 5.31 Let (Ox () ;cgmiV;). ®.0) be amodel resolution and let U C X be
a relatively compact open set. Then (OX (Zies m; Vi), D, 6) is isotopic to a model
resolution ((‘)X (Zies m; V,'), P, @ admitting a regularization along U.

Proof By [39, Theorem 2.17], there a smooth family of cohomologous symplectic
forms (w¢);e[o,1] such that wg = w and (V;);es admits an w;-regularization

R=((pi)ies.(¥1)ics).

Lemma 5.30 then tells us that there is a smooth family of 1-forms (6;)s¢[0,1] on
X — Uies—+g Vi such that 6 = 0 and dO; = a)|X_Ul.€S_*S y, for all ¢ € [0,1]
and such that the wrapping number of 6; around V; is independent of ¢ for each
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i €S —*g. We can assume that Ox (}_; g m; V) is defined using the regularizations
(¥;);es as changing the regularization needed to define a line bundle as in (5-9) creates
an isomorphic line bundle. Now we isotope @ through trivializations to a trivialization
® such that ® is compatible with R along U by Lemma 5.10. By Lemma 5.28 we
have, after replacing R with a germ equivalent regularization, that 6= 01 +dg is
compatible with R for some g € C®(X — Uies—xs Vi).

Hence, (OX (Zies miVi), D, 0) is 1sot0plc to (OX(Z cs Mi ) o, 91), which in
turn is isotopic to ((f)X (Zie s mj Vl) P, 9) which admits a regularization along U. O

Lemma 5.32 Let (Ox (Y ;g miVi). @, 0) be a model resolution admitting a regular-
ization along U for some relatively compact open set U C X as in Definition 5.29. Let
@, be the composition of ® with the natural projection X x C — C. Define

np: U —C, mep=Dr050,),.4lU-

where $(,); . 1 the canonical section of Ox (Zl m;j V,) as defined in (5-12). Then
there is some € > 0 such that mg (z) is a symplectic submanifold of U for all
z € D(e) —{0}. Also, the restriction of 6 to Jrqjl ({|z| = €'}) is a contact form for all
0<e <e.

Proof Since U is relatively compact, it is sufficient for us to show that for ev-
ery x e UnN (Ules V,') there is a small open set Uy C X containing x such
that 7'[q>|U Nz (C—0) has symplectic fibers and such that the restriction of 6 to

1({|Z| =€ }) N Uy is a contact form. We will first show that the fibers are symplectic.
Suppose that / C S is the largest set satisfying x € V7. Let ag be the function defined in
Definition 5.9 and let T1 (), _¢,7(v) be asin (5-13). Near x, we have that ag(p;) = p; .
Therefore,

7Td>(y) = qDZ(H(m,')igs,I (qjl_l(y)))

for all y € X near to x. Since Wy is a regularization, it is sufficient for us to show that
the fibers of ®; 0 I(,,;),_,,7 restricted to a small neighborhood of x inside Nx V; are
symplectic with respect to

(5-4) 1
(5-34) Oy 1 VDY, = Ty, (@]v,) + 5 @Pr}‘;i (d(priior;i)),

iel
where pry.; is the natural projection map from (5-32). Let Wy C V; be a small open
neighborhood of x that is contractible and choose unitary trivializations

T;: NxVilw, = Wx xC
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forall i € I. Let z;: Nx Vy|w, — C be the composition of T; opry.; with the projection
map to C. Hence, along Wy, (5-34) becomes

* i —
(5-35) Do, Vi) I = Ty (@) + B+ 2 @ dzi NdZj,
iel
where B € Q2(NxVy|w,) is a closed 2—form whose restriction to the fibers of
7Ny V; | W, 18 zero and whose restriction to the zero section is also zero. This means
that near x we have that Oy, VUID) oy lw, is CO close to

‘% i -
W =Ty, v, ((‘)|V1) + 3 @dz,- ANdZ;.
iel

We can choose our trivializations T; so that ®3 0 I1(y,,), ¢, 7 is equal to [[;c; z;
inside 7, v, |w, . Since the fibers of [[;<; z;"* are symplectic with respect to & near
Wx N V7 and since w is equal to @ at the point x, there is a small neighborhood
Ux C NxVy containing x such that the fibers of [[;; zi |(7x are symplectic with
respect to w(,, . vu:y, ., |w,. Hence, the fibers of 7e|y, are symplectic, where

Uy =Y (Uy).

We now wish to show that 6 restricted to Y, = g L({|z] = r}) N Uy is a contact form
for all r > 0. Since the restriction of @ to the fibers of 7|y, are symplectic, it is
sufficient for us to show that € restricted to the kernel of w|y, is nonzero at every point
for all r > 0. By (5-34) and the fact that @3 0 T, , is equal to [];; z" inside
Nx Vilw, , we get that the kernel of \Il}ka)|q,l_1 ) is tangent to the fibers of v,
inside Dom(Wy). Therefore, since the restriction of the 1-form (5-33) to the fibers of
7y v, inside Dom(W;) is zero, W76 restricted to the kernel of \IJ;‘a)|I7Y is nonzero
so long as U, C Dom(Wy). Hence, 6 restricted to Y, is a contact form for all » > 0
so long as U, C Im(Yy). a

Definition 5.33 Let (Ox (}_;e5 mi Vi), . 6) be a model resolution admitting a radius
R regularization

(5-36) R=((pi)ier,(¥1)ics)

along a relatively compact open set U C X as in Definition 5.29, where U contains
K= UieS—*S Vi. Let T, be the radius r tube of Vj asin (5-14). Let ®: X — C
be the composition of @ with the natural projection map X x C — C. Choose € > 0
small enough that

(5-37) (®205(m;);e5) " D) NU C | Trii
ieS
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and the fibers (P, os(m,.)l.es)_1 (z)NU are symplectic for z € D¢ —0 by Lemma 5.32.
Let 7' be a smoothing of the compact manifold with corners Uies—+g TR.i such that

(5-38) T NTR s = xp,*(njg;V*S(V,* NAT)) N TR xg.

Xg points outwards along 97 N TR, s and such that Tc Uies—«g TR.i- We also
assume that the smoothing is small enough that | J;cs_. T3R/4,; is contained in the
interior of 7.

Define
ne: T —>C, 7 =P2050m);c5l-

The Milnor fiber of (Ox (}_;cg miV;). ®,0) is the pair

(M. 61) = (15 (€). 0] -1

This is a Liouville domain for € > 0 small enough since Xy is tangent to Vi — K
and Xy is transverse to 07 and pointing outwards:

R
—
(P20 S(mj)ies )_1 (€)
T s TR,xs
V*S L
o
TR,i
T R
Vi

Because

e the 1-form (5-33) restricted to each fiber of myy v, |q,1—1 (X—K) is O for every
ICS,

e (5-38) holds,
e & isradius R compatible with R along U, and
Uies—« s T3R /4, 1s contained in the interior of YV“,

we get that the monodromy map ¢: M — M of ng around the loop

[0,1] — dD(e), ¢ — €™,
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with respect to the symplectic connection associated to @ exists and has compact support.
In addition, since w| 73! (@D(e)) = do| 75 (0D () ¢ is an exact symplectomorphism
with compact support. We call (M, Op7, @) the abstract contact open book associated
to (OX(ZieS m,-Vl-), o, (9).

Now suppose that our model resolution has a choice of grading. Since n;l (0D (€))
is a contact submanifold of (X — K, w) with contact form given by restricting 6
by Lemma 5.32 after possibly shrinking €, we get an induced grading on this con-
tact submanifold by Lemma 5.20. Since the contact distribution is isotopic to Q =
ker(Dng| n,;l(a(e))) through hyperplane distributions Q, for ¢ € [0, 1], where w|g,
is nondegenerate for all ¢, we get a grading

L FNr(Q) X&o(2n) Sp(2n) = Fr(Q)

on Q and hence on (M, dfyy). Since the parallel transport maps of 7w¢ along dD(€)
have lifts to F~r(Q), ¢ has an induced grading and hence (M, Oy, ¢) is a graded
abstract contact open book. We will call this the induced grading on (M, 0y, ¢).

Lemma 5.34 Let (B; C C,&,®;) for t € [0,1] be a smooth family of contact
pairs. Then there is a smooth family of contactomorphisms V;: C — C between
(B: C C,&y, ®p) and (B; C C, &, O;) (as in Definition 3.7) for all ¢ € [0, 1] such that
Wy =id.

Proof By Gray’s stability theorem, there is a smooth family of contactomorphisms
b, C—>C starting from the identity map such that d; isa contactomorphism between
(C,&p) and (C, &;). Therefore, by pulling everything back by ®;, we can assume that
& = &g for all £ € [0, 1]. Also by Gray’s stability theorem, there is a smooth family of
embeddings ¢;: Bo — C mapping By to B; such that

* 19|By: Bo — By is the identity map, and
* |B,: Bo — B; is a contactomorphism.

Again by Gray’s stability theorem, there is a neighborhood N of B and a smooth
family of contact embeddings i;: (N, &y|n) — (C, Ec) whose restriction to By is (¢
and where Io|n: N — N is the identity map. Let H;: i;(N) — R be a smooth family
of functions generating the contact isotopy i;. By definition this means that there is a
contact form « compatible with &y such that

id?;(x)/dta =—H;, idft(x)/dtda =dH;—(irdH;)a forall x € (N), t €][0,1],

Geometry & Topology, Volume 23 (2019)



Floer cohomology, multiplicity and the log canonical threshold 1013

where R is the Reeb vector field of o (see [24, Lemma 3.49]). Choose a smooth family
of functions K; for ¢t € [0, 1] equal to H; near t;(B;). Then K; generates a smooth
family of contactomorphisms W; satisfying the properties we want. a

Lemma 5.35 Let (Ox (Y ;g miVi). @, 0) be a model resolution admitting a regular-
ization
R = ((pi)ies, (¥YD)ics)

of radius R < 1 along an open set U C X containing K = UiGS—*S V; as in
Definition 5.29. Since my, = 1, we let

o, = cD|V,,S—K: Ny (Vig —K) = (Vag —K) xC

be the induced trivialization of the normal bundle

Nx (Vig — K) = OX(ZmiVi)

ieS

Vig—K

induced by ®. Let C C UieS—*S Tr,; — K be a closed hypersurface transverse to Xy
and Vg and define B = C NV, . Let ®p be a trivialization of the normal bundle of
the contact submanifold B C C induced by ®,|p.

Then the contact pair (B C C,ker(8|c), ®p) is contactomorphic to the link of the
model resolution (Ox (}_;cg mi Vi), ®.0). If our model resolution is graded, then
both of these contact pairs have induced gradings by Lemma 5.20 and the above
contactomorphism becomes a graded contactomorphism with respect to these gradings.

Proof Choose R > R smaller than the tube radius of our model resolution along U
so that R < 1. Let a: [0, Ié] — [0, 1] be a smooth function such that &’ >0, a(x) = x
for all x < R and a(x) = 1 near R. Define ap;: X — K — R to be equal to a(p;)
inside Té,i — K and 1 otherwise. Define

fiX—K—>R, f= > loge,).
i€S—xg
Then f is compatible with (V;);es—«¢ as in Definition 5.18. Let ¢ << —1 and define
C=/f"Ye), B=CnVi, Ex=Fker(d)|g.

The normal bundle of B inside C has a natural trivialization ® 5 induced by the
trivialization @, . Since df (Xy) >0 near K and ¢ << —1, we get that (é cC, Ec@p)
is the link of our model resolution (O X (Zie s Mm; Vi), o} 9) by Definition 5.25.
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Since df (Xg) > 0 inside | J;e5_n¢ TR, — K and [ J; V; is connected, we can choose
a smooth family of hypersurfaces (Ct)s¢[o,1] joining C and C so that C; is transverse
to Xg and Vi forall ¢ € [0, 1]. Define B; = C; N V,g and & = ker(6]c,). Also,
let ®p, be the trivialization of the normal bundle of B; inside C; induced by ®,
such that ®p, = ®p and &g, = O 5. Then (B; C C¢,§;, Pp,) is a smooth family of
contact pairs joining (B C C, ker(0|c), ®p) and (B C C, £z, @ ). Therefore, they
are isomorphic by Lemma 5.34. Also, if (OX (Zies m; V,‘), D, 9) is graded then they
are graded isomorphic since all of our contact pairs have induced gradings from our
model resolution by Lemma 5.20. |

Lemma 5.36 The link of a (graded) model resolution (Ox (}_;cg miV;), ®.6) sup-
ports a (graded) contact open book which is contactomorphic to OBD(M, 0py, ¢),
where (M, 61, ¢) is the (graded) abstract contact open book associated to this model
resolution as in Definition 5.33.

Proof In this proof we will use the same notation as in Definition 5.33. We will
introduce it again here for the sake of clarity. By Lemma 5.31 we can isotope our
model resolution so that it admits a regularization

R=((pi)ier, ¥r)ics)

of radius R along U for some relatively compact open U containing K = J; S—xg Vi
By Lemma 5.26, the link does not change after this isotopy. Let 7} ; be the radius r tube
of V7 asin (5-14). Let T bea smoothing of the manifold with corners | J;cg_, s TR,
as in Definition 5.33. In other words, T satisfies (5-38), Xy points outwards along 97
and T C Uies—sg TR.i - Also, we require that T contains Uies—sg T3R/4,i - Define

ne: T > C, 7o =D205m,),cq5l7

where ®,: Oy (Zie s Mmi V,') — C is the composition of @ with the natural projection
map X x C — C. Then we can assume that

(M. 61) = (13 (€). 011 )

for € > 0 small enough that (5-37) is satisfied. Let w be the symplectic form associated
to our model resolution. Here ¢: M — M is the monodromy map around the loop

(5-39) [0,1] = dD(e), s —> €™,

with respect to the symplectic connection associated to w. Then (M, 0, ¢) is the abstract
open book associated to our model resolution so long as € > 0 is sufficiently small.
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Define

L, = U Tr,,'.

iGS—*S
Let
Q. =Ply, —k: Nx(Vig —K) = (Vig —K) xC
be the trivialization of the normal bundle Ny (Vig —K) = Ox (X ;jes miVi)|y, _ in-
*S
duced by @ as defined in the statement of Lemma 5.35 and let ®, » be the composition

of ®, with the natural projection map V,,_g x C — C. Let

P*S:Im(\P*S)%V*S, P*SEJTN)(V*SO\IJ:;’

be the natural projection map and (r, ) polar coordinates on C. Let W: LR NVyg —
[0, 1] be a smooth function equal to 0 inside L4g/s N Vi and equal to 1 inside
(LR —Lsgj6) N Vig and define

W:TrasNLr—R, W=WoP,y.
We now define 6; € Q! (((Tr,og N Lr)U Lygr/s5) — K) for t € [0, 1] to be 6 inside
L4gr/5 — K and equal to
(5-40)  (1=0)0+1((1=W)0+ W (PLOlv, k) + 3pas (W) *®F 5 (dD)))

inside TR« N Lg — K. For Ry > 0 small enough with respect to R, we get that
df; is a symplectic form inside L = Lyg/s U (Lr N TR, +,) and db; restricted to
ﬂd_,l(x) N L is a symplectic form for all x € C —0 and ¢ € [0, 1].

Let k: Vig — R be a smooth function which is negative in the interior of TN Vis and
positive outside TN Vi and such that k1 0) = T N Vi is aregular level set. We
can assume that our perturbation T from Definition 5.33 is small enough that T C
LR — Lsg/s. Choose a constant § >0 small enough that x~! (—3, 0]C Lr—Lsgys
and the’ is transverse to 1 (s) N L forall s € (—S, 5). Define

K:Im(Wug) >R, K=koP,y.

Define § =1 —e_g. Let
hl,hzi [O, 5) —- R

be smooth functions satisfying

(1) h)(r) <0 and ,(r) >0 forall r >0,

(2) hi(r)=1—=r? and ha(r) = %rz for r near 0, and
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(3) hi(r)=1—r and hy(r) = €2 for r in [16,5):

62"
hy
1535 h 1
Now define
(5-41) C=(n5' (D) —F ' ((=5.0D)U | J (prs(h2()) & (log(1(s)))).
s€[0,8]

This is a smooth hypersurface in X since ® is radius R compatible with R along U
and since € > 0 can be made small enough that € < %R . We can also ensure that € >0
is small enough that 7 g 1(D¢) C L. This ensures that df; is a symplectic form near
Ty (D) and that df, restricted to the fibers of 7| 73! (3D¢) is a symplectic form for
all .

Define B = C N V,g. This is also equal to TN Vig = K_I(O). For R small enough,
we have that (C,ker(6;)|c) is a smooth family of contact submanifolds of X. The
trivialization ®, gives us a trivialization ®p; of the normal bundle of the contact
submanifold B inside (C,ker(6;)|c) since C is transverse to Vi . Hence, we get a
smooth family of contact pairs

P; = (B C C.ker(6;)|c. Pp,)

which are all contactomorphic by Lemma 5.34. Also, by Lemma 5.35, the contact pair
Py is contactomorphic to the link of ((‘)X (Zie smi V,‘), P, 9) for R small enough and
hence P; is contactomorphic to the link of (OX (Zie s Mmj Vi), D, 0). Therefore, to
complete this lemma, it is sufficient to show that the contact pair P; is contactomorphic
to the contact pair associated to OBD(M, Oar, ¢). In fact, since (M, 6;|ps) is a smooth
family of Liouville domains and since the monodromy map of w¢ around the path (5-39)
with respect to the fiberwise symplectic 2—form d6;| 73 (0D () is equal to ¢ for all ¢,
it is sufficient for us to show that the contact pair P; is contactomorphic to the contact
pair associated to OBD(M, 61|, ¢). Note that there is a resemblance between the
construction of C and the construction of OBD(M, 613, ¢) from Definition 3.14.
We will now make this precise.
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The contact pair P; can be constructed as follows: Define
V =mg"(0De) —% ' ((log(1 — 36).0]).

Let Ty = M x [0, 1]/~ be the mapping torus of ¢. We have a diffeomorphism
O: Ty —> g 1(0D¢) sending (x,s) to the parallel transport of x € M along dD(¢) in
the anticlockwise direction from € € 9D (¢) to ee’s € dD(€) with respect to the 2—form
db; |n51 (D)) - Hence, we will assume that T = 74, 1 (0D¢) under the identification @
and that V' is naturally a subset of Ty . Since ¢ has compact support inside M, we
have the standard collar neighborhood

(5-42) (1—8,1]xdM x (R/Z) C T

as in Definition 3.13 (here § > 0 is the same small constant defined above, which might
have to be made smaller). We can choose & so that e¥|7. » 1s the natural projection to
(1—46, 1] in the neighborhood (5-42). This means that 6, restricted to the region (5-42) is
equal to eXaps +me2dt, where ¢ parametrizes R /Z and where aps = 01 |9 by (5-40).

Using the diffeomorphism & and definition (5-41) of C, we have that C is naturally
diffeomorphic to
C=(OMxD@)uV/~,

where ~ identifies (x,z) € 9M x (D(8) —D(%4)) with
(1 —|z], x, %arg(z)) € (1 —-6,1— %8] x oM x (R/Z) C V.
Because ¢ restricted to TR «g N (LR — Lsg/e) is equal to
P2 OV, —K) + 2pus (W7 ) * 0% (d0)

by (5-40) and because

P;ks (0|V*S_K)|an—l(_(§’0] = eKaM

inside the cylinder (1 —4, 1] x dM C M, we have that the contact form 6} |c inside C

under the above identification is equal to

(5-43) _ hi(r)opy + %hz(r) dd %ns%de oM x ]D)(%S),
0111, inside V.

Notice that this description of P; resembles the construction of the open book associated
to the abstract contact open book (M, 01|ps, ¢) as in Definition 3.14. All we need to
do is deform the above construction until it is actually equal to OBD(M, 01 |ar, @) .
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We will now do this explicitly. From now on we let : V — R/Z be the coordinate
%n}; (¢). Since the monodromy map ¢ has compact support, there is a smooth
function Fg: M — R such that ¢*(61|a) = 61|m + dFy. Let p: [0,1] — [0, 1] be
a smooth function equal to 0 near 0 and 1 near 1. Since Ty = M x [0, 1]/~, where
~ identifies (x, 1) with (¢(x), 0), we have a well-defined 1-form 61|ar + d(p(t) Fyp)
on Ty. For s € [0, 1], define

as € QU(Ty), a5 =(1-5)01l1, +sO1lm +d(p(t) Fp)) + csdt,

where (cs)se[o,1] is @ smooth family of constants where c¢o = 1 and ¢; is sufficiently
large that «y is a contact form for all s € [0, 1]. Then (7, 1) is the mapping torus
of (M, 61|p,¢) as in Definition 3.13.

Choose a smooth family of functions
hi, h3:10,8) - [0,00), se€]0,1],

satisfying

(1) (h})'(r) <0 and (h3) (r) >0 forall r >0,

(2) h5(r)=1-r2?and h3(r) = %rz for r near 0,

(3) hi(r)=1—r and h5(r) = (1 —s)e® + ¢, for r in [%8,8),

4) h(l’(r) = hy(r) and hg(r) = hy(r) for all r €[0,6).
Define

hi(r)am + %hi(r)dl? inside OM XD(%S),

(5-44) o o
O inside V C Ty,

forall s € [0, 1]. Then (C, ker(et}))se[o,1] is @ smooth family of contact manifolds such
that B C C is a contact submanifold. Also, we have a smooth family of trivializations
@7 of the normal bundle of B inside (C, ker(«f)) such that dD(l) = ®p 1. Therefore,

P, = (B C C,ker(a}), @)

is a smooth family of contact pairs and so, by Lemma 5.34, they are all contactomorphic.
By construction, Py is equal to OBD(M, 0ps, ¢). Since Py is contactomorphic to
150 = Py and P; is contactomorphic to Py, which in turn is contactomorphic to the
link of our model resolution, we get that OBD(M, 6y, ¢) is contactomorphic to the
link of our model resolution. a
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5.5 Dynamics of abstract contact open books associated to model
resolutions

In this subsection we show that the fixed points of a positive slope perturbation of the
symplectomorphism associated to the graded abstract contact open book associated
to a model resolution form a union of specific codimension 0 families of fixed points.
We also compute the indices of these fixed points.

Definition 5.37 Let (O X (Zie smi Vi), D, 9) be a graded model resolution with asso-
ciated symplectic form @ on X, where n +1 = % dim(X). Let J be an w—compatible

o I€ES—*g I/l
corresponds to a trivialization ®: k|3 — X x C of the canonical bundle. Let U be

almost complex structure on X. By Definition A.6, the grading on X=X -

a small neighborhood of [ J V; which deformation retracts onto V;. Choose a

ieS—x
smooth section s of k; which is trSansverse to 0 and such that ®os|;_,; is a nonzero
constant section of (X — U) x C. By a Mayer—Vietoris argument, the homology
group Han(Ujes—wg VisZ) = Han(U;Z) is freely generated by the fundamental
classes [V;] of V;. Let [s—1(0)] € H2,(U) be the homology class represented by the
zero set. Then [s~1(0)] = ZieS—*S a;[V;] for unique numbers a; € Z fori € S — *g.
The discrepancy of V; is defined to be a; forall i € S — xg.

In the case of Example 5.14, the discrepancy and multiplicity of E; as defined in
Definition 5.37 is identical to the discrepancy and multiplicity of f along E; as in
Definition 2.1. Similarly, we have a notion of multiplicity m separating resolution as
in Definition 2.2 for model resolutions which coincide in the case of Example 5.14:

Definition 5.38 A model resolution (Ox (}_;eg mi Vi), ®,0) is called a mulriplicity
m separating resolution if m; +m; > m forall i, j € S satisfying V; NV, # @.

Definition 5.39 Let (Ox (}_;eg miVi). ®.6) be a model resolution. Let i € § — *g.
Define V? = Vi —U es—; Vj and X; = X —J,;e5_; V. Let U; be an open neighbor-
hood of V¢ inside X; which deformation retracts onto V;? and let ¢;: U; —V;? — U; be
the natural inclusion map. Let $(y,),.¢ be the canonical section of Ox (Zie smi V,')
as in (5-12). Let ®,: Oy (Zies mj V,') — C is the composition of & with the natural
projection map to C. Define

Qi: Ui =V —C*  Qi(x):= Pa05im;);c5 ()
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Then the natural m;—fold covering of V? is the m;—fold covering of V° given by
a disjoint union of covers diffeomorphic to the cover corresponding to the normal
subgroup

Gi = (i)« (ker((Qi)x)) C m1(U;) = w1 (V)

and the number of such covers is m; divided by the index of G; in m1(V,?) (see
Lemma 5.40 below). Such a cover does not depend on the choice of neighborhood U; .
In fact, it is an invariant of the model resolution up to isotopy.

Lemma 5.40 The index of G; divides m; .
The proof of this lemma also gives us a geometric interpretation of 171-".

Proof After an isotopy, we can assume that our model resolution admits a regulariza-
tion
R=((pj)jer, (¥Dics)

of radius R along U for some relatively compact open U containing (_J ies—wg Vi
Let T;; be the radius r tube of V; as in (5-14) for some r < %R. We can assume
that the open neighborhood U; from Definition 5.39 is equal to 7;; — ies—i Vi We
have that our map Q; is equal to

Qi: Ui =V —=C*  Qi(x) = D050, (%)

Define D(e)* = D(¢) — 0, where D(¢) C C is the e—disk. Then Q; restricted to
Ql-_1 (D(e)*) for € > 0 small enough is a fibration whose fibers are smooth manifolds
with corners. Combining this with the fact that 7, (D (€)*) = 0, we get that the map

ﬂl(Qi_l(G)) — ker((Q; |Qi_l(D(€)*))*) =ker((Qi)+)

is an isomorphism by a fibration long exact sequence argument. Therefore, the natural
map
m1(Q;7 1 (€)) = 71 (Up)

has image G;. Also, for 0 <€ < r < 1, the map
P: Q7Y e) > VP, P(x)=mny o\Ifl-_1|Qi_1(€)(x),

is a covering map of order m; over Im(P) and V,° is homotopic to the image Im(P).
Hence, the index of G; divides m; . O
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Theorem 5.41 Let m € Nxg and let (Ox (3", e mi Vi), ®,0) be a graded model reso-
Iution that is also a multiplicity m separating resolution and define V? = V;— J ies—i Vi
forall i € S and define

Sm=1{i €S —xg:m; divides m}.

Let a; be the discrepancy of V; for each i € S — xg. Then there is a graded abstract
contact open book (M, 6y, ¢) such that the contact pair associated to it is graded
contactomorphic to the link of our model resolution. Also, there is small positive
slope perturbation ¢; of ¢™ such that the fixed-point set of dv) is a disjoint union of
codimension 0 families of fixed points (B;);es,, satisfying

(1) H*(Bj;Z)= H*(IZ-”; 7)), where 171.0 is the natural m; —fold covering of V? as
in Definition 5.39,

(2) the action of B; is equal to —m;w; — w(m; —m)e>, where w; is the wrapping
number of 6 around V;, and

3) CZ(qv&, B;) =2k;(a; + 1), where ki =m/m;,

foralli € § — xg.

Proof of Theorem 5.41 We will use the same notation as in Definition 5.33. We will
introduce it again here for the sake of clarity. After an isotopy, we can assume that our
model resolution admits a regularization

R=((pi)ier, ¥r)ics)

of radius R along U for some relatively compact open U containing K = J; S—wg Vi
since, by Lemma 5.26, the link does not change after this isotopy. Our abstract contact
open book (M, 07, ¢) will be the graded abstract contact open book associated to this
model resolution as in Definition 5.33. By Lemma 5.36, the link of OBD(M, 67, ¢)

is contactomorphic to the link of our model resolution.

We now wish to show that ¢ satisfies properties (1)—(3) listed in the statement of this
theorem. To do this, we need to recall the construction of (M, Opr,¢). Let T, 1 be
the radius r tube of V; as in (5-14) and let Tr‘f ; be the interior of T} y. Let T be
a smoothing of the manifold with corners | J;eg_, Tr,i as in Definition 5.33. In
other words, 7' satisfies (5-38), Xy points outwards along 07, 7' C | J;es5—+g TR.i
and {J;es—x T3R/4,i s contained in the interior of 7' Define

ne: T > C, 7o =D205m,),cql7
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where ®5: Ox (Y_;eg miVi) — C is the composition of ® with the natural projection
map X x C — C. Then we can assume that

(M. 0y) = (15" (€). 0] -1¢))

for some small € > 0. We will assume that € > 0 is small enough that M C | J;cg Tr/a,i
and the fibers of 7| 73! (D(e) A€ symplectic by Lemma 5.32. Let @ be the associated
symplectic form of our model resolution. Define ¢: M — M to be the monodromy
map around the loop

[0,1] = dD(e), t— €271,

with respect to the symplectic connection associated to .

First of all, we will compute the fixed points of the map ¢™. To do this, we will show
that they correspond to certain periodic orbits of the flow of a Hamiltonian on T. Define

H: Dom(nq>)=7v”—>R, H(x)=|F(x)| forall xeT.

It is sufficient for us to find the periodic orbits of Xg starting inside M which map
under 7 to loops in C* which wrap around 0 exactly m times in the anticlockwise
direction. This is because there is a one-to-one correspondence between fixed points
of ¢™ and such orbits. This correspondence sends a fixed point p of ¢ to the unique
flowline of Xg starting and ending at p whose image under wg wraps around 0
exactly m times in the anticlockwise direction.
Define YV“R,I = T30R/4,1 —Ujes—1 T30R/4,i for each I C S. Since M CVUICS YV”RJ,
it is sufficient for us to calculate the fixed points of ¢ inside M N Tg ; for each
I C S. Therefore, we will now compute the periodic orbits of Xy starting inside
MnN TR’ 7 forall I C S which project to loops in C* wrapping m times around 0 in
an anticlockwise direction. Let ag: [0, o0) — [0, o0) be the smooth function defined
in Definition 5.9. In other words, ag satisfies

(1) ay(x) >0 for x € [0, 2R),

(2) ap(x) =x for x < %R,

(3) agr(x)=1 for x > %R:

agr

Bl
=
Alw |
=
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Define
br: [0,00) = [0,00), br(x)=+ar(x).
Let
pr: TR = Vi, pr(x) = mv, (Y7 (x)).

be the natural projection map. Inside YV“R, 7 we have that

H(x) = H(bR(pl- (x)))™ forall x e Tg
iel
since the bundle trivialization @ is radius R compatible with our regularization R
along Tg 1. Hence,

(5-45) Xply = Z(mi (o DR )™ T brio; (x))'"-f)xpi »
iel jel—i
for all x € YV"R,I.

This means that all the periodic orbits of Xz starting inside YV"R, 7 are contained inside
the fibers of p; since the vector fields X, are tangent to these fibers. Also, since
br(pi(x)) >0 and b's(p; (x)) >0 forall x € YV"R,I and all i € I, we have that any disk
contained inside a fiber of p; bounding any such orbit must intersect V; positively for
all i € . This implies that the projection of this orbit to C* wraps around 0 more
than m times if |/| > 1 since our model resolution is a multiplicity m separating
resolution. This means that if the set of periodic orbits of Xz starting inside M N YV"R, I
whose image in C* wraps m times around 0 is nonempty then |/| = 1. Hence, all
fixed points of ¢™ are contained inside | ;g M N TR,I- . Similar reasoning ensures
that i € S, U {* s} and that the set of fixed points of ¢" inside Tg; is B; = M N 7V"R,,-
for all such i .

By Lemma 5.42 below with W = Tg;, h = np;|7, ;. B1 = h=Y(m /€), By =
TR, N{|ne| = €}, and f; = %arg(mp)mj for j = 1,2, we have that B; is a
codimension 0 family of fixed points of ¢ for all i € S,,. Since B; is homotopic
to JT;I (¢) N Tg,;, which in turn is homotopic to the fiber Ql._1 (¢) constructed in the
proof of Lemma 5.40, we have H*(B;:Z) = H*(V?:7Z) forall i € § —xg.

We now need to construct a small positive slope perturbation qvﬁ of ¢™ without creating
any extra fixed points such that B, ¢ disappears and such that ¢ = qvﬁ near ;¢ s,, Bi-
Since B, is a codimension 0 family of fixed points of ¢, there is a neighborhood
Nyg of B.g and a Hamiltonian H,g: Nig — (—00, 0] such that ¢™ is the time 1
flow of Hyg inside Ny and such that B,g = H, ! (0). Choose 8, > 0 small enough
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that H,g has no g—periodic orbits inside H*_S1 (—04,0) for all ¢ € [0,2]. Since the
vector field (5-45) is tangent to the fibers of py inside TR,y N T3R/4,4¢ forall I C S
and since Wy is a regularization, we have that H,.g must be a function of the variables
(pi)ier inside Tgr,; N T3gr/4,«¢ only. This implies that we can construct a smooth
function b: N, s — R for 6, > 0 small enough that

« b= FoH, forsome smooth function F: R —R inside H; ! ([~8ug.—2645]).
where F o H,g = H,g near H*_S1 (—bxg),
. .. _ 1
e b is C? small inside H*SI([—g(S*S,O])
e b =4rp near OM, where rjps is the radial coordinate on M, and
« b has no critical points.
This implies that the time 1 flow of b has no fixed points inside N, and is equal
to H,¢ outside a compact subset of Ny . Define ¢V> to be equal to ¢™ outside N, g
and the time 1 flow of b inside N, . This is a positive slope perturbation of ¢™ such

that the set of fixed points of gg is B; and q? = ¢™ in a neighborhood of
these fixed points.

i€ES—x*g

Next we need to compute the action of B; foreachi € S —xg. Let p € B; and let
y: R/Z — T be the unique loop starting at p € M which is symplectically orthogonal
to the fibers of ¢ and satisfying 7w o y(t) = > *™ for all t € R. Then the action

of p is equal to _/01 vY¥0 + mme? = —mjw; —w(m; —m)e?.

We now need to compute the Conley—Zehnder index of B; for each i € Sy,. Fix i € Sy
andlet pe B; C M. Let y: R/Z — T be the unique loop starting at p € M which is
symplectically orthogonal to the fibers of 7 and satisfying 7e o y () = 2™ for
all t e R. Let J be an w—compatible almost complex structure on X such that 7¢
becomes J —holomorphic. Let

T'T =ker(Dro)|y_p C T(T - K)

be the vertical tangent bundle. Let (T"erf")L C T(7V" — K) be the set of vectors which
are w—orthogonal to the vertical tangent bundle. This is a J —holomorphic subbundle
of T(YVw —K). Let tc+: TC* — C* x C be the holomorphic trivialization which sends
d/09 to the constant section 1 and let tc= 2: TC* — C be the composition of ¢+
with the natural projection map C* x C — C. We then have a trivialization

(T T)t > (T - K)xC,
171 (Y) = (x,t1cr 2(Dre(Y))) forall Y e (TY 7)Yy, xe T — K.
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Let
@H* (T T)H* > (T NnX)xC

be the corresponding trivialization of the dual bundle.
Let k7,4 be the canonical bundle of TV'T. Then we have a canonical isomorphism
(5-46) ki li_ g 2 kye®(TT)H)*.

Since (X — K, w) is a graded symplectic manifold, we get a natural choice of trivializa-
tion 7: ky|x—x — (X — K) x C by Definition A.7. The trivializations v and (z=)*
give us a trivialization t¥': kj 4 — (T — K) xC of kj,4 by the identity (5-46).

Let sy be a section of k4 that is equal to the constant section 1 with respect to
our trivialization 7Y°". Let s be a section of ks such that s~1(0) is transverse to 0
and contained inside a small neighborhood N of |J;cg_, ¢ Vi which deformation
retracts onto | J;cg_,, Vi and such that 7 os|y_n is the constant section 1. Then
by definition [s~!(0)] is a homology class homologous to Y . ¢ @;[Vi]. Now define
T. = JT(Dl(a]D) (¢)). By construction, T

¥¥| 7. is homotopic to the induced trivialization

from Lemma 5.20 (after identifying the contact hyperplane distribution in T. with
Tve T using an isotopy between these symplectic subbundles).

We can choose J so that, near the image y, the Hamiltonian flow ¢ti/ 2, TR — TR,
of 1 50Pi|Tg; is J-holomorphic. Hence, on some neighborhood N of y invariant
under the flow of X, />, we have that e /2 Jifts to a map

¢t: KJ|x - KJ|¢;’i/2(x)

forall x € T, N N, given by the highest wedge power of the J—holomorphic bundle
map (D¢ /?)~1)*. Also, since D¢/ (v) € T T, forall v € TverYV"€|NmT€, we
get an induced map

Vel'
Ky, NN, —KJ ¢|TémNV

ver

Let 12: ky|x—kx — C and 73°": k7 4 — C be the compositions of 7 and "', respec-

tively, with the natural projection map to C. The winding number of the map
we: R/2rmZ — C* = Aut(C,C),  wg(t) =130 ($,"|p) 0 (3|, ,1,) "
is equal to the winding number of the map

we: R/27mZ — C* = Aut(C,C),  w(t) = 120 (d¢lp) © (r2le,1,) "
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Since [s~1(0)] is homologous to D ies—wg@ilVi] and y (1) = fi/z(p) for all ¢, we
have that the winding number of w; is equal to

ki (—1 —a,-).

Hence, by Lemma A.8 and the fact that the winding number of wg is the winding
number of w,, we have that the Conley—Zehnder index of the fixed point p of ¢™ is
—2 times the winding number of w, and so CZ(¢™, B;) = 2k;(a; +1). O

Here is a technical lemma that was used in the proof of Theorem 5.41 above:

Lemma 542 Let (W,w) be a symplectic manifold admitting a free Hamiltonian
S _action generated by a Hamiltonian h: W — R (ie ¢{1 =idw and ¢f (x) # x for
all xe W and t € (0,1)). Let By, B, C W be two real hypersurtaces inside W with
maps

fi: B1 > R/Z, fr: B, > R/Z
such that

(1) the fibers of f; are symplectic submanifolds of W and the corresponding mon-
odromy map ¢;: fl-_l(O) — fl._l(O) of f; around R /7 is well defined (ie no
points parallel transport off to infinity in finite time) for i =1, 2,

(2) ¢1 =idg,, B =h~1(C) and B, C h~1([C, 00)) for some C >0,

(3) B; is invariant under our Hamiltonian S'—-action for i = 1,2 and, for all
t € S'=R/Z and x € By, we have fi(t-x) = fi1(x)+1, and

@ f71H0)N £571(0) is equal to a compact codimension 0 submanifold of f51(0)
with boundary and corners and f1|,nB, = f2|B,nB, -

Then fl_1 o)n fz_l (0) is a codimension 0 family of fixed points of ¢J* for all m > 0.

Proof Let Q C By bean S!—invariant relatively compact open set containing B; N Bs,
let V.=0n f71(0) and oy = w|y. Forall ri,r, >0 let Ay, C C be the open
annulus whose inner radius is r; and whose outer radius is 7, with the standard
symplectic form. Let r: C — [0, 00) be the radial function z — |z| and 6: C — 0 —
R/27Z the angle coordinate. Define C = \/m . Let S C C be the circle of
radius C. After shrinking Q slightly we can, by an equivariant Moser theorem (see [18]),
find an S!—equivariant open set U C W symplectomorphic to

(VxAg_g 5 ov+5dr?)ndd)

such that 0 =V x S and hly = mr2.
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If we smoothly deform f, inside B, through fibrations whose fibers are always
transverse to the line field given by ker(w|p,) then the symplectic form on the fibers
and the monodromy map do not change. This is because such a deformation can be
realized by a flow along a vector field tangent to the line field ker(w|p,). In particular,
we can assume in some small S!—invariant neighborhood UcCU of B{ N B, that

549 #lom, = (3|,
Let pry: VxXAg_ 5.645 V' be the natural projection map. Define V> = £~ Loyn U
and wy, = w|y,. We can assume that U is small enough that pry|y,: Vo2 — V isa
diffeomorphism onto its image. This map is also a symplectic embedding by (5-47).
Define

H: Vo, —>R, H(x)=nr(x)? —27C = hlv, —2xC.

Since wy + % dr’)ndY = wy +dh A d(%ﬁ) inside U and pry|v, is a symplectic
embedding, we get that the vector field

_y%n 0
X +2n81‘}

is tangent to U N B, and lies in the kernel of a)|32mj. Then for all m > 0, ¢ is
equal to the time 1 flow of —mH near By N £, '(0) inside the symplectic manifold
(V2,wy,). Hence, B1 N f2_1 (0) is a codimension 0 family of fixed points of ¢,. O

6 Proof of Theorem 1.2 and Corollary 1.3

Proof of Theorem 1.2 Let L = (Ly C S¢.§s., Pr) be the contact pair associated
to f with the standard grading as in Example 3.8. Let (Ox (3 ;egmiEi). ®,0)
be a graded model resolution coming from the log resolution 7: ¥ — C”*! as in
Example 5.14. The wrapping number of ¢ around E; is w; forall j € § —xg. By
using the function |z|?> on C"*! combined with Lemma 5.34, one can show that the
link of this model resolution is contactomorphic to L. Hence, Theorem 1.2 follows
from Theorem 5.41, (HF2) and (HF3). O

Lemma 6.1 Suppose we have a cohomological spectral sequence converging to a
7 —graded abelian group G* with E' page (Epl’q)pEZ,qEZ- Define

m=sup{p+q:E{? #0},
kp=sup{p+q:qeZ, E'?#0} forall peZ.
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Suppose that m is finite and k, # m —1 for all p € Z. Then G # 0 and Gk =0
forall k > m.

Proof Let
pm=inf{peZ :p+qg=m andEf”q # 0 for some ¢ € Z}.

We will show that each element of E Pm-M=Pm can never kill or be killed by the spectral
sequence differential for each j > 1 Since k Pm—J # m —1 for all j, we get that
kp,,—j <m—1 forall j > 1. Therefore, Epm Jm=pmtJ=1 — 0 for all j = 1. Hence,
the differential

dPm—r/m=pmti=l. ppm=jm=pm+j=1 _ pPm:m=Pm

is zero for all j. Also, since (pm +j)+(m—pm—j+1)=m+1>m, we get that
E ]‘? mtIm=pm=I+1 — o for all Jj . Therefore, the differential

PmMm—Pm. g Pm:Mm=Pm _)Epm+j,m—pm—j+1
L E; :

is zero for all j. Hence, G™ # 0. Also, G¥ = 0 for all k > m since EP? =0 for all
p,q € Z satistying p+qg =k. O

Proof of Corollary 1.3 The numbers u,, do not depend on the choice of log resolution
for all m > 0 by Lemmas 2.3 and 2.6. Hence, Corollary 1.3 follows immediately from
Theorem 1.2 combined with Lemmas 2.4 and 6.1. O

Appendix A Gradings and canonical bundles

In this section we will develop tools so that we can construct gradings (see Definition 3.2)
and relate them to other kinds of topological information. In this paper we will only
need to study gradings up to isotopy, which will be defined now. We will first give
a definition of a grading for any principal G bundle and then relate it to gradings
of (E, ). Throughout this section, G will be a Lie group, G its universal cover and
p: W — B will be a principal G bundle. Also, 7: E — V will be a symplectic vector
bundle with symplectic form €2 whose fibers have dimension 27.

Definition A.1 A grading of p consists of a principal G bundle P W — B along
with a G bundle isomorphism

~

L:WxéGgW.
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Note that a grading of (E, ) is equivalent to a grading of the principal Sp(2#n) bundle
Fr(E). Let
i WixgG=W, j=0,1,

be gradings of p. An isofopy between these two gradings consists of a G -bundle
isomorphism
W WO —> W]

together with a smooth family of G bundle isomorphisms
i WoxgG=W

joining o and ¢ o U, where W VT/O x5 G — Wi x & G is the natural isomorphism
induced by W. An isotopy between two gradings of (E, Q) is an isotopy between the
corresponding gradings on the principal Sp(2x) bundle Fr(E). We can define isotopies
of gradings of symplectic manifolds and contact manifolds in a similar way.

Definition A.2 Let
LWxgG=W
be a grading of p. The associated covering map of this grading is the natural map
W — W xgzG - W.

The following lemma gives a topological characterization of gradings. For simplicity
we will assume that the base B is connected. Let x € W be a choice of basepoint.

Lemma A.3 Let Ny be the set of normal subgroups A <1 (W, x) such that
px: 1 (W, %) — m1(B, p(*))

restricted to A is an isomorphism. Let Gry be the set of isotopy classes of gradings
of W. Then the map Qw: Gry — Nw sending a grading to

(A-1) Im(Py) C (W, %)
is an isomorphism, where P is the associated covering map of this grading.

Proof We will first show that the map Qw is well defined by showing that the image
(A-1) is a normal subgroup. Let

~

L:WxéGgW
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be a grading of p. The covering map P of such a grading is isomorphic (using the
map ¢) to the natural map

W—WxzG.
The deck transformations of this map are equal to ker(é — () and these act transitively.
Hence, the image (A-1) is a normal subgroup. Combining this with the fact that the
fibers of the natural fibration W — B are simply connected, the image (A-1) is
contained in Ny and hence the map Qw is well defined.

We will now construct an inverse to Qw . Let N <y (W, %) be an element of Ny .
Let
P-W—>W

be a covering map with a choice of basepoint * € w mapping to = such that the map
Pe: (W, %) = 11 (W, %)

has image equal to N. Let F be a fiber of p. Let tg: F < W be the natural inclusion
map. Since P*|P;1(N) is injective, we get that (tr); (P 1(N)) = {id} and hence
Plp-1(Fy: P~Y(F) — F is the universal covering map. This implies that each fiber

has a natural G action and hence
poP: W — B
isa G bundle with a natural isomorphism
Wxg W =W.
We define Qﬁ,l (N) to be the above grading. This is an inverse to Q. O
We have the following immediate corollary of Lemma A.3:

Corollary A.4 Suppose that p;j: W; — B is a principal G; bundle for some Lie group
Gj for j =1,2. Let ®: W1 — W> be a map of fiber bundles such that the induced map
on the fibers is a fundamental group isomorphism. Then the map ®«: Nw, — Nw,
induces a natural bijection between isotopy classes of gradings on Wy and isotopy
classes of gradings on W, .

Here the sets Ny, and Ny, in this corollary are defined as in Lemma A.3.

Lemma A.5 Let ng: K — B be a principal U(1) bundle. Then there is a natural
one-to-one correspondence between homotopy classes of trivializations of nwg and
isotopy classes of gradings of mk .
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Proof There is a one-to-one correspondence between trivializations ®: K — B xU(1)
of K up to homotopy and sections of g up to homotopy given by the map sending ®
to the section whose image is ®~1(1). Hence, all we need to do is construct a natural
one-to-one correspondence between sections up to homotopy and isotopy classes of
gradings. Let S be the set of sections up to homotopy and Grg the set of isotopy
classes of gradings. By Lemma A.3, it is sufficient for us to construct a bijection
between S and Nk . We define

W: S — Nk, U(s) =1Im(ss: 71 (B, *) > 71 (K, s(%))).

The inverse of this map is constructed as follows: We start with a normal subgroup
N € Nk. This gives us a grading

v KxgpUQ1) =K

by Lemma A.3 since &H ) =R. Since the fibers of K are contractible, there is a smooth
section 5: B — K by [32, Theorem 9] combined with the Steenrod approximation
theorem [31, Section 6.7, Main Theorem]. The composition s = Pk o5, where
Pg: K — K is the associated covering map, is then a smooth section of K. We then
define W~ (N) = s. This is the inverse of W. a

We will now focus on the principal Sp(2n) bundle Fr(E).

Definition A.6 Let J be a complex structure on E compatible with 2. The frame
bundle Fr(E, 2, J) of the unitary bundle (E, 2, J) is the principal U(n)—bundle
whose fiber over v € V is the space of unitary bases ey, ...,e, of (E,Q,J)|y. The
anticanonical bundle /cj of (E, J) is the highest exterior power of the complex vector
bundle (E, J). The associated U(1)-bundle KE,J C«j of k7 has afiberat v eV
equal to the subset of elements e; A--- Ae,, wWhere eq, ..., e, is a unitary basis for
(E, 2, J)|y. Therefore, we have a natural map detq j: Fr(E,Q,J) —>«q.J.

The canonical bundle iy of (E, J) is the dual of k7 (or equivalently the anticanonical
bundle of the dual bundle of (£, J)). In a similar way, we can define the (anti)canonical
bundle of a symplectic manifold with a choice of compatible almost complex structure,
or of a contact manifold (C, £&c) with a choice of compatible contact form « and a
da|g. —compatible almost complex structure J on ¢ .

Definition A.7 Let J be an 2—compatible complex structure on E. Let

ty: Fr(E,Q,J) — Fr(E,Q)
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be the natural inclusion map. By [25, Propositions 2.22 and 2.23], the natural maps
detg, s and ¢y above are bundle maps whose restriction to each fiber is a fundamental
group isomorphism. Hence, by Corollary A.4 and Lemma A.5 there is a natural one-
to-one correspondence between isotopy classes of gradings of (E, 2) and homotopy
classes of trivializations of K;Z’ 7 - Combining this with the fact that there is a natural
one-to-one correspondence between homotopy classes of trivializations of Ks*z’ ; and
homotopy classes of trivializations of x5 and hence of trivializations of the canonical
bundle k7, we get a natural one-to-one correspondence

(A-2)  Gr: {trivializations of «y}/homoto L roradings of E, Q)}/isotopy.
Py g g Py

Given a trivialization ® of k; we will call the grading Gr(®) the grading associated
to ®. Given a grading g of (E, Q), we will call Gr™(g) the trivialization associated
to this grading.

The above discussion enables us to compute the Conley—Zehnder index of a fixed point
of a graded symplectomorphism in some nice cases. Let ¢: M — M be a graded exact
symplectomorphism of a Liouville domain (M, 8p7). Let V be the unique vector field
on the mapping torus Ty from Definition 3.13 given by the lift of the vector field d /dt
on R/Z satistying tydar, = 0. Let ¢} be the time ¢ flow of V. Let x be a fixed
point of ¢. Suppose that there is a compatible complex structure J on the vertical
tangent bundle (T"*'Ty = ker(Dn7,), dar,) such that qutV restricted to TV Ty | x
is J —holomorphic for all ¢ € [0, 1]. Then ¢tV lifts to a map

bi: KJ|x —)KJ|¢IV(X), (N ef) = AT (pF)Ler forall ef,... el eTIM.

Since ¢ is graded, we see by Definition 3.13 that there is a natural grading on the
vertical tangent bundle. Therefore, by Definition A.7, there is a natural trivialization
®: kj — Ty xC of ky associated to this grading. Let ®»: k; — C be the composition
of ® with the natural projection map to C.

Lemma A.8 Let xe M = n;d} (0) be a fixed point of ¢ and suppose that
Dolx: TxM — TxM

is the identity map. Then CZ(¢, x) is equal to —2 times the winding number of the
map
w: R/Z — C* = Aut(C,C), t— Pr0¢p;0(Paly, )"
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Proof Let y: R/mZ — Ty be the m—periodic orbit of V' whose initial point is x.
Then there is a unique (up to homotopy) unitary trivialization T of y*T"¥*'Ty such
that @ is equal to the highest wedge power of 7. Because of the correspondence (A-2),
we can also ensure that 7 maps the grading on y*TV'Ty (given by pulling back the
grading on TV Ty via y) to the trivial grading on (R/mZ) x C"*1 (maybe after
changing the grading to an isotopic one).

Under this trivialization, the flow of V' corresponds to a smooth family of Hermit-
ian matrices (A¢);efo,1] and the degree of w is —1 times the winding number of
t — detc (A;). Using the correspondence (A-2) and the trivialization 7', such a family
of matrices corresponds to a point in the universal cover IEE(TM )|x of Fr(TM)|x.
Hence, the Conley—Zehnder index of (A¢);e[o,1] is equal to CZ(¢, x). Since A, are
unitary matrices, we get that CZ((A¢)se[o,17) is equal to twice the winding number of
t — detc(Ay). Hence, CZ(¢, x) is —2 times the winding number of w. a

Appendix B Contactomorphisms of mapping tori and Floer
cohomology

The aim of this section is to show that property (HF2) holds. Here is a statement of
this property:

Suppose that (M1, Oy, , 1) and (M2, Oy, ., ¢2) are graded abstract contact open books
such that the graded contact pairs associated to them are graded contactomorphic. Then
HF*(¢o. +) = HF*(¢1, +).

We will prove this by using an intermediate Floer cohomology group called S!—
equivariant Hamiltonian Floer cohomology on a certain mapping cylinder of our
symplectomorphism.

Definition B.1 Let (M, 637, $) be an abstract contact open book. Let ¢ be a small
positive slope perturbation of ¢. The mapping cylinder of qvﬁ is a triple (qu’, Ty 0 d;)
where

(1) qu = (RxRx M)/Z, where the Z ;vlction on (R xR x M) has the property
that 1 € Z sends (s,¢,x) to (s,t —1,¢(x)),

2) Ty qu — R x (R/Z) sends (s,¢,x) to (s,t) e RxR/Z, and
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3) Gq; =sdt +k0p +k d(p(t)Fq;), where
e F 5 M — R is a smooth function with support in the interior of M that
satisfies (¢)*0pr = Opr + dF 5,
e p:[0,1] — [0, 1] is a smooth function equal to 0 near 0 and 1 near 1, and

e > 0 is a constant small enough to ensure that d6 p is symplectic.
Let rar: (0,1] x M — (0, 1] be the cylindrical coordinate on M. Let § >0 be
small enough that the symplectomorphism qVS is equal to the time 1 flow of §rps inside
(1 —843, 1] x M for some § > 0. Let q’)er: (1 —843, 1] x oM — (1 —8(};, 1] x 0M be
the time ¢ flow of §rps. Then we have a natural embedding
tg: Cy=Rx(R/Z)x(1—8 5, 1]xIM )~ W, cq;(s,t,rM,y)E(s,t,qﬁiiM(rM,y)),
called the vertical cylindrical end of Wd;. The coordinate
(B-1) Iy qub—>(1—8q;,1], rq;(s,t,x)ErM(x),
is called the vertical cylindrical coordinate. A grading on a mapping cylinder
(Wq;, g 0 Jb)
is a grading on the symplectic manifold (Wé, do q;).
Two mapping cylinders (W .75 . 0 5, (W, 75 . 0 5,) are isomorphic if there is a
diffeomorphism ®: Wél — Wéz and a constant § > 0 such that
. (D*QJ;Z = 9(131 + dgq for some g: Wq;l — R, where g has support in the set
W¢31 — {rd;1 >1—6}, and
© 7l 21-8y = (g, 0 Py =153
They are graded isomorphic if, in addition, ® is a graded symplectomorphism from

(Wél, d@él) to (Wq;z, thZ’z)'

Note that the definition above has many similarities with the definition of the mapping
torus from Definition 3.13. Also, if we define the mapping torus

nTé:TéeR/Z and ary

of our positive slope perturbation qvﬁ in exactly the same way as in Definition 3.13, then
Wy = R x Ty, 94; =(s—k)dt+ (K/C)ocq; for some C > 0 and Ty = idp XTTy - The
following calculation will be useful later on. If we have a Hamiltonian H equal to
n;K for some K: R x (R/Z) — R then Xg is equal to the horizontal lift of X I‘és Adt
with respect to the symplectic connection associated to d6 5
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Lemma B.2 Let
(B1 CC1.61,11), (B2CCy,6,1m2)

be the (graded) contact pairs associated to the (graded) abstract contact open books
(M1, 6p,,¢1) and (M3, Opr,. ¢2), respectively. Let $1 be a small positive slope
perturbation of ¢. If the above contact pairs are (graded) contactomorphic then
(M3, Om,, ¢2) is (graded) isotopic to an abstract contact open book (M3, Op5, Pu)
such that the mapping cylinders

(W¢V51 ’ 7-[431 ’ 9431)’ (W<1V>3’ JT¢V53’ 0«133)

are (graded) isomorphic, where q33 is a small positive slope perturbation of ¢3.

Proof Since the corresponding open books are contactomorphic, and the boundary
dM; is contactomorphic to the binding of OBD(M;, Oy, , ¢;) for j = 1,2, we get that
dM; is contactomorphic to dM>. Hence, there is a diffeomorphism W: dM, — dM;
such that W*ay = fan, where aj = O, |gp, for j = 1,2 and f: dM> — (0,00).
After multiplying 6, by a positive constant, we can assume that f > 1. Choose § > 0
small enough that the subset of the cylindrical end (1 —6, 1] x dM, C M> is disjoint
from the support of ¢ and let rpz,: (1 —46,1] x dM> — (1 -3, 1] be the associated
cylindrical coordinate. Let p: (1—§, 1] — [0, 1] be a smooth function with nonnegative
derivative that is equal to O near 1 —§ and 1 near 1. Let F;: M — R, t€[0,1] bea
smooth family of functions equal to 1 + tp(rps,)(f — 1) inside (1 — 6] x M5 and 1
otherwise. Then (M, F;0p,. ¢2) is an isotopy of abstract contact open books. Define
(M3, Opm5, ¢3) = (M2, F10p,. ¢2). Hence, there is a diffeomorphism U oMz — dM;
such that (U)*aps, = apr,, where apr, = Omslonts -

Choose a small positive slope perturbation (]53 of ¢3 so that ¢3| (1=8 1]x0M5 is equal to
(d(1 511 % \IJ) <j§1|(1 5. 1]xoM, for some § > 0 smaller than §. Let (T¢J,7TT¢ ,a¢])
be the mapping torus of ¢; and let (T’ r JTT , ) be the mapping torus of qu for
j =1,3. Let (B3 C C3,&3, 13) be the contact palr associated to (M3, Opr5, ¢3). By
Lemma 5.34, we get that the contact pair associated to (M3, Opr,, ¢3) is contacto-
morphic to the contact pair associated to (M, Opr5. ¢2) which in turn is contactomor-
phic to the contact pair associated to (M1, 0pr,.¢1). There is a contactomorphism
Q: Ty, — Ty, such that Q|p,: B3 — By is equal to ¥ under the identification
B; = M; for i = 1,3 and such that MTy, =TTy, © O near 37y, . Hence, we can find
a contactomorphism Q T — T satlsfylng (Q)* = oy near 8T 5 and such
that T, = ATy © Q near 8Tv3
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Since qubj is naturally diffeomorphic to R x T43j for j =1, 3, we can define
WoWs — Wy, W= (idg, 0).

Now W*@v = Gv outside a subset K C Wv whose intersection with each fiber

of w; is compact Since 9 and W* 9v scale at most linearly in C! norm as

3
we translate in the s coordmate direction, we can use a Moser argument applied to

‘L’(9¢3 +(-0)W* 0¢1 for 7 € [0, 1], giving us our isomorphism. a

Lemma B.3 Suppose that (M1, 0p,,¢1) and (M2, 0p,, ¢2) are isotopic abstract
contact open books. Then HF* (¢1, +) = HF*(¢2, +).

Proof Since the above abstract contact open books are isotopic, we can assume that
M1 = M3 and that there is a smooth family of Liouville forms (6s)s¢[o,1] such that
0o = Oy, and 01 = Oy, . Also, there is a smooth family of exact symplectomorphisms
Ys: My — M for s € [0, 1] with respect to 65 with support in a fixed compact set
joining ¢; and ¢,. Let rg be the cylindrical coordinate for (M7, 65) and choose 6§ > 0
small enough that {rg > 1 —§} is disjoint from the support of s for all s € [0, 1]. By
pulling back rg and 65 and V¢ by a smooth family of diffeomorphisms starting at the
identity and parametrized by s € [0, 1], we can assume that rg = o inside the region
{ro>1-48} = (1-46,1] x dIM;. By Gray’s stability theorem, we can also assume that
Os = ro fsa inside {ro > 1 —§8} = (1 =46, 1] x dM; for some contact form o on dM;
and some smooth family of functions fs: dM; — (0, c0) for s € [0, 1].

Now choose a smooth family of functions gs: (1 —§, 1] x dM1 — (0, 0c0) for s € [0, 1]
so that dgg/drg > 0, g5 is equal to f inside (1 —45,1— %8] x oMy, and g5z = Cfy
inside ( — %8, 1] x dMy for some large constant C > 0 and for all ¢ € [0, 1]. Define
Os to be equal to 65 outside (1 — 4, 1] x IM; and equal to rogsa inside this region.
Then (Mq, és) for s € [0, 1] is a smooth family of Liouville domains such that és = b
inside (1 —-46,1— %8] x 0M7 and és is independent of s near dM; .

Let (Ks,t)(s,1)e[0,12 be @ smooth family of almost complex structures compatible
with d6; such that K, is cylindrical inside (1 —§] x M7 with respect to 6, for all
(s,t) €0, 1]%. Choose a smooth family of almost complex structures (5,t) (s,)€[0,1]2
compatible with d 65 equal to K 5, outside (1— %8 ,1]xdM; and equal to Ko, inside
( 8 1] X OMy. Let 1/st be a smooth family of exact symplectomorphisms with
respect to 9 which are small positive slope perturbations of ¥ such that 1/fs is the
time 1 flow of nry inside (1 —4, 1] x M for some very small n > 0 (so that there are
no fixed points of this symplectomorphism in this region). Let {ﬂ\s be a smooth family

Geometry & Topology, Volume 23 (2019)



Floer cohomology, multiplicity and the log canonical threshold 1037

of positive slope perturbations of vy with respect to 65 which are equal to the time 1
flow of nrs inside (1 —4, 1] x dM; with respect to the symplectic structure dfs. We
assume that 7 is small enough that 1/73 has no fixed points inside (1 —§, 1] x dM; for
all s € [0, 1].

Since

e Vg and @s are the time 1 flows of a linear Hamiltonian inside (1-8, 1—%5)X3M 1

e Js: and K, are cylindrical inside this region,

° (‘/st’ (Js,t)tef0,1]) and ({/;s, (Ks,t)refo,1]) are equal outside (1 —4,1] x dM;,
and

e vy and (ﬁ\s has no fixed points inside (1 —3, 1] x IMq,

a maximum principle [1, Lemma 7.2] tells us that

(B-2) HF* (Y5, (J5,0)ref0.17) = HF* (s, (K1) refo.17)
for all s € [0, 1].

Since és is independent of s near M7, we can assume, by a Moser argument, that
b5 = 6o + Bs for some smooth family of compactly supported closed 1-forms fSg
for s € [0,1]. Then, by [41, Theorem 2.34], we get that HF*(&S, (Js,t)ref0,1]) 18
independent of s € [0, 1]. Hence, HF*(@S, (Ks)tefo,1]) is independent of s by (B-2),
which implies that HF* (¢1, +) = HF*(¢2, +). a

Definition B.4 Let (qu, Ty 0 43) be a mapping cylinder. An almost complex structure
J on Wd3 is strictly compatible with (WJ,v T Qd;) if

(1) J is compatible with d@(];,

2) Ty WJ, — R xR/Z is (J, j)-holomorphic (ie Dnd; oJ =j oDnd;), where
J is the complex structure sending d/ds to d/d¢, where (s,?) parametrizes
RxR/Z,

(3) the restriction of J to the cylindrical end C P is a product j @ Jps, where
Jar 1s a fixed cylindrical almost complex structure inside the cylindrical end
(1 —8(13, 1] x M, and

(4) J is invariant under translations in the s coordinate.

We will call Jys the associated cylindrical almost complex structure on M . An almost
complex structure { on qub is compatible with (de, Ty Qq;) if there is an almost
complex structure J compatible Wiﬂl (Wq;, Ty 0 J>) and a compact subset K in the
interior of WJ) such that J |W<,;— k=J |Wg,— K.
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Definition B.S Recall that a 1—periodic orbit of a time-dependent Hamiltonian

Ht: Wé — R

is a smooth map y: R/Z — M satisfying dy/dt = X ;lli)‘z’ . Since there is a natural one-
to-one correspondence between 1—periodic orbits and fixed points of the corresponding
Hamiltonian symplectomorphism ¢>1H ', we will call y the 1-periodic orbit associated
to the fixed point y(0). A Hamiltonian is autonomous if it does not depend on time.
An S'—family of 1-periodic orbits of H is a family (vt)ter/z of 1—periodic orbits
where y;(f) = yo(f +1t) forall t,i e R/Z.

Let (H,J) and (ﬁ J ) be pairs consisting of autonomous Hamiltonians H and H and
almost complex structures J and J. A smooth family of pair (Hy, Js)ser joins (H, J)
and (ﬁ, f) if (Hs, Js) = (H, J) for all sufficiently negative s and (Hy, J5) = (I-I(, f)
for all sufficiently positive s.

Let i: R — R be a smooth function which is bounded from below with positive
derivative satisfying h”(s) = 0 whenever s is sufficiently positive and /'(s) < 1 for
s sufficiently negative. The value of 4/(s) for large enough s is called the slope
of h. A Hamiltonian is strictly compatible with (WJ” T 943) if it is equal to w¥h(s)
everywhere. A Hamiltonian is compatible with (Wq;, T, v <7>) ifitequals 7 ¥h(s) outside
a compact subset of the interior of W.{r The slope of such a Hamiltonian is defined to
be the slope of /.

All the 1—periodic orbits of /(s) on the symplectic manifold (R x R/Z,ds A dt)
wrapping around R x R/Z once come in S' families in the region /’(s) = 1 and for
the unique s satisfying 4’(s) = 1 we have 1-periodic orbits

Vs.q: R/Z —RXR/Z, y4(t) =(s,t +q),
for all ¢ € [0, 1). Also, the 1—periodic orbits of ngh(s) project to 1—periodic orbits
of h(s).
A pair (H, J) is (strictly) compatible with (de), Ty 0 q;) if H is a Hamiltonian (strictly)
compatible with (Wq;, T, 0 q;) and J is an almost complex structure (strictly) com-
patible with (Wd;, Ty, 0 d;). A smooth family (Hy, J5)ser of pairs compatible with

(Wq;, g 0 ¢;) has nonincreasing slope if the slope of Hy is greater than or equal to the
slope of H; forall s <§.

Definition B.6 Let (Hy, J5)ger be a smooth family of pairs of Hamiltonians and
almost complex structures compatible with a mapping cylinder (Wq;, T, 0 43)' An open
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subset V C Wq; satisfies the maximum principal with respect to (Hy, J5)geRr if for
every compact codimension 0 submanifold ¥ C R x R/Z and every smooth map
u: X — Wq; satisfying

(1) u@X)CV,
(2) dgu(o, 1)+ Jo0zu(o,v) = Jo XH,
also satisfies Im(u) C V.

We say that (Hy, Jo)ser satisfies the maximum principle if there is a sequence of
relatively compact open sets (V;);eny whose union is Wq; such that (Hy, J5)geRr
satisfies the maximum principle with respect to V; for all i € N.

Lemma B.7 Let (M, 67, ¢) be an abstract contact open book and let
W= (W(E’ JTq;, 943)
be a mapping cylinder of some positive slope perturbation of ¢. Let

(Ka = ﬂ:g (ko (S)))UG]R

be a smooth family of Hamiltonians strictly compatible with W such that dky/do <0,
dkl /do < 0 and dk]/do < 0. Let Y be an almost complex structure strictly
compatible with W.

Let §,S >0 andlet r P be the vertical cylindrical coordinate of W. Let (Hy, Jg5)oeR
be a smooth tamily of pairs compatible with W which are equal to (K, Y) near the
boundary of the set

Vs,s = ﬂgl((—S, S)x(R/Z)) C Wy

and also in the region {r 5= 1 —§8}. Then Vs g satisfies the maximum principal with
respectto (Hy, J5)oeR -

Proof Letu: ¥ — qu be as in Definition B.6 with V' replaced by Vs g . Let

Ly Cq; = (Rx(R/Z)x(l—S(Z,, l]xaM)%Wé, qub(s,t,rM,y) = (s,t, (¢§;M(7’M’y)))v

be the vertical cylindrical end of Wq; . Then r ’t C Fnd (1-4 & 1] is the natural projection
map. Let Py: C 5 (1-46 Iy 1] x IM be the natural projection map. Consider the
map

i u—l(cé) — (1=84,1]x M, (0, 7)(x) = Py ou(x).
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Let Ju,o,: be the natural almost complex structure on (1 —§ q;) x dM induced by
Jo |n£1(s,t) for some s. Such an almost complex structure does not depend on s and
is cylindrical by definition. Since J; Xg,_ is a multiple of d/ds, we get that % satisfies

gu +JMgu _JMXSrM :Oa

where ryy is the cylindrical coordinate on M and § > 0 is some constant. Therefore,
by applying [1, Lemma 7.2] to # we see that such a map cannot intersect the region
(1—4,1] x 0M) and hence the image of u cannot intersect the region {rq; >1-46}.

Therefore, we only need to show that the image of u is contained inside the set
1(( S, S)xR/Z). First of all we can make S very slightly smaller, so that u is

transverse to n;l({S —S}) and u(dX) C Vs s . This implies that Y CRx R/Z is a

smooth submanifold with boundary. Suppose for a contradiction that > is nonempty.
Choose §; > 0 small enough that

(Hm Jo) = (KU, Ya)

inside n;l(([—S —61,—=SJU[S,S +61]) x R/Z) for all 0 € R and u intersects
77 ({s}xR/Z) transversely for all s €[S —81, —S]U[S, S +8;1]. Now let B: R >R
be a smooth function satisfying 8’ > 0,

Bl=s—5,/2.5+61/2) =0,  B'l(=S—36,/4,—S—8, /2)U(S+81 /2.5 +38, /4) > O

and f is constant outside (—S — %8 LS+ %8 1). Choose a smooth function g4: R — R
such that ¢4 |(—s—5,/2,5+5,/2) = 0 and ¢, = p’k/.. Then dg; /do < 0. Hence,

0</iﬁ/(s(u))‘(né)*(a—u))zda/\dr
:/ y d(ﬂ(s)dz)(a” u ~Xu,)do Adv

=/y u*d(B(s)dt) —u* (B (s)dHy) Adt
)

:f u*d(ﬁ(s)dz)—d(u*(qo(s)))Adr+u*(dq‘;‘s))d Adt
P
< [ " d(s)an ~ d(go s)d)
b
— [ w61~ go sy dx =0
X
giving us a contradiction. a
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Corollary B.8 Any smooth family (Hy, J5)scr compatible with (qu, Ty 94;) with
nonincreasing slope satisfies the maximum principle.

Definition B.9 For any mapping cylinder W = (Wd;, T 0 J&)’ define 6 C H, (Wq;)
to be the set of homology classes represented by loops which project under 510 loops
homotopic to

R/Z —-RxR/Z, t—(0,1).

For each a, b € [-00, 00] where a < b, any nondegenerate Hamiltonian (H;);¢[o,1]
and smooth family of almost complex structures (J;);e[o,1] compatible with W, we
can define HFE‘a b8 (¢1H ) in the same way as Floer cohomology of ¢f1’ except that
we only consider ﬁxed points of action in [a, b] and whose associated 1-—periodic orbits
represent an element of B - e We also define HF’[" 00,001,6; (¢H’) = HF% (d)fl n.

A nondegenerate autonomous Hamiltonian is an autonomous Hamiltonian H : Wv —-R
such that for every fixed point p of the time 1 flow qbl , the eigenspace of D¢>1 (p)
associated with the eigenvalue 1 is 1-dimensional (this eigenspace is the tangent line
to the 1—periodic orbit associated to p). Now suppose that the mapping cylinder
(Wq;, g 0 qB) is graded with grading

L Fr(TW ) X& Sp(2n) = Fr(TWv).

Sp(2n)

Since any Hamiltonian H; is isotopic to the 1dent1ty map 1dW we get that ¢

is naturally graded since the identity map on Fr(TW ) makes 1dW into a graded
symplectomorphism. We will call this the standard gradmg and from now on we will
assume that every graded Hamiltonian symplectomorphism has the standard grading.
A standard perturbation of a nondegenerate autonomous Hamiltonian H where ¢1H
is graded is a time-dependent Hamiltonian (H;);e[o,1) Which is C* close to H and
equal to H outside a compact set, where

* (H¢t)tefo,1] is nondegenerate,
 every l—periodic orbit y of (H¢)se[o,1] is @ 1-periodic orbit of H, and

o for every S! family of 1—periodic orbits y of H there are exactly two 1—
periodic orbits y_ and y in this family which are also 1—periodic orbits of H;.
These orbits satisfy CZ(¢IH’, yi) = CZ(¢{1, y) £ %

Such a perturbation exists by [10, Proposition 2.2].
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In order to prove our theorem we need another group, called S!—equivariant Hamil-
tonian Floer cohomology. See [43; 7] for a definition. We will not define this here
but we will just state some of the properties that we need. We write these groups as

%
HFs1 (4,018,
complex structures J compatible with (W T , 0 ) and any a, b € [—00, 00] satisfying

a <b. We also define HFg, , (H,J) = HF* (H,J).
S1.Bs o<],B;

(H, J) for any nondegenerate autonomous Hamiltonian H and almost

S1,[—o0
These groups satisfy the following properties:

(S1HF1) Let Sy be the set of S1 families of 1—periodic orbits of H with action in
[a, b] representing a class in e Let (H¢)zefo,1] be a C° small standard perturbation
of H. This means that for each y € Sy, there are two 1—periodic orbits y_ and y
of (H¢)se[o,1] Which are also orbits in y satisfying CZ(¢fI’, yi) = CZ(¢1H, y) £ %
Let Sy, be the set of such orbits y.

Then the chain complex CF:'S‘,l [a.6].5+ (H) defining HF"‘S‘.1 la.b (H,J) is afree Z[u]-
bl bl 9 (b bl a’ ]9ﬂ$

module generated by Sy, and graded by the Conley—Zehnder index taken with negative

sign and where the degree of u is —2. Let

Claprp;(H) € Csi 14 1.5, (H)

be the Z-submodule generated by elements of § H, - Then the differential d on
CFS1 la.b1.6; (H) is equal to dg + 01, where 9 (' C[ b1.6; (H)) Cu C[ b1.8; (H)

and i1

j=0
for all i. Here 9o is equal to the differential defining HF a,b1.B; (H,J). Also,
du'y_)=u'"ly, plus 1-periodic orbits of higher action for all i>1. The differential
is Z-linear but not necessarily Z[u]-linear.

(S1HF2) If (Hy, J5)oeRr 18 a smooth family of pairs compatible with ( Ty, ¢)
with nonincreasing slope joining (H, J) and (H J ) then there is a group homomor—
phism

HF}, 4 (H.J)— HF}, 8, (H. ).

If in addition dH,/do < 0, then we have a group homomorphism

HFG1 (o a1, () = HEGy 4y 5 (L)

S1,[a,b],

for all a < b. These are called continuation maps. They do not depend on the choice
of path (Hy, J5)oer and the composition of two continuation maps is a continuation
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map. Also, if (Hy, J5) does not depend on o € R then the associated continuation
map is the identity map. If a = —oco and b = oo and if Hy; = H + f(o) for some
function f: R — R then the corresponding continuation map is also an isomorphism.

(SIHF3) If (H,J) and (H,J) are compatible with W = (qu, T4 943) and
e satisfy the maximum principle with respect to some V C Wy,

¢ all the 1—periodic orbits of action of H and H in [a, b] representing elements
of B § are contained in V, and

« (H D)ly=H. Dy,

then
HE1 14,01,8, (/) = HF1 1 4 5. (H.T).

This is due to the fact that their chain complexes are identical. Also, if we have two
additional pairs (H',J’) and (H’, J') satisfying the same properties and a smooth
nondecreasing family of pairs (H/., J!)scr and (H'.J!)scr compatible with W
joining (H, J) and (H’,J') and joining (H,J) and (H’, J)', respectively, satisfying
the maximum principle with respect to V' and which are equal inside V' for all o, then
the induced continuation maps commute with the above isomorphisms.

Definition B.10 We define
* 1 *
SHSl,ﬂ¢;(qu5’ T, 9(}3) = h_n)l HFSI,,BQ;(H’ J),
(H,7)
where the direct limit is taken over all pairs (H, J) compatible with (W<7>’ Ty, 0 Jb)

using the partial ordering < on H.

Let < be a partial order on a set S. A cofinal family is a subset S’ C S such that, for
all s € S, there exists an s’ € S’ such that s < s’. In the definition above, it is sufficient
to compute SH§1’ B; (Wd;, T, 0 43) by taking the direct limit over some cofinal family
of pairs (H, J) as above.

Lemma B.11 If the slope of a pair (H, J) compatible with (qu, Ty 9(5) is greater
than 1 then the natural map

HFEI,,BQ;(H’ J) —>SH§1’BJ)(W$,T[$,9¢3)

is an isomorphism.
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Proof Let (I-VI J ) be a pair which is strictly compatible with our mapping cylinder
and such that the slope of H is equal to the slope of H. Then there is a constant ¢ > 0
such that H 4+ ¢ > H and H + ¢ > H. Consider the continuation maps

HFgl’ﬂé(H, J) %> HFgla%(ﬁ +e,J)—> HFEI’%(H +2¢,J)

— HF;I’%(H + 3¢, J).
By (S1HF2), the composition of any two such maps is an isomorphism and hence the
continuation map « is an isomorphism. Therefore, it is sufficient for us to assume

that (H, J) is strictly compatible with our mapping cylinder. We can also assume that
H= ngh(s) where h”(s) > 0.

Choose S > 0 large enough that ngl((—S ,S) xR/Z) contains all the 1-periodic

orbits of H representing a class in 3 e Let hs: R — R for ¢ € [0, o0) be a smooth
family of functions such that

e hg(s) =h(s) forall s € (=S, S) and ho(s) = h(s) for all s € R,

o h(s),h)(s),dhs(s)/do >0,

e hJ(s) =0 for all large enough s, and

e the slope of /s tends to infinity as ¢ tends to infinity.

By (S1HF3) combined with Lemma B.7, the natural continuation map

HFY

Sl,ﬁq;(Hv J) _>HF§1”3$(7T;V;]10(S)’ J)

is an isomorphism for all o > 0. Also, by (S1HF2), the natural continuation map
HFgl,ﬂd;(H, J)— HFgl’ﬂé(nghg(s) +0,J)

is an isomorphism for all o > 0. Since (7%hq(s) + o, J) is a cofinal family of pairs
with respect to the ordering <, we get our result by (STHF2). a

Lemma B.12 Fix g € R. We have

* T *
SHsl,ﬂé(Wéa 77(7,» 0(;5) = (E_I%) HF,gl,(_oo’o]’ﬂ& (H, J),

where the direct limit is taken over pairs (H, J) compatible with our mapping cylinder
satistying H|n£1 (—co.q]xR/Z) < 0-
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Proof Since the continuation map
HFgl,ﬁJ)(Ii J)— HF}‘],% (H+c,J)

is an isomorphism by (S1HF2) for every pair (H, J) compatible with our mapping
cylinder, we have

SHzl,ﬂq‘g(WQ\;’ ”é’ 643) = h_rr)l HF;]’B(Z)(H5 J)v

(H,J)

where the direct limit is taken over pairs (H, J) compatible with our mapping cylinder
satisfying
Hl =t ((—o0q1xr/z) < 0-

Let A be a constant smaller than the action of all the 1—periodic orbits of d; We say
that #: R — R for i € N is a compatible function with respect to q if

e N',h” >0, h is bounded below,

e if A'(x) =1 then h(x) < x + kA, and

* hil(—o0,q] <0.
Then

SH;I’%(WJ), mg. 05) = liTI)nHF;l’ﬂJ)(n;h(s), J),

where the direct limit is taken over compatible functions with respect to g ordered by <
and where J is an almost complex structure compatible with our mapping cylinder.
Since 7%h(s) has no 1—periodic orbits representing P of positive action where /% is
any compatible function with respect to ¢ we have by, (STHF3),

liTn)lHF;l,ﬂé(n;h(s), J)= liTn)lHF;l’(_oo’O]’ﬂé(ngh(s), J),
proving our result. O
Lemma B.13 Let g € R. Let (ﬁ, j) be compatible with (Wq;, T 943); then

* T *
SHsl,ﬂé(Wéa 77(7,» 0(;5) = (E_I%) HF,gl,(_oo’O]’ﬂ& (H, J),

where the direct limit is taken over pairs (H, J) compatible with our mapping cylinder
Satisfying H|nd;_1((—oo,q]xR/Z) < 0 and

(H, J)ln(gl([q—l—l,oo)xR/Z) =(H +CHq. J)|7tqv5_1([Q+1,oo)><R/Z)

for some constant Cg € R.
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Proof Let (H;, J;);eN be a cofinal family of pairs with respect to the directed system
mentioned in the statement of this lemma. Such a countable family exists since

Sup H |1 (—co,q1x®/2)) <O

for any (H, J) in the directed system above. We have that (H;, J;) is compatible with
our mapping cylinder and H; |(n$_1((—oo,q]><]R/Z)) <0 and

(i J)n=1 (g4 1,000k 2) = (H 4 CHp T 521 (141,000 xR/ 2)

for some constant Cg; € R. We can assume that H; < H;41 and hence Cy; < Cp; .,

forall i € N. After passing to a subsequence, we can assume that Cg, > i forall i € N.
Let (s,t¢) be standard coordinates for the base R x R/Z. Let K: Wq; — R be a
Hamiltonian equal to n;;‘k(s), where k(s) =0 for s <g+1, k’'(s) >0 for s >q + 1,
and k’(s) is constant for s > ¢ + 2. Since Cg, > i for all i, there is a § > 0 small
enough that the set of 1—periodic orbits of H; of nonpositive action are equal to the
set of 1—periodic orbits of H; + §i K of nonpositive action. Hence, by (STHF3),

* —_— . / .
HFSI,(—OOsO],ﬂ(; (Hi, Ji) = HFEI,(—oo,O],ﬂé (H; +0iK, J;).

Combining this with Lemma B.12 gives us our result. |

Lemma B.14 Suppose the mapping cylinders (Wq31 T 9«131) and (sz, T, 9(52)
are isomorphic. Then
* _ * . . .

SH, 7,3,],1(W¢31 Ty 9&1) - SHS‘,BJ,Z(W@’ Ty 9(152)'
Proof Since these mapping cylinders are isomorphic, we can assume that WJ&] = W$2
and Ty, =Ty, inside {rgz)1 > 1— 46} for some § > 0, and 9(51 = 9(52 + k, where
k: qubl — R has support disjoint from {rq;l >1-46}.
Let (Hy, J1) and (H3, J3) be pairs strictly compatible with

Wi = (Wél’nél ’ 9431) and W = (Wavﬁz’ Ty 9032)’
respectively, of slope less than some small §>0.1f § > 0 is small enough then we can

construct a pair (H3, J3), compatible with Wy, which is equal to (H>, J>) in the region
erv)_l ((-1,3)xR/Z) and equal to (Hy, J1) inside ntgl (((—oo, —2)U (4, 00)) x R/Z) ,
2

2
so that H3 has no 1—periodic orbits.
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Let (I-VI is ji)ieN be a family of pairs strictly compatible with W, such that

V_ "_ . . . . -1
1> ] Y )
* (H;,Ji) isequalto (H2 + Cp , J2) inside s ([1,00) x R/Z) for some con-
i 2
stants Cﬁ‘ eR,

e the restriction I:Ii| 771 ((—00,0)xR/Z) is negative and uniformly tends to 0 in

the C! norm as i tends to infinity and H; (x) > o0 as i — oo for all x in
nq{l((O, o) xR/7Z).
2

Let (ﬁi, JAi)ieN be a family of pairs compatible with W; such that
. (ﬁi, f,) is equal to (H3 + Cpy , jz) inside nq}l([l, o) xR/7Z),
i 1
. (ﬁ,-, f,) equals (PVI,-, Jv,) inside 71(;1((—1,3) xR/Z),
2

o the restriction H; | =1 ((—00,0)xR/Z) is negative and uniformly tends to O in
¢ 9

the C! norm as i tends to infinity and ﬁ,- (x) > o0 as i — oo for all x in
nq}l((O, o0) xR/7Z).
1

Then, by Lemma B.13,

* 1 * 7. 7.
(B-3) SHS‘,ﬂq;l (Wéz,néz,%z)=31€_r)1r\11HFsl,(_oo,0](Hl,J,).
and
* T * 200 A
(B‘4) SHSI:BJ,I (Wq‘él,nq‘sl, 9(51) = %HFSI,(—M,O](HI’ Jl)
i

Also, by property (SIHF3),
HES1 (o005, (Hix J0) = HE g1 (oo 015, (Hi Ji)

for all i and the continuation maps between these groups commute with these isomor-
phisms. Hence,

% ~ * . . .
SHg: yﬁq;l(WQ;l oy 9431) = SHg, ,BQ;I(W¢2’ Ty 6452)

by equations (B-4) and (B-3). a

Lemma B.15 Let A_ and A+ be free abelian groups. Define B_ = A_ ® Z[u] and
B+ = A+ ®Z[u] Let

8an+8133_@3+—>3_®3+
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be a Z —linear differential, where do(A—) C A— and d;(A—) =0. Now suppose that we
have a filtration B_ @ B4 = Fo D F1 D F> D --- for the chain complex (B— & B+, d)
such that if VL = (B+ N F;)/(B+ N F;11) then 01 (uV') C VL and

(B-5) O lyyi: uVl — Vi
is an isomorphism for all i > 0. Then
H(B-® B4,0) = H(A—, d).
If these groups are graded then the above isomorphism respects this grading.
Proof Define B =9(u B_) and define 9 3: uB— — B, d5(x)=0(x). Since the map
(B-5) is an isomorphism for all i >0, we get that 9|, p_: uB— — (B_®B+)/(B_®0)

is an isomorphism. Hence, B_ @ By =~ A_ ®uB_ & B and the differential with
respect to this splitting is the matrix

o 0 0
000
0 3z 0

Computing the homology of this chain complex using the above matrix gives us our
result since dp’ is an isomorphism. |

Lemma B.16 Let (Wd;, T 0 qS) be a mapping cylinder. Then
SHZ(Z) (Wq;, 7'[(]3, 943) = HF*(¢, —|—).

Proof Let (H = Jr;;‘h(s), J) be a pair strictly compatible with (WQ;, Ty 0 Js)’ where
H has slope 1.5, 1" > 0 and where h'|(_00) < 1. Let h;: R x R/Z — R for
t €10, 1] be a standard perturbation of /4 (s) viewed as a Hamiltonian on the symplectic
manifold (R xR/Z,ds Adt). Then h; has exactly two 1-periodic orbits y— and y.
Also, H; = ngh ¢ 1s a standard perturbation of H and the 1—periodic orbits of H;
project to y_ or y4. A compactness argument [6] tells us that (H;, J) satisfies the
maximum principle so long as H; is sufficiently C* close to H and hence we can
define HF};J) (¢1H ) in the usual way. We can also define HF;I’ 8, (H, J) using the
standard perturbation H; by the same compactness argument.

By [27, Theorem 1.3], we have that HF/’;V (¢fl ., J) is isomorphic to
&

H H
HF} (#7", +) @ HFR (91", +).
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In fact, in the proof of the above theorem it was shown that if A_ (resp. A4+ ) is the free
abelian group generated by 1—periodic orbits of H; which project to y_ (resp. y+),
then the differential

8H,,J: A_D Ay > A_P A

satisfies g, j(A+) C A4+ and the homology of

BHI,J|A_: A_— A_
is equal to HF* (¢1H’, J).

If qVS is a sufficiently generic positive slope perturbation of ¢, then we can find a sequence
(o)ieNs, such that there are exactly two 1-periodic orbits y— and y+ of H; of action
in the interval [e;, o; 1) and all 1—periodic orbits are contained in one such interval.
Let B+ = A1 ® Z[u], where u has degree —2. Let B_&® By = Fy D F1 D ---

be a filtration, where F; is the Z[u]-submodule generated by orbits of action > «; .
Define Vi =(B+NF;)/(B+NF;j4;) forall i € N>g. By (SIHF1), the differential
d: B ® By — B_ & B4 computing HF§1 B; (H,J) is equal to dg + d1, where
do(A-) CA—, 01(A-) =0, dola_ =0H, 7, 81(uV’) C V’ and 91|,y uVi — V’

is an isomorphism for all i € N>¢.

Therefore, by Lemma B.15 we have that HF g1 B; (H,J)= H(A-,d9) = HF*(¢, +).
Also, HF, ﬁV(H, J) = SHy, ﬂv(Wv, 4. 05) by Lemma B.11 and hence
b

SH*IB ( Né,9$)=HF*(¢,+). |
Proof of (HF2) This follows from Lemmas B.2, B.3, B.14 and B.16. m|

Now the only issue is if we have two polynomials with embedded contactomorphic
links. Then we need to show that the associated contact pairs are isomorphic. In other
words, we need to show that the normal bundles coincide up to homotopy. This is
contained in the proof of the following lemma:

Lemma B.17 Let f,g: C*"*! — C be polynomials with isolated singularities at 0
with embedded contactomorphic links, with n > 1. Then HF* (¢™, +) = HF* (y™, +),
where ¢ (resp. V) is the monodromy map of the Milnor open book associated to f
(resp. g ) as in Example 3.11.

Proof Let (Ly C Se.és.. @r) and (Lg C Se. &5, . Pg) be the contact pairs associated
to f and g, respectively, as in Example 3.8. Let W: S¢ — S¢ be the contactomor-
phism sending Ly to Lg. We need to show that W is in fact a contactomorphism
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of graded contact pairs by (HF2). Since H;(S¢; Q) = 0, we get that W is a graded
contactomorphism by (A-2) in Definition A.7. Therefore, we just need to show that the
composition

d\IIILf —1 Xidc

N&Lf—)NSGLg&)LgX(CW—)LfX(C

is homotopic to .

This is true since the trivialization ®¢ (and similarly ®g) is uniquely determined by
the following topological property: Let W: JV\fSE Ly — Se¢ be aregularization of L ¢
as in Definition 5.2. Then the trivialization ® ¢ gives us a section s of Jv\fsE Ly whose
image under the trivialization ®; is a constant section. Then s is the unique section
up to homotopy with the property that the image of Hq(Lyz; Q) Yros g 1(Se—Ly¢:Q)
is zero. This trivialization could be thought of as a generalization of the Seifert framing
of links. O

Appendix C A Morse-Bott spectral sequence

In this section, we will show that property (HF3) holds. Here is a statement of this
property:
Let (M, 6y, @) be a graded abstract contact open book, where dim(M) = 2n . Suppose
that the set of fixed points of a small positive slope perturbation qVS of ¢ is a disjoint
union of codimension 0 families of fixed points By, ..., B; andlet v: {1,...,l} - N
be a function where

e (i) =(j) if and only if the action of B; equals the action of B}, and

e (i) <u(j) if the action of B; is less than the action of B; .

Then there is a cohomological spectral sequence converging to HF* (¢, +) whose E;
page is equal to

(1) E'= @D Hupro-cz.5)(Bpi ).
{ie{l,....1}u(@)=p}

The spectral sequence above is an example of a Morse—Bott spectral sequence. Before

we prove this statement we need some preliminary definitions and lemmas.

Definition C.1 Let (M, 0)7, ¢) be a graded abstract contact open book. Let qvﬁ: M —
M be a small positive slope perturbation of ¢ and (J¢);e[o,1] @ C* generic family
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of dfjs—compatible almost complex structures. Let @, b € R be real numbers with the
property that no fixed point of gﬁ has action equal to a or b.

We define HFFa,b] (9, (thte[o,l]) in the following way: Let ¢/ be a C* small
generic perturbation of ¢ inside a compact set such that all of the fixed points
of gvs/ are nondegenerate. Then HFFa,b] (d;, (J1)tef0,1]) is defined in the same way as
HF*(¢', (J1)¢e[0,1]) except that we only consider orbits inside the action window [a, b].
This group does not depend on the choice of perturbation qvS’ so long as no fixed point
of qvS has action equal to a or b.

We can define this group in the following equivalent way: Let CF* (¢V>/ ) be the chain
complex for qvS’ . Then the subspace CFE‘a ] (q’v)’ ) consisting of fixed points of action
> a is a subcomplex. We define

HF, (8. (J1)1efo,1))

to be the homology of the quotient complex CF - (¢')/ CFE‘b oo] (@).

la,00]

Suppose that B is the set of fixed points of ¢V) of action ¢ and suppose that there is
some a < ¢ < b such that there are no fixed points of action in [a, b] —c. We define

HF* (¢, B) = HF[, ;,(. (J)refo.1)-

This does not depend on the choice of a,b or (J¢);e[0,1]-

Lemma C.2 Let (M, 0y, ¢) be a graded abstract contact open book. Let ¢v5: M—->M
be the composition of ¢ with a C° small Hamiltonian such that ¢V) has small positive
slope. Let B C M be an isolated family of fixed points of (,ZVS

Let (Jt)se[0,1] be a smooth family of almost complex structures cylindrical near M.
Then there is an neighborhood Np C M of B such that for any sufficiently small
C° perturbation &, any Floer trajectory of @, (J t)tefo,1]) connecting nondegenerate
fixed points p, p € Ng of qg/ is contained inside Np .

Proof We choose a relatively compact open neighborhood Np of B such that any
fixed point of ¢V> inside Np is actually contained inside B. Let Ng C M be an open
neighborhood of B whose closure is contained in Np.

Let (¢ )ken be a sequence of symplectomorphisms of M which C® converges to ¢.
Suppose (for a contradiction) that ¢, has a fixed point py € Np — Np for all k. Then,
after passing to a subsequence, we have that p; converges to some p € Np — Ng.
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Since p is a fixed point of ¢, we get that p € B, which is impossible. Therefore, ¢y
has no fixed points inside Np — Np for all sufficiently large k.

Now suppose that p; and pj; are fixed points of ¢, and suppose that we have a
sequence of Floer trajectories

up: Rx[0,1] - M

of (¢, (Jt)refo,17) joining pi and py. Define W =R x [0, 1] x M with a symplectic
form ww = ds Adt + dOyy, where s and ¢ are the standard coordinates on R x [0, 1].
Let i be the standard complex structure on R x [0, 1] C C, where (s, ¢) is identified
with s 4+ it. Define JW|(s,t,x) = i|(s,t) D Jt|(s,t)- Define

uZV: R x[0,1] = W, u,?/(s,z) = (5,1, uk(s, 1)),
for all k € N. This is a sequence of J " —holomorphic maps.

Now suppose (for a contradiction) that the image of uj, is not contained inside Np for
all k. Then, after passing to a subsequence, there is a sequence of points (sg, ) €
R x [0, 1] such that uy(sg,t;) € Np — Ng and Uy (g, ;) converges to some point
geNp— Ng. After reparametrizing the domain by translations in the s direction, we
can assume that s; = 0 for all k. Also, after passing to a subsequence we can assume
that t; — ¢ € [0, 1] for some 7. Define wy = u;?/|[—1,1]><[0,1]- Then, by the main result
in [16], we get that w; C° converges to a continuous map v: [—1,1] x [0,1] = W
which is smooth and J % —holomorphic on a dense open subset of its domain.

Let pr: W — M be the natural projection map. Since py and P converge to points
in B, their difference in action converges to zero, which implies that

/ v¥*dOy = 0.
[—1,1]xR/Z

Hence, 7y o v is constant. Since ¢(mar (v(0, 1)) = mar (v((0,0))) and 7p 0 v is
constant, we get that the image of 737 o v is a fixed point of qvﬁ inside Nz — Ng. But
this is impossible since v(0,7) € Np — Ng. a

As a result of the above lemma, we have the following definition:

Definition C.3 Let B C M be an isolated family of fixed points of some positive
slope perturbation ¢v> of ¢ and let Np be a neighborhood of B as in Lemma C.2.
Let (,iv)’ be a C*° small perturbation such that all the fixed points of qvS’ inside Np are
nondegenerate. Since all Floer trajectories of (qvﬁ’ . (Jt)tef0,17) are contained inside Np,
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we can define the Floer cohomology group HF* (giv), B) in the usual way, where we only
consider fixed points inside Ng. Such a group is called the local Floer cohomology
of B. Again it does not depend on the choice of perturbation qvﬁ’ or (J¢)se[o,1] although
we will not need this fact here.

Note that if B is the only set of fixed points of ¢ of action in the interval [a, b], then
the above definition coincides with the definition of HF* ((1;, B) from Definition C.1.
More generally, if B is a union of isolated families of fixed points By, ..., By all of
the same action then HF* (¢, B) = EBll-zl HF* (¢, B;).

Lemma C4 Let (M, 0y, ¢) be a graded abstract contact open book. Let qvﬁz M—->M
be a small positive slope perturbation of ¢. Suppose that the set of all the fixed points
ofJ) of action in [a, b] is equal to B = |_|ll-=1 B;i, where By, ..., B; are codimension 0
families of fixed points, all of the same action. Then

/
(C-2) HF*(¢, B) = @ Hu—x—cz(¢.8,)(Bi: ).
i=1

Proof Let Np, C M be a small neighborhood of B; with the property that ¢V> is
the time 1 flow of a Hamiltonian Hp,: Np, — (—00, 0] satisfying B; = H B 1(0) for
each i. Let ¢fIBi: Np; — Np, be the time 1 flow of Hp for each i. After possibly
shrinking each neighborhood Np,, we can assume that Ng,, ..., Np, are all disjoint.
Let (Jt)¢efo,1] be a generic smooth family of almost complex structures cylindrical
near dM. By Lemma C.2, any sufficiently small C*° perturbation qvﬁ’ of ¢V> has the
property that any Floer trajectory connecting fixed points inside U§=1 Np; is actually
contained inside Np; for some j. Therefore,

[
HF*(B) = @HF*(qslHBf .Bi).

i=1

Hence, by [35, Theorem 7.1] combined with (CZ4), we have that (C-2) holds. |

Proof of (HF3) Let qvﬁ/ be a C°° small perturbation of é and let (J¢);e[o,1] bea C*°
generic smooth family of almost complex structures cylindrical near M. Let o; be the
action of B; foreach i € {1,...,/}. Foreach p € N, choose 8, € R so that o; # f8,,
foralli € {1,...,l} and «; > B if and only if ¢(i) > p. Let F), be the subgroup of
the chain complex CF* (qvﬁ’ ) generated by fixed points of action greater than 8, . Then
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(Fp)iep is a filtration on this chain complex. By Lemma C.4,
H*(Fp/Fp1) =HFfy 5 (§,By) = B  Hiwcze.8)(BriZ)
{ie{l,...I}u()=p}

forall p=1,....] and H*(Fp/Fp—1) =0 if p e N—{l,...,[}. Therefore, the
spectral sequence associated to the filtration (Fp)yen is (C-1). O
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