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Moduli of stable maps in genus one
and logarithmic geometry, I
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This is the first in a pair of papers developing a framework for the application of
logarithmic structures in the study of singular curves of genus 1 . We construct a
smooth and proper moduli space dominating the main component of Kontsevich’s
space of stable genus 1 maps to projective space. A variation on this theme furnishes
a modular interpretation for Vakil and Zinger’s famous desingularization of the
Kontsevich space of maps in genus 1 . Our methods also lead to smooth and proper
moduli spaces of pointed genus 1 quasimaps to projective space. Finally, we present
an application to the log minimal model program for M1;n . We construct explicit
factorizations of the rational maps among Smyth’s modular compactifications of
pointed elliptic curves.
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1 Introduction

This paper is the first in a pair, exploring the interplay between tropical geometry,
logarithmic moduli theory, stable maps and moduli spaces of genus 1 curves. We focus
on the following two applications:
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I Moduli of elliptic curves in Pr We construct a smooth and proper moduli space
compactifying the space of maps from pointed genus 1 curves to P r . The natural
map to the Kontsevich space is a desingularization of the principal component. A
mild variation of this moduli problem yields a modular interpretation for Vakil–Zinger
desingularization of the Kontsevich space in genus 1. We establish analogous results
for the space of genus 1 pointed stable quasimaps to P r .

II Birational geometry of moduli spaces The aforementioned application relies on
general structure results concerning the geometry of the elliptic m–fold point. We
develop techniques to study such singularities using logarithmic methods. This leads
to a modular factorization of the birational maps relating Smyth’s spaces of pointed
genus 1 curves.

Blowups of moduli spaces usually do not have modular interpretations. A technical
contribution of this work is to demonstrate how tropical techniques allow one to
establish modular interpretations for logarithmic blowups of logarithmic moduli spaces,
by adding tropical information to the moduli problem. The concept of minimality — now
standard in logarithmic moduli theory — returns a corresponding moduli problem on
schemes. In the sequel, we extend our results on desingularization to logarithmic targets
by constructing toroidal moduli of genus 1 logarithmic maps to any toric variety [29].

1.1 The main component of genus 1 stable maps

The moduli spaces of stable maps in higher genus are essentially never smooth. For
almost all values of r and d , the space M1;n.P

r ; d/ is reducible, not equidimensional,
and highly singular. A remarkable iterated blowup construction due to Vakil and
Zinger, however, leads to a smooth moduli space �M1;n.P

r ; d/ compactifying the main
component [32; 33]. Hints of the geometry of this resolution are present in Vakil’s
thesis [31, Lemma 5.9].

The construction of the space �M1;n.P
r ; d/ is elegant, and it shares many of the

excellent properties of M0;n.P
r ; d/, including smoothness, irreducibility and normal

crossings boundary. However, a closure operation implicit in the construction destroys
any natural modular interpretation. As a consequence, the smoothness of �M1;n.P

r ; d/

requires a difficult technical analysis — see Hu and Li [16] and Vakil and Zinger [32] —
and clouds attempts at conceptual generalizations, for instance into the logarithmic
category or to quasimap variants. We first supply a moduli space that desingularizes
the main component of Mg;n.P r ; d/ and then use this perspective to investigate
generalizations and related geometries.
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1.2 Modular desingularization

The central construction of this paper is a moduli space Mrad
1;n

realizing a blowup of
the moduli space of genus 1, n–marked, prestable curves,

Mrad
1;n!M1;n:

This blowup parametrizes prestable curves C equipped with a radial alignment of
their tropicalizations — this may be thought of as a total ordering on the vertices of
the dual graph of C that are not members of the smallest subcurve of genus 1. We
emphasize that this is an algebraic stack over schemes. See Sections 3.1 and 3.3.

Given a stable map Œf W C ! Y �, the radial alignment determines both a semistable
model zC of C and a projection � W zC ! C that contracts a genus 1 subcurve of zC to
a genus 1 singularity.

Theorem A Let Y be a smooth and proper complex variety and fix a curve class
ˇ 2H2.Y;Z/. Consider the following data as a moduli problem over schemes:

(1) a minimal family of n–marked , radially aligned , logarithmic curves , C ! S,

(2) a stable map f W C ! Y such that f?ŒC �D ˇ , and

(3) a factorization of zC ! C
f
�! P r through the canonical contraction zC ! C

that is nonconstant on a branch of the central genus 1 component of C.

This moduli problem is represented by a proper Deligne–Mumford stack VZ1;n.Y; ˇ/,
carrying a natural perfect obstruction theory. The space VZ1;n.P

r ; d/ is smooth and
irreducible of the expected dimension.

It is natural to wonder how the Vakil–Zinger blowup construction relates to VZ1;n.P
r; d/.

The relationship arises via the concept of a central alignment, which can be thought of
as a partial ordering of the vertices, whereas the radial alignment is total.

Theorem B There exists a proper Deligne–Mumford stack VZctr
1;n
.Y; ˇ/ parametrizing

stable maps from minimal families of centrally aligned genus 1, n–pointed curves to Y ,
satisfying the factorization property. When Y D P r there is an isomorphism

VZctr
1;n.P

r ; d/! �M1;n.P
r ; d/:

1.3 The quasimap moduli

When there are no marked points on the source curve, there is an alternative nonsingular
compactification to VZ1.P

r ; d/ via the theory of stable quasimaps, also called stable
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quotients; see Ciocan-Fontanine and Kim [6] and Marian, Oprea and Pandharipande [25].
Rather than a blowup of M1.P

r ; d/, the quasimap space Q1.P
r ; d/ is a contraction,

fitting into a diagram

VZ1.P
r ; ˇ/!M1.P

r ; d/!Q1.P
r ; d/:

In this sense, the stable quasimap spaces are efficient compactifications, giving one
point of access to the geometry of elliptic curves in P r . When marked points are
present, the stable quotient spaces are no longer smooth, and can be essentially as
singular as the space of maps.

We desingularize the pointed spaces using radial alignments. As before, a radially
aligned curve C equipped with a quasimap to P r produces a semistable model zC
of C and a contraction zC ! C of the genus 1 component.

Theorem C Fix a degree d . Consider the following data as a moduli problem on
schemes:

(1) a minimal family of n–marked , radially aligned , logarithmic curves, C ! S,
and

(2) a stable quasimap f from C to P r of degree d ,

such that f factors through a quasimap C ! P r having positive degree on at least one
branch of the genus 1 component. This moduli problem is represented by a smooth ,
proper Deligne–Mumford stack VQ1;n.P

r ; d/ of the expected dimension.

In both stable map and quasimap theories, smooth is proved conceptually, without a
local analysis of the singularities of the ordinary moduli spaces, which is the core of
previous approaches to the problem.

1.4 Elliptic singularities and logarithmic geometry

For each integer m � 1, the elliptic m–fold point is the unique Gorenstein genus 1

singularity with m branches; see Section 2.1. For each m, Smyth constructs a proper
and irreducible moduli space M1;n.m/ of curves with elliptic l –fold singularities for
l �m and an appropriate global stability condition. However, the spaces are smooth if
and only if m� 5. By the irreducibility, for each m, there is a rational map

M1;nÜM1;n.m/:

We construct a factorization of this rational map by building a single smooth moduli
space that maps to both, via operations on its universal curve.

Geometry & Topology, Volume 23 (2019)
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Theorem D Let Mrad
1;n

denote the moduli space of radially aligned n–pointed genus 1

curves. There is a canonical factorization of the rational map M1;nÜM1;n.m/ as

Mrad
1;n

M1;n M1;n.m/

�m�

The map � is a logarithmic blowup, while the map �m induces a contraction of the
universal curve of Mrad

1;n
.

The space Mrad
1;n

has the best properties of both spaces in the lower part of the diagram —
it is smooth with a normal crossings boundary, the boundary combinatorics is explicit,
and it sees the geometry of elliptic m–fold singular curves.

1.5 Previous work on genus 1 maps

There has been a substantial amount of work on the moduli space of genus 1 stable
maps to P r in the last decade, which we can only summarize briefly. The seminal
application of the Vakil–Zinger desingularization was to the proof of Bershadsky,
Cecotti, Ooguri and Vafa’s prediction for the genus 1 Gromov–Witten invariants of
Calabi–Yau hypersurfaces; see Zinger [35]. The desingularization was revisited by Hu
and Li, who provided a different perspective on the blowup construction [16]. While
the techniques in the present text handle arbitrary proper algebraic targets, there is
a “sharp Gromov compactness” result for arbitrary Kähler targets using symplectic
Gromov–Witten theory by work of Zinger [36]. It would be interesting to develop a
modular interpretation, as we do here, for Kähler and symplectic targets. We imagine
that our methods would work equally well for logarithmic analytic spaces, but Parker’s
category of exploded manifolds may already contain the essential ingredients [27].

The situation is simpler in the absence of marked points. The theories of stable quotients
and quasimaps, due to Marian, Oprea and Pandharipande [25] and Ciocan-Fontanine
and Kim [6], provide smooth and proper moduli of genus 1 curves in P r with no
marked points. These spaces have a beautiful geometry — Cooper uses the modular
interpretation to show that Q1.P

r ; d/ is rationally connected with Picard number 2,
explicitly computes the canonical divisor, and gives generators for the Picard group [7].
It would be natural to use the desingularization here to extend Cooper’s study to the
pointed space. Kim’s proposal of maps to logarithmic expansions also produces a
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nonsingular moduli space of maps to P r relative to a smooth divisor, provided there
are no ordinary or relative marked points [20].

A different direction was pursued in an elegant paper of Viscardi [34], who extended
Smyth’s construction to the setting of maps. The resulting spaces M.m/

1;n
.Y; d/ are

proper, smooth when all numerical parameters are small, and irreducible when m is
large. In fact, for m� 0, the space is smooth over the singular Artin stack M1;n.m/

parametrizing genus 1 curves with at worst elliptic m–fold singularities, and thus,
in spirit, his approach is close to ours. Crucially, however, our base moduli space of
radially aligned curves has a better deformation theory, so that the moduli space is
smooth when Y D P r and not merely relatively smooth over a nonsmooth base.

1.6 User’s guide

The central technical result of this paper is the construction of the moduli space of
prestable radially aligned genus 1 curves in Section 3.3. The corresponding moduli
space of stable objects is related to Smyth’s space via a contraction of the universal
curve in Theorem 3.7.1. The space VZ1;n.Y; ˇ/ is constructed in Section 4, shown to be
proper in Theorem 4.3, and to have a virtual class in Theorem 4.4.1. The nonsingularity
for target P r is then established in Theorem 4.5.1 via deformation theory, and the
comparison with Vakil and Zinger’s construction is undertaken in Section 4.6. We
desingularize the quasimap spaces in Section 5.
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2 Preliminaries

2.1 Genus 1 singularities

Let C be a reduced curve over an algebraically closed field k and let .C;p/ be an
isolated singularity. There are two basic invariants of this singularity. Let

� W . zC ;p1; : : : ;pm/! .C;p/

be the normalization, where fpig is the inverse image of p . The number m is referred
to as the number of branches of the singularity. The second invariant, the ı–invariant,
is defined by

ı WD dimk.�?.O zC /=OC /:

Let A � �?O zC be the subring of functions that are well defined on the underlying
topological space of C. In a neighborhood of a point p of C, the ring A can be
constructed as a fiber product,

�?O zC ��?O
��1.p/

Op:

Then A is the structure sheaf of a scheme, called the seminormalization of C.

2.1.1 Definition The genus of a singularity .C;p/ is the quantity

g D dimk.A =OC /;

where A is the structure sheaf of the seminormalization of C.

By construction, we have
g D ı�mC 1:

The term genus is consistent with the usual notion of arithmetic genus: if C is proper
(so that the arithmetic genus is well defined), its arithmetic genus differs from the genus
of its seminormalization by g . Alternatively, the stable reduction of a 1–parameter
smoothing of C replaces p with a nodal curve of arithmetic genus g .

We will be concerned with singularities of genus 1 in this paper.

2.1.2 Proposition There is a unique Gorenstein singularity of genus 1 with m

branches. Specifically, if mD 1, the singularity is the cusp V .y2�x3/, if mD 2, the
singularity is the ordinary tacnode V .y2�yx2/, and for m� 3, the singularity is the
union of m general lines through the origin in Am�1 .

Proof See [30, Proposition A.3].
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2.1.3 Proposition The dualizing sheaf of a Gorenstein curve of genus 1 with no
genus 0 tails is trivial.

Proof Let C be a Gorenstein, genus 1 curve with no genus 0 tails. Then C is either
smooth, a ring of rational curves, or an elliptic m–fold point. If C is smooth, then !C

has degree zero and has a nonzero global section, hence is trivial. If C is a ring of
rational curves, then !C restricts to have degree zero on each component, yet has a
nonzero global section, hence is trivial. Finally, if C is an elliptic m–fold point then a
local calculation shows that !C restricts to !Ci

.2/'OCi
for each rational component

Ci of C. One can then find explicit local generators for !C that extend globally. Such
generators are, for instance, recorded in [29, Proposition 2.1.1].

2.1.4 Corollary Suppose that C is a connected semistable genus 1 curve with a
nonempty collection of marked points p1; : : : ;pn and let †D

P
pi . Then

H 1.C; !˝k
C
.k†//D 0:

Proof Let C0 be the circuit component (or union of components) of C and Ci the
remaining components. The dual graph of the Ci is a tree, so

H 1.C; !˝k
C
.k†//D

X
H 1.Ci ; !

˝k
C
.k†/jCi

/:

If i ¤ 0 then Ci is rational and by the semistability of C there are at least two marked
points or nodes on Ci . Therefore !˝k

C
.k†/jCi

has nonnegative degree and hence also
vanishing H 1 . On C0 , we can identify !C .†/jC0

with !C0

�P
qi

�
, where the qi are

the external nodes and marked points of C0 . By Proposition 2.1.3, we know that !C0
is

trivial, so H 1.C0; !
˝k
C
.k†/jC0

/ is dual to H 0
�
C0;OC0

�
�k

P
qi

��
. But the only sec-

tions of OC0
are constants, and there is at least one qi , so H 0

�
C0;OC0

�
�k

P
qi

��
D0.

2.2 Tropical curves

We follow the presentation of tropical curves from [5, Sections 3 and 4], introduc-
ing families of tropical curves. We refer the reader to loc. cit. for a more detailed
presentation.

2.2.1 Definition A prestable n–marked tropical curve is a finite graph G with
vertex and edge sets V and E, enhanced with the following data:

(1) a marking function mW f1; : : : ; ng ! V ,
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(2) a genus function gW V !N ,

(3) a length function `W E!RC .

Such a curve is said to be a stable n–marked tropical curve if (1) at every vertex v
with g.v/D 0, the valence of v (including the markings) is at least 3, and (2) at every
vertex v with g.v/D 1, the valence of v (including the markings) is at least 1. The
genus of a tropical curve is the sum

g. /D h1.G/C
X
v2V

g.v/;

where h1.G/ is the first Betti number of the graph G.

In practice, we will intentionally confuse a tropical curve with its geometric real-
ization — a metric space on the topological realization of G such that an edge e is
metrized to have length `.e/ and if m.i/D v , we attach the ray R�0 to the vertex v ,
as a half-edge with unbounded edge length.

More generally, one may permit the length function ` above to take values in an
arbitrary toric monoid P. This presents us with a natural notion of a family of tropical
curves.

2.2.2 Definition Let � be a rational polyhedral cone with dual monoid S� (the
integral points of its dual cone). A family of n–marked prestable tropical curves over �
is a tropical curve whose length function takes values in S� X f0g.

To see that such an object is, in an intuitive sense, a family of tropical curves, observe
that the points of � can be identified with monoid homomorphisms

'W S� !R�0:

Given such a homomorphism ' and an edge e 2E, the quantity '.`.e// is an “honest”
length for e 2 E. The resulting tropical curve can be thought of as the fiber of the
family over Œ'� 2 � .

2.3 Logarithmic and tropical curves

Let .S;MS / be a logarithmic scheme. A family of logarithmically smooth curves
over S (or logarithmic curve over S for short) is a logarithmically smooth and proper
morphism

� W .C;MC /! .S;MS /

Geometry & Topology, Volume 23 (2019)
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of logarithmic schemes with 1–dimensional connected fibers with two additional
technical conditions: � is required to be integral and saturated. These are conditions
on the morphism �[W MS!MC that guarantee that � is flat with reduced fibers. The
étale local structure theorem for such curves, due to F Kato, characterizes such families
locally on the source [19]. We write M

log
g;n for the stack of families of connected,

proper, n–marked, genus g families of logarithmic curves over logarithmic schemes.

2.3.1 Theorem Let C ! S be a family of logarithmically smooth curves. If x 2 C

is a geometric point , then there is an étale neighborhood of C over S, with a strict
morphism to an étale-local model � W V ! S, and V ! S is one of the following:

� The smooth germ V DA1
S
! S, and the logarithmic structure on V is pulled

back from the base.

� The germ of a marked point V DA1
S
! S, with logarithmic structure pulled

back from the toric logarithmic structure on A1 .

� The node V DOS Œx;y�=.xy D t/ for t 2OS . The logarithmic structure on V

is pulled back from the multiplication map A2!A1 of toric varieties along a
morphism t W S !A1 of logarithmic schemes.

The image of t 2MS in MS is called the deformation parameter of the node.

Associated to a logarithmic curve C!S is a family of tropical curves. As the construc-
tion is simpler when the underlying scheme of S is the spectrum of an algebraically
closed field, and we will only need it in that case, we make that assumption in order
to describe it. Under this assumption, for each edge e of the dual graph of C, we
write ıe for the deformation parameter of the corresponding node of C. The following
definition is given implicitly by Gross and Siebert [9, Section 1]:

2.3.2 Definition Let C be a logarithmic curve over S, where the underlying scheme
of S is the spectrum of an algebraically closed field. The tropicalization of C is the dual
graph of C, with vertices weighted by the genera of the corresponding components
of C, and with the length of an edge e defined to be the smoothing parameter ıe 2MS .

2.4 Line bundles from piecewise linear functions

It is shown in [5, Remark 7.3] that, if C is a logarithmic curve over S, and the
underlying scheme of S is the spectrum of an algebraically closed field, then sections
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of MC may be interpreted as piecewise linear functions on the tropicalization of C

that are valued in MS and are linear along the edges with integer slopes.

For any logarithmic scheme X and any section ˛ 2 �.X;M gp
X
/, the image of ˛ under

the coboundary map

H 0.X;M
gp
X
/!H 1.X;O?X /

induced from the short exact sequence

0! O?X !M
gp

X
!M

gp
X
! 0

represents an O?
X

–torsor O?
X
.�˛/ on X. Via the equivalence between O?

X
–torsors

and line bundles, this corresponds to a line bundle, OX .�˛/. To each piecewise linear
function f on that is linear on the edges with integer slopes and takes values in MS ,
we have an associated section of MC and therefore an associated line bundle O.�f /.

The monoid MX �M
gp
X

gives M
gp
X

a partial order in which f �g when g�f 2MX .
If f � 0, meaning that f is a section of MX , then we can restrict "W MX ! OX to
give a homomorphism OX .�f /!OX . More generally, if f � g then g�f � 0 and
we get OX .f �g/! OX , hence OX .f /! OX .g/.

A logarithmic structure can be defined equivalently as a system of invertible sheaves
indexed homomorphically by the sheaf of partially ordered abelian groups M

gp
X

. We
will frequently take this point of view in the sequel. The line bundles and torsors arising
from the logarithmic structure on a curve can also be described in a rather explicit
fashion using chip-firing and tropical divisor theory. We refer the reader to [8; 17] for
developments in this direction.

2.4.1 Proposition Let � W C ! S be a logarithmic curve over S. Assume that MS

and the dual graph are constant over S and that the smoothing parameters of the
nodes are all zero in OS . If f is a piecewise linear function on that is linear with
integer slopes on the edges and takes values in MS , and Cv is the component of C

corresponding to the vertex v of , then there is a canonical identification

OC .f /jCv D OCv

�X
e

�epe

�
˝�?OS .f .v//;

where the sum is taken over flags e of rooted at v , the integer �e is the outgoing
slope of f along the edge e , and pe is the point of Cv corresponding to e .
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Proof If f is a constant function then the statement is obvious, and both sides of the
equality are additive functions of f , so we may subtract the constant function with
value f .v/ from f and assume that f .v/D 0. Let C ıv be the interior of Cv . As f ,
viewed as a section of MC , takes the constant value 0 on C ıv , there is a canonical
trivialization of OC .�f / on C ıv .

Consider an edge e of that is incident to v . This corresponds to a node p of C that
lies on Cv with local coordinates ˛Cˇ D ı , with ˛; ˇ 2MC;p and ı 2MS . Let z̨
and ž be lifts of ˛ and ˇ to MC;p . Either ".z̨/ or ". ž/ restricts to a local parameter
Cv at p ; we assume without loss of generality that it is ".z̨/.

If the slope of f along e is m then f corresponds locally to m˛ . We assume first
that m� 0. Then " restricts on a neighborhood U of p in Cv to give

"jU W OU .�f /! OU

whose image is the ideal generated by xm . This gives a canonical isomorphism between
OU .�f / and OU .�mp/ in a neighborhood U of p that restricts on the complement
of p to the trivialization described above. If m < 0 then �m � 0 and we obtain a
canonical isomorphism OU .f /' OU .�mp/ in a neighborhood U of p , as above.

2.5 Logarithmic blowups and logarithmic modifications

Let X be a logarithmic scheme and let I �MX be a coherent ideal, by which we
mean that I is a subsheaf of MX such that MX CI D I and locally I is generated by
global sections of MX (see [18, Definition 3.6]). We say I is principal if it is possible
to find a section ˛ of MX such that I D ˛CMX . Note that this is actually a local
condition, as ˛ is unique if it exists because MX is sharp.

Given any ideal I �MX and a logarithmic scheme S, we define F.S/ to be the set
of logarithmic maps f W S !X such that f ?I is principal.

Suppose that I is generated by sections j̨ . Then F.S/ is, equivalently, the set of
logarithmic maps f W S ! X such that the collection ff ?. j̨ /g of sections of MS

has a minimal element with respect to the partial order introduced in Section 2.4. This
interpretation will be useful when we relate the Vakil–Zinger blowup construction to
our own in Section 4.

2.5.1 Proposition The functor F is representable by a logarithmic scheme, called
the logarithmic blowup of I.
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Proof The assertion is local in the étale topology, so we can assume X has a global
chart, which we regard as a strict map to a toric variety X ! V . Then F is the base
change of the moduli problem over V defined by the same formula, so we can assume
X D V is a toric variety. Then I generates a toric ideal of X and the blowup of that
ideal, in the usual sense, represents F. See the discussion following Definition 3.8
in [18] for a more detailed construction.

2.5.2 Remark Let zX be a logarithmic blowup of X. It may be counterintuitive that
although zX !X is essentially never an injection, the functor on logarithmic schemes
defined by zX is defined as a subfunctor of the one defined by X. That is, a logarithmic
blowup is a noninjective monomorphism. This may be seen as a failure of the schemes
zX and X to be good topological reflections of the associated logarithmic schemes.

An artifact of the monomorphicity is reflected in the fact that the map at the level of
tropicalizations (cone complexes) is a set-theoretic bijection.

2.5.3 Remark The monomorphicity of logarithmic blowups might be understood
by comparison with the conventional universal property for blowing up in algebraic
geometry [14, Proposition II.7.14], which also asserts that Hom.S; zX /! Hom.S;X /
is injective for morphisms S!X that meet the blowup center sufficiently transversely.
Logarithmic geometry forces all morphisms meeting the logarithmic boundary of X

to “know something about” points of X nearby the boundary, effectively making all
logarithmic morphisms S !X sufficiently transverse.

Of particular interest in this paper will be the logarithmic blowups that arise from ideals
with two global generators, ˛ and ˇ in �.X;MX /. Then the blowup F constructed
above is the universal Y ! X such that the restrictions of ˛ and ˇ are locally
comparable. That is, for every geometric point y of Y , we have either ˛y � ˇy or
˛y � ˇy in the stalk MY;y .

2.5.4 Definition A morphism of logarithmic schemes f W X ! Y is called a loga-
rithmic modification if, locally in Y , it is the base change of a toric modification of
toric varieties.

Logarithmic blowups are logarithmic modifications, but not every logarithmic modi-
fication is a logarithmic blowup, even locally, because not all toric modifications are
toric blowups. Nevertheless, every logarithmic modification can be dominated by a
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logarithmic blowup. We omit an explanation of this fact, since we will not need to
make any use of it.

2.5.5 Example In order to make clear how the imposition of an order between a priori
unordered elements of MX translates into a blowup, we work out a basic example. We
assume that X is the spectrum of an algebraically closed field and that MX DN˛CNˇ .
Let zX be the universal logarithmic scheme over X such that ˛ and ˇ pull back to
comparable elements. We suppress the pullback in what follows.

Of particular interest are the points of zX where ˛D ˇ . Considering only characteristic
monoids, it might seem that there is just one such point. However, to lift from the
characteristic sheaf to a logarithmic point, consideration of the logarithmic structure
sheaf reveals that these points each require a choice of element in O�

X
to identify the

torsors corresponding to ˛ and ˇ . This is the interior of the exceptional locus of the
blowup, as we now explain in more detail.

Let Y be the spectrum of an algebraically closed field, with MY DN . Consider the
morphisms Y ! zX that send both ˛ and ˇ to 1 2 N . To produce such a map, we
must give a morphism of logarithmic structures MX !MY , which induces (and is
determined by) isomorphisms OX .˛/ ' OY .1/ and OX .ˇ/ ' OY .1/. The ratio of
these two isomorphisms gives a well-determined element of O�

X
, from which Y and

the map Y ! zX can be recovered up to unique isomorphism.

Put another way, to construct a logarithmic structure MY and morphism MX !MY

such that ˛ and ˇ are identified in MY requires the identification of the invertible
sheaves OX .˛/ and OX .ˇ/ and there is a Gm –torsor of such identifications available
to choose from.

To construct the logarithmic blowup, one may proceed by building two charts, where
˛ � ˇ and where ˛ � ˇ . We construct the former. Take MU to be the submonoid
of M

gp
X

generated by MX and by ˇ�˛ . Let MU be the preimage of MU in M
gp
X

.
There is now a choice for the map "W MU ! OX . The universal option is to take
OU D OX Œz� and impose the (vacuous) relation ".ˇ/z D ".˛/, so that ". žz̨�1/D z

becomes well defined (for some choice of lifts z̨ and ž of ˛ and ˇ to M
gp

X
). The

underlying scheme of U is therefore A1 .

While there is not a unique choice for "W MU ! OX in the description above, there
is a somewhat canonical one, in which ". žz̨�1/D 0. This is the locus where ˛ < ˇ ,
strictly, and corresponds to the origin of the chart U 'A1 . The other chart yields the
same result, with the identification giving rise to the logarithmic blowup P1 .
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3 Moduli spaces of genus one curves

The results in this section were obtained in the doctoral dissertation of the second
author [28]. Several variants of the main construction of this paper, which are either
treated briefly here, or not at all, are described in greater detail in [28].

We construct a moduli space Mrad
1;n

of pointed curves with a radial alignment, show
that it is a blowup of M1;n , and verify that the radial alignments determine contraction
morphisms to the space of m–stable curves, as defined by Smyth [30].

3.1 The intuition and strategy

The framework in this section may be unintuitive at first, so we provide some motivation
that will become precise in later sections. For each integer m� 0, Smyth constructs
proper, not necessarily smooth moduli spaces M1;n.m/ of m–stable curves. Here, for
each m, one considers the moduli problem for curves of arithmetic genus 1 where the
central genus 1 component has a total of more than m markings and external nodes
(meaning nodes where it meets the complementary subcurve). In place of the genus 1

curves with m or fewer branches, Smyth substitutes Gorenstein genus 1 singularities
(Section 2.1). These spaces are all birational to one another, and there is a birational
map identifying the loci of smooth elliptic curves with distinct markings

M1;nÜM1;n.m/:

The main result of this section is the construction of a moduli space Mrad
1;n

that, for
any 0�m� n, resolves the indeterminacies of the rational map above, ie

Mrad
1;n

M1;n M1;n.m/

�m

We construct this stack by adding information to the moduli problem of M1;n guided
by the following observation:

An elliptic m–fold singularity is formed by contracting a genus 1 compo-
nent with m external nodes in a smoothing family.

For example, suppose that C!S is a 1–parameter smoothing of a nodal curve C0 with
smooth total space and that E is an irreducible genus 1 component of C0 . Suppose
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that C is a flat family obtained from C by contracting E. If E is a genus 1 tail then
the constancy of the Hilbert polynomial in flat families forces it to be replaced in C0

by a genus 1 singularity with one branch — a cusp. If E is a genus 1 bridge then,
assuming C is Gorenstein, the replacement of E will be a tacnode.

One must take care that, if m> 1, then the resulting singularity will have moduli and
can depend on the choice of smoothing family. Therefore the rational map above has
indeterminacy.

We mimic the contraction tropically in the following manner. The circuit of a tropical
curve of genus 1 is the union of the vertices whose complement contains no component
of genus 1. Given a tropical curve of genus 1, we may consider the circle around
the circuit of radius ım , which is the smallest radius in the characteristic monoid of
the base such that there are at most m paths from the circuit to the circle, and strictly
more than m paths from the circle to infinity; see Figure 1. Contracting the interior of
the circle in a family of curves with tropicalization produces an m–stable curve.

1 2 3 4 5 6 87

Figure 1: The circle of radius ı5 drawn on the dual graph of a stable genus 1

curve. The white vertex is the circuit.

Given a family of tropical curves, which we think of as a tropical curves with edge
lengths in a monoid as before, the position of a vertex need not be comparable to
any chosen radius ı . In other words, over one fiber of the family, a vertex may lie
inside the circle, and in another fiber, it may lie outside the circle. Just as not all versal
deformations admit contractions, not all families of tropical curves admit well-defined
radii ım .
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In order that the tropical moduli problem of curves with a circle be well defined in
families, it is necessary to be able to compare the radius of the circle with the distance
of a vertex from the minimal genus 1 subgraph. We may refine the moduli problem of
tropical curves by adding an ordering of the noncircuit vertices of the tropicalization to
the data in a combinatorial type. It follows that on a family of tropical curves with the
same order type on its vertices, there is a well-defined circle whose contraction leads
to an m–stable curve.

3.1.1 Guiding principle The space Mrad
1;n

is the moduli space of families of genus 1

nodal curves together with the data of a total ordering of the vertices of their tropical-
izations by distance from the circuit. For each m< n, this determines a unique circle
whose corresponding contraction yields an elliptic m–fold curve. The map to M1;n

forgets the ordering, while the map to M1;n.m/ performs the contraction.

3.1.2 Remark Ordering all of the vertices is much more information than is strictly
necessary for constructing the contraction. See Section 4.6 and [28] for more parsimo-
nious variants.

An ordering of the noncircuit vertices of a tropical curve can be incorporated into a
logarithmic moduli problem, which can in turn be realized as a blowup.

3.2 Smyth’s moduli spaces

Fix positive integers m < n and let C be a connected, reduced, proper curve with
arithmetic genus 1. Let p1; : : : ;pn be n distinct smooth marked points, and let
†D p1C � � �Cpn .

3.2.1 Definition The curve .C;p1; : : : ;pn/ is m–stable if:

(1) C has only nodes and elliptic l –fold points, with l �m, as singularities.

(2) If E � C is any connected arithmetic genus 1 subcurve,

jE \C XEjC jE \fp1; : : : ;pngj>m:

(3) H 0.C; �_
C
.†//D 0.

The first condition is standard, and the third condition forces finiteness of the automor-
phism group. The second condition is required for separability of the moduli problem,
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as one must discard curves with small numbers of rational tails around the genus 1

component and replace them with m–fold singularities. The main result of [30] is the
following:

3.2.2 Theorem There is a proper and irreducible moduli stack M1;n.m/ defined over
Spec

�
Z
�

1
6

��
, parametrizing m–stable n–pointed genus 1 curves.

Note that the restriction on the base is due to the presence of unexpected automorphisms
of cuspidal curves in characteristics 2 and 3. See the discussion in [30, Section 2.1].

3.3 Radially aligned logarithmic curves

The additional datum necessary to construct a contraction of a logarithmic curve of
genus 1 to an m–stable curve is a radial alignment.

Let S be a logarithmic scheme whose underlying scheme is the spectrum of an
algebraically closed field, and suppose that � W C ! S is a logarithmic curve of
genus 1 over S. Let be the tropicalization of C. We write `.e/ 2MS for the length
of an edge e of (see Section 2.3). For each vertex v of , there is a unique path
consisting of edges e1; e2; : : : ; ek from v to the circuit of . We define

�.v/D

kX
iD1

`.ei/:

Then � is a piecewise linear function on with integer slopes along the edges and
values in MS . It therefore corresponds to a global section of MC .

3.3.1 Remark The section � may be seen as a map from C to the Artin fan A D

ŒA1=Gm�. This map sends the circuit of C to the open point of A and has contact
order 1 along every edge and marking. As such, it can be viewed as an orientation on
the edges of the tropicalization of C that are not contained in the cicuit, with all
edges oriented away from the circuit.

3.3.2 Lemma Let C be a logarithmic curve over S of genus 1. There is an isomor-
phism of line bundles OC .�/' !C=S .†/, where !C=S is the relative dualizing sheaf
of C over S and † is the divisor of markings.
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Proof Let C0 be the open subcurve of C corresponding to the circuit 0 of the
tropicalization of C. As � takes the value 0 on 0 , the line bundle O.�/ is trivial
on C0 . As !�.†/ is also trivial on C0 by Proposition 2.1.3, we can now show O.��/

and !�.†/ agree by comparing their degrees on the rational components of C not in
the circuit.

If v is not a vertex of the circuit, then � has slope �1 on exactly one edge meeting v
and has slope 1 on all remaining edges. Therefore O.�/ has degree �1C.n�1/Dn�2,
where n is the valence of v , which coincides with the degree of !�.†/.

Now suppose that S is a logarithmic scheme. Let P D �?MC . The construction
of the previous paragraph gives �s 2 Ps for each geometric point s of S. Note
that Ps D �?MCs

by proper base change for étale sheaves [3, Théorème 5.1(i)].
We prove that these �s are compatible and glue to a canonical global section in
�.S; �?MC /D �.C;MC /.

To check the compatibility of the �s , we must show they are stable under the generiza-
tion map

Ps! Pt

associated to a geometric specialization t  s . In fact, this is immediate from the
fact that t s induces an edge contraction s! t compatible with the morphism
MS;s!MS;t .

Returning to the case where the underlying scheme of S is the spectrum of an alge-
braically closed field, we observe that the section � has a basic ordering property: if
v and w are vertices of s such that the path from v to the circuit passes through w ,
then �.v/� �.w/ (recall from Section 2.4 that we think of sharp monoids as partially
ordered abelian groups). However, in general �.v/ and �.w/ are not comparable when
v and w are arbitrary vertices of s .

3.3.3 Definition We say that a logarithmic curve over a logarithmic scheme S is
radially aligned if �.v/ and �.w/ are comparable for all geometric points s of S and
all vertices v;w 2 s .

We write Mrad
1;n

for the category fibered in groupoids over logarithmic schemes whose
fiber over S is the groupoid of radially aligned logarithmic curves over S having
arithmetic genus 1 and n marked points.
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The imposition of an order between vertices v and w of corresponds to requiring
compatibility among the elements �.v/ and �.w/ of MS . This effects a logarithmic
modification of S, as described in Section 2.5 and, in particular, Example 2.5.5.

Note that the notion of radial alignments, as well as variants which follow later in
the paper, are distinct from the alignment condition introduced by Holmes in work
on the Néron models [15]. It is related to the notion of aligned logarithmic structure
introduced by Abramovich, Cadman, Fantechi and the third author [1].

3.3.4 Proposition Mrad
1;n

is a logarithmic modification of the stack M
log
1;n

of proper,
connected, n–marked, genus 1, logarithmic curves.

Proof This is a local assertion on M
log
1;n

. It is therefore sufficient to show that for a
smooth cover Mlog

1;n
by S, the base change

S �
M

log
1;n

Mrad
1;n! S

is a logarithmic modification. We can therefore assume that MS admits a global
chart by a monoid P, and that, writing C for the family of logarithmic curves over S

classified by the map to M
log
1;n

, the tropicalization of C is induced from a tropical
curve metrized by P. In other words, is pulled back from V D Spec ZŒP �, as is the
function �.

Let � be the rational polyhedral cone dual to P. For each vertex v 2 , the element
�.v/ 2 P corresponds to a linear function on � . Let † be the fan obtained by
subdividing � along the hyperplanes where �.v/D �.w/ as v and w range among
vertices of , and let W be the associated toric variety. Then †! � is the universal
morphism of fans such that the linear functions �.v/ on � become pairwise comparable
on the cones of †. The base change of W along S ! V is therefore the universal
logarithmic scheme mapping to S in which the sections �.v/ of MS become pairwise
locally comparable. Since this is precisely the condition for a family of logarithmic
curves to lie in Mrad

1;n
, we may now recognize that

S �
M

log
1;n

Mrad
1;n ' S �V W

and therefore that it is a logarithmic modification of S.

3.3.5 Corollary Mrad
1;n

is representable by a logarithmically smooth algebraic stack.

Proof It is a logarithmic modification of (and in particular logarithmically étale over)
the logarithmically smooth stack M

log
1;n

, so it is certainly logarithmically smooth.
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3.4 The minimal logarithmic structure

Suppose that S is a logarithmic scheme whose underlying scheme S is the spectrum of
an algebraically closed field, and that we are given a radially aligned logarithmic curve C

over S, classified by a morphism 'W S !Mrad
1;n

. By virtue of the representability
of Mrad

1;n
, the logarithmic structure of Mrad

1;n
pulls back to a logarithmic structure M

on S, equipped with a morphism of logarithmic structures M !MS . The objective
of this section is to describe M explicitly.

It will help to recognize that M represents a functor on the category LogStr.S/=MS ,
which is equivalent to Mon=MS , where Mon is the category of sharp, integral, sat-
urated monoids with sharp homomorphisms, where a sharp homomorphism is one
in which every invertible element has a unique preimage (for sharp monoids, this is
equivalent to a local homomorphism). The functor in question is

F.N /DMrad
1;n.S ;N /�Mrad

1;n
.S ;MS /

fŒC �g;

where N lies in Mon=MS . In other words, F.N / is the set of radially aligned
logarithmic curves over the logarithmic scheme .S ;N / that pull back via the morphism
S D .S ;MS /! .S ;N / to C.

Since LogStr.S/=MS is equivalent to Mon=MS , it will be sufficient to describe the
characteristic monoid M of M.

3.4.1 Proposition Let C be a radially aligned logarithmic curve over a logarithmic
scheme S whose underlying scheme is the spectrum of an algebraically closed field.
Write �S for the “distance from the cicuit” function on the vertices of the tropicalization
of C. Let A be the abelian group freely generated by the edges of the dual graph of C.
The minimal monoid of C is the sharpening (the quotient by the subgroup of units)
of the submonoid of A generated by the smoothing parameters and the differences
�.w/��.v/ whenever �S .v/� �S .w/ in MS .

Proof Let M0 be the minimal logarithmic structure associated to the logarithmic
curve C (without taking account of its radial alignment). The characteristic monoid
M0 is well known to be freely generated by the edges e of the tropicalization of C.
Let � denote the “distance from the circuit” function valued in M0 and let M be
the submonoid of M

gp
0

generated by M0 and the differences �.w/��.v/ whenever
�S .w/��S .v/ 2MS .
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Now suppose that C 0 2 F.M 0/ for some M 0
S
2 LogStr.S/=MS . Then the tropical-

ization 0 of C 0 has edge lengths in M 0
S

. We write �0
S

for the “distance from the
circuit” function of 0. By the universal property of M0 , we have a unique morphism
M0!M 0 that induces C. We argue that it factors through M.

By definition of radial alignment, the vertices of 0 are totally ordered by �0 and
this order is compatible with the homomorphism M 0

S
! MS . But and 0 have

the same underlying graph, so the vertices of 0 have the same total order as those
of , and therefore, whenever �S .w/��S .v/ 2MS , the difference �0

S
.w/��0

S
.v/ is

in M 0
S

. This is exactly what is needed to guarantee the required factorization, which
is necessarily unique.

3.4.2 Corollary The minimal characteristic monoid of a radially aligned logarithmic
curve with tropicalization is freely generated by the lengths of the edges in the circuit
and the nonzero differences �.v/��.w/ for v and w among the vertices of .

Proof The minimal monoid of the logarithmic curve C is freely generated by the
smoothing parameters of the nodes. The quotient described in Proposition 3.4.1 will
identify one smoothing parameter with the sum of other smoothing parameters, but the
result of such an identification is always locally free.

Said differently, one may dualize to obtain a tropical description of the minimal radially
aligned monoid. Let � be a cone of abstract tropical curves of genus 1 tropical curves.
Let z�! � be the subdivision induced by totally ordering the vertices of the dual graph.
The minimal base monoid constructed in the proposition can be understood as follows.
If S D Spec.P ! k/ is a logarithmic enhancement of a closed point and � W C ! S

is a radially aligned logarithmic curve, then there is a canonical morphism of rational
polyhedral cones, P_! � . As C is radially aligned, this morphism factors through
some cone in the subdivision z� . There is a minimal such cone with respect to face
inclusions, and the minimal monoid is the dual monoid of that cone. See Figure 2.

3.4.3 Corollary The underlying algebraic stack of Mrad
1;n

is smooth.

Proof We saw in Corollary 3.3.5 that it is logarithmically smooth and in Corollary 3.4.2
that its logarithmic structure is locally free.

3.5 Circles around the circuit

We introduce a logarithmic version of Smyth’s m–stability conditions [30, Section 1].
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`1
`2

1 2 43

`2 > `1

`2 < `1

Figure 2: The cone on the right without its subdivision is the minimal monoid
of a logarithmic curve with dual graph on the left. Each of the cones of a
subdivision is a different minimal radially aligned curve.

3.5.1 Definition Let C be a radially aligned logarithmic curve over a logarithmic
scheme S whose underlying scheme is the spectrum of an algebraically closed field.
Let be the tropicalization of C. Let � be the “distance from the circuit” function on
the vertices of . Suppose that ı 2MS . We say that ı is comparable to the radii of C

if it is comparable to �.v/ for all vertices v of .

Let e be an edge of incident to vertices v and w with �.v/ < �.w/. We say that e

is incident to the circle of radius ı if �.v/ < ı � �.w/. We say that e is excident to
the circle of radius ı around the circuit of if �.v/� ı < �.w/.

We define the inner valence and outer valence of ı , respectively, to be the number of
edges of incident to and excident from the circle of radius ı .

Some remarks about this definition are in order:

(A) Intuitively, an edge of is incident to the circle of radius ı if it crosses the circle.
This concept becomes ambiguous when the circle crosses a vertex of , where
we must distinguish edges that contact the circle from the inside from those that
contact it from the outside.

(B) If an edge e of connects vertices v and w that are not both on the circuit
then either �.v/ < �.w/ or �.w/ < �.v/. By definition of radial alignment,
we have one or the other nonstrict inequality. But equality is impossible, for
�.v/ � �.w/ D ˙ı.e/, where ı.e/ is the smoothing parameter of e and in
particular is nonzero. There is no way for the edge to lie within the circle of
radius ı .

(C) If v is a vertex of the tropicalization of a stable, radially aligned logarithmic
curve and v is not on the circuit, then there is exactly one edge of incident
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to v and at least two edges (including legs) of excident from v . If the curve is
merely semistable then there is still one incident edge and at least one excident
edge. We leave the verification of these statements to the reader.

(D) It follows from the previous observation that the inner valence of the circle of
radius ı on a semistable, radially aligned, logarithmic curve is always bounded
above by the outer valence.

3.5.2 Proposition Suppose that C is a radially aligned, semistable logarithmic curve
over S and that ı is a global section of MS that is comparable to the radii of C.
For each geometric point s of S, let �.s/ and �.s/ be the inner and outer valence,
respectively, of the circle of radius ı on the tropicalization of C. Then � is upper
semicontinuous and � is lower semicontinuous.

Proof As � and � are constant on the logarithmic strata of S, they are constructible
functions. It is therefore sufficient to show that for every geometric specialization t s

of S, we have �.t/� �.s/ and �.t/� �.s/. But if s and t denote the tropicalizations
of Cs and Ct then t is obtained from s by a weighted edge contraction. The
proposition follows from these three observations:

(1) Contracting edges that are neither incident to ı nor excident from it does not
change � or � .

(2) Contracting edges incident to ı does not change � but may decrease �.

(3) Contracting edges excident from ı does not change � but may increase � .

3.5.3 Definition Let C be a family of radially aligned genus 1 logarithmic curves
over S. For each integer m such that 0�m� n, we say that ı 2MS is m–stable if

(i) ıs is comparable to �s.v/ for all vertices v of s , and

(ii) the circle of radius ıs around the circuit of s has inner valence �m and outer
valence >m.

If an m–stable radius exists, we write ım for the smallest m–stable radius.

3.5.4 Proposition If C is a semistable, radially aligned logarithmic curve over S,
where the underlying scheme of S is the spectrum of an algebraically closed field, then
an m–stable radius exists.
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Proof Let ƒ be the set of �.v/ as v ranges among the vertices of the tropicalization
of C. Then ƒ inherits a total order from MS . Every vertex of not in the circuit

is the endpoint of exactly one incident vertex: it is at least one because the graph is
connected and at most one because any more would increase the genus beyond 1. On
the other hand, because the graph is semistable, every vertex outside the circuit is an
endpoint of at least two edges, and therefore has at least one excident edge. Both the
number of incident edges and the number excident edges to the circle of radius ı are
therefore increasing functions of ı 2ƒ. For the maximal ı 2ƒ, the external valence
is n, and for ı D 0 the internal valence is 0, so there must be some m–stable ı in
between.

3.6 The universal curves

Let C be a radially aligned, semistable logarithmic curve over S and let ı be a section
of MS that is comparable to the radii of C (Definition 3.5.1).

3.6.1 Proposition There is a universal logarithmic modification Cı!C such that the
sections � and ı of MCı are comparable. The corresponding map on tropicalizations

ı! subdivides the edges that are simultaneously incident to and excident from the
circle of radius ı along the circle.

Proof Let be the tropicalization of C. The section ı � � gives a map ! R in
the obvious fashion. Subdivide along the preimage of 0 2R. This subdivision of
gives rise to a logarithmic modification Cı of C. The conclusion about tropicalizations
is true by construction.

Apply the proposition with the values ım introduced at the end of Section 3.5, to
construct curves C D zC0; : : : ; zCn over Mrad

1;n
, each of which is equipped with a

stabilization zCi! C.

3.7 Resolution of indeterminacy

We define Mrad
1;n

to make the following square cartesian:

Mrad
1;n

M1;n

Mrad
1;n

M
log
1;n
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As we have already seen, the bottom arrow is a logarithmic modification. As the pullback
of a logarithmic modification is a logarithmic modification, Mrad

1;n
is a logarithmic

modification of M1;n .

For each m, we construct a projection from Mrad
1;n

to Smyth’s moduli spaces M1;n.m/

of m–prestable curves, resolving the indeterminacy of the map M1;nÜM1;n.m/.

3.7.1 Theorem For each integer m such that 0�m� n, there is a proper, birational
morphism �mWMrad

1;n
!M1;n.m/.

The main point of the proof is the construction of a contraction zCm!Cm where zCm is
the curve defined in Section 3.6 and Cm is a Smyth m–stable curve. The construction
uses the section ım to produce a line bundle on zCm and then recognizes Cm as Proj
of the section ring of this bundle.

Notation We will hold m fixed for the rest of this section, so we drop the subscript
in what follows.

3.7.2 Definition Let C be a radially aligned logarithmic curve over S and let ı
be a section of MS that is comparable to the radii of C (Definition 3.5.1). Then,
by construction of Cı (Proposition 3.6.1), � and ı are comparable sections of MCı .
Therefore, there is a well-defined section �Dmaxf�; ıg on Cı .

3.7.3 Lemma Assume that C is a semistable logarithmic curve over S. The degree
of O zC .�/ is nonnegative on all components of all geometric fibers of zC over S. For
all geometric points s of S and all components zCv of zCs such that �s.v/ < ıs , the
degree of O zC .�/ on zCv is zero. If v is not in the interior of the circle of radius ıs
then L has positive degree on zCv .

Proof It is sufficient to consider the case where the underlying scheme of S is the
spectrum of an algebraically closed field. Let z be the tropicalization of zC. If v is in
the interior of the circle of radius ı on z then, by definition, �.v/ < ı , so �.v/D ı .
Therefore the restriction of L to Cv is pulled back from S and in particular has
degree 0.

If v is in the exterior of the circle of radius ı then � agrees with � at v and we
know from Lemma 3.3.2 that OC .�/ has positive degree on v . Finally, if v is on the
boundary of the circle of radius ı then v has exactly one incident edge and at least
one excident edge. But � is constant on the incident edge, so the degree of OC .�/ is
at least 1.
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3.7.4 The circuit For this section, assume that C is a family of radially aligned
semistable logarithmic curves over S, that ı is a section of MS that is comparable to
the radii of C, and that � and ı are comparable on C. Let � W C !S be the projection.

Recall that we have defined � to be the section maxf�; ıg on C. Since � � �, we
have a morphism of invertible sheaves (see Section 2.4 for the construction),

(3.7.4.1) i W OC .�/! OC .�/:

3.7.4.2 Definition We write Eı for the support of the cokernel and call it the circuit
(of radius ı ) in C. Note that Eı represents the subfunctor of C where � < ı . We will
suppress the subscript when it is clear from context.

3.7.4.3 Lemma Suppose that OS ! OS .ı/ is injective. Then OC .�/! OC .�/ is
injective and Eı is a Cartier divisor on C.

Proof Since �� �� �C ı we have a sequence of maps

OC .�/
i
�! OC .�/! OC .�C ı/;

where the composition is a twist of the pullback of the injection

OS ! OS .ı/

by �. As C is flat over S, this implies that OC .�/ ! OC .�C ı/ and, a fortiori,
OC .�/! OC .�/ are injective.

3.7.4.4 Definition Let �ı (or �, when the dependence on ı is evident) be the locus
in S where the map OS .�ı/! OS vanishes.

3.7.4.5 Lemma Assume that OS ! OS .ı/ is injective and that each fiber of C

contains at least one component not in the interior of the circle of radius ı . For all
integers k > 0, we have R1�?OC .k�/D R1�?OE.kı/DE_

�
.kı/, where E_

�
is the

restriction of the dual of the Hodge bundle of C over S to �.

Proof (3.7.4.5.1) Recalling that, by definition, E is the locus where OC .�/
i
!OC .�/

vanishes, we have an exact sequence

0! OC .k�/
ik

�! OC .k�/! OE.k�/! 0:

Note that i is injective because ���� ı and OS ! OS .ı/ is injective.
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As OC .�/D!C=S .†/ by Lemma 3.3.2, and as � coincides with ı on E, this simplifies:

0! !˝k
C=S

.k†/! OC .k�/! OE.kı/! 0:

We have R2�?!
˝k
C=S

.k†/D 0 because the fibers are 1–dimensional and

R1�?!
˝k
C=S

.k†/D 0

because its fibers vanish by Corollary 2.1.4. The isomorphism R1�?OC .k�/ '

R1�?OE.kı/ follows.

(3.7.4.5.2) Filtering E into flat pieces To conclude the lemma, it remains to identify
each of these with a twist of the dual of the Hodge bundle. We argue that the map

(3.7.4.5.3) R1�?OCı ! R1�?OE

is an isomorphism, where Cı D �
�1�. This assertion is local in S, so we can assume

that S is an atomic neighborhood of a geometric point s of S. Since the tropicalization
of Cs is radially aligned, there is a sequence of radii

0D ı0 < ı1 < � � �< ın < ınC1 D ı

given by the distance of the vertices from the elliptic component, terminating at ı . For
each i , define �i D maxf�; ıig and define Ei by the ideal OC .���i/ � OC . We
take �ıi

to be the support of the cokernel of OS ! OS .ıi/. The pieces Ei filter E

into pieces that are flat1 over their images in S, noting that E is not necessarily flat
over its image, �.

We now prove (3.7.4.5.3) by induction, with E replaced by Ei and � replaced
by �ıi

for all i . When i D 0, we have Ei D ¿ and �ıi
D ¿, and the assertion is

trivial. The kernel of OEiC1
! OE is isomorphic to the cokernel of the canonical map

OC .���iC1/! OC .���i/. Let D be the support of this cokernel.

(3.7.4.5.4) Flatness of the pieces We claim that D is flat over the locus �ıiC1�ıi
�S.

This can be seen explicitly as follows. By construction, D is defined by the ideal
OC .�i � �iC1/ � OC . The central fiber of Ds thus consists of those components
of Cs where � < ıiC1 . Furthermore, �i ��iC1 takes the constant value ıi � ıiC1

except at the nodes where Ds is joined to the rest of Cs . This implies that, away from
those nodes, Ds is defined by the preimage in OC of the ideal OS .ıi � ıiC1/� OS

1In the generic case, where there is a unique genus 1 component inside the circle, E is flat over �
and the result follows from Serre duality.
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that defines �ıiC1�ıi
. Thus D is flat over the claimed locus, except possibly at the

nodes where Ds is joined to its complement in Cs . At such a node p of Cs with
local equation xy D t , calculation shows that OC;p is étale-locally isomorphic to
OS;s Œx;y�=.xy � t;x/' OS;s Œy�=.t/, which is flat over OS;s=.t/, as claimed.

(3.7.4.5.5) Only the central component contributes cohomology We introduce
the notation C
 D�

�1�
 and consider the following commutative diagram with exact
rows:

0 // OCıiC1�ıi
.�ıi/ //

��

OCıiC1

//

��

OCıi
//

��

0

0 // OD.���i/ // OEiC1
// OEi

// 0

Pushing forward along � , and transposing for layout, we obtain the following diagram,
with exact columns:

0

��

�?OCıiC1�ıi
.�ıi/

��

˛
oo

�?OCıiC1

��

�iC1
oo

�?OCıi

��

�i
oo

R1�?OCıiC1�ıi
.�ıi/

��

ˇ
oo

R1�?OCıiC1

��

'iC1
oo

R1�?OCıi

��

'i
oo

0

0

��

�?OD.���i/

��

�?OEiC1

��

�?OEi

��

R1�?OD.���i/

��

R1�?OEiC1

��

R1�?OEi

��

0

By induction on i , we show that �i and 'i are isomorphisms by demonstrating that
both ˛ and ˇ are isomorphisms.
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Our task is now to show that

(3.7.4.5.6) R�?OCıiC1�ıi
.�ıi/! R�?OD.���i/

is a quasi-isomorphism. Since both OCıiC1�ıi
.�ıi/ and OD.� � �i/ are flat over

�ıiC1�ıi
, both R�?OCıiC1�ıi

and R�?OD.� � �i/ are representable by bounded
complexes of locally free sheaves. Nakayama’s lemma shows that it is sufficient to
verify this on the fibers.

We are therefore to show that

(3.7.4.5.7) R�?OCs
.�ıi/! R�?ODs

.���i/

is an isomorphism, where s is a geometric point of �ıiC1�ıi
. Let E0 � Ds be the

minimal closed genus 1 subcurve of Cs . We claim that there are quasi-isomorphisms

R�?OCs
.�ıi/! R�?OE0

.�ıi/ and R�?OE0
.�ıi/! R�?ODs

.���i/

commuting with (3.7.4.5.7).

The first map is induced by the quotient OCs
! OE0

. This induces an isomorphism on
cohomology since Cs and E0 � Cs are reduced, proper, connected curves of genus 1.

For the second map, we induct on i . For each j 2 f0; : : : ; ig, let Dj be the union of
components of Ds where �� ıjC1 . Recall that Di DDs because �� ıiC1 on Ds .
We have E0 DD0 because ı0 D 0. For each j , there is an exact sequence

0! ODj�1
.���j�1� ıj C ıj�1/! ODj .���j /! OFj .���j /! 0;

where Fj is the closure of the complement of Dj�1 in Dj . Note that Fj is a disjoint
union of smooth rational curves. Let v be the vertex of the dual graph of Cs correspond-
ing to a component of Fj . Since v is on the boundary of the circle of radius ıj , the piece-
wise linear function ���j has outgoing slope 0 along all but one of the edges incident
to v . The remaining edge connects v to the interior of the circle of radius ıj and there-
fore the outgoing slope of ���j is �1 along that edge. It follows that, on each com-
ponent of Fj , the restriction of OFj .���j / is OP1.�1/. Thus R�?OFj .���j /D 0.
It follows that R�?ODj�1

.���i�1 � ıj C ıj�1/ ' R�?ODj .���j /. The desired
quasi-isomorphism is constructed by induction.

3.7.5 Flatness of the section ring We continue to assume that C is a radially aligned
logarithmic curve over S, that ı is a section of MS comparable to the radii of C, and
that OS ! OS .ı/ is injective.
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With these assumptions, Lemma 3.7.4.5 supplies a canonical resolution of R1�?OC .k�/,

(3.7.5.1) 0!E_..k � 1/ı/!E_.kı/! R1�?OC .k�/! 0;

where E denotes the Hodge bundle. Note that the injectivity on the left comes from
the injectivity of OS ! OS .ı/. We come to the key proposition necessary to contract
radially aligned curves in families.

3.7.5.2 Proposition The sheaf �?OC .k�/ is locally free for all k � 0.

Away from �, we can identify OC .k�/' !
˝k
C=S

.k†/, and we know �?.!
˝k
C=S

.k†//

is locally free of the expected rank for all k � 0. It therefore suffices to work near �.
The following lemma will allow us to reduce the proof of Proposition 3.7.5.2 to the
case where S is the spectrum of a discrete valuation ring.

3.7.5.3 Lemma Let T ! S be a morphism such that OT .�ı/! OT is injective.
Then

f ?�?OC .k�/D �?f
?OC .k�/:

Proof We write LD OC .k�/.

Working locally near the image of T , the proof of cohomology and base change [26,
Section 5, second Theorem, page 46] guarantees we can find K0 and K1 finitely
generated and locally free fitting into an exact sequence

(3.7.5.3.1) 0! �?L!K0
!K1

! R1�?L! 0

such that

(3.7.5.3.2) 0! �?f
?L! f ?K0

! f ?K1
! R1�?f

?L! 0

is exact as well. We show that the sequence

0! f ?�?L! f ?K0
! f ?K1

! f ?R1�?L! 0

is exact, from which it follows that �?f ?L' f ?�?L via the natural map.

We perform a derived pullback on the sequence (3.7.5.3.1) along f , yielding a spectral
sequence Lpf

?Rq�?L converging to 0. A diagram chase shows that the obstructions
to the desired isomorphism come from L1f

?R1�?L and L2f
?R1�?L. We will use

our explicit resolution of R1�?L in (3.7.5.1) to show that both of these groups vanish.

Working locally, we rewrite the resolution (3.7.5.1) as

0! OS .�ı/
c
�! OS ! R1�?L! 0
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for some local section c of OS that vanishes along �. The pullback of this sequence
to T is exact by assumption. Therefore L1f

?R1�?L and L2f
?R1�?L both vanish,

as required, and f ?�?LD �?f
?L.

Proof of Proposition 3.7.5.2 By Lemma 3.7.5.3, it is sufficient to treat the universal
case, where S DMrad

1;n
. Since Mrad

1;n
is reduced, it suffices to prove that �?OC .k�/

has constant rank. Since OS ! OS .ı/ is injective, every point of S has a generization
where it restricts to an isomorphism (ie where ı D 0). If s is a point of S, we
can therefore find a scheme T , the spectrum of a discrete valuation ring, and a map
f W T ! S carrying the closed point to s and the generic point to the complement
of �. By Lemma 3.7.5.3, the formation of �?OC .k�/ commutes with base change
to T , so we can replace S with T .

Now, OC .k�/ is torsion-free, so �?OC .k�/ is also torsion-free, hence flat because S

is the spectrum of a discrete valuation ring.

3.7.6 Contraction to m–stable curves We are now prepared to complete our con-
traction of radially aligned curves to the m–stable curves. Our argument is in the spirit
of Smyth’s contraction lemma [30, Lemma 2.12]. The major difference in the present
setting is that the extra datum of the circle of fixed radius allows us to promote Smyth’s
local construction to a global one.

Let � W C !S be a radially aligned, semistable, genus 1 logarithmic curve over S and
let ı be a section of MS that is comparable to the radii of C. Assume that OS!OS .ı/

is injective. We collect from our earlier discussion

(1) a section �Dmaxf�; ıg of MC (Definition 3.7.2);

(2) a line bundle OC .�/ on C (Definition 3.7.2);

(3) a Cartier divisor E on C (Definition 3.7.4.2), the locus in C where � < ı ;

(4) a divisor � on S (Definition 3.7.4.4), the locus in S where ı > 0; and

(5) that �?OC .k�/ is locally free for all k � 0 (Lemma 3.7.5.3).

3.7.6.1 Proposition Given the above situation , OC .�/ is � –semiample and we have
a diagram

C C WD Proj
�P

k�0 �?OC .k�/
�

S

�

�

x�x�x�x�

with � proper , birational , with exceptional locus E. Furthermore ,
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(1) x� W C ! S is flat and projective with reduced fibers;

(2) � jCsXEs
W Cs XEs!Cs is the normalization of Cs at �.Es/ for each fiber over

each geometric point s of S ;

(3) �.Es/ is an elliptic m–fold point in each Cs over each geometric point s of S,
and C ! S together with the image of † is an m–stable curve in the sense of
Smyth.

Proof We know that �?OC .k�/ is locally free for all k � 0 by Proposition 3.7.5.2,
so C ! S is flat.

Observe that OC .�/ being � –semiample is equivalent to the surjectivity of the adjunc-
tion map

�?�?OC .k�/! OC .k�/

for k sufficiently large. Note that OC .k�/ is ample on generic fibers, and over �,

OE.k�/' OE and OCsXE.k�/ is ample.

We must argue that, for every x 2C, there is some k � 0 and a section of OC .k�/ that
does not vanish at x , at least in a neighborhood of �.x/ on S. Since OC .�/ coincides
with !C=S .†/ over SX�, and !C=S .†/ is semiample on C, this presents no obstacle
away from �. Even over �, the restriction of OC .�/ to the complement of E agrees
with !C=S .†/ on components that do not meet E, and with !C=S .† � p/ on a
component attached at p to E. Since C is semistable, !C=S .†�p/ has degree � 0

on such a component.

It remains to argue that if x 2E then OC .k�/ has a section that does not vanish at x ,
at least for sufficiently large k . In fact, we will find the required section when k D 1.
Since �� �, we have an exact sequence

0! OC .�/! OC .�/! OE.ı/! 0:

Pushing forward to S, using the isomorphism OC .�/' !C=S .†/ (Lemma 3.3.2) and
the vanishing of R1�?.!C=S .†// (Corollary 2.1.4), we get a surjection

�?OC .�/! �?OE.ı/:

We can certainly find a neighborhood of �.x/ and a section of �?OE.ı/ that does not
vanish at x , so the surjectivity implies the same applies to �?OC .�/. This proves the
semiampleness.
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From � –semiampleness, we get the finite generation of the section ring of OC .�/

[23, Example 2.1.30] and a proper, birational projection � W C !C. From the triviality
of OC .�/ on E, and the ampleness elsewhere, we see that the exceptional locus of �
is E. For the remaining claims, which only concern the fibers of x� , we can assume that
S is the spectrum of a discrete valuation ring, since by Lemma 3.7.5.3, the construction
commutes with base change to a discrete valuation ring satisfying the same hypotheses
as S.

If the total space of C is smooth at the points where E meets the closure of C XE

then we may apply Smyth’s contraction lemma [30, Lemma 2.13] to conclude. It is
possible to reduce to this case by replacing C with a semistable model, but we will
argue directly for clarity.

Now, assuming that S is the spectrum of a discrete valuation ring, note that S is
irreducible and normal. Moreover, C is regular in codimension one (R1) since C ! S

has smooth generic fiber and has isolated singularities in fibers. Since the fibers of Cs

over S are reduced curves, they are (S2) [11, Remarques IV.5.7.8, page 106]. Now
C ! S is flat, and S, being the spectrum of a discrete valuation ring, is certainly (S2).
Therefore the total space of C is (S2) [11, Proposition IV.6.8.3, page 151]. Since C is
smooth away from codimension 2 in a neighborhood of E, it is (R1), and therefore C

satisfies Serre’s criterion for normality near E.

We argue that C is reduced. The components of C� XE map birationally to the
components of C� . As C� is reduced, C� is generically reduced. On the other hand,
flatness implies that the fiber C� is a Cartier divisor in C, and is therefore (S1). In
particular, C� has no embedded points. We conclude that C� is reduced.

The same argument we used on C now implies that C is normal. As � certainly has
connected fibers, and both C and C are reduced, we obtain �?OC D OC .

Furthermore, if D is the closure of C� XE then D is smooth at the points of D\E.
As D! C� is birational, it follows that D is the normalization of C� at �.E/. This
completes the proof of the third claim.

Finally, we verify that �.E/ is an elliptic m–fold point of C� . Since C and C are
generically isomorphic, they have the same arithmetic genus. Therefore it suffices to
show that C is Gorenstein.

Reduced fibers implies Cohen–Macaulay fibers, and any flat, projective, finitely pre-
sented morphism C ! S whose geometric fibers are Cohen–Macaulay admits a
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relative dualizing sheaf [21, Theorem 21] whose formation commutes with base change
[21, Proposition 9], and the relative dualizing sheaf is (S2) [22, Corollary 5.69]. It will
therefore suffice to show that !C=S is isomorphic to a line bundle in codimension 1,
since, on a reduced scheme of finite type over a field, (S2) sheaves isomorphic in
codimension 1 are isomorphic [2, Lemma 5.1.1]. To see this, note that

OC .1/jCX�.E/ Š !C=S .†/jCX�.E/:

Note �.E/ is the exceptional image and it is codimension 2, so this is an isomorphism
in codimension 1 by definition. So we have shown that the relative dualizing sheaf
on C, which commutes with base extension, is isomorphic to a line bundle OC .1/

near �.E/. In particular the fibers are Gorenstein curves. The fact that the fibers are
stable in the sense of Smyth is immediate from our stability condition, so we have
proved (3).

Proof of Theorem 3.7.1

Now that we have developed the machinery for contracting a radially aligned log curve
to an m–stable curve in the sense of Smyth, we finish the proof of Theorem 3.7.1.

Proof We take S DMrad
1;n

. Let ım be as in Definition 3.5.3, and let zCm D Cım

be as in Proposition 3.6.1. Note that OS ! OS .ı
m/ is injective, because Mrad

1;n
is

logarithmically smooth. We apply Proposition 3.7.6.1 to obtain a contraction zCm!Cm .
As Cm is an m–stable curve in the sense of Smyth, this gives a map Mrad

1;n
!M1;n.m/.

When ım D 0, the maps Cm! C and Cm! Cm are isomorphisms, so our map is
birational.

4 The stable map spaces

Let Y be a variety over the complex numbers equipped with the trivial logarithmic
structure. Let M1;n.Y; ˇ/ be the moduli space of stable n–pointed genus 1 stable
maps to Y , with image curve class ˇ . By forgetting the map, we obtain a morphism

M1;n.Y; ˇ/!M1;n

to the stack of n–pointed prestable curves of genus 1.

Let Mrad
1;n

be the moduli space of minimal families of radially aligned genus 1 logarith-
mic curves � W C ! S. We define �VZ1;n.Y; ˇ/ to be the stack making the following
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diagram cartesian: �VZ1;n.Y; ˇ/ M1;n.Y; ˇ/

Mrad
1;n

M1;n

By definition �VZ1;n.Y; ˇ/ parametrizes the following data over a logarithmic scheme S :

(1) a logarithmic curve C over S having genus 1 and n marked points, together
with a radial alignment of the tropicalizations;

(2) a stable map C ! Y of homology class ˇ .

Consider a family of maps from radially aligned curves over S, let s be a geometric
point of S. Denote by � the function on the vertices of the tropicalization s of Cs

whose value on a vertex v is the distance of v from the circuit. By assumption, the set of
values �.v/ is totally ordered. Define the contraction radius ıs to be the smallest �.v/,
as v ranges among the vertices of the dual graph of Cs , such that f is nonconstant on
the corresponding component of Cs . In other words, ıs measures the distance from
the circuit to the closest noncontracted component.

Now suppose that t s is a geometric specialization. Let w be a component of Ct .
If f is constant on all components v of Cs in the closure of w then by the rigidity
lemma [26, Section 4, p. 43], f is also constant on w . Conversely, if f is constant
on w then it is constant on all components of Cs in the closure of w . It follows that
ıt is the image of ıs under the generization map MS;s!MS;t . Thus the collection
of ıs glues together into a section ı of MS over S.

By Proposition 3.7.6.1, the section ı induces a canonical logarithmic modification
zC ! C and contraction zC ! C over S, where C is a family of prestable curves in
the sense of Smyth.

We define VZ1;n.Y; ˇ/ by imposing a closed condition on �VZ1;n.Y; ˇ/:

4.1 Definition Let VZ1;n.Y; ˇ/ be the substack of �VZ1;n.Y; ˇ/ parametrizing fami-
lies of maps C ! Y , with notation as above, with the following factorization property:
in the notation of the paragraph above, the composition zC!C!Y factors through C,
in the diagram

(4.1.1)

zC //

��

C

��

C // Y
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Note that the morphism C ! Y is by definition nonconstant on some branch of the
component containing the genus 1 singularity.

Algebraicity is a consequence of general results applied to our framework.

4.2 Lemma Suppose Y is a quasiseparated algebraic space that is locally of finite
presentation. Then VZ1;n.Y; ˇ/ is representable by algebraic spaces, locally of finite
presentation, and quasiseparated over Mrad

1;n
. If Y is quasiprojective then VZ1;n.Y; ˇ/

is locally quasiprojective over Mrad
1;n

.

Proof For any S –point of Mrad
1;n

, we show that the fiber product S�Mrad
1;n

VZ1;n.Y; ˇ/

has the requisite properties over S. Over S, we have a diagram of curves

zC //

��

C

C

that is constructed as was indicated above. We can identify S �Mrad
1;n

VZ1;n.Y; ˇ/ as
the stable locus of a fiber product of Hom–spaces over S,

HomS .C;Y /�HomS .C ;Y /
HomS . zC ;Y /:

As C, C and zC are all flat, proper, and of finite presentation over S, we may apply
[13, Theorem 1.2] to obtain the algebraicity, finite presentation and quasiseparatedness
of the fiber product. The stability condition cutting out VZ1;n.Y; ˇ/ is open. If Y is
quasiprojective then the Hom–schemes are all quasiprojective [12, Section 4.c], so
VZ1;n.Y; ˇ/ is as well.

The factorization property is satisfied by all limits of maps from smooth curves.

4.3 Theorem Assume that Y is proper. Then VZ1;n.Y; ˇ/ is proper.

Proof As it is pulled back from the modification Mrad
1;n
!M1;n , the moduli space�VZ1;n.Y; ˇ/ is certainly proper over M1;n.Y; ˇ/. We argue that the map

i W VZ1;n.Y; ˇ/! �VZ1;n.Y; ˇ/;

which is a monomorphism by definition, is a closed embedding. We will do this by
showing i is quasicompact and satisfies the valuative criterion for properness. It is
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not necessary to check that i is locally of finite type, as quasicompactness and the
valuative criterion imply i is universally closed [4, Tag 01KF], and it is not difficult to
deduce from this that i is a closed embedding.

We begin with quasicompactness. This is a local condition in the constructible topology
on �VZ1;n.Y; ˇ/ [10, Proposition (IV.1.9.15), page 247], so we may replace �VZ1;n.Y; ˇ/

with the components of any stratification into locally closed subsets S.

An S –point of �VZ1;n.Y; ˇ/ gives a morphism f W zC ! Y and it lies in VZ1;n.Y; ˇ/ if
and only if f factors through the contraction � W zC !C by a morphism gW C !Y . By
the construction of � , we know that f factors topologically through � , so we obtain a
homomorphism

g�1OY ! �?O zC :

For f to lie in VZ1;n.Y; ˇ/ means precisely that the image of this homomorphism is
contained in the subring OC � �?O zC . Now, the obstruction to factorization through OC

is the composition

 W g�1OY ! �?.O zC /=OC :

Replacing S with a stratification, we can assume that the combinatorial types of zC
and C and the contraction � are constant. Under this assumption, the formation
of �?.O zC /=OC commutes with base change in S. Note that, because �?O zCs

is the
structure sheaf of the seminormalization of zCs when s is a geometric point, the quotient
�?.O zCs

/=OC has dimension either 0 or 1. We can therefore identify the points s of
S � �VZ1;n.Y;ˇ/

VZ1;n.Y; ˇ/ as those where �?.O zCs
/=OCs

D 0 (which is an open subset)
or where the cokernel of 
s is nonzero (which is closed). In any case, it is constructible.

Now we address the valuative criterion for properness. Let S be the spectrum of a
valuation ring with generic point �. Assume that � has a logarithmic structure M� .
We give S the maximal logarithmic structure extending M� ; that is, we set MS D

OS �O� M� . We assume that we already have a commutative diagram of solid lines

zC� //

�
��

zC

�

��

f
// Y

C�

88

j
// C

g

AA

that we wish to extend by a dashed arrow. By definition, f factors topologically
through C, and does so uniquely, so we certainly have the horizontal arrow of the
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diagram
OC

'

��

g�1OY

66

// j?OC�
�j?�?O zC�

�?O zC

In order to promote g to a morphism of schemes, we must find a dashed arrow
completing the diagram above. We will do so by showing that ' is an isomorphism.
We introduce the notation A D j?OC�

�j?�?O zC�
�?O zC .

Since zC is flat over S, the sheaf O zC is torsion-free, and therefore �?O zC is torsion-free
as well. Thus, the subring A � �?O zC is also torsion-free, and therefore flat over S by
[4, Tag 0539].

Observe now that the quotient A =OC is finite over S, concentrated at the genus 1

singularity in the special fiber over S. Therefore the exact sequence

0! O zC
'
�! A ! A =O zC ! 0

gives
�.A /D �.OC /C length.A =OC /:

But A and OC agree generically, and Euler characteristic is constant in flat families,
so length.A =OC / is 0 and 'W OC ! A is an isomorphism. This proves the valuative
criterion. Thus VZ1;n.Y; ˇ/ is closed in �VZ1;n.Y; ˇ/ and, thus, proper.

4.4 Obstruction theory and the virtual class

The standard construction for the virtual class of the Kontsevich space relative to the
moduli space of curves applies to the moduli space VZ1;n.Y; ˇ/. Let vdim denote the
expected dimension of the moduli space of stable maps of genus 1 to Y , ie

vdimD�KY �ˇC n;

where KY is the canonical class of Y .

4.4.1 Theorem The moduli space VZ1;n.Y; ˇ/ possesses a virtual fundamental class

ŒVZ1;n.Y; ˇ/�
vir
2Avdim.VZ1;n.Y; ˇ//:

Proof Consider the forgetful morphism

� W VZ1;n.Y; ˇ/!Mrad
1;n:
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By well-known deformation theory for morphisms from curves to smooth targets, there
exists a relative perfect obstruction theory

E�!L�VZ1;n.Y;ˇ/=M
rad
1;n

with E� D R�?.f ?TY /
_ . The complex E� determines a vector bundle stack E over

the moduli space VZ1;n.Y; ˇ/ and the map � has Deligne–Mumford type, in the sense
of [24, Section 2]. Applying Manolache’s virtual pullback � !

E
to the fundamental class

of Mrad
1;n

, we obtain a virtual fundamental class in the expected dimension.

4.5 Maps to projective space

The main result of this section is the smoothness of the space of maps to P r .

4.5.1 Theorem The moduli space VZ1;n.P
r ; d/ is smooth of dimension

dimVZ1;n.P
r ; d/D .r C 1/d C n

and its virtual fundamental class is equal to the usual fundamental class.

We begin with a lemma that is more general than we need at this stage, but will be
useful when we consider quasimaps in the sequel.

4.5.2 Lemma Let C be a Gorenstein curve of genus 1 and let L be a line bundle
on C that has degree � 0 on all components and positive degree on at least one
component of the circuit of C. Then H 1.C;L/D 0.

Proof Let C0 be the circuit component of C. Then H 1.C;L/ D H 1.C0;L0/,
where L0 denotes the restriction of L to C0 . The dualizing sheaf of C0 is trivial
(Proposition 2.1.3), so H 1.C;L/ is dual to H 0.C0;L

_
0
/, which vanishes because L_

0

has negative degree on at least one component of C0 and degree � 0 on all other
components.

Proof of Theorem 4.5.1 We will show that the map

� W VZ1;n.P
r ; d/!Mrad

1;n

is relatively unobstructed, and in fact that the map to the universal Picard stack is
unobstructed. The theorem will then follow from the smoothness of Mrad

1;n
proved in

Geometry & Topology, Volume 23 (2019)



Moduli of stable maps in genus one and logarithmic geometry, I 3355

Corollary 3.4.3. Consider a lifting problem

S //

��

VZ1;n.P
r ; d/

��

S 0 //

::

Mrad
1;n

in which S 0 is a square-zero extension of S. We view these data as a (minimal)
radially aligned curve C 0 over S 0 restricting to C over S and a map C ! P r that is
nonconstant on at least one branch of the singular point of each fiber, and nonconstant
on the genus 1 component when there is no singular point. The map to P r can be seen
as a line bundle L on C with r C 1 sections. There is no obstruction to deforming L

to a line bundle L0 on C 0 : obstructions lie in H 2.C ;L/. The obstruction to deforming
the sections is in H 1.C ;L/, which vanishes (locally in S ) by Lemma 4.5.2, since
C ! P r is nonconstant on at least one branch of the singular point of each fiber.

4.5.3 Remark The proof shows that VZ1;n.P
r ; d/ is smooth and unobstructed rel-

ative to the universal Picard stack over Mrad
1;n

, since there is no restriction on the
deformation of the line bundle used to deform the map.

4.6 The Vakil–Zinger blowup construction

In this section, we give a modular interpretation of Vakil and Zinger’s blowup construc-
tion. This requires a mild variation of our moduli problem, where we replace radial
alignment curves with the slightly more refined notion of central alignment. We begin
with a review of Vakil and Zinger’s construction.

4.6.1 Vakil and Zinger’s blowups Let M1;n be the moduli stack of n–pointed,
genus 1 prestable curves. For each geometric point s of M1;n , we write s for the
tropicalization of the corresponding curve.

Suppose that is a tropical curve of genus 1. By a precontractible tropical subcurve
or a precontractible subcurve for short, we will mean a subgraph ı

� that is either
empty or such that

(1) ı has genus 1,

(2) if v 2 ı , then any half-edge incident to v is contained in ı , and

(3) the marking function on ı is the restriction of the marking function on .
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5431 2

ˇ˛





 D 1ˇ D 1

˛ D 1

Figure 3: Left: A genus 1 graph containing a precontractible subgraph shown
in gray and a smaller precontractible subgraph shown in dashed gray. The
smaller precontractible subgraph has k D 2 and J D ∅; the larger one
has k D 2 and J D f5g . As usual, the open circle represents a vertex of
genus 1 or a ring of genus 0 vertices. Right: Barycentric coordinates on
the tropicalization of the deformation space of the tropical curve on the left
and the subdivision induced by blowing up ‡.2;∅/ followed by the proper
transform of ‡.2; f5g/ .

We will think of the precontractible subcurve ı as being the information of a “would-be”
contracted subcurve. Let M|

1;n
denote the moduli space of nodal n–pointed genus 1

curves together with the additional information of a precontractible subgraph ı
s � s

at each geometric point such that, if t  s is a geometric specialization, then the
complement of ı

s maps onto the complement of ı
t . In other words, a component that

is not “contracted” generizes to a component that is not formally “contracted”.

The definition of M|
1;n

realizes it as an étale sheaf over M1;n , and M|
1;n

is representable
by the espace étale of that sheaf. In particular, M|

1;n
is an algebraic stack and there is

a projection map
M|

1;n
!M1;n

that is étale but not separated.

The morphism M1;n.P
r ; d/ ! M1;n can be factored through M|

1;n
by formally

declaring components of a family Œf W C ! P r � to be “contracted” when they are
contracted by f , so we have

M1;n.P
r ; d/!M|

1;n
:

4.6.1.1 Construction Fix a nonnegative integer k and a subset J � f1; : : : ; ng. By
a .k;J /–graph we will mean a tropical curve with a single vertex, of genus 1, and
kCjJ j legs, with jJ j of them marked by the set J.
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We write ‡.k;J /�M|
1;n

for the locus of curves C with tropicalization such that
the subgraph marked for contraction ı

� has a precontractible subcurve with a
weighted edge contraction onto a .k;J /–graph. This locus is a closed substack, as it
is a union of closed strata in the stratification of M|

1;n
induced by its normal crossings

boundary divisor. See [16, Section 2.6] and [33, Section 1.2] for the corresponding
loci in those setups.

Define a partial order
.k 0;J 0/4 .k;J /

if the strata are not equal, k 0 � k and J 0
E
� JE , and write .k 0;J 0/� .k;J / to mean

that at least one of these relations is strict. Choose any total ordering on the strata
f‡.k;J /g extending the partial order above. Let �M|

1;n
be the iterated blowup of M|

1;n

along the proper transforms of the loci ‡.k;J / in the order specified by the total order.
It is part of [33, Theorem 1.1] that the resulting space is insensitive to the choice of
total order extending 4. Note that each connected component of the stack �M|

1
is of

finite type, where only finitely many of the loci ‡.k;J / are nonempty, so the limit of
this procedure is well defined, as an algebraic stack. Using the morphism

M1;n.P
r ; d/!M|

1;n
;

define the stack �M1.P
r ; d/ as the proper transform�M1;n.P

r ; d/ WDM1;n.P
r ; d/�

M|
1;n

�M|
1;n
:

Then the Vakil–Zinger desingularization of the main component of M1;n.P
r ; d/ is

defined as the closure�M1.P
r ; d/ WD fŒf W C ! P r � W C is a smooth curve of genus 1g

inside �M1;n.P
r ; d/.

4.6.2 Centrally aligned curves In Section 3.3, we introduced radial alignment as
the datum necessary to contract a genus 1 component of a logarithmic curve C. It is
actually possible to construct a contraction with strictly less information.

All that is really necessary is a radius dividing the tropicalization of C into an interior,
to be contracted, and an exterior, without the imposition of order between the individual
vertices. This leads to a logarithmically smooth, but nonsmooth, modification of the
moduli space of curves [28], but the singularities can be resolved by ordering just the
vertices of the interior. To first approximation, this is the notion of a central alignment.
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4.6.2.1 Definition Let C be a genus 1 logarithmic curve over S with tropicalization .
A central alignment of C is a choice of ı 2MS such that

(1) ı is comparable to �.v/ for all vertices v of , and

(2) the interior of the circle of radius ı around the circuit of is radially aligned.

A central alignment on a family of curves over S is a section of MS that gives a
central alignment of each geometric fiber.

If ı D �.v/ for at least one vertex v of and the subgraph of where � < ı is a
stable curve, then we call the central alignment stable. A family of central alignments
is stable if each of its fibers is stable.

We write Mctr
1;n

for the space of logarithmic curves of genus 1 with n markings and a
stable central alignment.

4.6.2.2 Proposition Mctr
1;n

is a logarithmic modification of M|
1;n

, and in particular is
representable by an algebraic stack with a logarithmic structure and is logarithmically
smooth.

Proof We have a map Mctr
1;n

by declaring formally that the interior of the circle of
radius ı is “contracted”. Then the rest of the proof of algebraicity is the same as that of
Proposition 3.3.4. Logarithmic smoothness follows because it is logarithmically étale
over the logarithmically smooth stack M1;n .

4.6.2.3 Remark If the first part of the definition of a stable central alignment is
omitted then the value ı can introduce a new parameter to the logarithmic structure of
the moduli space. Scaling this parameter gives a continuous family of automorphisms.

4.6.3 Comparing the constructions

4.6.3.1 Proposition The Vakil–Zinger blowup �M|
1;n

is the moduli space Mctr
1;n

of
central alignments on logarithmic curves of genus 1.

Proof The Vakil–Zinger blowups are logarithmic blowups, and therefore are equiv-
alent to imposing order relations in the characteristic monoid MS (see Section 2.5).
Said differently, viewing MS as the set of positive elements of the partially ordered
group M

gp
S

, the blowup is equivalent to refining this partial order. It follows that the
Vakil–Zinger blowup �M|

1;n
represents a logarithmic subfunctor of M|

1;n
. We show

that the order imposed on the characteristic monoid by a stable central alignment is the
same as the order imposed by the Vakil–Zinger blowups.
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Because the sheaf of characteristic monoids is constructible, this is a pointwise assertion.
We must therefore prove that, if S is the spectrum of an algebraically closed field,
equipped with a logarithmic structure, then an S –point ŒC � of M|

1;n
lies in �M|

1;n
.S/

if and only if it lies in Mctr
1;n
.S/.

Assume first that ŒC � lies in Mctr
1;n
.S/. Let be the tropicalization of C and let ı

be the induced subgraph on the vertices v such that �.v/ < ı , equipped with the
restriction of the marking, length and genus functions. We write z‡.k;J / for the
pullback of ‡.k;J / to S.

By definition of a central alignment, the vertices v of ı are totally ordered by the
lengths �.v/. Each �.v/ therefore determines a circle on , which crosses k.v/ finite
edges of and J.v/ infinite legs. We observe that, as ŒC � lies in z‡.k;J / if and
only if the interior of the circle of radius �.v/ has a weighted edge contraction onto a
.k;J /–curve, this can occur only if .k;J /D .k.v/;J.v// for some vertex v of ı .

Blowing up z‡.k.v/;J.v// has the effect of requiring a minimum �.w/ among the
vertices w of immediately outside the circle of radius �.v/. Since the vertices of ı

are totally ordered by definition, and there is at least one vertex w immediately outside
of ı with �.w/D ı , we find that ŒC � is contained in the blowup of z‡.k.v/;J.v//,
as required.

Now we prove that sequentially blowing up the ‡.k;J / imposes a central alignment.
Suppose that ŒC � is an S –point of �M|

1;n
, let be the tropicalization of C, and let ı

be the formally contracted subgraph. Write ı
0 for the circuit of ı , with the induced

marking function. Then, by contracting the circuit, ı0 contracts onto a .k;J /–graph.
Therefore, ŒC � lies in z‡.k;J /.

Since ŒC � lies in �M|
1;n

, the locus z‡.k;J / has been blown up. By definition of the
logarithmic blowup (see Section 2.5), this means that there is a vertex of on the
periphery of ı

0 that is minimal with respect to �. We call this vertex v0 .

Now we proceed by induction. Assume that we have already found vertices v0 , v1 ,
: : : ; vi such that vj is minimal among the vertices of ı , excluding v0; : : : ; vj�1 . Then
the circle of radius �.vi/ crosses at k.vi/ edges and J.vi/ legs. Therefore, ŒC � is
contained in z‡.k.vi/;J.vi//.

Exactly as in the base case, z‡.k.vi/;J.vi// has been blown up, so there is a viC1 in
the periphery of ı

i such that �.vi/ is minimal. The induction proceeds until we run
out of vertices in ı and the vertices are therefore totally ordered.
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For proper Y , we may now define a stack �VZctr
1;n
.Y; ˇ/ of stable maps from the universal

centrally aligned curve to X, via a fiber product:

�VZctr
1;n
.Y; ˇ/ M1;n.Y; ˇ/

Mctr
1;n

M1;n

Just as in Section 4.5, given a map from a centrally aligned curve Œf W C ! Y � over a
logarithmic scheme S, we obtain a radius ıf , which is the distance from the genus 1 con-
tracted component to the closest noncontracted component of C, and thus a contracted
curve zC ! C from a partial destabilization of C. We define the stack VZctr

1;n
.Y; ˇ/ to

be the locus of maps satisfying the factorization property, as before. The proofs of
smoothness and properness go through exactly as in Section 4.5.

4.6.3.2 Theorem There is an isomorphism between the Vakil–Zinger blowup with
the moduli space of centrally aligned maps to P r ,

VZctr
1;n.P

r ; d/! �M1;n.P
r ; d/;

that commutes with the projection to M.P r ; d/.

Proof By definition, �M1;n.P
r ; d/ is the closure of the main component of the space

of maps from the universal curve over �M|
1;n

to P r . But we saw in Proposition 4.6.3.1
that �M|

1;n
is isomorphic to Mctr

1;n
, so �M1;n.P

r ; d/ is the closure of the main component
of �VZctr

1;n
.P r ; d/. On the other hand, VZctr

1;n
.P r ; d/ is a smooth, proper and connected

substack of �VZctr
1;n
.P r ; d/ that contains the main component. Hence it coincides with�M1;n.P

r ; d/.

4.6.3.3 Remark We could have chosen to work with centrally aligned logarithmic
curves throughout the paper. However, there are some advantages to radially aligned
curves. One obtains a single moduli space Mrad

1;n
which maps to all the spaces of Smyth

curves. The discussion of logarithmic targets in the sequel to this paper is also be cleaner
with a radial alignment. On the other hand, the advantage of the Vakil–Zinger approach
and central alignments is that fewer blowups are required, and the locus of maps where
no elliptic component is contracted remains untouched by the construction. Vakil and
Zinger could have just as easily produced a blowup construction of VZ1;n.P

r ; d/ by
blowing up more loci than was strictly necessary for smoothness.
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5 The quasimap spaces

A modification of the methods of the previous sections gives rise to a desingularization
of the genus 1 quasimap spaces to P r , constructed by Ciocan-Fontanine and Kim [6]
and Marian, Oprea and Pandharipande [25].

5.1 Definition A genus g quasimap to P r over S consists of the data

..C ;p1; : : : ;pn/;L ; s0; : : : ; sr /;

where .C ;p1; : : : ;pn/! S is a flat family of n–pointed nodal curves of genus g

and L is a line bundle on C with sections s0; : : : ; sr such that on every geometric
fiber C of C, the following nondegeneracy condition holds: there is a finite (possibly
empty) set of nonsingular unmarked points B of C such that, outside B, the sections
s0; : : : ; sr are basepoint-free.

Such a quasimap determines a homomorphism

Pic.P r /! Pic.C /;

and, via Poincaré duality, a homology class in H2.P
r ;Z/. We refer to this as the

degree of the quasimap. An isomorphism of quasimaps is defined in the natural fashion,
as an isomorphism of two families of curves C1! C2 , with compatible isomorphisms
of the pullbacks of the line bundle and sections of the latter with those of the former.

5.2 Definition A quasimap ..C ;p1; : : : ;pn/;L ; s0; : : : ; sr / is said to be stable if

!C =S .p1C � � �Cpn/˝L

is ample.

As asserted in [6], this is equivalent to a combinatorial condition on each geometric fiber:
(1) no rational component of the underlying curve C of the quasimap can have fewer
than two special points (nodes and markings), and (2) on every rational component
with two special points, or elliptic component with one special point, the line bundle L

must have positive degree.

5.3 Theorem [6; 25] There is a Deligne–Mumford stack Qg;n.P r ; d/ parametrizing
stable quasimaps of genus g with n marked points to P r of degree d . Moreover, the
natural map to the universal Picard variety

Qg;n.P
r ; d/!Picg;n
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defines a relative perfect obstruction theory on Qg;n.P r ; d/ and thus a virtual funda-
mental class.

Here, Picg;n denotes the moduli stack paramterizing pairs of nodal n–marked, genus g

curves together with a line bundle.

When g D 1 and nD 0, these spaces exhibit a remarkable smoothness property:

5.4 Theorem [25, Section 3.3] The moduli stack Q1;0.P
r ; d/ is smooth.

It should be noted that this property fails as soon as there are marked points. The
smoothness is due to the strength of the stability condition in the quasimaps theory.
Without marked points, rational tails are disallowed and, thus, no genus 1 curve can be
contracted. Our construction in the stable maps case can be adapted to desingularize
the moduli spaces Q1;n.P

r ; d/ for n> 0.

As in the stable maps case, given a line bundle on a family of radially aligned curves L

on C ! S, at each geometric point s 2 S, there is a well-defined contracting radius ıs ,
measuring the distance from the circuit to the first component on which L has nonzero
degree. This defines a destabilization zC ! C and a contraction zC ! C.

5.5 Definition Define the stack �VQ1;n.P
r ; d/ as the stack parametrizing a minimal

radially aligned logarithmic curve C ! S of genus 1 and a quasimap on C.

Define the stack VQ1;n.P
r ; d/ as the substack of �VQ1;n.P

r ; d/ parametrizing stable
quasimaps

..C ;p1; : : : ;pn/;L ; s0; : : : ; sr /

with the following factorization property: In the notation of the previous section, let
� W zC ! C and 
 W zC ! C be the partial destabilization and Gorenstein contraction
of C. Then, there is a line bundle L on C with sections fxsig

r
iD0

such that

�?L D 
?L ;

and the sections �?si coincide with 
?xsi .

5.6 Theorem The stack VQ1;n.P
r ; d/ is a smooth and proper Deligne–Mumford

stack.

We separate the proof into three lemmas. The algebraicity is proved in Lemma 5.7, the
smoothness in Lemma 5.8, and the properness in Lemma 5.9.
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5.7 Lemma VQ1;n.P
r ; d/ is a Deligne–Mumford stack.

Proof Algebraicity follows from the same arguments as Lemma 4.2, replacing
the Hom-stack of maps to P r with maps to ŒArC1=Gm�, which is algebraic by
[13, Theorem 1.2], noting that stability is an open condition.

5.8 Lemma VQ1;n.P
r ; d/ is smooth over the universal Picard stack over M1;n .

Proof Once again, the key fact is that L has positive degree on at least one branch
of the component containing the genus 1 singularity. Let U !Mrad

1;n
be the universal

radially aligned curve. Let Pic.U / be the relative Picard scheme over this curve.
Note that Pic.U / is smooth over a smooth base, since obstructions to deforming line
bundles on a curve C lie in H 2.C;OC /, and vanish for dimension reasons. To prove
smoothness of VQ1;n.P

r ; d/ it suffices to show that the relative obstructions of the
map

VQ1;n.P
r ; d/!Pic.U /

vanish. Let .C;C ;L; fsig/ be a quasimap from a radially aligned curve, with the
factorization property as described above. Fixing a deformation of the curve and line
bundle .C;L/, the deformations of the sections are obstructed by H 1.C ;L /. These
obstructions were already shown to vanish in Lemma 4.5.2.

5.9 Lemma VQ1;n.P
r ; d/ is closed in Q1;n.P

r ; d/.

Proof Since VQ1;n.P
r ; d/ ! Q1;n.P

r ; d/ is a monomorphism, it is sufficient to
verify the valuative criterion. Assume that S is the spectrum of a valuation ring with
generic point j W �! S, and the maximal extension MS of a logarithmic structure M�

on �; we want to lift a diagram

(5.9.1)

� //

��

VQ1;n.P
r ; d/

��

S //

99

Q1;n.P
r ; d/

The map S !Q1;n.P
r ; d/ gives a family, C, of logarithmic genus 1 curves over S,

and a stable quasimap .L;x0; : : : ;xn/ on C. The map �! VQ1;n.P
r ; d/ gives a

radial alignment on C� , which extends uniquely to C by the properness of the space
of radially aligned curves. The quasimap .L;x0; : : : ;xn/ induces a contraction radius
ı2�.S;MS /, which provides a destabilization �W zC!C and a contraction � W zC!C,
all over S.
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By assumption, the restriction �?.L;x0; : : : ;xn/j� descends along � to a stable
quasimap .xL�; xx0; : : : ; xxn/ on C� . We wish to show that .L;x0; : : : ;xn/ descends
to C.

Let E be the interior of the contraction radius inside zC — the locus contracted by � .
By definition, the contraction radius, L, has degree zero on all components of the
fibers of E. But x0; : : : ;xn are sections of L that do not vanish identically on any
component of any fiber of zC over S. Therefore, �?LjE is trivialized by at least one
of the xi .

Now, let
xLD j? xL� �j?�?�?L� �?�

?L:

As the map

(5.9.2) OC ! j?OC�
�j?�?O zC�

�?O zC

is an isomorphism (see the proof of Theorem 4.3) and L can be trivialized in a
neighborhood of E, the sheaf xL is invertible on C. Moreover, there is a natural map
�? xL! �?L which is an isomorphism away from E, since � is an isomorphism there,
and an isomorphism near E, by the isomorphism (5.9.2).

The sections x0; : : : ;xn descend automatically to xL, so the proof of the valuative
criterion, and of the lemma, is complete.

5.10 Remark One can construct VQ1;n.P
r ; d/ as a blowup of Q1;n.P

r ; d/ in an
analogous fashion to Vakil and Zinger’s desingularization of Kontsevich space, sequen-
tially blowing up the loci of quasimaps that have degree 0 on a curve of arithmetic
genus 1, to arrive at the moduli space above. Also, as in the stable maps case, there is a
centrally aligned variant where the blowups are done in a slightly more efficient fashion.

References
[1] D Abramovich, C Cadman, B Fantechi, J Wise, Expanded degenerations and pairs,

Comm. Algebra 41 (2013) 2346–2386 MR
[2] D Abramovich, B Hassett, Stable varieties with a twist, from “Classification of alge-

braic varieties” (C Faber, G van der Geer, E Looijenga, editors), Eur. Math. Soc., Zürich
(2011) 1–38 MR

[3] M Artin, Théorème de changement de base pour un morphisme propre, from “Théorie
des topos et cohomologie étale des schémas, Tome 3 (SGA 4 3)” (M Artin, A
Grothendieck, J L Verdier, editors), Lecture Notes in Math. 305, Springer (1973) exposé
XII, 79–131 MR

Geometry & Topology, Volume 23 (2019)

http://dx.doi.org/10.1080/00927872.2012.658589
http://msp.org/idx/mr/3225278
http://dx.doi.org/10.4171/007
http://msp.org/idx/mr/2742569
http://www.msri.org/publications/books/sga/sga/pdf/sga4-3.pdf
http://msp.org/idx/mr/0354654


Moduli of stable maps in genus one and logarithmic geometry, I 3365

[4] P Belmans, A J de Jong, et al., The Stacks project, electronic reference (2017) Avail-
able at http://stacks.math.columbia.edu

[5] R Cavalieri, M Chan, M Ulirsch, J Wise, A moduli stack of tropical curves, preprint
(2017) arXiv

[6] I Ciocan-Fontanine, B Kim, Moduli stacks of stable toric quasimaps, Adv. Math. 225
(2010) 3022–3051 MR

[7] Y Cooper, The geometry of stable quotients in genus one, Math. Ann. 361 (2015)
943–979 MR

[8] T Foster, D Ranganathan, M Talpo, M Ulirsch, Logarithmic Picard groups, chip
firing, and the combinatorial rank, Math. Z. 291 (2019) 313–327 MR

[9] M Gross, B Siebert, Logarithmic Gromov–Witten invariants, J. Amer. Math. Soc. 26
(2013) 451–510 MR

[10] A Grothendieck, Eléments de géométrie algébrique, IV: Étude locale des schémas et
des morphismes de schémas, I, Inst. Hautes Études Sci. Publ. Math. 20 (1964) 5–259
MR

[11] A Grothendieck, Eléments de géométrie algébrique, IV: Étude locale des schémas et
des morphismes de schémas, II, Inst. Hautes Études Sci. Publ. Math. 24 (1965) 5–231
MR

[12] A Grothendieck, Techniques de construction et théorèmes d’existence en géométrie
algébrique, IV: Les schémas de Hilbert, from “Séminaire Bourbaki 1960=1961”, vol-
ume 6, W A Benjamin, New York (1966) exposé 221, 249–276 MR

[13] J Hall, D Rydh, Coherent Tannaka duality and algebraicity of Hom-stacks, Algebra
Number Theory 13 (2019) 1633–1675 MR

[14] R Hartshorne, Algebraic geometry, Graduate Texts in Math. 52, Springer (1977) MR

[15] D Holmes, Néron models of jacobians over base schemes of dimension greater than 1,
J. Reine Angew. Math. 747 (2019) 109–145 MR

[16] Y Hu, J Li, Genus-one stable maps, local equations, and Vakil–Zinger’s desingulariza-
tion, Math. Ann. 348 (2010) 929–963 MR

[17] T Kajiwara, Logarithmic compactifications of the generalized Jacobian variety, J. Fac.
Sci. Univ. Tokyo Sect. IA Math. 40 (1993) 473–502 MR

[18] F Kato, Exactness, integrality, and log modifications, preprint (1999) arXiv

[19] F Kato, Log smooth deformation and moduli of log smooth curves, Internat. J. Math.
11 (2000) 215–232 MR

[20] B Kim, Logarithmic stable maps, from “New developments in algebraic geometry,
integrable systems and mirror symmetry” (M-H Saito, S Hosono, K Yoshioka, editors),
Adv. Stud. Pure Math. 59, Math. Soc. Japan, Tokyo (2010) 167–200 MR

[21] S L Kleiman, Relative duality for quasicoherent sheaves, Compositio Math. 41 (1980)
39–60 MR

Geometry & Topology, Volume 23 (2019)

http://stacks.math.columbia.edu
http://msp.org/idx/arx/1704.03806
http://dx.doi.org/10.1016/j.aim.2010.05.023
http://msp.org/idx/mr/2729000
http://dx.doi.org/10.1007/s00208-014-1079-6
http://msp.org/idx/mr/3319554
http://dx.doi.org/10.1007/s00209-018-2085-2
http://dx.doi.org/10.1007/s00209-018-2085-2
http://msp.org/idx/mr/3936072
http://dx.doi.org/10.1090/S0894-0347-2012-00757-7
http://msp.org/idx/mr/3011419
http://www.numdam.org/numdam-bin/item?id=PMIHES_1964__20__5_0
http://www.numdam.org/numdam-bin/item?id=PMIHES_1964__20__5_0
http://msp.org/idx/mr/173675
http://www.numdam.org/numdam-bin/item?id=PMIHES_1965__24__5_0
http://www.numdam.org/numdam-bin/item?id=PMIHES_1965__24__5_0
http://msp.org/idx/mr/0199181
http://www.numdam.org/numdam-bin/fitem?id=SB_1960-1961__6__249_0
http://www.numdam.org/numdam-bin/fitem?id=SB_1960-1961__6__249_0
http://msp.org/idx/mr/1611822
http://dx.doi.org/10.2140/ant.2019.13.1633
http://msp.org/idx/mr/4009673
http://dx.doi.org/10.1007/978-1-4757-3849-0
http://msp.org/idx/mr/0463157
http://dx.doi.org/10.1515/crelle-2016-0014
http://msp.org/idx/mr/3905131
http://dx.doi.org/10.1007/s00208-010-0504-8
http://dx.doi.org/10.1007/s00208-010-0504-8
http://msp.org/idx/mr/2721647
http://dx.doi.org/10.15083/00039328
http://msp.org/idx/mr/1255052
http://msp.org/idx/arx/math/9907124
http://dx.doi.org/10.1142/S0129167X0000012X
http://msp.org/idx/mr/1754621
http://dx.doi.org/10.2969/aspm/05910167
http://msp.org/idx/mr/2683209
http://www.numdam.org/item?id=CM_1980__41_1_39_0
http://msp.org/idx/mr/578050


3366 Dhruv Ranganathan, Keli Santos-Parker and Jonathan Wise

[22] J Kollár, S Mori, Birational geometry of algebraic varieties, Cambridge Tracts in
Mathematics 134, Cambridge Univ. Press (1998) MR

[23] R Lazarsfeld, Positivity in algebraic geometry, I: Classical setting — line bundles and
linear series, Ergeb. Math. Grenzgeb. 48, Springer (2004) MR

[24] C Manolache, Virtual pull-backs, J. Algebraic Geom. 21 (2012) 201–245 MR
[25] A Marian, D Oprea, R Pandharipande, The moduli space of stable quotients, Geom.

Topol. 15 (2011) 1651–1706 MR
[26] D Mumford, Abelian varieties, Tata Institute of Fundamental Research Studies in

Mathematics 5, Hindustan, New Delhi (1974) MR
[27] B Parker, Exploded manifolds, Adv. Math. 229 (2012) 3256–3319 MR
[28] K S Parker, Semistable modular compactifications of moduli spaces of genus one

curves, PhD thesis, University of Colorado at Boulder (2017) MR Available at
https://search.proquest.com/docview/1904507277

[29] D Ranganathan, K Santos-Parker, J Wise, Moduli of stable maps in genus one and
logarithmic geometry, II, Algebra Number Theory 13 (2019) 1765–1805 MR

[30] D I Smyth, Modular compactifications of the space of pointed elliptic curves, I, Compos.
Math. 147 (2011) 877–913 MR

[31] R Vakil, The enumerative geometry of rational and elliptic curves in projective space,
J. Reine Angew. Math. 529 (2000) 101–153 MR

[32] R Vakil, A Zinger, A natural smooth compactification of the space of elliptic curves in
projective space, Electron. Res. Announc. Amer. Math. Soc. 13 (2007) 53–59 MR

[33] R Vakil, A Zinger, A desingularization of the main component of the moduli space of
genus-one stable maps into P n , Geom. Topol. 12 (2008) 1–95 MR

[34] M Viscardi, Alternate compactifications of the moduli space of genus one maps, Manu-
scripta Math. 139 (2012) 201–236 MR

[35] A Zinger, The reduced genus 1 Gromov–Witten invariants of Calabi–Yau hypersur-
faces, J. Amer. Math. Soc. 22 (2009) 691–737 MR

[36] A Zinger, A sharp compactness theorem for genus-one pseudo-holomorphic maps,
Geom. Topol. 13 (2009) 2427–2522 MR

DR: Department of Pure Mathematics and Mathematical Statistics, University of Cambridge
Cambridge, United Kingdom
KSP, JW: Department of Mathematics, University of Colorado
Boulder, CO, United States
Current address for KSP: Medical School, University of Michigan
Ann Arbor, MI, United States

dr508@cam.ac.uk, keli.parker@colorado.edu, jonathan.wise@colorado.edu

Proposed: Jim Bryan Received: 1 September 2017
Seconded: Lothar Göttsche, Dan Abramovich Revised: 5 December 2018

Geometry & Topology Publications, an imprint of mathematical sciences publishers msp

http://dx.doi.org/10.1017/CBO9780511662560
http://msp.org/idx/mr/1658959
http://dx.doi.org/10.1007/978-3-642-18808-4
http://dx.doi.org/10.1007/978-3-642-18808-4
http://msp.org/idx/mr/2095471
http://dx.doi.org/10.1090/S1056-3911-2011-00606-1
http://msp.org/idx/mr/2877433
http://dx.doi.org/10.2140/gt.2011.15.1651
http://msp.org/idx/mr/2851074
http://msp.org/idx/mr/2514037
http://dx.doi.org/10.1016/j.aim.2012.02.005
http://msp.org/idx/mr/2900440
http://msp.org/idx/mr/3697678
https://search.proquest.com/docview/1904507277
https://search.proquest.com/docview/1904507277
http://dx.doi.org/10.2140/ant.2019.13.1765
http://dx.doi.org/10.2140/ant.2019.13.1765
http://msp.org/idx/mr/4017534
http://dx.doi.org/10.1112/S0010437X10005014
http://msp.org/idx/mr/2801404
http://dx.doi.org/10.1515/crll.2000.094
http://msp.org/idx/mr/1799935
http://dx.doi.org/10.1090/S1079-6762-07-00174-6
http://dx.doi.org/10.1090/S1079-6762-07-00174-6
http://msp.org/idx/mr/2320682
http://dx.doi.org/10.2140/gt.2008.12.1
http://dx.doi.org/10.2140/gt.2008.12.1
http://msp.org/idx/mr/2377245
http://dx.doi.org/10.1007/s00229-011-0513-2
http://msp.org/idx/mr/2959678
http://dx.doi.org/10.1090/S0894-0347-08-00625-5
http://dx.doi.org/10.1090/S0894-0347-08-00625-5
http://msp.org/idx/mr/2505298
http://dx.doi.org/10.2140/gt.2009.13.2427
http://msp.org/idx/mr/2529940
mailto:dr508@cam.ac.uk
mailto:keli.parker@colorado.edu
mailto:jonathan.wise@colorado.edu
http://msp.org
http://msp.org

	1. Introduction
	1.1. The main component of genus 1 stable maps
	1.2. Modular desingularization
	1.3. The quasimap moduli
	1.4. Elliptic singularities and logarithmic geometry
	1.5. Previous work on genus 1 maps
	1.6. User's guide
	Acknowledgements
	Funding

	2. Preliminaries
	2.1. Genus 1 singularities
	2.2. Tropical curves
	2.3. Logarithmic and tropical curves
	2.4. Line bundles from piecewise linear functions
	2.5. Logarithmic blowups and logarithmic modifications

	3. Moduli spaces of genus one curves
	3.1. The intuition and strategy
	3.2. Smyth's moduli spaces
	3.3. Radially aligned logarithmic curves
	3.4. The minimal logarithmic structure
	3.5. Circles around the circuit
	3.6. The universal curves
	3.7. Resolution of indeterminacy
	3.7.4. The circuit
	3.7.5. Flatness of the section ring
	3.7.6. Contraction to m–stable curves

	Proof of Theorem 3.7.1

	4. The stable map spaces
	4.4. Obstruction theory and the virtual class
	4.5. Maps to projective space
	4.6. The Vakil–Zinger blowup construction
	4.6.1. Vakil and Zinger's blowups
	4.6.2. Centrally aligned curves
	4.6.3. Comparing the constructions


	5. The quasimap spaces
	References

