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Hyperbolic jigsaws and families of pseudomodular groups, I
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We show that there are infinitely many commensurability classes of pseudomodular
groups, thus answering a question raised by Long and Reid. These are Fuchsian
groups whose cusp set is all of the rationals but which are not commensurable to the
modular group. We do this by introducing a general construction for the fundamental
domains of Fuchsian groups obtained by gluing together marked ideal triangular tiles,
which we call hyperbolic jigsaw groups.

11F06, 20H05, 20H15, 30F35, 30F60; 57M05, 57M50

1 Introduction

We first recall the definition of a pseudomodular group, which is the main motivation
for this paper. Recall that the cusp set of a Fuchsian group � � PSL.2;R/ is the set of
all x 2R[f1g D @H2 such that the stabilizer of x in � is generated by a parabolic
element.

Definition 1.1 Let � � PGL.2;Q/ be a discrete group such that H2=� is a complete
hyperbolic surface of finite area. If � is not commensurable with PSL.2;Z/, and �
has cusp set precisely �QDQ[f1g, then H2=� is called a pseudomodular surface
and � a pseudomodular group.

These were introduced by Long and Reid in [4]; the main surprise and remarkable
fact is that such groups exist. Clearly, the property of being pseudomodular carries
over to the commensurability class, so we can consider commensurability classes of
pseudomodular groups. Four different commensurability classes of pseudomodular
groups were found in [4], although a fifth, 4

�
5

13
; 4
�
, was also known to the authors

(private communication), and found independently by Ayaka [1] and Junwei Tan [9],
using ideas of [4]. Long and Reid asked if there were (in)finitely many commensurability
classes of pseudomodular groups (Question 2 of Section 6 in [4]).
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So far, not much progress has been made towards this question. Some partial answers
were provided by Proskin [7], and a couple of new pseudomodular groups have been
found by Ayaka [1]. On the other hand, using methods from number theory, Fithian [2]
was able to give conditions for a group to be nonpseudomodular. This however,
does not answer the question if there are infinitely many commensurability classes of
pseudomodular groups.

Our main result is the following answer to Long and Reid’s question:

Theorem 1.2 There exist infinitely many commensurability classes of pseudomodular
groups and surfaces.

Theorem 1.2 follows from either Theorem 2.4 or Theorem 2.5. Our idea is a general way
to construct subgroups of PGL.2;Q/ by constructing their fundamental domains by
gluing together tiles from a finite collection S of marked hyperbolic ideal triangle tiles
which satisfy certain balancing and rationality conditions, and with matching conditions
for the gluing. We call the polygons obtained from this construction S–jigsaws, and
the corresponding groups and surfaces S–jigsaw groups and surfaces. In Theorem 2.4,
we show that for the collection S D S.1; 2/D

˚
�.1; 1; 1/;�

�
1; 1

2
; 2
�	

— see Section 2
for the definition of �.1; 1; 1/ and �

�
1; 1

2
; 2
�

— all hyperbolic S–jigsaw groups and
surfaces are pseudomodular. Furthermore, there are infinitely many commensurabil-
ity classes of such groups. On the other hand, in Theorem 2.5, we show that for
S D S.1; 3/D

˚
�.1; 1; 1/;�

�
1; 1

3
; 3
�	

, arithmetic, pseudomodular and nonmaximally
cusped groups all can occur. There are also infinitely many (commensurability classes
of) S–jigsaw groups which are pseudomodular, and infinitely many (commensurability
classes of) S–jigsaw groups which are not pseudomodular. We give exact criteria for
determining when such a group is arithmetic, pseudomodular or neither.

In some sense, the groups constructed in this way, in particular the groups arising from
the jigsaws with two tiles, J D�.1; 1; 1/[�

�
1; 1

2
; 2
�

or J 0D�.1; 1; 1/[�
�
1; 1

3
; 3
�
,

are closest to being modular. We will explore properties of these groups, as well as
general integral jigsaw groups in a future paper [5]. For example, we will describe an
associated pseudoeuclidean algorithm and generalized continued fraction for some of
these groups. We will also show that for any integral hyperbolic jigsaw set S , there
are infinitely many commensurability classes of pseudomodular S–jigsaw groups and
explore the question of arithmeticity for general integral jigsaw groups.

The rest of this paper is organized as follows. In Section 2, we give the definitions and
some basic properties of S–jigsaws, their associated surfaces and groups, and state the
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main results. In Section 3, we describe Long and Reid’s idea of covering a fundamental
interval for the group by killer intervals to show that the cusp set is Q [ f1g. In
Section 4, we describe integral hyperbolic jigsaw sets and groups and give some of
their basic properties. In Sections 5 and 6, we specialize these results to S.1; 2/– and
S.1; 3/–jigsaws and study the cusp sets of these jigsaw groups. In Section 7, we explore
criteria for nonarithmeticity and show that all S.1; 2/–jigsaw groups are nonarithmetic,
hence pseudomodular. We also give exact criteria for an S.1; 3/–jigsaw group to
be arithmetic. In Section 8, we look at criteria for two nonarithmetic groups to be
noncommensurable and use this to construct infinitely many commensurability classes
of S.1; 2/ and S.1; 3/ pseudomodular groups, and infinitely many commensurability
classes of nonpseudomodular S.1; 3/–jigsaw groups. Finally, in Section 9 we put
together the results of the previous sections to prove Theorems 2.4 and 2.5, and hence
the main results of this paper, and conclude with some open questions.

Acknowledgements We are grateful to Chris Leininger, Alan Reid, Darren Long,
Pradthana Jaipong, Mong-Lung Lang, Yasushi Yamashita and Junwei Tan for their
interest in this paper and for helpful conversations and comments. We are particularly
indebted to Chris Leininger for supplying the argument showing the noncommensu-
rability of certain groups using the maximal horocycles, which greatly improves our
earlier argument. We also thank the referee for his/her careful reading of the manuscript
and the helpful suggestions and comments.

Tan was partially supported by the National University of Singapore academic research
grant R-146-000-235-114.

2 Hyperbolic jigsaws and main results

We will always use the upper half space model for the hyperbolic plane H2, with group
of orientation-preserving isometries PSL.2;R/. We also always denote translation to
the right by 1 by

T WD

�
1 1

0 1

�
:

Let � be a positively oriented ideal triangle with vertices v1 , v2 and v3 and sides
s1 D Œv1; v2�, s2 D Œv2; v3� and s3 D Œv3; v1� and let xi 2 si for i D 1; 2; 3 be marked
points on the sides. Then �, together with the points x1 , x2 and x3 , is called a marked
triangle; two such triangles are the same if they are isometric, as marked triangles. Let
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pi be the point on si which is the projection of the opposite vertex of � to si . Let di

be the signed distance from pi to xi along si , and let ki D e2di. The marked triangle,
up to isometry, is then determined by the triple .k1; k2; k3/ 2R3

C , and is denoted by
�.k1; k2; k3/. Compare Figure 1. We use �Œv1;v2;v3� to denote the (unmarked) ideal
triangle in H2 with vertices v1 , v2 and v3 .

V1 D1

V2 D�1

V3 D 0s1

s2

s3

d1 > 0

�p1

x1

p2x2

d2 D 0

�
d3 < 0

p3

x3

0�1�2

Figure 1: A marked triangle where v1 D 1 , v2 D �1 , v3 D 0 , d1 > 0 ,
d2 D 0 and d3 < 0 (k1 > 1 , k2 D 1 and k3 < 1)

Up to cyclic permutation, .k1; k2; k3/ determines the same marked triangle, that is,

�.k1; k2; k3/D�.k2; k3; k1/D�.k3; k1; k2/:

Note however that, in general, �.k1; k2; k3/ is not isometric to �.k2; k1; k3/.

We say that �.k1; k2; k3/ is in standard position if v1 D1, v2 D�1 and v3 D 0, in
which case we have

(1) x1 D�1C
i
p

k1

; x2 D
�1C

p
k2 i

1C k2

; x3 D

p
k3 i:

Fix an embedding of �.k1; k2; k3/ into H2 and let {j for j D 1; 2; 3 be the � –
rotation about xj . Then {1 , {2 and {3 generate a discrete subgroup, denoted by
�.k1; k2; k3/� PSL.2;R/. It is easy to see that � is a lattice; equivalently, the corre-
sponding (orbifold) surface H2=�.k1; k2; k3/ is finite-volume ({1{2{3 is parabolic) if
and only if k1k2k3 D 1. Furthermore, if kj 2Q for j D 1; 2; 3, and the triangle is
embedded so the vertices vj are in Q[f1g� @H2, then �.k1; k2; k3/ < PGL.2;Q/.
We have:
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Definition 2.1 (rational and balanced triangles and Weierstrass groups) The marked
triangle �.k1; k2; k3/ is balanced if k1k2k3 D 1 and rational if k1; k2; k3 2Q. The
group �.k1; k2; k3/, defined up to conjugation by PSL.2;R/, is called the (Weierstrass)
group generated by the involutions {1 , {2 and {3 about the marked points x1 , x2 and x3 ,
respectively. It is the index-two supergroup of the punctured torus group, where x1 , x2

and x3 correspond to the Weierstrass points on the torus.

For example, if �.k1; k2; k3/ is in standard position, then {1 , {2 and {3 can be
represented by the matrices (as elements of PSL.2;R/)

(2)
1
p

k1

�
k1 1C k1

�k1 �k1

�
;

1
p

k2

�
1 1

�.k2C 1/ �1

�
;

1
p

k3

�
0 k3

�1 0

�
;

respectively. We remark that in the notation of Long and Reid in [4], the group
�.k1; k2; k3/ corresponds to the index-two supergroup of the torus group �.u2; 2�/,
where

(3) u2
D k3; � D

1

k1
C 1C k3:

In particular, the group �
�
1; 1

n
; n
�

in standard position corresponds to the group
�.n; 2nC 4/ in their notation.

Definition 2.2 (matching sides) Let �D�.k1; k2; k3/ and �0 D�.k 0
1
; k 0

2
; k 0

3
/ be

two marked triangles, with sides s1 , s2 , s3 and s0
1
, s0

2
, s0

3
, and marked points x1 , x2 , x3

and x0
1
, x0

2
, x0

3
, respectively. We say that si and s0j match if ki D k 0j.

Geometrically, this means that if we glue � to �0 by gluing si to s0j, matching xi

to x0j, then the � –rotation {i about xi D x0j interchanges the unmarked triangles �
and �0 ; see Figure 2.

In terms of shear coordinates, this means that for the ideal quadrilateral formed by
gluing � to �0, the shear coordinate along the diagonal formed from the identified side
is log ki .

In this way, we may glue marked triangles along matching sides, obtaining a triangulated
ideal polygon, unique up to isometry, with marked points on the interior and exterior
sides.

We are now ready to define the objects needed to assemble a hyperbolic jigsaw and to
state our main theorem.
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� �0

x3 D
p

k i

�2 �1 0 1 2

Figure 2: Gluing two marked triangles � and �0 along the matching side
with parameter k D 2

Definition 2.3 (1) Jigsaw tiles A jigsaw tile is a rational, balanced, marked ideal
triangle �.k1; k2; k3/. That is, k1; k2; k3 2Q and k1k2k3 D 1.

(2) Jigsaw sets A jigsaw set is a finite (ordered) collection S WD f�1; : : : ; �sg of
distinct jigsaw tiles such that every tile �i 2 S has a side which matches with the side
of some other tile �j 2 S.

(3) Jigsaws For a jigsaw set S, an S–jigsaw J is an ideal polygon, obtained by
gluing a finite number of tiles from S along matching sides, such that every �j 2 S
occurs at least once in J. As a convention, we will usually normalize one of the �1

tiles of J to be in standard position with vertices at 1;�1 and 0, so that all other
vertices of J are rational.

(4) Size and signature of a jigsaw The size of a jigsaw J, denoted by jJ j is
the number of tiles in it. The signature sgn.J / of J is .m1;m2; : : : ;ms/, where
S D f�1; : : : ; �sg and mj 2 N denotes the number of �j tiles in J. We have
jJ j D

Ps
1 mj .

(5) Jigsaw group and surface The Fuchsian group associated to J, denoted by �J ,
is the subgroup of PGL.2;Q/ generated by the � –rotations about the marked points
on the (exterior) sides of J. The hyperbolic (orbifold) surface associated to J is
SJ WDH2=�J . (By our convention of fixing some �1 in standard position, �J is a
zonal Fuchsian group, that is, contains a parabolic which fixes 1).

(6) Jigsaw tessellation The tessellation QJ of H2 is the tessellation of H2 obtained
by the translates by �J of J.
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(7) Jigsaw triangulation The triangulation TJ of H2 is the triangulation of H2

obtained from the translates by �J of the triangulation of J by its tiles. There is a
labeling of the triangles of TJ by elements of the set S WD f�1; : : : ; �sg.

(8) Exterior and interior sides The set of sides of QJ is denoted by EJ and the set
of sides of TJ is denoted by FJ . Clearly, EJ � FJ . If e 2 EJ , it is called an exterior
side; if e 2 FJ n EJ , it is called an interior side. There is a labeling of the sides of TJ

by the parameters ki .

(9) Cutting sequences of closed geodesics The V –cutting sequence of an oriented
closed geodesic  on the surface SJ is the (periodic) sequence �i1

;�i2
; : : : ;�it

,
or simply i1; i2; : : : ; it , induced from the labeling of the triangles. The W–cutting
sequence of  is k1; k2; : : : ; kt , where ki lies in the set of parameters of the sides of
�i 2 S , induced from the labeling of the sides.

The following facts about hyperbolic jigsaws are clear:

(1) An S–jigsaw J is a fundamental polygon for �J . The balancing condition ensures
that SJ is a complete hyperbolic orbifold with one cusp and N C 2 cone points of
order 2, where N DjJ j. Hence, QJ tessellates all of H2, and TJ triangulates all of H2.

(2) If S D f�.k1; k2; k3/g and k1 , k2 and k3 are all distinct, then an S–jigsaw
group is a finite-index subgroup of the Weierstrass group �.k1; k2; k3/ and hence
all such jigsaw groups belong to the commensurability class of �.k1; k2; k3/. The
question of which such groups are pseudomodular for the parameters k1; k2; k3 2Q

with k1k2k3 D 1 is essentially Question 1 of Section 6 of [4].

(3) If S D f�.k1; k2; k3/g and exactly two of k1 , k2 and k3 are the same, then the
jigsaw group may not be a finite-index subgroup of �.k1; k2; k3/ as there is some
choice involved in how the triangles are glued.

(4) The � –rotation about the marked point of an exterior side e 2 EJ is an element
of �J . The � –rotation about the marked point of an interior side e 2 FJ n EJ is not
in �J .

(5) The set of vertices of QJ coincide with the set of vertices of TJ . This set is
precisely the cusp set of �J since SJ has one cusp.

We have the following results, either of which immediately implies Theorem 1.2:

Theorem 2.4 Let S D
˚
�.1; 1; 1/;�

�
1; 1

2
; 2
�	

. Then �J is a pseudomodular group
for every S–jigsaw J. Furthermore, these groups are in infinitely many commensura-
bility classes.
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Recall from [4] that a special is a rational number which is fixed by a hyperbolic
element of � . In particular, the existence of specials for � means that � cannot be
pseudomodular since the fixed points of hyperbolic elements cannot be cusps. We have:

Theorem 2.5 Let S D
˚
�.1; 1; 1/;�

�
1; 1

3
; 3
�	

. Let JA be the jigsaw consisting of
four tiles: one �.1; 1; 1/ tile in the middle glued to three �

�
1; 1

3
; 3
�

tiles along its three
sides. Let J be an S–jigsaw with corresponding group �J and surface SJ . Then:

� �J is arithmetic if and only if J can be assembled from a finite number of
copies of JA glued along matching sides. In particular, �JA

is arithmetic and all
other arithmetic S.1; 3/–jigsaw groups are subgroups of �JA

.

� �J is pseudomodular if and only if the surface SJ does not contain a closed
geodesic  with W–cutting sequence 3; 1; 1

3
; 1 and it is not of the type above.

� �J is neither arithmetic nor pseudomodular if and only if the surface SJ con-
tains a closed geodesic  with W–cutting sequence 3; 1; 1

3
; 1. In this case, �J

contains hyperbolic elements with integer fixed points (specials).

� There are infinitely many commensurability classes of pseudomodular �J , and
infinitely many commensurability classes of nonpseudomodular �J .

Note that a geodesic  in Theorem 2.5 with W–cutting sequence 3; 1; 1
3
; 1 necessarily

only intersects �
�
1; 1

3
; 3
�

tiles, so the V –cutting sequence is �
�
1; 1

3
; 3
�
. In particular,

any S–jigsaw J such that every �
�
1; 1

3
; 3
�

tile of J is matched to a �.1; 1; 1/ tile
(along the side with parameter 1) is arithmetic or pseudomodular.

We will prove Theorems 2.4 and 2.5 by analyzing the relevant cusp sets, checking the
arithmeticity criteria and using Margulis’s criteria to show that there are infinitely many
commensurability classes of pseudomodular groups coming from the constructions.

3 Killer intervals

We give a brief description of Long and Reid’s method to show when a group has cusp
set all of Q[f1g.

Let � < PGL.2;Q/ be a zonal Fuchsian group (that is, 1 is fixed by a parabolic
subgroup of � ) such that H2=� is a complete, finite-area hyperbolic surface with
exactly one cusp. We are interested in the cusp set of � , which in this case (since the
surface has only one cusp) is

K� WD fg.1/ j g 2 �g:
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Since � < PGL.2;Q/, we have K� �Q[f1g. The question is in what situation is
K� exactly equal to Q[ f1g. For this, Long and Reid introduced the concept of a
killer interval, which generalizes the idea of “flipping” a rational number p

q
2 .�1; 1/

by
�

0
�1

1
0

�
2 PSL.2;Z/, to obtain a new rational number with strictly smaller (absolute)

denominator. We have:

Proposition 3.1 (see [4, Examples 1 and 2]) Suppose

g D

�
˛ ˇ

 ı

�
2 � < PGL.2;Q/; where ˛; ˇ; ; ı 2 Z and gcd.˛; ˇ; ; ı/D 1:

Suppose further that gcd.˛;  /D k , so ˛ D k˛0 and  D k 0, where gcd.˛0;  0/D 1.
Then, for any p

q
2 .˛0= 0 � 1=; ˛0= 0C 1= /, the flip g�1

�p
q

�
has strictly smaller

denominator than p
q

.

Proof We have

g D

�
˛ ˇ

 ı

�
; ˛; ˇ; ; ı 2 Z; gcd.˛; ˇ; ; ı/D 1:

Then ˛= D ˛0= 0 D g.1/, where ˛ D k˛0,  D k 0 and k D gcd.˛;  /. For any
rational p

q
2Q, where gcd.p; q/D 1,

g�1

�
p

q

�
D

ıp�ˇq

�pC˛q
D

ıp�ˇq

k.� 0pC˛0q/
:

Hence, the image has smaller denominator if

j�pC˛qj< jqj; that is, p

q
2

�
˛

 0

0

�
1

k 0
;
˛

 0

0

C
1

k 0

�
:

Remark The assumption gcd.˛; ˇ; ; ı/ D 1 is used to obtain the largest possible
interval about ˛0= 0 such that the inequality is satisfied in the proof.

The interval obtained in Proposition 3.1 depends on the element g 2 � . If we further
assume that the stabilizer subgroup of the point infinity, �1 D hT Li for some L 2 Z

(this will always be the case under consideration; see Proposition 4.5), then if h 2 � is
such that h.1/Dg.1/D˛0= 0, we have h�1gDT RL for some R2Z and it is easy
to see that the interval obtained from g and h are the same. In this case, the interval
depends only on the cusp ˛0= 0 and not on g and we have the following definition:

Definition 3.2 (killer intervals and contraction constant) When �1 D hT
Li for

some L2Z, the open interval I D .˛0= 0�1=k 0; ˛0= 0C1=k 0/ is called the killer
interval about the cusp ˛0= 0 and k 2N the contraction constant of the cusp ˛0= 0.
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Remark The definition can be easily amended in the case where �1 is generated by a
fractional power of T (which is always the case since � <PGL.2;Q/) as we only need
to consider a finite number of possibilities for g and take the largest interval obtained.

We also have a useful variation of Proposition 3.1, where translation by an integer value
does not affect the contraction constant:

Proposition 3.3 Suppose

g D

�
˛ ˇ

 ı

�
2 PGL.2;Q/; where ˛; ˇ; ; ı 2 Z and gcd.˛; ˇ; ; ı/D 1:

Suppose further that gcd.˛;  /D k and ˛ D k˛0,  D k 0. Let hD T ngT �n , where
n 2 Z.

Then, for any p
q
2 .˛0= 0Cn�1=k 0; ˛0= 0CnC1=k 0/, the flip h�1

�p
q

�
has strictly

smaller denominator than p
q

.

Proof The proof is a simple computation and will be omitted.

Now suppose that L is the smallest positive integer such that T L 2 � , for example,
if �1 D hT Li. (More generally, since we assume that � < PGL.2;Q/ and � is a
zonal Fuchsian group, such an L always exists). Then every x 2Q can be moved into
a fundamental interval for the action of hT Li of length L (say Œ0;L�), by a suitable
power of T L, without increasing its denominator. If we can cover the fundamental
interval Œ0;L� for the action of hT Li by a finite set of killer intervals, then every
rational number can be taken to 1 by a finite composition of elements of � , so that
K� DQ[f1g. We can summarize the above discussion as:

Proposition 3.4 (Long and Reid [4, Theorem 2.5]) Let � < PGL.2;Q/ be a zonal
Fuchsian group such that H2=� is a complete, finite-volume (orbifold) surface with
one cusp and suppose that L is the smallest positive integer such that

�
1
0

L
1

�
2 � . If

the fundamental interval Œ0;L� for the action of hT Li can be covered by a finite set of
killer intervals, then the cusp set is K� DQ[f1g.

Our basic strategy will be to construct jigsaw groups such that Proposition 3.4 applies.

4 Basic properties of hyperbolic jigsaw groups

In this section we explore some of the basic properties of hyperbolic jigsaws and their
associated groups and surfaces. We will mostly be interested in jigsaws composed from
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tiles which have some kind of integrality condition. We first establish some notation
and convention.

4.1 Integral hyperbolic jigsaws

For n 2N, let

�.n/ WD�
�
1;

1

n
; n
�
D�

�
1

n
; n; 1

�
D�

�
n; 1;

1

n

�
:

Definition 4.1 An integral hyperbolic jigsaw set is a set of the form

S.n1; n2; : : : ; ns/ WD f�
.n1/; �.n2/; : : : ; �.ns/g;

where 1D n1 < n2 < � � �< ns . An integral jigsaw is an S–jigsaw where S is integral.
It is in standard position if one of the �.1/ tiles is in standard position, that is, has
vertex set f1;�1; 0g.

Note that we have set �.n1/ D �.1/ . This is convenient for our purposes although
not completely necessary; we could have defined integral jigsaw sets which do not
contain �.1/ .

Henceforth, S.n1; n2; : : : ; ns/ will denote an integral jigsaw set with 1D n1 < n2 <

� � �< ns .

Definition 4.2 For an integral jigsaw J, we will call sides of J, QJ or TJ with
label/parameter in the set fnj ; 1=nj g type nj sides. So, for example, S.1; 2/–jigsaws
can have only type 1 or type 2 sides, and S.1; 3/–jigsaws can have only type 1 or
type 3 sides.

Proposition 4.3 Let J be an integral S.n1; n2; : : : ; ns/–jigsaw in standard position
with sgn.J / D .m1; : : : ;ms/ and jJ j D N. Let �Œv1;v2;v3� � TJ with sides e1 D

Œv1; v2�, e2 D Œv2; v3� and e3 D Œv3; v1� labeled by k1 , k2 and k3 , respectively.
Suppose that v1 D1. Then:

(1) If �Œ1;v2;v3� is a �.1/ triangle, then v2Dm and v3DmC1 for some integer m.

(2) If �Œ1;v2;v3� is a �.n/ triangle where n > 1 and k1 D 1 — so k2 D
1
n

and
k3 D n — then v2 Dm and v3 DmC 1 for some integer m. The triangle to the
right of � in TJ is a �.n/ triangle.

(3) If �Œ1;v2;v3� is a �.n/ triangle where n > 1 and k1 D n — so k2 D 1 and
k3 D

1
n

— then v2 Dm and v3 DmC n for some integer m. The triangles to
the left and right of � in TJ are also �.n/ triangles.
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(4) If �Œ1;v2;v3� is a �.n/ triangle where n > 1 and k1 D
1
n

— so k2 D n and
k3 D 1 — then v2 Dm and v3 DmC1 for some integer m. The triangle to the
left of � in TJ is a �.n/ triangle.

(5) If eD Œ1;m� is a side of TJ of type n where n2 fn1; : : : ; nsg, then the marked
point on e is mC

p
ni , that is, it has height

p
n above the real line.

Proof By our normalization, the triangle �Œ1;�1;0� is a �.1/ triangle of TJ , so
satisfies condition (1). The proposition follows easily by induction moving to the right
and left of this normalized triangle, using the matching conditions.

It follows from the above that if �Œ1;v2;v3� � TJ , then v3 � v2 takes values in
f1; n2; : : : ; nsg and that the �.ni / triangles where ni > 1 with 1 as a vertex occur in
successive triples, where the middle triangle has width ni and the other two width 1.
We can use this to define a J –width at each vertex of a triangle, and hence a J –width
for each vertex of the jigsaw J :

Definition 4.4 (vertex J –widths) For any triangle �.n/ with n 2N, the J –width of
the vertices between the type 1 side and the type n sides is 1. The J –width of the
vertex between the two type n sides is n. For the jigsaw J, the J –width of a vertex v
of J, denoted by JW.v/, is the sum of the J –widths of the vertices of the triangles
at v .

Remark The J –width of a vertex is in general different from the weight of the
vertex v , which is just the number of triangles at v . We denote the weight by wt.v/.

From this we easily get:

Proposition 4.5 Let J be an S.n1; : : : ; ns/–jigsaw in standard position with size N

and signature .m1;m2; : : : ;ms/, and let �J D h{0; {1; : : : ; {NC1i, where {k for k D

0; : : : ;N C 1 is the � –rotation about the marked point xk of the side sk of J with sk

taken in anticlockwise cyclic order and s0 the leftmost vertical side of J. Then

{NC1{N � � � {0 D

�
1 L

0 1

�
;

where

LD

sX
iD1

mi.2C ni/ 2 Z:

Proof We only need to compute the total J –width about the cusp of �J . Each �.n/

triangle contributes a J –width of 2C n, so the result follows.
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To summarize, we have shown:

� All (normalized) integral hyperbolic jigsaw groups have a fundamental interval
of integral length LD

Ps
iD1 mi.2C ni/.

� If �Œ1;v2;v3� � TJ , then v2 2 Z and v3� v2 takes values in f1; n2; : : : ; nsg.

� If �Œ1;v2;v3� � TJ has width nD v3 � v2 > 1, then �Œ1;v2;v3� is the lift of a
�.n/ tile, and the triangles to the left and right are also lifts of �.n/ tiles with
width one.

More importantly, the cusps at the end of vertical sides of TJ have large killer intervals:

Proposition 4.6 Let J be an integral hyperbolic jigsaw in standard position. If
�Œ1;q;r � � TJ , then q 2 Z is a cusp of �J with contraction constant one, so the killer
interval about q is .q� 1; qC 1/.

Note that it is possible that e D Œ1; q� 2 FJ n EJ , that is, e may be an interior side.

Proof This is basically a simple computation. We have �Œ1;q;r � � TJ is the lift
of some tile of J ; we consider another lift �Œw1;w2;w3� of the same tile of J such
that w2 D 1 (this is always possible since �J has only one cusp). Then there is
an element g 2 �J which takes the ordered triple .w1; w2; w3/ D .w1;1; w3/ to
.v1; v2; v3/D .1; q; r/, and furthermore, g is completely determined by this pair of
triples. We separate the analysis into the three cases, depending on the value of the
parameter k at the side Œ1; q�.

Case 1 (k D 1) In this case, r D qC 1, and w3 D m and w1 D mC 1 for some
integer m. Then

g D

�
q �1� q�mq

1 �1�m

�
and hence the killer interval about q is .q� 1; qC 1/ by Proposition 3.1.

Case 2 (kD n2 fn2; : : : ; nsg) In this case, r D qCn, and w3Dm and w1DmC1

for some integer m. Then

g D
1
p

n

�
q �n� q�mq

1 �1�m

�
and hence the killer interval about q is .q� 1; qC 1/ by Proposition 3.1.
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Case 3 (k D 1
n

, where n 2 fn2; : : : ; nsg) In this case, r D qC 1, and w3 Dm and
w1 DmC n for some integer m. Then

g D
1
p

n

�
q �n� nq�mq

1 �n�m

�
and hence the killer interval about q is .q� 1; qC 1/ by Proposition 3.1.

We note that any other lift �Œw1;w2;w3� of the same tile of J such that w2 D1 is
a translation of the one we choose by some multiple of the fundamental interval L.
Hence, if q is a cusp and g 2 �J maps 1 to q , then the set of A 2 �J mapping 1
to q is

fA 2 PGL.2;Q/ jAD gT LM ; M 2 Zg:

We next analyze cusps at the next level away from 1:

Proposition 4.7 Let J be a hyperbolic jigsaw in standard position. Suppose that
�Œ1;m;mCn� � TJ , where n> 1 is the lift of a �.n/ tile. Then �ŒmCn;m;mCn=2� � TJ .
The contraction constant of the cusp mC n

2
is one if n is odd, and either one or two if

n is even.

Proof We first note that �Œv1;v2;v3� WD �ŒmCn;m;mCn=2� � TJ since the parameter
at the side Œm;m C n� is one. Then the parameters at the sides

�
m;m C n

2

�
and�

mC n
2
;mC n

�
are 1

k
and k , respectively, where k 2 fn1; : : : ; nsg. Let �Œw1;w2;w3�

be another lift of the same tile as �Œv1;v2;v3� , where w3D1 corresponds to v3DmC n
2

.
Then the parameter of the side Œw3; w1� is k , so w1 D r and w2 D r C k for some
r 2 Z. Hence, there is an element g 2 �J taking the ordered triple .1; r; r C k/ to�
mC n

2
;mC n;m

�
. A direct computation gives

g D
1
p

kn

�
2mC n �r.2mC n/� k.mC n/

2 �2r � k

�
Hence, the contraction constant at mC n

2
is one if n is odd, and either one or two if n

is even, depending on whether k is odd or even, respectively.

We next show that many of the sides of an integral S–jigsaw cannot be type 1, which
will be useful when we are determining if the group �J is arithmetic or not.

Proposition 4.8 Let J be an S.n1; n2; : : : ; ns/–jigsaw. For any n 2 fn2; : : : nsg, at
least two of the sides of J are type n.
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Proof Let n 2 fn2; : : : nsg. By definition, J contains a �.n/ tile. If its two type n

sides are already sides of J, we are done. Otherwise, say one of the type n sides is not
a side of J. It must be matched to another �.n/ tile, which now has a new type n side.
This is either a side of J or matched to another �.n/ tile. Proceeding inductively, since
jJ j is finite, we eventually must have at least two sides of J which are type n.

4.2 Nonintegral jigsaws

Much of the discussion above can be applied to nonintegral hyperbolic jigsaws, but
without the integrality conditions, it is difficult to obtain useful conclusions. For
example, the fundamental interval Œ0;L� may not have integral length, the vertical
sides of TJ may not have integer ends, and, typically, the contraction constant about a
cusp at the end of a vertical side of TJ may be greater than one. The analysis of such
jigsaws is therefore more complicated.

5 Cusp set of S.1; 2/–jigsaw groups

We apply the results of Section 4.1 to S.1; 2/-jigsaws which are particularly simple.
What is interesting is that when we combine �.1; 1; 1/ tiles with �

�
1; 1

2
; 2
�

tiles, the
arithmetic property of the Weierstrass groups �.1; 1; 1/ and �

�
1; 1

2
; 2
�

is destroyed
while the property that the cusp set is Q[f1g is preserved. In this section, we analyze
the cusp set.

5.1 The Weierstrass groups �.1; 1; 1/ and �
�
1; 1

2
; 2

�
We first note that the Weierstrass group �.1; 1; 1/ associated to the tile �.1; 1; 1/ is
just an index-three subgroup of the modular group PSL.2;Z/, hence arithmetic. In
standard position, the three generators are

{1 D

�
1 2

�1 �1

�
; {2 D

�
1 1

�2 �1

�
; {3 D

�
0 1

�1 0

�
:

The Weierstrass group �
�
1; 1

2
; 2
�

is also arithmetic. In standard position, the three
generators are

{1 D

�
1 2

�1 �1

�
; {2 D

1
p

2

�
2 2

�3 �2

�
; {3 D

1
p

2

�
0 2

�1 0

�
:

It is commensurable to the group associated to the square torus and also the Hecke
group G4 . In particular .tr {1{2/

2 , .tr {2{3/
2 and .tr {3{1/

2 are all integers. Note that x1 ,
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the fixed point of {1 , is at height one above the real axis and x3 , the fixed point of {3 ,
is at height

p
2 above the real axis.

5.2 Killer intervals and cusp set of S.1; 2/–jigsaws

We have:

Proposition 5.1 If J is an S.1; 2/–jigsaw, then KJ , the cusp set of �J , is Q[f1g.

Proof This follows easily from Propositions 4.3, 4.6 and 4.7 as applied to S.1; 2/–
jigsaws. First, if � WD�Œ1;v2;v3� � TJ and the parameter at s1 D Œ1; v2� is k1 D 2,
then, by Proposition 4.3,

(i) v2 Dm and v3 DmC 2 for some integer m,

(ii) k2 D 1 and k3 D
1
2

, and

(iii) the triangles of TJ to the left and right of � have width one.

By Proposition 4.7, mC 1 is a vertex of the triangle �0 of TJ which shares the side
Œm;mC 2� with � (since k2 D 1). All other types of triangles of TJ with 1 as a
vertex have width one. Hence, every m 2 Z is a cusp of �J . Next, by Proposition 4.6,
if Œ1;m� is a side of TJ , then m2Z and the killer interval about m is .m�1;mC1/.
It now follows that the set of killer intervals about the integers cover all of R and
Proposition 3.4 applies.

6 Cusp set of S.1; 3/–jigsaws

In this section, we consider S.1; 3/–jigsaws and show that either the cusp set is all of
Q[f1g or there are specials which are in the equivalence classes of certain integers.
The latter case occurs if and only if there is a closed geodesic  � SJ with W–cutting
sequence 1

3
; 1; 3; 1.

6.1 The Weierstrass group �
�
1; 1

3
; 3

�
In standard position, we get from (2) that �

�
1; 1

3
; 3
�

is generated by

(4) {1 D

�
1 2

�1 �1

�
; {2 D

1
p

3

�
3 3

�4 �3

�
; {3 D

1
p

3

�
0 3

�1 0

�
:
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Ax.B/

�6 �5 �4 �3 �2 �1 0 1 2 3

Figure 3: Tessellation associated to �
�
1; 1

3
; 3
�

and axis of the hyperbolic
element B with endpoints at �3 and 1

A fundamental interval for the stabilizer subgroup of infinity in �
�
1; 1

3
; 3
�

is of length 5;
we may take this to be the closed interval Œ�2; 3�, with vertical sides Œ1;�2�, Œ1;�1�,
Œ1; 0� and Œ1; 3� within this interval; see Figure 3. The killer intervals about �2, �1,
0 and 3 all have width 2; they are .�3;�1/, .�2; 0/, .�1; 1/ and .2; 4/, respectively.
By Proposition 4.7, the triangle �Œ0;3=2;3� adjacent to �Œ1;0;3� is a triangle of T and
the contraction constant at 3

2
is 1, so the killer interval for the cusp 3

2
as .1; 2/. It

follows that the killer intervals about �2, �1, 0, 3
2

and 3 cover all of Œ�2; 3� except
possibly the points 1 and 2. In fact, these are specials and cannot be covered by any
killer intervals. A direct computation shows that x1D�3 and x2D 1 are the attracting
and repelling fixed points of the element

B D .{1{2{1/{3 D
1

3

�
7 �6

�2 3

�
2 �

�
1; 1

3
; 3
�
;

and y1 D 2 and y2 D 6 are the attracting and repelling fixed points of

{3{2{1B.{3{2{1/
�1
D

1

3

�
�3 24

�2 13

�
2 �

�
1; 1

3
; 3
�
:

Since B is the product of the two involutions {1{2{1 and {3 , its invariant axis Ax.B/
(see Figure 3) passes through the fixed points �2C

p
3i and

p
3i of these elements (in

fact, it also passes through �1C 2i ), and B translates by twice the distance between
the points �2C

p
3i and

p
3i along this axis. The W–cutting sequence of the axis

is 1
3
; 1; 3; 1. Furthermore, i3 interchanges 1 and �3. It follows that every rational
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number is either a cusp or is equivalent to the special 1. If we consider the punctured
torus T which double covers the surface S DH2=�

�
1; 1

3
; 3
�

(with the induced labeled
triangulation), there is a (unique) simple closed geodesic  � T which has W–cutting
sequence 1

3
; 1; 3; 1 whose fixed points are equivalent to 1 or �3.

6.2 Killer intervals and cusp set of S.1; 3/–jigsaws

Proposition 6.1 Let J be an S.1; 3/–jigsaw. The cusp set K� of �J is a proper
subset of Q[ f1g if and only if the surface SJ contains a closed geodesic  with
W–cutting sequence 1

3
; 1; 3; 1.

Proof ( D)) Suppose that SJ contains a geodesic  with W–cutting sequence
1
3
; 1; 3; 1. Note that  only intersects �.3/ triangles, that is the V –cutting sequence

of  is �.3/ . We may lift one of these triangles to �Œ1;m;mC3� � TJ , where m 2 Z.
Without loss of generality, suppose that z intersects the sides Œ1;m� and Œm;mC3� of
�Œ1;m;mC3� (which gives the 3; 1 part of the W–cutting sequence). From the analysis
of the Weierstrass group �

�
1; 1

3
; 3
�
, since z has W–cutting sequence 1

3
; 1; 3; 1, we

see that the endpoints of z are m� 3 and mC 1, which are specials of �J . Hence,
K� is a proper subset of Q[f1g.

(D)) Conversely, suppose that K� is a proper subset of Q[f1g. By Proposition 4.3,
all triangles �Œ1;q;r � � TJ have width either 1 or 3, and furthermore, the triangles
with width 3 have triangles of width 1 on either side. The killer intervals about the
cusps q are .q� 1; qC 1/ by Proposition 4.6. Furthermore, if �Œ1;q;qC3� � TJ has
width 3, then by Proposition 4.7, qC 3

2
is a cusp with killer interval .qC 1; qC 2/.

It follows that the fundamental interval Œ0;L� can be covered by the killer intervals
except possibly for a finite number of points. These points are of the form mC 1 or
mC 2, where �Œ1;m;mC3� � TJ . Since K� is a proper subset of Q[f1g, there is
at least one such point which is not covered by any killer interval. Without loss of
generality, by conjugating by a suitable translation, and to simplify the computations,
we may assume that mD 0, and the point 1 is not covered by any killer interval where
�Œ1;0;3� � TJ . In particular, 1 is not a cusp of �J . Let ˛ be the geodesic ray from
y D�1C 2i ending at 1. Note that ˛ is contained in the axis of

B D .{1{2{1/{3 D
1

3

�
7 �6

�2 3

�
2 �

�
1; 1

3
; 3
�
:

The first two terms of the V –cutting sequence of ˛ are �.3/; �.3/; : : : , and the first
three terms of the W–cutting sequence of ˛ is 1; 3; 1; : : : , where both cutting sequences
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are infinite as 1 is not a cusp. We claim the V –cutting sequence of ˛ cannot contain
any �.1/ ; if it does, it will be finite, which implies 1 is a cusp, giving a contradiction.
First, suppose that �Œ3;0;3=2� � TJ is a �.1/ tile. Then a direct computation gives that
the neighboring triangle sharing the side

�
0; 3

2

�
with �Œ3;0;3=2� is �Œ3=2;0;1� , so that

1 is a cusp. So the V –cutting sequence of ˛ starts with at least four �.3/ triangles:
the fourth triangle is also a �.3/ triangle since the side adjoining the third triangle
has label in the set

˚
3; 1

3

	
. By a similar argument, if the V –cutting sequence of ˛

contains a �.1/ triangle, the number of �.3/ triangles before the first �.1/ triangle in
the cutting sequence is even, that is, either 4k or 4kC 2 for some k 2N. Consider
the action of Bk on ˛ and the triangles of TJ which it intersects. This maps the
first �.1/ triangle intersecting ˛ to either �Œ1;�1;0� or �Œ3;0;3=2� , while fixing 1. In
either case, the next triangle intersected by ˛ has 1 as a vertex (either �Œ1;0;1� or
�Œ3=2;0;1� ). Acting by B�k to move back to the original configuration, we conclude
that if ˛ intersects a �.1/ triangle, then the next triangle it intersects must have 1

as a vertex. Hence, since 1 is not a cusp, we conclude that the V –cutting sequence
of ˛ is �.3/ and, from the analysis of �

�
1; 1

3
; 3
�

earlier, the W–cutting sequence
of ˛ is 1; 3; 1; 1

3
. Projecting back to the surface SJ , we get a geodesic ray x̨ � SJ

with cutting sequence 1; 3; 1; 1
3

. Since there are only a finite number of sides in the
triangulation of J, this ray x̨ intersects some side e of the triangulation twice, say at
y1;y2 2 x̨ . Consider the closed curve on SJ consisting of the geodesic segment from
y1 to y2 along x̨ followed by the geodesic on e joining y2 back to y1 . Pulling this
tight produces the closed geodesic  on SJ with W–cutting sequence 1; 3; 1; 1

3
, as

required. This completes the proof.

7 Criteria for (non)arithmeticity

We first establish some general results for integral jigsaw groups. By results of
Takeuchi [8], to show that a noncocompact Fuchsian group � � PSL.2;R/ of finite
coarea with no elements of order 2 and with invariant trace field Q is nonarithmetic, it
suffices to find an element  2 � such that tr  2 62 Z. Conversely, to show that � is
arithmetic, by [3], it suffices to show that tr  2 2 Z for all  in a generating set of � .
Since tr  2 D .tr  /2� 2, we can check if .tr  /2 2 Z instead.

Recall that for any integral jigsaw J with jJ j D N, �J is freely generated by
{0; {1; : : : ; {NC1 , where {j is the � –rotation about the marked point xj of the side sj

of J. So �J Š Z2 � � � � �Z2 , the free product of N C 2 copies of Z2 . We will apply
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results of [8; 3] to the index-two subgroup �.2/
J
< �J consisting of elements of �J

with even word length. Then �.2/
J

is a free group of rank N C 1 and

�
.2/
J
D h{0{1; {0{2; : : : ; {0{NC1i:

A fundamental domain for �.2/
J

is J [ {0.J / with opposite sides identified.

Let J be an S.n1; : : : ; ns/–jigsaw of size jJ j D N in standard position. For i D

0; : : : ;N C 1, let v0 D 1; v1; : : : ; vNC1 be the vertices of J, where v1 < v2 <

� � � < vNC1 , si D Œvi ; viC1� be the sides of J and ki 2
˚
1; n2; 1=n2; : : : ; ns; 1=ns

	
be the label (parameter) of the side si . For j 2 Z, let ej WD Œ1;mj � be successive
(unoriented) vertical sides of QJ indexed in the negative direction (so mj >mjC1 for
all j 2Z), normalized so e0D Œ1;m0�D Œ1; v1�D s0 (so e�1D Œ1; vNC1�D sNC1 ).
By looking at the lifts of the fundamental domain J in the developing map, from the
definition of the J –widths, and by Propositions 4.3 and 4.8, we easily get:

Lemma 7.1 Let J be an S.n1; : : : ; ns/–jigsaw with jJ jDN and for iD0; : : : ;NC1

and j 2 Z, let vi ; si , ki and ej be defined as above. Then:

(1) For each n 2 fn2; : : : ; nsg, at least two of the sides sk and sl of J are type n.

(2) If j � i mod .N C 2/, ej is a lift of the side si in QJ and so has label ki .

(3) If j � i mod .N C 2/, mj�1�mj is the J –width of vi .

(4) If j � i mod .N C 2/ and ki 2
˚
n; 1

n

	
, where n 2 fn1; : : : ; n2g, the marked

point yj 2 ej is at height
p

n above the real line and the � –rotation about yj is

hj WD
1
p

n

�
mj �.m

2
j C n/

1 �mj

�
:

Note that hj 2 �J has odd word length for all j 2 Z (it is the conjugate of a
generator) and hence hkhl 2 �

.2/
J

for all k; l 2 Z.

(5) L WD ŒmNC2;m0� is a fundamental interval for �J .

7.1 Nonarithmeticity of S.1; 2/–jigsaws

We first recall that if � is a triangulation of a polygon P with n� 4 sides, a triangle
�� � is an ear if two of its sides are sides of P. We call the vertex v between these
two sides the tip of the ear, so wt.v/D 1. Every triangulation of P has at least two ears.

Proposition 7.2 For any S.1; 2/–jigsaw J, the group �J is nonarithmetic.
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Proof Let J be an S.1; 2/–jigsaw of size jJ j D N and for i D 0; : : : ;N C 1 and
j 2 Z, let vi , si , ki , ej and hj be defined as in Lemma 7.1. By Lemma 7.1(1)–(2),
some side ej is type 2. Hence, the rotation in the side ej is

hj D
1
p

2

�
mj �m2

j � 2

1 �mj

�
:

Suppose that ek is type 1 for k ¤ j . A direct computation using Lemma 7.1(4) shows
that the rotation in the side ek is

hk D

�
mk �m2

k
� 1

1 �mk

�
:

Then .tr hj hk/
2 D

1
2
.�.mj �mk/

2 � 3/2 2 Z if and only if .mj �mk/
2 � 1 mod 2

if and only if mj �mk � 1 mod 2.

Similarly, if ek is type 2 for k ¤ j , then the rotation in the side ek is

hk D
1
p

2

�
mk �m2

k
� 2

1 �mk

�
Then .tr hj hk/

2 D
1
4
.�.mj �mk/

2 � 4/2 2 Z if and only if .mj �mk/
2 � 0 mod 4

if and only if mj �mk � 0 mod 2.

Hence, if �J is arithmetic, the parity (mod 2) of the type 1 and type 2 vertical sides ej

must be different. This immediately shows that many jigsaws are not arithmetic. For
example, if the jigsaw has an ear which is a �.1/ tile, then it cannot be arithmetic
since the J –width between the two unmatched sides is 1 and they are both type 1. By
Lemma 7.1(3), this means there are two successive sides ek and ekC1 of type 1 and
mk DmkC1C 1. Then either mk or mkC1 has the same parity as mj , where ej is
type 2, so either .tr hj hk/

2 or .tr hj hkC1/
2 is not integral.

So for a jigsaw J to be arithmetic, the J –width at each vertex vi (which lies between
si�1 and si ) has to be

� even, if si�1 and si are same types;

� odd, if si�1 and si are different types.

We call an S.1; 2/–jigsaw J which satisfies the two conditions above admissible. Now,
suppose for a contradiction that there exists an arithmetic �J , so J is admissible. Let
� be a ear of J. By the earlier discussion, � is a �.2/ triangle. It is easy to check
that J n� is again admissible. Proceeding inductively leads to a contradiction since J

has a finite number of �.2/ tiles and has at least one �.1/ tile.
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7.2 (Non)arithmeticity of S.1; 3/–jigsaws

Proposition 7.3 For any S.1; 3/–jigsaw J, if the group �J is arithmetic, then all the
sides si of J must be type 3, and the J –width at each vertex vi of J is congruent to
0 mod 3.

Proof This follows easily from Lemma 7.1 applied to S.1; 3/–jigsaws. Adopting the
same notation, we first note that there exists a vertical side ej D Œ1;mj � of QJ of
type 3. Then the � –rotation about the marked point on the side ej is

hj D
1
p

3

�
mj �m2

j � 3

1 �mj

�
:

If some other vertical side ek D Œ1;mk � is type 1, then a direct calculation shows that
the � –rotation about the marked point on the side ek is

hk D

�
mk �m2

k
� 1

1 �mk

�
:

Then .tr hj hk/
2 D

1
3
.�.mj �mk/

2 � 4/2 62 Z (this depends on the fact that 3 6�

1 mod 4).

Similarly, if some other ek is type 3, then

hk D
1
p

3

�
mk �m2

k
� 3

1 �mk

�
:

Hence, .tr hj hk/
2 D

1
9
.�.mj �mk/

2� 6/2 2 Z if and only if mj �mk � 0 mod 3.

It follows that if �J is arithmetic, all sides si of J must be of type 3, and JW.vi/�

0 mod 3 for all vertices vi of J.

It turns out that arithmetic S.1; 3/–jigsaws exist. We have:

Proposition 7.4 The S.1; 3/–jigsaw JA with signature .1; 3/ consisting of one �.1/

tile and three �.3/ tiles, one attached to each of the three sides of the �.1/ tile, is
arithmetic.

Proof We can show by direct calculation that .tr {0{i/
2 2Z for i D 1; 2; : : : ; 5, where

�
.2/
J
D h{0{1; : : : ; {0{5i. Hence, by [3], �J is arithmetic. We may also observe that SJ

has a six-fold symmetry, under rotation by �
3

about the centroid of the �.1/ tile, and
that the quotient surface corresponds to the Hecke group G6 , which is known to be
arithmetic.
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It follows that jigsaws composed of copies of JA glued along matching sides correspond
to finite covers of SJA

, or equivalently to finite-index subgroups of �JA
, and are all

arithmetic. In fact, the converse is also true. We will need the following:

Lemma 7.5 Let P be an ideal polygon with n� 4 sides and T a triangulation of P.
Then there exist at least two nonadjacent vertices u and v of P with wt.u/;wt.v/ 2
f2; 3g with respect to the triangulation.

Proof Without loss of generality, we may assume that n� 5; the case nD 4 is trivial.
Let �1; : : : ; �a be the ears of P, and let

P 0 D P n

a[
iD1

�i :

If P 0 consists of only one triangle, then a D 2 or 3 and a direct check shows the
result holds. If P 0 contains at least two triangles, then it has at least two ears (which
are not ears of P ) with tips wi and wj which are not adjacent in P 0. Then wi and
wj are nonadjacent vertices of P D P 0[

Sa
iD1�i with wt.wi/;wt.wj / 2 f2; 3g, as

required.

Proposition 7.6 An S.1; 3/–jigsaw J is arithmetic if and only if it consists of a finite
number of JA pieces glued along matching sides.

Proof We will show that an arithmetic jigsaw J can be decomposed into polygons of
certain types which we call blocks. Call a polygon B assembled from �.1/ and �.3/

tiles glued along matching sides a block if

(1) all the sides of B are type 3; and

(2) (i) B consists of only �.3/ tiles, in which case B consists of quadrilaterals
made up of pairs of �.3/ triangles glued along the type 1 side, or

(ii) B contains a core C consisting of n� 1 �.1/ tiles, with one �.3/ tile glued
to each of the sides of C , in which case all the ears of B are �.3/ tiles and
there are nC 2 of them, and the weights of the vertices alternate between 1

and m� 3.

We call blocks of the first type 0–blocks, and blocks of the second type n–blocks,
where n is the number of tiles in the core C . In particular, a 1–block is just JA and
our aim will be to show that other types of blocks cannot occur. Note that by definition,
all the sides of a block are of type 3.
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We now show that an arithmetic J can be decomposed into blocks defined above. By
Proposition 7.4, all the sides of J are of type 3 and by Proposition 7.3, the J widths
of all vertices of J are congruent to 0 mod 3. Also, by definition, J contains at least
one �.1/ tile. We thus have a unique n–block B1 (where n� 1) which contains this
tile and J nB1 consists of a finite number of polygons whose sides are again all of
type 3. Proceeding inductively, we see that J can be decomposed into a finite number
of blocks B1;B2; : : : ;Bn .

Now, for a block B , if v is a vertex of B with J –width JW.v/, we say that v is bad
if JW.v/ 6� 0 mod 3 and good if JW.v/� 0 mod 3. Then a 1–block has only good
vertices since all its six vertices have J –width 3.

We claim that an n–block with n¤ 1 has at least two nonadjacent bad vertices.

This is certainly true for the 0–blocks since each quadrilateral consisting of two �.3/

tiles glued along their one sides have two bad vertices which are not adjacent. Gluing a
finite number of these quadrilaterals along matching sides will not reduce this number
of bad vertices. Indeed, each gluing fixes at most one bad vertex but introduces at least
one new bad vertex which will not be adjacent to the unfixed bad vertices.

For n–blocks B where n� 2, we note that by Lemma 7.5, the core C has at least two
nonadjacent vertices u and v with J –width equal to 2 or 3. Then the J –width of the
corresponding vertices on B will be 4 or 5 (we add 2 to the original widths coming
from the J –widths of the ears). It follows that B has at least two bad vertices which
are not adjacent.

Hence, if J has an n–block B with n¤ 1, then B has at least two nonadjacent bad
vertices. If we glue a JA block to B , then the two bad vertices persist and remain non-
adjacent; if we glue an n–block with n¤ 1 to B , then we fix at most one bad vertex of
B but introduce at least one new bad vertex which will not be adjacent to the unfixed bad
vertex of B . Thus, adjoining another block to B results in a jigsaw with at least two bad
vertices which are not adjacent. The same argument holds when we glue another block
to this new jigsaw. Hence, after a finite number of steps, we will always end up with a jig-
saw J which has at least two nonadjacent bad vertices. By Proposition 7.3, J cannot be
arithmetic. Hence, an arithmetic J consists only of JA blocks and the result follows.

8 Commensurability classes

By Margulis’s result [6], if � < PSL.2;R/ is nonarithmetic, then Comm.�/ is the
unique minimal element in the commensurability class Œ��, where
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Comm.�/D fg 2 PSL.2;R/ j � and g�g�1 are commensurableg;

and � < Comm.�/ with finite index. We will show that for all S.1; 2/– or S.1; 3/–
jigsaws J of signature .r; 1/,

Comm.�J /D �J ;

which will be enough to show that there are infinitely many commensurability classes
of pseudomodular jigsaw groups.

If �J is a pseudomodular hyperbolic jigsaw group, let � 0
J
WD Comm.�J / be the

minimal element in the commensurability class of Œ�J �, S 0
J

the associated surface and
C the maximal horocycle on S 0

J
. Let zC be the lift of C to H2. By construction, zC is

invariant under the action of � 0
J

. By looking at the lift of C centered at 1 (that is,
the horizontal lift), it is easy to see that the relative lengths of the intersection arcs of
the horocycles with the triangles are equal to the relative J –widths (see Definition 4.4).
Also, since SJ has only one cusp, the lift of the maximal horocycle of SJ to H2 is
also zC . We have:

Proposition 8.1 There exist infinitely many commensurability classes of pseudo-
modular S.1; 2/–jigsaw groups.

Proposition 8.2 There exist infinitely many commensurability classes of pseudomod-
ular S.1; 3/–jigsaw groups and infinitely many commensurability classes of S.1; 3/–
jigsaw groups with specials (so they are neither arithmetic nor pseudomodular).

Proof of Propositions 8.1 and 8.2 First consider an S.1; 2/–jigsaw J of signature
.r; 1/. The fundamental interval has (euclidean) length 3r C 4 and T 3rC4 2 �J . The
maximal horocycle C on SJ has (hyperbolic) length .3r C 4/=

p
2 and intersects

itself at the fixed points of the sides labeled by 2 and 1
2

. It decomposes into two
pieces, a short piece of hyperbolic length

p
2 (the length of the horocyclic segment

joining aC i
p

2 to aC2C i
p

2), and a long piece of hyperbolic length .3rC2/=
p

2,
where .1; a/ and .1; aC 2/ are the lifts of two successive vertical sides of T of
type 2. Then zC consists of the horizontal horocycle at height

p
2, “large horocycles”

of diameter
p

2
2

based at the points aC n.3r C 4/; aC 2C n.3r C 4/ 2 R, where
n 2 Z, which are tangent to the horizontal horocycle, and smaller horocycles based
at the other cusps which are disjoint from the horizontal horocycle. In other words,
the horizontal lift of C has exactly two tangency points in each fundamental interval
dividing it into two pieces of length

p
2 and .3r C 2/=

p
2, respectively. We claim
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J 0


1=3 1=3 3

1

3

1

1=3

�2 �1 0 1 2 3 4 5

Figure 4: The hyperbolic jigsaw J 0 consisting of three �.3/ tiles and the
geodesic arc on �J 0 which has cutting sequence 3; 1; 1

3
; 1

that �J D �
0
J

. If not, since �J has only one cusp, zC is invariant under a horizontal
translation by k , where 0 < k < 3r C 4, but this is impossible as such a translation
cannot preserve the pattern of tangency points at the horizontal lift of C . It follows
that each S.1; 2/–jigsaw group �J of signature .r; 1/ is the unique minimal element in
its conjugacy class and that two nonisometric jigsaws with only one �.2/ tile give rise
to pseudomodular groups in different commensurability classes. This gives infinitely
many commensurability classes of pseudomodular groups.

The same argument with minor modifications works for S.1; 3/–jigsaws. We only need
to note that if J is an S.1; 3/–jigsaw of signature .r; 1/, then it must be pseudomodular
since it does not contain a geodesic with cutting sequence 1; 3; 1; 1

3
, and it has a

side of type 1. To show the existence of infinitely many commensurability classes
of nonpseudomodular S.1; 3/–jigsaw groups, we only need to start with a jigsaw
J 0 consisting of three �.3/ triangles such that there exists a geodesic  on SJ 0

with W–cutting sequence 1; 1
3
; 1

3
, and J 0 has a side which does not intersect  with

label 1; see Figure 4. We then glue another jigsaw Jn to J 0 along this side, where Jn

consists of n �.1/ tiles. The jigsaw groups constructed will all be nonarithmetic and
nonpseudomodular. Again, the resulting jigsaw groups coming from J 0n D J 0[Jn lie
in infinitely many commensurability classes, by a similar argument.
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9 Conclusion

Propositions 5.1, 6.1, 7.2, 7.3, 8.1 and 8.2 now imply Theorems 2.4 and 2.5, which in
turn both imply Theorem 1.2. One sees that integral hyperbolic jigsaws provide a rich
source of pseudomodular groups. We will be exploring this in a subsequent paper [5],
where we will show that for any integral hyperbolic jigsaw set S , there are infinitely
many commensurability classes of pseudomodular S–jigsaw groups. We will also be
exploring the related pseudoeuclidean algorithm as well as the generalized continued
fraction expansion for these groups as well as for the integral Weierstrass groups. Many
questions remain; we conclude with a partial list:

(1) Can one give sharp invariants that will distinguish the commensurability classes
of the pseudomodular groups, for example, by using the associated labeled
graph GJ of J. In particular, we may define an S–jigsaw to be prime if it
cannot be decomposed into pieces all of which are isometric. Is it then true that
Comm.�J /D �J if and only if J is prime?

(2) Can one find integral jigsaw groups where the set of fixed points of the hyperbolics
is exactly the set of quadratic irrationals? Or where some quadratic irrational
does not lie in this set? More generally, what can be said about the fixed point
set of the hyperbolics for a given jigsaw group?

(3) Are there only finitely many pseudomodular Weierstrass groups �
�
1; 1

n
; n
�

where
n 2N ? Which Weierstrass groups are arithmetic?

(4) What integral jigsaw groups can be arithmetic? It seems likely that the arithmetic
integral jigsaw groups only come from a small finite collection of jigsaw sets. If
so, can we determine this collection completely?

(5) One can consider jigsaw tiles �.k1; k2; k3/ where ki 2QŒi �, which results in
groups �J 2 PSL.2;C/. What can we say about these groups? Is it possible to
construct a jigsaw with cusp set QŒi �[f1g?
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