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Maximal representations, non-Archimedean Siegel spaces,
and buildings

MARC BURGER

MARIA BEATRICE POZZETTI

Let F be a real closed field. We define the notion of a maximal framing for a
representation of the fundamental group of a surface with values in Sp.2n;F/ . We
show that ultralimits of maximal representations in Sp.2n;R/ admit such a framing,
and that all maximal framed representations satisfy a suitable generalization of
the classical collar lemma. In particular, this establishes a collar lemma for all
maximal representations into Sp.2n;R/ . We then describe a procedure to get from
representations in Sp.2n;F/ interesting actions on affine buildings, and in the case
of representations admitting a maximal framing, we describe the structure of the
elements of the group acting with zero translation length.

20-XX, 22E40

1 Introduction

Let † be a connected, orientable surface of genus g with p � 0 punctures and
negative Euler characteristic, and let V be a symplectic vector space over R. A current
theme in higher Teichmüller theory is to which extent classical hyperbolic geometry
and some fundamental structures on the Teichmüller space of † carry over to the
geometry and the moduli space of maximal representations of � D �1.†/ into Sp.V /
or Hitchin representations into SL.V /. For instance, compactifications of spaces of
representations of � have been introduced and studied by Alessandrini [1], Le [14]
and Parreau [22]. In the context of Hitchin representations, asymptotic properties of
diverging sequences were studied by Collier and Li [7], Katzarkov, Noll, Pandit and
Simpson [10], Loftin [18], Mazzeo, Swoboda, Weiss and Witt [19], Parreau [23] and
Zhang [29; 30].

The purpose of this paper is to study the action on an asymptotic cone of the symmetric
space X associated to Sp.V / defined by a sequence .�k/k2N of maximal representa-
tions �k W �! Sp.V /. More precisely, we fix a nonprincipal ultrafilter ! on N and
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let .xk/k2N 2 XN be a sequence of basepoints. We say that a sequence of scales
�D .�k/k2N is adapted to .�k; xk/k2N if

lim
!

DS .�k/.xk/

�k
<1:

Here for a representation � and a finite generating set S for � , we define DS .�/.x/D
max
2S d.�.
/x; x/, where d denotes the Riemannian distance on X . Observe that
the above property is independent of the choice of the finite generating set S .

In this situation, we obtain an action !��W �! Iso.!X�/ by isometries on the asymp-
totic cone !X� of the sequence .X ; xk; d=�k/. The space !X� is not only CAT(0)-
complete, but when the limit lim! �k is infinite, it is an affine building associated to
the algebraic group Sp.V / over a specific field (more on this below); see Kleiner and
Leeb [11], Kramer and Tent [13], Parreau [20] and Thornton [28]. Depending on the
choice of scales, the representation !�� might have a global fixed point, but as it turns
out, if the representations �k are maximal, the limiting action is always faithful. Our
main result gives then the underlying geometric structure of the set of elements 
 in �
whose translation length L.!��.
// in !X� is zero; notice that for an isometry of an
affine building, having zero translation length is equivalent to having a fixed point.

For convenience, we fix once and for all a complete hyperbolic metric on † of finite
area, and identify � with a subgroup of PSL.2;R/. In order to state the main result,
we recall that a decomposition †D

S
v2V †v into subsurfaces with geodesic boundary

gives rise to a presentation of � as fundamental group of a graph of groups with vertex
set V and vertex groups �1.†v/. The group � acts on the associated Bass–Serre
tree T and, in particular, on its vertex set zV ; observe that for v 2 V and w 2 zV lying
above v , the stabilizer �w of w in � is isomorphic to �1.†v/.

Theorem 1.1 Let �k W �!Sp.V / be a sequence of maximal representations, .�k/k�1
an adapted sequence of scales and !�� the action of � on the asymptotic cone !X� .
Then !�� is faithful. Moreover, there is a decomposition † D

S
v2V †v of † into

subsurfaces with geodesic boundary such that:

(1) for every 
 2 � whose corresponding closed geodesic is not contained in any
subsurface, L.!��.
// > 0;

(2) for every v 2 V , there is the following dichotomy:

(PT) for every w 2 zV lying above v , and any 
 2 �w which is not boundary
parallel, !��.
/ has positive translation length;

(FP) for every w 2 zV lying above v , the stabilizer �w has a common fixed point
bw 2

!X� .
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A natural question is, given a sequence of maximal representations, how the choice
of basepoints and scales influences the action of � on the asymptotic cone and, in
particular, the decomposition given in Theorem 1.1. Turning to this issue, recall that for
a maximal representation �W �! Sp.V /, the displacement function x 7!DS .�/.x/

with respect to a generating set S �� achieves its minimum �S .�/ in a compact region
of the symmetric space X . Given a sequence .�k/k2N of maximal representations,
we have lim! �S .�k/ <1 if and only if, up to modifying the sequence on a set of
!–measure zero, .�k/k2N is contained in a compact subset of the character variety of
maximal representations.

Assume thus that lim! �S .�k/D1. Choosing a sequence .xk/k2N 2 XN of base-
points such that DS .�k/.xk/D �S .�k/, the sequence of scales .�k WD �S .�k//k2N

is obviously adapted to the sequence .�k; xk/k2N , and the resulting �–action !��
on !X� has no global fixed point. We show then (see Proposition 10.6) that if
.yk/k2N 2 XN is a sequence of basepoints and .�k/k2N is an adapted sequence
of scales such that !�� has no global fixed point, then !X� equals !X� with homo-
thetic distance function, and the actions !�� and !�� coincide. In particular, the
decomposition of † into subsurfaces given by Theorem 1.1 is uniquely determined by
the sequence .�k/k2N .

We say that a subsurface is of type (PT) (resp. (FP)) if the first (resp. the second)
possibility in Theorem 1.1(2) holds. One can show that any decomposition of the
surface † and any assignment of type (PT) or (FP) to the subsurfaces can be realized
by the limiting action for an appropriate sequence .�k/k2N . On the other hand,
Theorem 1.1 suggests that in a generic limiting action without a global fixed point, no
element of � should have zero translation length. We plan on analyzing the properties
of such representations in future work.

In case there is a subsurface of type (FP), the restriction �kj�w W �w ! Sp.V / is a
sequence of maximal representations to which the preceding discussion applies; that is,
either up to !–measure zero the sequence is relatively compact in the character variety
of �w , or there is an essentially unique choice of basepoints and scales such that the
limiting action does not have a global fixed point. Since, at each step, the topological
complexity of the surface decreases, this procedure stops after finitely many iterations
and can be seen as an asymptotic expansion of the initial sequence .�k/k2N .

When each subsurface in the decomposition of Theorem 1.1 is of type (FP), we
can use the fixed points bw to construct a map from the Bass–Serre tree T to the
asymptotic cone:

Theorem 1.2 Assume that for any subsurface of the decomposition, possibility (FP)
holds. Then there is a !��–equivariant quasi-isometric embedding T ! !X� .
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In the case of a vector space of dimension 2, maximal representations correspond to holo-
nomies of hyperbolizations; in this case, the second possibility in Theorem 1.1(2) occurs,
for example, for sequences of hyperbolizations obtained by pinching a multicurve. In
this case, the image of the quasi-isometric embedding of Theorem 1.2 is a simplicial sub-
tree of the asymptotic cone !X� . In higher rank, it is possible to construct examples in
which the image of the Bass–Serre tree is not totally geodesic in the affine building !X� .

We finish our discussion about ultralimits of maximal representations mentioning two in-
teresting geometric properties of maximal representations that can be deduced from our
work. Let S be a connected generating set, namely a generating set for � such that the
union of the closed geodesics representing the elements of S is a connected subset of †,
and let LS .�/ denote the maximal displacement of an element in the generating set S :

LS .�/Dmax

2S

L.�.
//:

Corollary 1.3 Let S � � be a connected generating set for � . Then there is a con-
stant C depending only on S and 2nDdimV such that for any maximal representation
�W �! Sp.V /, we have

.ln 2/
p
n� LS .�/� �S .�/� CLS .�/:

We say that two diverging sequences of real numbers .�k/k2N and .�k/k2N have the
same growth rate according to the ultrafilter ! if lim! �k=�k is finite and nonzero.

Corollary 1.4 Let .�k/k2N be a sequence of maximal representations of the funda-
mental group � of a surface of genus g with p punctures. Then, varying 
 2 �, there
are at most 8g�8C4p distinct growth rate classes among the sequences L.�k.
//k2N .

1.1 Real closed fields

The building structure on !X� alluded to previously comes about as follows. Assume
that the sequence of scales .�k/k2N is unbounded. Then � D .e��k /k2N is an
infinitesimal in the field R! of the hyperreals, and the building !X� is associated to
Sp.V ˝R!;� / [20; 28]. Here R!;� is the valuation field introduced by Robinson [24].
The characterizing properties of the representations arising as ultralimits of maximal
representations make sense in the more general context of symplectic groups over
arbitrary real closed fields.1 When VF is a symplectic vector space over a real closed
field F , the Kashiwara cocycle classifies the orbits of Sp.VF / on triples L.VF /

.3/

of pairwise transverse Lagrangians and can be used to select maximal triples (see
Section 2.3 for a precise definition of maximal triples). The general objects of our
study are representations which admit a maximal framing:

1We refer to Kaplansky [9] for general facts about linear algebra over real closed fields.
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Definition 1.5 A representation �W �! Sp.VF / admits a maximal framing if there
exist a �–invariant subset S � @H2 including the fixed points of hyperbolic ele-
ments of � , and an equivariant map �W S ! L.VF /, such that for every positively
oriented triple .x; y; z/ in S3 , the image .�.x/; �.y/; �.z// is maximal. If we want
to emphasize the domain of definition, we will refer to a maximal S–framing.

Remark 1.6 For the conclusion of Theorem 1.8 (see below) to hold, the existence
of a maximal S–framing for S the set of fixed points of hyperbolic elements is
sufficient. However, the fact that the reduction (see Theorem 1.7) of a maximal
S–framed representation admits a maximal S–framing will be used in subsequent
papers where we study the structure of the real spectrum compactification of maximal
representation varieties.

If F DR, any maximal representation admits a maximal framing (see Burger, Iozzi
and Wienhard [6, Theorem 8]), and we show in Corollary 10.4 that this is also true
for all ultralimits of maximal representations. Even more, the class of representations
admitting a maximal framing is closed under the natural reduction process we are
now going to describe. Let O � F be an order convex local subring.2 Its quotient
by the maximal ideal, denoted by FO , is real closed as well. Assume now that there
exists a symplectic basis of VF such that �.�/� Sp.2n;O/. We can then consider the
composition �O of � with the quotient homomorphism Sp.2n;O/! Sp.2n;FO/:

Theorem 1.7 Assume that �W �! Sp.VF / admits a maximal S–framing. Then the
reduction �OW �! Sp.VFO/ admits a maximal S–framing as well.

Theorem 1.7 allows us in general to obtain well controlled actions on affine buildings.
Indeed, for each infinitesimal � > 0, the set of elements of F comparable with � ,

O� D fx 2 F W jxj � ��k for some k 2 Zg;

forms an order convex subring of F . We denote by F� its residue field, which inherits
from O� an order compatible valuation. As a consequence, to any reductive algebraic
group over F� is associated an affine Bruhat–Tits building [2]. Since � is finitely
generated, for each representation �W � ! Sp.VF / and every choice of a basis, it is
possible to choose an infinitesimal � such that �.�/ � Sp.2n;O� /. By passing to
the quotient �� W �! Sp.2n;F� /, we get an action on the affine building associated
to Sp.2n;F� /. The main result for maximal framed representations over real closed
fields with valuation is:

2The definition of an order convex subring is recalled in Section 5.
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Theorem 1.8 Let �W � ! Sp.VL/ be a maximal framed representation, where L
is real closed with order compatible valuation, and let B be the Bruhat–Tits affine
building associated to Sp.VL/. Then the action of � on B satisfies the conclusions of
Theorem 1.1.

When L is a real closed field with order compatible valuation, we denote by U the
order convex valuation ring with residue field LU . We already mentioned that the
action on the affine building associated to a representation �W �! Sp.VL/ might have
a global fixed point. However, when this is the case, it is possible to find a symplectic
basis of VL such that �.�/ � Sp.2n;U/, and if � admits a maximal framing, then
it follows from Theorem 1.7 that the reduction �U W � ! Sp.2n;LU / has the same
property. In particular, this can be used to study the restriction of the representation �
to the subsurfaces defined in Theorem 1.8.

As a consequence of Theorem 1.8, we get a concrete way of checking if a represen-
tation � admitting a maximal framing has a global fixed point: if S is a connected
generating set for � , then � has a global fixed point if and only if each element of S
has a fixed point (see Corollary 7.6 for a precise formulation of this result and some
further comments).

1.2 Tools

We now turn to a short description of the key tools we develop in this paper. In the
context of his approach to the compactification of the Teichmüller space [3], Brumfiel
studied non-Archimedean hyperbolic planes [4]: for any ordered field F , he associates
to PSL.2;F/ a nonstandard hyperbolic plane HF2 , and for fields with valuation, he
introduces a pseudodistance on HF2 whose Hausdorff quotient is the R–tree associated
to PSL.2;F/. Inspired by Brumfiel’s work (see also [13]), we associate to a symplectic
group Sp.2n;F/ over a real closed field F the space

XF D fX C iY jX; Y 2 Sym.n;F/; Y positive definiteg;

where Sym.n;F/ denotes the vector space of symmetric n�n matrices with coefficients
in F . The group Sp.2n;F/ acts on XF by fractional linear transformations, and the
Sp.2n;F/–space XF can be thought of as a nonstandard version of the Siegel upper half-
space. Using a matrix-valued cross-ratio, we define, for any two transverse Lagrangians
a; b 2 L.F2n/, the F–tube Ya;b which is the nonstandard symmetric space associated
to the stabilizer in Sp.2n;F/ of the pair .a; b/, a group isomorphic to GL.n;F/.
In the case of the hyperbolic plane, the F–tubes are just the Euclidean half-circles
joining the ideal points a; b . Given a representation �W � ! Sp.2n;F/ admitting a
maximal framing �W S!L.F2n/, we can associate to every hyperbolic element 
 2�

Geometry & Topology, Volume 21 (2017)



Maximal representations, non-Archimedean Siegel spaces, and buildings 3545

the F–tube Y
 D Y�.
�/;�.
C/ , where 
�; 
C are the fixed points of 
 in @H2 . One
key property that we exploit is that the intersection pattern of the axes of hyperbolic
elements in � is reflected in the intersection pattern of the corresponding F–tubes.
When the field F has an order compatible valuation, there is a natural R�0–valued
pseudodistance on XF , and the relation between cross-ratios and this pseudodistance
allows us to quantify the intersection pattern of the F–tubes. Finally, we exploit that
the Hausdorff quotient of XF can be identified with the set of vertices of the affine
Bruhat–Tits building associated to Sp.2n;F/.

1.3 Collar lemma

We finish this introduction discussing another geometric property of representations
admitting a maximal framing, which is at the basis of most of the results we discussed
so far. Recall that, since any element g 2 Sp.V / is conjugate to tg�1 , the set of
eigenvalues of a symplectic element is closed with respect to inverse: if � is an
eigenvalue of g , the same is true for ��1 . With a slight abuse of terminology, we say
that two hyperbolic elements 
; � 2 � < PSL.2;R/ intersect if their axes do.

Theorem 1.9 (collar lemma) Let F be a real closed field, and let �W �! Sp.VF / be
a representation admitting a maximal framing. Then if 
 2 � is hyperbolic, �.
/ has
no eigenvalue of absolute value 1. Let j�1.
/j � � � � � j�n.
/j> 1 be the eigenvalues
of absolute value larger than 1. If the hyperbolic elements 
; � in � intersect, then

j�1.
/j
2n
�

1

j�n.�/j2� 1
;(1) � nY

iD1

j�i .
/j
2=n
� 1

�� nY
iD1

j�i .�/j
2=n
� 1

�
� 1:(2)

Here j � j denotes the F–valued absolute value on F Œi �, and we count the eigenvalues
with their multiplicity as roots of the characteristic polynomial. We immediately get
from Theorem 1.9(2):

Corollary 1.10 Under the same assumptions of Theorem 1.9, we have:

(1) If 
 is self-intersecting, then j�1.
/j �
p
2.

(2) If 
 satisfies j�1.
/j<
p
2, then 
 is simple and any � intersecting 
 satisfies

j�1.�/j>
p
2. In particular, there are at most .3g� 3Cp/ conjugacy classes of

hyperbolic elements 
 with j�1.
/j<
p
2.

(3) There exists � > 0 in F with j�1.
/j> 1C � for any hyperbolic 
 2 � .
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As an application of the collar lemma, we establish a uniform discontinuity property
of the � D �1.†/ action on the non-Archimedean Siegel space XF by a maximal
S–framed representation in the case where † has no boundary. Recall here that F has
a natural topology given by the order, and so does XF as an open subset of M.n;F Œi �/.
Given an open subset U � XF �XF containing the diagonal and x 2 XF , we let Ux
denote the open neighborhood consisting of all y 2 XF with .x; y/ 2 U .

Corollary 1.11 Let � D �1.†/ where † has no boundary, and let �W �! Sp.2n;F/
be a representation admitting a maximal framing. Then there is an open neighborhood
of the diagonal U � XF �XF which is invariant for the diagonal Sp.2n;F/–action and
such that for every x 2 XF ,

�.
/Ux \ Ux D∅ for all 
 2 � n feg:

We finish the introduction drawing some consequences of the collar lemma in the case
of classical maximal representations. It was established by Siegel in [26, Theorem 3]
that, under suitable normalizations, the translation length of an isometry g 2 Sp.2n;R/
on the symmetric space XR is

L.g/D 2

r
nP
iD1

ln2 j�i .g/j :

Using this formula, we get, from Theorem 1.9(2) and the Cauchy–Schwarz inequality,
the following:

Corollary 1.12 Let �W � ! Sp.2n;R/ be a maximal representation. If 
 and �

intersect, then
.eL.�.
//=

p
n
� 1/.eL.�.�//=

p
n
� 1/� 1:

In particular, if 
 is not simple then L.�.
//� log.2/
p
n.

Using that ex � 1� 2x for 0� x � 1, we get that, if L.�.�//�
p
n, then

L.�.
//
p
n
� ln

� p
n

2L.�.�//

�
;

which exhibits the same asymptotic growth relation as in the Teichmüller setting. How-
ever, it is worth remarking that, as opposed to the classical collar lemma, Corollary 1.12
is not just a consequence of the Margulis Lemma: in our setting, the sets of minimal
displacement of the isometries �.
/ and �.�/ do not necessarily intersect. A similar ver-
sion of the collar lemma in the framework of Hitchin representations has been recently
established by Lee and Zhang [15]; see Remark 3.5 for a comparison with our results.
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Outline of the paper In Section 2, we define three different models for the nonstan-
dard symmetric space, and we study the action of Sp.V / on n–tuples of transverse
Lagrangians. Section 3 is devoted to the proof of the collar lemma, Theorem 3.3, for
representations admitting a maximal framing. The matrix-valued cross-ratio and the
F–tubes are introduced and studied in Section 4. In Section 5, we focus on order convex
subrings and describe how to obtain representations over the residue field. The main
result of the section is Theorem 5.9 (Theorem 1.7 in the introduction), whose proof also
exploits the geometric input coming from the collar lemma. In Section 6, we restrict
to fields with valuations and use the cross-ratio to describe the projection from the
nonstandard symmetric space to the affine Bruhat–Tits building. In Section 7, we initiate
our study of elements with zero translation length: to each such element, we associate a
pair of canonical fixed points (Proposition 7.1) and give sufficient conditions for these
points to coincide (Proposition 7.3). The proof of the decomposition Theorem 1.8
(Theorem 8.1) occupies Section 8, while Theorem 1.2 is proven in Section 9. In
the last section of the paper, we discuss the relation between ultralimits of maximal
representations and representations in symplectic groups over the Robinson field R!;� .
This allows us to deduce Theorem 1.1 from the more general Theorem 1.8 and, in the
case of closed surfaces, to completely characterize representations in Sp.2n;R!;� /
which admit a maximal framing (Theorem 10.5).
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2 Symplectic geometry over real closed fields

2.1 Basic objects

Let V be a 2n–dimensional vector space over a field F , endowed with a symplectic
form h � ; � i. The symplectic group Sp.V / is the subgroup of elements of GL.V /
preserving the form h � ; � i. Recall that a Lagrangian subspace is a maximal isotropic
subspace of V ; they form a subset of the Grassmannian Grn.V / of n–dimensional
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subspaces of V , denoted by L.V /. Whenever a Lagrangian l is fixed, we denote by
L.V /l the set of Lagrangians transverse to l , and by Q.l/ the vector space of quadratic
forms on l .

Given a; b in L.V / transverse, we recall the construction of an affine chart

ja;bW Q.a/! L.V /b:

For each element f in Q.a/, we denote by bf W a� a! F the associated symmetric
bilinear form. Since a and b are transverse, the symplectic pairing induces an iso-
morphism of b with the dual of a . We denote by Tf W a! b the unique linear map
satisfying

hv; Tf .w/i D bf .v; w/; for v;w 2 a:

The subspace of V defined by

ja;b.f / WD fvCTf .v/ j v 2 ag

is a Lagrangian subspace transverse to b .

Conversely, if l is transverse to b , any vector v in a can be written uniquely as a
combination of a vector in b and a vector in l . This allows us to define a linear map
T l
a;b
W a! b by requiring that vCT l

a;b
.v/ 2 l . In turn, we can use T l

a;b
to define the

quadratic form Qa;l;b on a :

Qa;l;b.v/D hv; T
l
a;b.v/i; v 2 a;

which satisfies ja;b.Qa;l;b/D l .

In the theory of maximal representations, positive-definite quadratic forms play a
prominent role. If q1; q2 are quadratic forms we will write q1� 0 to indicate that q1
is positive definite, and q1�q2 to indicate that the difference q1�q2 is positive definite.

2.2 Three models of the Siegel space

The symmetric space associated to the symplectic group Sp.2n;R/ was extensively
studied by Siegel [26] and is often referred to as the Siegel space. We now show that
the three most studied models for the Siegel space can be defined over arbitrary ordered
fields, are always equivariantly isomorphic, and give rise to interesting geometries.

We fix an ordered field F . Clearly the polynomial f .x/ D x2 C 1 is irreducible
in F Œx�. We denote by i 2 xF a root of the polynomial f and by K the splitting field
of f , the degree two extension K D F Œi �. If V is a 2n–dimensional vector space
over F endowed with a symplectic form h � ; � i, we denote by VK the “complexification”
VK D V ˝K and by h � ; � iKW V 2K!K the K–linear extension to VK of h � ; � i.
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The first model of the Siegel space consists of compatible complex structures on V :

XV D fJ 2 GL.V / j J 2 D� Id; hJ � ; � i is a scalar productg:

The set XV is a semialgebraic subset of End.V / on which the symplectic group
Sp.V / acts by conjugation. For J 2 XV , we will denote by . � ; � /J WD hJ � ; � i the
corresponding scalar product.

The second model of the Siegel space corresponds to the image of the Borel embedding;
see [5, Section 2.1.1; 25]. As in the real case, we realize XV as a semialgebraic
subset TV of L.VK/. Indeed, if J 2GL.V / is an element of XV , the complexification
J ˝ IK is diagonalizable over K. It is easy to verify that the eigenspaces L˙J of
J ˝ IK with respect to the eigenvalues ˙i are elements of L.VK/. If we denote by
� W VK! VK the complex conjugation with respect to the real form V , we get that
�.L˙J /D L

�

J . The image TV of the Borel embedding can be characterized as the set

TV D fL 2 L.VK/ j ih � ; �. � /iKjL�L is positive definiteg:

The group Sp.V / acts by extension of scalars on VK , preserves the symplectic form
h � ; � iK and commutes with the complex conjugation � ; thus it acts on TV .

Lemma 2.1 The algebraic map

XV ! TV ; J 7! LCJ ;

induces an Sp.V /–equivariant bijection.

Proof If vD xC iy is an eigenvector for the endomorphism J ˝ IK of eigenvalue i ,
it follows that y D�Jx . In particular, the restriction of ih � ; �. � /iK satisfies

ihv; �.v/iK D ihx; iJ xiKC ih�iJ x; xiK

D 2hJx; xi;

and this implies that the image of XV is contained in TV .

Conversely, if L 2 L.VK/ is such that ih � ; �. � /iKjL�L is positive definite, L is
transverse to �.L/ since the restriction of the aforementioned Hermitian form to �.L/
is negative definite. We denote by JL the endomorphism of VK defined by imposing
that JL.v/D iv for each v in L and JL.v0/D�iv0 for each v0 2 �.L/.

Since any element w of V can be written uniquely as w D vC �.v/ for some v 2 L,
and in particular, JLwD iv�i�.v/D ivC�.iv/2V , the endomorphism JL preserves
the real structure V . Let J WD JLjV . Since the Hermitian form ih � ; �. � /iKjL�L is
by assumption positive definite, the quadratic form hJ � ; � i is positive definite.
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If J is a point in XV and g belongs to Sp.V /, then since g commutes with � , we
get that gL˙J is the ˙i–eigenspace of gJg�1˝ IK . It follows that the map J 7! LCJ
is Sp.V /–equivariant.

The third and most concrete model for the Siegel space is the upper half-space XF ,
a specific set of K–valued symmetric matrices:

XF D fX C iY jX 2 Sym.n;F/; Y 2 SymC.n;F/g:

Here Sym.n;F/ denotes the vector space of symmetric n�n matrices with coefficients
in F and SymC.n;F/ denotes the properly convex cone in Sym.n;F/ consisting of
positive-definite symmetric matrices.

In order to establish a bijection between TV and XF , we fix a Lagrangian l1 in L.V /,
a complex structure J 2 XV and a basis e1; : : : ; en of l1 which is orthonormal for
. � ; � /J . The matrix representing the symplectic form with respect to the basis

B D fe1; : : : ; en;�Je1; : : : ;�Jeng

of V is
�
0 Id
� Id 0

�
. Moreover, using the basis B , we can associate to any 2n�n matrix M

of maximal rank the n–dimensional subspace of V spanned by the columns of M . We
use this to give an explicit identification of Sym.n;K/ with the affine chart of L.VK/

which consists of subspaces transverse to l1 :

�W Sym.n;K/! L.VK/; Z 7!
�Z

Id

�
:

It is easy to verify that if we use the basis f�Je1; : : : ;�Jeng to identify the space
Sym.n;K/ with Q.J l1/, we get that the map � corresponds to the map jJ l1;l1
described in Section 2.1.

Since the restriction of ih � ; �. � /iK to l1 is identically zero, every element l of TV
belongs to the image of �, and it is easy to verify that the restriction of ih � ; �. � /iK
to �.X C iY / can be represented by the matrix 2Y . In particular, � restricts to a
bijection between TV and XF . Notice that the restriction of � to the subset of F–valued
symmetric matrices has image in L.V / and gives a parametrization of the affine chart
of L.V / consisting of Lagrangians transverse to l1 .

It follows from the identification between XV and XF that the symplectic group
Sp.2n;F/ acts on XF by fractional linear transformations:�

A B

C D

�
�Z D .AZCB/.CZCD/�1:
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It will be useful in the following to record that, with our choice for a basis of the
symplectic form, an element

�
A B
C D

�
belongs to Sp.2n;F/ if and only if

tAD� tCB D Id; tAC D tCA; and tBD D tDB:

In order to achieve transitivity of the symplectic group on the Siegel upper half-space,
we need to restrict to real closed fields:

Definition 2.2 A real closed field is an ordered field F in which every positive element
is a square and such that every polynomial in one variable over F factors into linear
and quadratic factors.

Lemma 2.3 If F is a real closed field, the symplectic group Sp.2n;F/ acts transitively
on XF .

Proof Since F is, by assumption, real closed, every symmetric matrix is diagonalizable
by an orthogonal matrix, and as soon as it is positive definite, it admits a unique positive
square root [9, Sections 2–4]. Let now X C iY be a point in XF and let S be the
square root of Y . We have

X C iY D

�
S XS�1

0 S�1

�
� i Id :

2.3 Action on F–Lagrangians

We now want to understand the action of Sp.V / on n–tuples of pairwise transverse
Lagrangians. We denote this set by L.V /.n/ :

L.V /.n/ D f.l1; : : : ; ln/ 2 L.V /n j li t lj g:

It is a general fact that, for any field F , the symplectic group acts transitively on pairs
of transverse Lagrangians.

Lemma 2.4 The symplectic group Sp.V / acts transitively on L.V /.2/ .

Recall from Section 2.1 that, whenever two transverse Lagrangians a; b are fixed,
we have an identification ja;bW Q.a/Š L.V /b , and we denote by Qa;l;b the inverse
image j�1

a;b
.l/. Clearly for any element g in Sp.V /, the quadratic forms Ql1;l2;l3 and

Qgl1;gl2;gl3 are equivalent. As it turns out, the equivalence class of the quadratic form
Ql1;l2;l3 is a complete invariant of the triple .l1; l2; l3/ up to the symplectic group
action:
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Proposition 2.5 The triples .l1; l2; l3/; .m1; m2; m3/ in L.V /.3/ are equivalent mod-
ulo the symplectic group action if and only if the quadratic forms Ql1;l2;l3 and
Qm1;m2;m3 are equivalent.

Proof Since Sp.V / is transitive on pairs of transverse subspaces, we can assume that
l1Dm1D a and l3Dm3D b . The result now follows from the fact that the stabilizer
in Sp.V / of the pair a; b is GL.n;F/ acting on Q.a/ by congruence.

In particular, Sylvester’s theorem allows us to count the number of Sp.V /–orbits when
the field F is real closed: since in this case, the signature sign.Q/ is a complete
invariant of a quadratic form Q up to equivalence (see [9, Theorem 9]), we have

Corollary 2.6 Let F be a real closed field, and let V be a symplectic F–vector space
of dimension 2n. Then there are nC 1 orbits of Sp.V / in L.V /.3/ .

A fundamental tool in the study of Lagrangian subspaces is the Kashiwara cocycle,
which, at least when F DR, is also known as the Maslov cocycle:

Definition 2.7 The Kashiwara cocycle is the function

� W L3.V /! Z; .l1; l2; l3/ 7! sign.Q/;

where Q is the quadratic form on the direct sum l1˚ l2˚ l3 defined by

Q.x1C x2C x3/D hx1; x2iC hx2; x3iC hx3; x1i:

The following properties of the Kashiwara cocycle are well known:

Proposition 2.8 (see [17, Section 1.5]) Let .V; h � ; � i/ be a 2n–dimensional sym-
plectic vector space over a real closed field.

(1) � is alternating and invariant for the diagonal action of Sp.V / on L.V /3 .

(2) � has values in f�n;�nC1; : : : ; ng. On triples consisting of pairwise transverse
Lagrangians, it only achieves the values f�n;�nC2; : : : ;ng. If j�.l1; l2; l3/j D n,
then the li are pairwise transverse.

(3) If .l1; l2; l3/ are pairwise transverse, then

�.l1; l2; l3/D sign.Ql1;l2;l3/:

(4) � is a cocycle: for each 4–tuple .l1; l2; l3; l4/, we have

�.l2; l3; l4/� �.l1; l3; l4/C �.l1; l2; l4/� �.l1; l2; l3/D 0:
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The second and the third statement in Proposition 2.8 justify the following definition:

Definition 2.9 A triple .l1; l2; l3/2L.V /.3/ is maximal if Ql1;l2;l3 is positive definite.
More generally, an n–tuple .l1; : : : ; ln/ is maximal if Qli ;lj ;lk is positive definite for
any ordered triple of indices i < j < k .

Let S1 denote the unit circle in C endowed with its canonical orientation as boundary
of the unit disc. Given a pair a; b of distinct points, ..a; b// denotes the connected
component of S1 n fa; bg consisting of the points crossed by a positively oriented
C 1–path joining a to b . More generally, if a; b 2 L.V / are transverse, we denote
by ..a; b// the subset of L.V / consisting of points c such that the triple .a; c; b/ is
maximal:

..a; b//D fc 2 L.V / j .a; c; b/ 2 L.V /.3/ is maximalg:

The key property of maximal triples that will be exploited throughout the paper is that
they correspond to positive-definite quadratic forms:

Lemma 2.10 (1) A triple .a; l; b/ is maximal if and only if l D ja;b.q/ for a
positive-definite quadratic form q 2Q.a/.

(2) A 4–tuple .l1; l2; l3; l4/ is maximal if and only if it holds that Ql1;l2;l4� 0 and
Ql1;l3;l4 �Ql1;l2;l4 � 0.

Proof This follows from Proposition 2.8 together with the observation that the unipo-
tent radical of the stabilizer in Sp.V / of b is isomorphic to Sym.n;F/ and acts on
Q.a/ by translation.

We finish this subsection by analyzing the Sp.V /–orbits in L.V /.4/ . Using the objects
and notation introduced in Section 2.2, we fix a Lagrangian subspace l1 , a complex
structure J and a symplectic basis B of V of the form

B D fe1; : : : ; en;�Je1; : : : ;�Jeng:

Moreover, when this does not cause confusion, we suppress �W Sym.n;F/!L.V / and
simply represent an element in L.V /l1 by an F–valued symmetric matrix.

Proposition 2.11 Let F be a real closed field, and let .l1; l2; l3; l4/ 2 L.V /.4/ be a
maximal 4–tuple. Then there exist a diagonal matrix D D diag.d1; : : : ; dn/ satisfying
d1 � � � � � dn > 0, and an element g1 2 Sp.V / such that

g1.l1; l2; l3; l4/D .� Id; 0;D; l1/:

Moreover, there exists g2 2 Sp.V / such that g2.l1; l2; l3; l4/D .� Id; ƒ; 0; l1/, where
ƒ is diagonal with eigenvalues �1 < �i D�di=.1C di / < 0:
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Proof Since Sp.V / is transitive on maximal triples of Lagrangians and the triple
.� Id; 0; l1/ is maximal, we have an element g01 2 Sp.V / such that g01.l1; l2; l3; l4/D
.� Id; 0; Z; l1/ for some positive-definite matrix Z .

It is easy to verify that the stabilizer of the triple .� Id; 0; l1/ in Sp.2n;F/ consists
of matrices that have the form

StabSp.2n;F/.� Id; 0; l1/D
��
A 0

0 A

� ˇ̌
A 2O.n/

�
with respect to the basis B and acts by congruence. This allows us to conclude: since F
is real closed, every positive-definite matrix Z is orthogonally congruent to a diagonal
matrix, namely there exists A2O.n/ with AZA�1DD , where DD diag.d1; : : : ; dn/
with d1 � � � � � dn ; see [9, Theorem 48]. Then

g1 D

�
A 0

0 A

�
g01

satisfies the first assertion. For the second assertion, it is enough to take

g2 D

�
.IdCD/�1=2 �D.IdCD/�1=2

0 .IdCD/1=2

�
g1:

An important role in the rest of the paper will be played by Shilov hyperbolic elements
of Sp.V /. We denote by j � jW K! F�0 the absolute value jaC ibj D

p
a2C b2 .

Definition 2.12 An element g 2 Sp.V / is Shilov hyperbolic if there exists a g–
invariant decomposition V D LCg ˚L

�
g , with L˙g 2 L.V /, such that all eigenvalues

of the restriction of g to L�g have absolute value strictly smaller than one and all
eigenvalues of the restriction of g to LCg have absolute value strictly bigger than one.
In this case, we denote by Mg the restriction of g to LCg .

Remark 2.13 When V is a real vector space, the set of Lagrangians L.V / is the Shilov
boundary of the symmetric space TV . Moreover, if g 2 Sp.V / is Shilov hyperbolic,
then there exists a Zariski open subset of L.V /, the set of points transverse to L�g ,
which is contracted by g to LCg .

3 Representations admitting a maximal framing:
the collar lemma

Let † be an oriented surface of negative Euler characteristic, genus g and p punctures.
As mentioned in the introduction, we endow † with a complete hyperbolic metric of
finite area and identify it with �nH2 where H2 is the Poincaré upper half-plane.
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We now turn to the study of representations �W �! Sp.V / where V is a symplectic
space over a real closed field F . Recall from the introduction that we denote by
S � @H2 any �–invariant subset containing all the fixed points of hyperbolic elements
in � .

Definition 3.1 We say that the representation �W � ! Sp.V / admits a maximal S–
framing if there exists an equivariant map �W S! L.V / such that, whenever the triple
.x; y; z/ in S3 is positively oriented, the triple of Lagrangians .�.x/; �.y/; �.z// is
maximal.

Remark 3.2 It is a fundamental result [6, Theorem 8] that if F DR, then any maximal
representation admits a maximal framing. In addition, one can take S D @H2 and �
either left or right continuous.

In this section, we prove a generalization of the classical collar lemma of hyperbolic
geometry to the context of representations which admit a maximal framing. In the
case where F is the field of ordinary reals R, this establishes a collar lemma for all
maximal representations and gives a quantitative form of the fact due to Strubel [27]
that for every hyperbolic element 
 in � , the image �.
/ is Shilov hyperbolic.

Theorem 3.3 (collar lemma) If �W �! Sp.V / is a representation admitting a maxi-
mal framing, then for every hyperbolic element 
 , the image �.
/ is Shilov hyperbolic.
Let a; b be elements of � which intersect, and denote by j˛1j � � � � � j˛nj > 1 the
eigenvalues of the restriction of �.a/ to the attractive invariant Lagrangian LC

�.a/
, and

analogously for jˇ1j � � � � � jˇnj> 1 and �.b/. Then:

(1) .detM 2=n

�.a/
� 1/.detM 2=n

�.b/
� 1/� 1;

(2) jˇ1j2n �
1

j˛nj2� 1
.

We isolate a useful lemma which is used many times in the proof:

Lemma 3.4 Let M 2 GL.n;F/. Denote by 0 < �n � � � � � �1 the eigenvalues of
M tM and by j�nj � � � � � j�1j the absolute values of the eigenvalues of M . Then
�n � j�nj

2 and �1 � j�1j2 .

Proof If S DM tM , then S � 0, and if . � ; � / denotes the standard scalar product,
we have

�n Dmin
v¤0

.Sv; v/

.v; v/
:
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Since .Sv; v/D .tMv; tMv/, we get �n � .tMv; tMv/=.v; v/ for every nonzero v . If
now �n belongs to F , we get the statement applying this inequality to a corresponding
eigenvector of tM . If instead �n 2K nF , then there is a two-dimensional subspace
E Š F2 in Fn which is invariant under tM and where this latter matrix acts like�
a b
�b a

�
for some a; b 2 F with a2C b2 D j�nj2 . Then for

�
x
y

�
2E , we have�

tM
�
x
y

�
; tM

�
x
y

��
D .axC by/2C .�bxC ay/2 D .a2C b2/.x2Cy2/;

which implies the first assertion in the lemma. The second inequality follows from
applying the first inequality to tM

�1 and observing that

max
v¤0

.Sv; v/

.v; v/
D

�
min
v¤0

.v; v/

.tMv; tMv/

��1
D

�
min
v¤0

.tM�1v; tM�1v/

.v; v/

��1
:

Proof of Theorem 3.3 Given two hyperbolic elements a; b 2 � , we denote by ax.a/
and ax.b/ the axes of a and b , and by aC and bC (resp. a� and b� ) the attractive
(resp. repulsive) fixed points of a and b in @H2 .

We can assume, without loss of generality, that a and b translate as represented by
Figure 1 (left) and that the points .a�; b�; ab�; aC; abC; baC; bC; ba�/ are cyclically
positively ordered; see [15, Lemma 2.2].

Let �W S ! L.V / be the maximal framing for � . Then the six points�
�.b�/; �.aC/; �.a/�.bC/; �.b/�.aC/; �.bC/; �.a�/

�
in L.V /6 form a maximal 6–tuple. This implies that they are pairwise transverse and
every ordered subtriple forms a maximal triple.

We are going to perform our computations in the upper half-space model. As in
Section 2.2, fix a symplectic basis fe1; : : : ; en;�Je1; : : : ;�Jeng of V , set l1 D
he1; : : : ; eni and parametrize the set of Lagrangians transverse to l1 by symmetric

a� aC>
ax.a/

b�

bC

>

ax.b/ ab�

abC

ba� baC

�.a�/D� Id �.aC/D 0>

�.b�/D�ƒ2

�.bC/D l1

>

�.abC/D .AtA� Id/�1
�.baC/D�ƒ2CBƒ2 tB

Figure 1: The points involved in the proof of Theorem 3.3
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matrices. In view of Proposition 2.11, we may, modulo conjugating � , assume that
the 4–tuple .�.a�/; �.b�/; �.aC/; �.bC// is equal to .� Id;�ƒ2; 0; l1/, where ƒ
is diagonal with eigenvalues 0 < �i < 1. Since �.a/ fixes 0 and � Id, and �.b/ fixes
�ƒ2 and l1 , we have

�.a/D

�
tA�1 0

�tA�1CA A

�
and �.b/D

�
B Bƒ2�ƒ2 tB�1

0 tB�1

�
for some matrices A;B . Let ˛1; : : : ; ˛n (resp. ˇ1; : : : ; ˇn ) denote the eigenvalues
of A (resp. B ) counted with multiplicity and ordered so that j˛i j � j˛iC1j (resp.
jˇi j � jˇiC1j).

An easy computation gives

�.b/�.aC/D �.b/ � 0 D�ƒ2CBƒ2 tB;

�.a/�.bC/D �.a/ � l1 D .A
tA� Id/�1:

We summarize this information in Figure 1 (right) for the reader’s convenience.

The maximality of the triple

.�.aC/; �.abC/; �.bC//D .0; .AtA� Id/�1; l1/

implies that the quadratic form represented by .AtA� Id/�1 is positive definite, and
in particular, all the eigenvalues of AtA are bigger than one. Thus if we denote by
�1�� � �� �n>1 the eigenvalues of AtA, it follows from Lemma 3.4 that 1<�n�j˛nj2,
and hence we get that the eigenvalues of A satisfy 1 < j˛nj � � � � � j˛1j; in particular,
�.a/ is Shilov hyperbolic.

We now exploit the maximality of the triple

.�.aC/; �.baC/; �.bC//D .0; Bƒ2 tB �ƒ2; l1/;

which is equivalent to the fact that the quadratic form

ƒ..ƒ�1Bƒ/t.ƒ�1Bƒ/� Id/ƒD Bƒ2 tB �ƒ2

is positive definite. Denoting by C the matrix ƒ�1Bƒ, we get that all the eigenvalues
of C tC are bigger than 1. Let 1 < �n � � � � � �1 denote the eigenvalues of C tC .
From Lemma 3.4, we get that the eigenvalues of B satisfy 1 < jˇnj � � � � � jˇ1j. This
implies that �.b/ is Shilov hyperbolic as well. Moreover, we have

�1 � det.C tC/D det.C /2 � jˇ1j2n:

Last we exploit the maximality of the quadruple

.�.aC/; �.abC/; �.baC/; �.bC//D .0; .AtA� Id/�1; Bƒ2 tB �ƒ2; l1/;

Geometry & Topology, Volume 21 (2017)



3558 Marc Burger and Maria Beatrice Pozzetti

which is equivalent to the property that

(3) ƒ
�
.ƒ�1Bƒ/t.ƒ�1Bƒ/� Id

�
ƒ� .AtA� Id/�1� 0I

see Lemma 2.10(2).

Taking into account that 1 < �n � � � � � �1 , we obtain that if xn � � � � � x1 are the
eigenvalues of

X Dƒ
�
.ƒ�1Bƒ/t.ƒ�1Bƒ/� Id

�
ƒDƒ.C tC � Id/ƒ;

then (3) implies

(4) xi �
1

�nC1�i�1
; for all 1� i � n:

Next we claim that xi < .�i � 1/. Indeed, by the minmax theorem, we have

xk D min
dimWDnC1�k

max
v2W nf0g

.ƒ.C tC � Id/ƒv; v/
kvk2

D min
dimWDnC1�k

max
v2W nf0g

�
..C tC � Id/ƒv;ƒv/

kƒvk2
kƒvk2

kvk2

�
� .�k � 1/ max

v2Fnnf0g

kƒvk2

kvk2
D .�k � 1/�

2
1 < �k � 1;

where the last inequality takes into account that �1 < 1.

Setting i D 1 in the above inequalities, we obtain �1� 1� 1=.�n� 1/ which, together
with the inequalities previously obtained, namely that jˇ1j2n � �1 and �n � j˛nj2 ,
shows assertion (2).

We establish now the inequality (1). Since xi < �i � 1, we get

.detB/2 D
nY
iD1

�i >

nY
iD1

.1C xi /;

and we deduce from (4) that
nY
iD1

.1C xi /�

nY
iD1

�i

.�i � 1/
:

Since over any real closed field F , one has
Qn
iD1.a

n
i �1/� .a1a2 � � � an�1/

n for any
a1; : : : ; an > 1 (see Proposition A.1), we deduce, choosing ai D �1=ni , that� nY

iD1

�i

.�i � 1/

�1=n
�

.�1 � � � �n/
1=n

.�1 � � � �n/1=n� 1
:

Using �1 � � � �n D .detA/2 , this establishes the first inequality.
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Remark 3.5 In the specific case of a maximal representation with values in Sp.2n;R/
and which in addition belongs to the Hitchin component, assertion (2) is a weaker
version of the collar lemma for Hitchin representations proven by Lee and Zhang [15]:
their result implies, under these hypotheses, that

ˇ21 �
˛2n

.˛2n � 1/
:

This is Proposition 2.12(1) in their paper.

3.1 Proper discontinuity on the non-Archimedean Siegel space

We now turn to the topological property of maximal S–framed representations stated
in Corollary 1.11; this will follow from the following fact of independent interest.

Proposition 3.6 There exists a continuous, Sp.V /–invariant, multiplicative distance
function

DW XV �XV ! F�1

with the following property: for any g 2 Sp.V / and J 2XV , we have

D.gJ; J /� j�1.g/j
2;

where j�1.g/j is the maximum modulus of an eigenvalue of g .

More precisely, the properties of D alluded to in Proposition 3.6 are

(MD1) D.J1; J2/� 1, with equality if and only if J1 D J2 ;

(MD2) D.J1; J2/DD.J2; J1/ for all J1; J2 ;

(MD3) D.J1; J2/�D.J1; J3/D.J3; J2/ for all J1; J2; J3 .

We begin with three observations concerning positive-definite forms Q1;Q2 on an
F–vector space W . We have that

(5)
ˇ̌̌̌
Q2

Q1

ˇ̌̌̌
WDmax

x¤0

Q2.x/

Q1.x/

exists and coincides with the largest eigenvalue of the symmetric endomorphism S

representing Q2 with respect to Q1 . If moreover Q1;Q2 have the same determinant,
that is det.S/D 1, then

(6)
ˇ̌̌̌
Q2

Q1

ˇ̌̌̌
� 1; with equality if and only if Q2 DQ1:
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The third observation is that if Q is positive definite and g 2 Sp.V /, then

(7) max
x¤0

Q.gx/

Q.x/
� j�1.g/j

2;

as follows immediately from Lemma 3.4 upon taking an orthonormal basis for Q .

Let XV be the model of the Siegel space given by the set of compatible complex
structures on V (see Section 2.2); given J 2XV , we let QJ .x/ WD hJx; xi. Define,
for J1; J2 2XV ,

D.J1; J2/ WDmax
�ˇ̌̌̌
QJ2
QJ1

ˇ̌̌̌
;

ˇ̌̌̌
QJ1
QJ2

ˇ̌̌̌�
2 F�1:

Then D is well defined and continuous by (5); it verifies (MD1) as follows from (6).
The Sp.V /–invariance, as well as properties (MD2) and (MD3), are formal verifications.
The inequality in Proposition 3.6 is then a direct consequence of (7).

Proof of Corollary 1.11 It follows from Corollary 1.10 and the assumption that †
has no boundary that there exists � > 0 in F such that j�1.�.
//j � 1C � for all

 2 � n feg. As a result, we have (Proposition 3.6)

D.�.
/J; J /� .1C �/2

for all J 2XV and 
 2 � n feg. It follows then from the fact that D is a continuous,
Sp.V /–invariant, multiplicative distance that

U D f.J1; J2/ 2XV �XV jD.J1; J2/ < .1C �/g

fulfills all the properties of Corollary 1.11.

4 Cross-ratios and the geometry of F–tubes

4.1 Cross-ratios

We now introduce a useful tool to study the geometry of the Siegel space. Let V be
a 2n–dimensional vector space over a field L. Observe that if a; b are n–dimensional
subspaces which are transverse (a t b ), then we have a direct sum decomposition
V D a˚b , and thus we can define the projection p�b

a W V ! a onto a parallel to b . Let
now .l1; l2; l3; l4/ be a quadruple in Grn.V / with the property that l1 t l2 and l3 t l4 .

Definition 4.1 The cross-ratio of .l1; l2; l3; l4/ is the endomorphism of l1 defined by

R.l1; l2; l3; l4/D p
�l2
l1
ıp

�l3
l4
jl1 :
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The cross-ratio has the following equivariance property: for all g 2 GL.V /, we have

R.gl1; gl2; gl3; gl4/D gR.l1; l2; l3; l4/g
�1:

It will be useful, in the following, to have an explicit expression for R once a basis
BDfe1; : : : ; e2ng of V is fixed. Recall that, as in Section 2.2, the choice of the basis B
allows us to represent an element m of Grn.V / with a 2n�n matrix M of maximal
rank: the columns of the matrix M are understood to be the coordinates, with respect
to B , of a basis of m. With this notation, we have the following:

Lemma 4.2 Let us assume that the columns of the matrix
�
Xi
Idn

�
form a basis Bi of the

n–dimensional vector space li . Then the expression for R.l1; l2; l3; l4/ with respect to
the basis B1 of l1 is given by

R.l1; l2; l3; l4/D .X1�X2/
�1.X4�X2/.X4�X3/

�1.X1�X3/:

Proof The matrix representing the linear map p�l3
l4
jl1 with respect to the bases B1

of l1 and B4 of l4 is the unique A 2 GL.n;L/ such that� X1
Idn

�
D

� X4
Idn

�
AC

� X3
Idn

�
.Id�A/:

Solving for A, we obtain

AD .X4�X3/
�1.X1�X3/:

Notice that X4�X3 is invertible since, by assumption, l3 and l4 are transverse.

Similarly, we get that the matrix representing the restriction of the linear map p�l2
l1

to l4 with respect to the bases B4 of l4 and B1 of l1 is given by

B D .X1�X2/
�1.X4�X2/:

Since, by definition, the endomorphism R.l1; l2; l3; l4/ is the composition of p�l2
l1

and p�l3
l4
jl1 , and p�l3

l4
jl1 has image contained in l4 , we get that

R.l1; l2; l3; l4/D BA;

which gives the desired result.

Let us now fix a basis B of V , set, as usual, l1 D he1; : : : ; eni and represent with a
matrix M 2M.n;L/ the subspace spanned by the columns of

�
M
Id

�
. Here M.n;L/ is

the set of n�n matrices. By a similar computation, we have

Lemma 4.3 Assume 0, Z , X , l1 are pairwise transverse. Then

R.0;Z;X; l1/DZ
�1X:
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It will be useful to understand how the cross-ratio varies with respect to permutations
of the factors. In particular, we need to be able to compare endomorphisms of different
vector spaces. Given two vector spaces l1; l2 of the same dimension, we say that
two endomorphism R1 2 End.l1/ and R2 2 End.l2/ are conjugate if there exists an
isomorphism gW l1! l2 such that gR1g�1 DR2 . In this case, we write R1 ŠR2 .

Lemma 4.4 Assume that the subspaces li are pairwise transverse. Then

(1) R.l1; l2; l4; l3/D Id�R.l1; l2; l3; l4/;

(2) R.l4; l1; l2; l3/Š .Id�R.l1; l2; l3; l4/�1/�1 ;

(3) R.l2; l3; l1; l4/ŠR.l1; l4; l2; l3/D .Id�R.l1; l2; l3; l4//�1 .

Proof (1) By definition, we have

p
�l2
l1
ıp

�l3
l4
jl1 Cp

�l2
l1
ıp

�l4
l3
jl1 D p

�l2
l1
ı .p

�l3
l4
Cp

�l4
l3
/jl1 D p

�l2
l1
ı Id jl1 D Idl1 :

(2) Up to the GL.V / action, we can assume that l1 D 0, l2 D Z , l3 D X and
l4D l1 . In particular, R.0;Z;X; l1/DZ�1X . In order to compute R.l1; 0; Z;X/,
we compute p�0

l1
jX DX and p�Z

X jl1 D .X �Z/
�1 .

(3) Similarly, one gets that p�X
Z jl1 D .Z �X/

�1 . The second equality follows from
the fact that p�l1

0 jX D Id and p�Z
X j0 D .Id�Z

�1X/�1 .

4.2 F–tubes

Let .V; h � ; � i/ be a symplectic vector space over a real closed field F . Recall from
Section 2.2 that K denotes the quadratic extension F Œi �, that � W L.VK/! L.VK/ is
induced by the complex conjugation with respect to the real structure V of VK and that
TV is the model of the Siegel space contained in L.VK/. For any pair of transverse
Lagrangians .a; b/ in L.V /.2/ , we introduce here an algebraic subset Ya;b of the
Siegel space TV that is determined by the pair .a; b/ and whose dimension is half the
dimension of TV . We call such subsets F–tubes. In the case when F DR, the subsets
Ya;b are Lagrangian submanifolds of the same rank as XR ; the F–tube Ya;b can be
seen as the higher-rank generalization of a geodesic of the Poincaré model which is
more suited to our purposes.

With the notation of Section 2.1, we define

Ya;b D fl 2 TV jR.a; l; �.l/; b/D� Idg:

Notice that requiring that an endomorphism of a vector space is equal to � Id does
not depend on the choice of a basis. From the equivariance property of the cross-ratio
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and the fact that the symplectic group commutes with the complex conjugation � , we
deduce that

(8) gYa;b D Yga;gb for any g 2 Sp.V /:

Our first goal is to give equations for Ya;b in the Siegel upper half-space for some
specific choice of the pair .a; b/. In the sequel, if Z denotes a matrix with coefficients
in K, denote by xZ the matrix obtained applying complex conjugation in K to all
coefficients of Z . If Z is symmetric, this is the same as applying the complex
conjugation � to the corresponding Lagrangian.

Lemma 4.5 The F–tube with endpoints 0; l1 is

Y0;l1 D fiY j Y 2 SymC.n;F/g:

Proof It follows from Lemma 4.3 that R.0;Z; �.Z/; l1/DZ�1 xZ . Clearly we have
Z�1 xZ D� Id if and only if xZ D�Z , and this concludes the proof.

An immediate consequence of Lemma 4.5 and the equivariance property (8) is that
if F is a real closed field, the stabilizer of Ya;b is isomorphic to GL.n;F/, and it acts
transitively on Ya;b .

It will also be useful to have explicit expression for the set Ya;b when a and b are trans-
verse to l1 . This has a particularly nice expression when aDhe1�enC1; : : : ; en�e2ni
and b D he1C enC1; : : : ; enC e2ni:

Lemma 4.6 If a; b 2 L.V / correspond to the matrices � Id and Id, then

Y� Id;Id D U.n/\XF

D fX C iY 2 XF j YX DXY; X
2
CY 2 D Idg:

Proof Lemma 4.2 implies

R.� Id; Z; �.Z/; Id/D .� Id�Z/�1.Id�Z/.Id� xZ/�1.� Id� xZ/:

Since IdCxZ and .Id� xZ/�1 commute, the equality R.� Id; Z; �.Z/; Id/D� Id reads

.Id�Z/.IdCxZ/D�.IdCZ/.Id� xZ/;
which implies

Id�ZC xZ �Z xZ D� IdCxZ �ZCZ xZ;

and hence, Z xZ DZ�Z D Id.
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As a consequence of the explicit parametrization of the sets Y0;l1 and Y� Id;Id , we
obtain:

Proposition 4.7 Assume that F is a real closed field. Let .a; b; c; d/ 2 L.V /.4/ be a
maximal 4–tuple. The F–tubes Ya;c and Yb;d meet exactly in one point.

Proof Up to the symplectic group action, we can assume .a; b; c; d/D .� Id; 0;D; l1/
for some diagonal matrix D D diag.d1; : : : ; dn/ with di > 0; see Proposition 2.11.
Let y be a point in Y0;l1 \Y� Id;D . Since y belongs to Y0;l1 , we know that y has
expression yD iY for some positive-definite matrix Y . From the definition of Y� Id;D ,
we get

.� Id�iY /�1.D� iY /.DC iY /�1.� IdCiY /D� Id :

This is equivalent to

.D� iY /.DC iY /�1 D .IdCiY /.� IdCiY /�1;

which in turn, using that .IdCiY / and .� IdCiY /�1 commute, is equivalent to

.� IdCiY /.D� iY /D .IdCiY /.DC iY /:

This last equation reads Y 2 DD , which has a unique positive solution.

Remark 4.8 If the ordered field F is not real closed, one can similarly get that, if
.a; b; c; d/ is maximal, the F–tubes Ya;c and Yb;d meet in at most one point.

4.3 Reflection with respect to Ya;b

In this subsection, we introduce a notion of orthogonality for F–tubes and establish
that the set of F–tubes orthogonal to a fixed one foliate the space TV . Our main tool
will be the characterization of Ya;b as the fixed point set of an involution �a;b which
we now define. Let a; b be transverse Lagrangians in L.V /. We consider the real
form Va;b of VK given by

Va;b D hvC iw j v 2 a; w 2 bi;

and denote by �a;b the complex conjugation of VK fixing Va;b . The following proper-
ties of �a;b can be checked easily:

Lemma 4.9 (1) �a;b is K–antilinear;

(2) �a;b� D ��a;b , and in particular, �a;b preserves V ;

(3) h�a;b. � /; �a;b. � /iK D�h � ; � iK ;

(4) g�a;b D �ga;gbg , for every g in Sp.V /.
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As a consequence of the first two facts of Lemma 4.9, we get that �a;b induces a map
on Grn.V / that, with a slight abuse of notation, will be also denoted by �a;b . The
third fact of Lemma 4.9 implies that �a;b restricts to a map

�a;bW L.VK/! L.VK/;

which preserves the subspaces we are interested in:

Lemma 4.10 The involution �a;b preserves the subspaces TV and L.V / of L.VK/.
It commutes with the cross-ratio.

Proof Since the F–linear map �a;b preserves V , the induced map on L.VK/ preserves
the subspace L.V /. The fact that �a;b induces a map of TV can be seen from the
following computation which uses Lemma 4.9(3): for every v;w 2 VK ,

ih�a;b.v/; �a;b.w/iK D�ihv;wiK

D ihv;wiK:

In particular, the restriction of ih � ; �. � /iK to a Lagrangian l 2 L.VK/ is positive
definite if and only if its restriction to �a;b.l/ is.

For any pair a; b 2 L.V /.2/ and for any 4–tuple .l1; l2; l3; l4/ in the domain of the
definition of R , we have

�a;bR.l1; l2; l3; l4/�a;b DR.�a;b.l1/; �a;b.l2/; �a;b.l3/; �a;b.l4//I

this follows from the equivariance property of the cross-ratio and that �2
a;b
D Id.

It is easy to check from the very definition of �0;l1 that for any Z 2 XF , we have
�0;l1.Z/D�

xZ . In particular, Y0;l1 D TV \ Fix.�0;l1/. An immediate corollary of
the transitivity of the symplectic group action on L.V /.2/ is the following:

Corollary 4.11 For any pair .a; b/, we have Ya;b D TV \Fix.�a;b/.

Another useful characterization of the F–tubes is the following:

Lemma 4.12 In the model XV ,

Ya;b D fJ 2XV j a and b are orthogonal for hJ � ; � ig:

Proof In the notation of Section 2, let J 2 XV . Then �a;b.L
C

J /D L
C

J if and only
if �a;b.L�J / D L

�
J . Hence, since �a;b is K–antilinear, we deduce �a;b.J ˝ IK/ D

�.J ˝ IK/�a;b , which, by restriction to V D a˚b , is equivalent to �a;bJ D�J�a;b .
The latter is equivalent to J.a/D b ; that is, a and b are orthogonal with respect to
hJ � ; � i.
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The restriction of �a;b to the subset of L.V / consisting of points that are transverse
to a and b can also be characterized in term of the cross-ratio:

Proposition 4.13 For each c 2 L.V / transverse to a and b , we have that �a;b.c/ is
the unique point satisfying

R.a; c; �a;b.c/; b/D� Id :

Proof Up to the symplectic group action, we can assume that aD0 and bD l1 . Since
c is transverse to l1 , it can be represented by a symmetric matrix S with coefficients
in F . The formula of Lemma 4.3 implies that R.0; S; �0;l1.S/; l1/D S

�1�0;l1.S/,
and hence the unique point satisfying R.0; S; �0;l1.S/; l1/D� Id is �S .

When F DR and the 4–tuple .a; b; c; d/ is maximal, the two R–tubes Ya;c and Yb;d
are orthogonal as totally geodesic submanifolds of the Riemannian manifold XR

precisely when R.a; b; c; d/ D 2 Id. For arbitrary real closed fields, we take this
property as a definition of orthogonality.

Definition 4.14 Let .a; b; c; d/ be maximal. Two F–tubes Ya;c and Yb;d are orthog-
onal if R.a; b; c; d/D 2 Id. In this case, we write Ya;c ? Yb;d .

Notice that the orthogonality relation is symmetric since R.d; a; b; c/ is conjugate to
.Id�R.a; b; c; d/�1/�1 ; see Lemma 4.4(2). The following lemma is a consequence
of the property of the cross-ratio established in Lemma 4.4(1) and the characterization
of the involution �a;b in terms of the cross-ratio given in Proposition 4.13:

Lemma 4.15 Let .a; b; c; d/ be a maximal quadruple in L.V /.4/ . The following are
equivalent:

(1) Ya;c ? Yb;d ;

(2) d D �a;c.b/;

(3) c D �b;d .a/.

We now turn to an important geometric feature of the Siegel upper half-space, namely
that the F–tubes orthogonal to any fixed F –tube foliate the whole space. We first verify
this in a special case:

Proposition 4.16 Assume that F is real closed. For any ZDXCiY 2TV , there exists
a unique S in L.V /l1 such that .0; S; l1/ is maximal and Z 2 Y�S;S . Moreover,

S D Y 1=2
p

IdC.Y �1=2XY �1=2/2 Y 1=2:
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Proof Given Z DXC iY , we look for a positive-definite matrix S with Z 2 Y�S;S ;
see the following picture:

Z DX C iY

0 S

Denoting by a.S�1=2/ the element of Sp.2n;F/ represented by the matrix
�
S�1=2 0
0 S1=2

�
,

we have a.S�1=2/Y�S;S DY� Id;Id . The condition a.S�1=2/Z 2Y� Id;Id leads, in view
of the equations of Lemma 4.6, to(

.S�1=2XS�1=2/.S�1=2YS�1=2/D .S�1=2YS�1=2/.S�1=2XS�1=2/;

.S�1=2XS�1=2/2C .S�1=2YS�1=2/2 D Id :

From the first equation, observing that Y is invertible, we get

XS�1 D YS�1XY �1:

Substituting this last equality in the second equation, and defining the matrix V WD
Y �1=2SY �1=2 , we get

V �1..Y �1=2XY �1=2/2C Id/D V;
which implies

V D
p

IdC.Y �1=2XY �1=2/2 and S D Y 1=2
p

IdC.Y �1=2XY �1=2/2 Y 1=2:

This shows the formula and implies uniqueness.

Since all F–tubes are Sp.V /–conjugate, we obtain:

Corollary 4.17 For any transverse pair .a; b/ 2 L.V /.2/ and any z 2 TV , there exists
a unique c 2 L.V / such that .a; c; b/ is maximal and z belongs to Yc;�a;b.c/ .

Corollary 4.17 allows us to define the orthogonal projection

prYa;b W TV [ ..a; b//[ ..b; a//! Ya;b
as follows:

(1) if c 2 ..a; b//[ ..b; a//, then we set prYa;b .c/D Yc; �a;b.c/\Ya;b ;

(2) if Z 2 TV , then we set prYa;b .Z/ D Yc;�a;b.c/ \ Ya;b , where c is the unique
Lagrangian in L.V / such that .a; c; b/ is maximal and Z 2 Yc;�a;b.c/ .

It is easy to check that, when restricted to its set of definition in L.V /, the orthogonal
projection respects cross-ratios:

Lemma 4.18 Let .a; b/ be a pair of transverse Lagrangians, and let x; y be points in
..a; b//. Then we have

R.a; x; y; b/DR.a; prYa;b.x/; prYa;b.y/; b/:
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Proof Up to the symplectic group action, we can assume that aD 0 and b D l1 . In
that case, the result follows from the explicit formula for the cross-ratio and for the
orthogonal projection.

5 Reduction modulo an order convex subring

5.1 Order convex subrings

Let F be a real closed, non-Archimedean field. We denote by O < F an order convex
subring. This means that O is a subring with the additional property that for every
positive element x in F , if there exists y in O with 0 < x < y , then x belongs to O
as well. It is easy to verify that, in this case, O is a local ring whose maximal ideal I
is given by

I D fx 2O j x�1 …Og:

We will denote by FO the quotient field FO WD O=I . The field FO is real closed as
well. The following examples of order convex subrings will play an important role in
the sequel:

Example 5.1 Let � 2 F be an infinitesimal: this means that � is a positive element
satisfying � < 1=n for any integer n. An example of an order convex subring of F is
given by the set of elements comparable to � :

O� D fx 2 F W jxj< ��k for some k 2N gI

in this case, the maximal ideal can also be characterized as

I� D fx 2 F W jxj< �k for all k 2N g:

Example 5.2 Let us assume that F admits an order compatible valuation v . An
example of order convex subring is given by the elements with nonnegative valuation

U D fx 2 F j v.x/� 0g;

and the maximal ideal can be characterized as

MD fx 2 F j v.x/ > 0g:

5.2 O–points

Let O be an order convex subring of F , and let W be a finite-dimensional F–vector
space equipped with an F–valued scalar product . � ; � /. Then we set

W.O/D fv 2W j .v; v/ 2Og and W.I/D fv 2W j .v; v/ 2 Ig:
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They are O–submodules; if e1; : : : ; em is any orthonormal basis of W , then one verifies

W.O/D
mX
iD1

Oei and W.I/D
mX
iD1

Iei :

This implies that the quotient WO D W.O/=W.I/ is an FO–vector space of dimen-
sion m D dim.W /, that the scalar product . � ; � / descends to a well-defined scalar
product . � ; � /O on WO and that, if pOW W.O/ ! WO denotes the quotient map,
fpO.e1/; : : : ; pO.em/g is again an orthonormal basis of WO . Notice, however, that the
map pO depends on the choice of the scalar product on W .

The subgroup
GL.W /.O/ WD fg 2 GL.W / j g.W.O//DW.O/g

preserves W.I/, and we obtain this way a natural homomorphism �OW GL.W /.O/!
GL.WO/. The choice of an orthonormal basis of W induces an identification of the
group GL.W /.O/ with GL.m;O/.

Let Q.W / be the vector space of F–valued quadratic forms on W . As in Section 2, we
associate to f 2Q.W / the symmetric bilinear form bf . � ; � /. We fix a basis e1; : : : ; em
of W which is orthonormal for . � ; � / and let .Af /ij D bf .ei ; ej / be the associated
symmetric matrix. We endow Q.W / with the scalar product .f; g/D tr.Af Ag/. Our
next task is to understand the relationship between Q.WO/ and Q.W /O .

Lemma 5.3 For a quadratic form f 2Q.W /, the following are equivalent:

(1) f 2Q.W /.O/;
(2) f .W.O//�O ;

(3) bf .W.O/;W.O//�O and bf .W.O/;W.I//� I .

Proof Clearly kf k2D tr.A2f /D
P
.Af /

2
ij belongs to O if and only if .Af /ij belongs

to O for all i; j , which easily implies the desired equivalences.

Thus, if f belongs to Q.W /.O/, then bf induces an FO–valued bilinear symmetric
form xbf on WO . In turn, xbf defines a quadratic form xf 2 Q.WO/. If Af is the
matrix of f with respect to the orthonormal basis fe1; : : : ; emg, then the matrix A xf
representing xf with respect to the basis fpO.e1/; : : : ; pO.em/g is just the reduction
modulo I of the matrix Af . With this at hand, one verifies easily that the map

xpOW Q.W /.O/!Q.WO/; f 7! xf ;

induces an isomorphism of FO–vector spaces

Q.W /O!Q.WO/:
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We end the discussion concerning quadratic forms with the following remark:

Remark 5.4 Let f 2Q.W /, and let fe1; : : : ; eng be an orthonormal basis in which f
is diagonal, that is, bf .ei ; ej /D �iıij . Let

mf D cardfi j �i > 0g;

nf D cardfi j �i < 0g;

zf D cardfi j �i D 0g:

Then clearly m xf �mf , n xf � nf and z xf � zf .

There is also a reduction process for Grassmannians, and it will play an important role
for the construction of framings. Thus let L 2 Grl.W / be an l–dimensional subspace
of W . Then L.O/DL\W.O/, and if e1; : : : ; el is an orthonormal basis of L, we have
L.O/DOe1C� � �COel . This implies that the image pO.L/ of L.O/ in WO is an FO–
vector subspace of dimension l . In this way, we obtain a map qOW Grl.W /!Grl.WO/

which is equivariant with respect to �OW GL.W /.O/! GL.WO/.

Remark 5.5 The map qO does not preserve transversality: if V DF2 with the standard
scalar product, and x is a nonzero element of I , the two distinct lines F � .1; 0/ and
F � .1; x/ of PV have the same image in PVO .

We apply now the preceding remarks to the following situation. Let V be a F–vector
space with a symplectic form h � ; � i, and fix a compatible complex structure J . We
will use the associated scalar product . � ; � / WD hJ � ; � i to define the O points. If L is
a Lagrangian, then JL is orthogonal to L, and if fe1; : : : ; eng is an orthonormal basis
of L, the basis B D fe1; : : : ; en;�Je1; : : : ;�Jeng is orthonormal and symplectic.
With this at hand, one shows readily that J 2 Sp.V /.O/ WD Sp.V /\GL.V /.O/, and
that h � ; � i induces a symplectic form h � ; � iO of VO compatible with pOW V.O/! VO .
If in addition, one sets JO D �O.J /, then JO is a complex structure on VO compatible
with h � ; � iO and with associated scalar product . � ; � /O . From the above, it follows
that, if L 2 Grn.V / is a Lagrangian, then qO.L/ 2 Grn.VO/ is a Lagrangian as well.

Lemma 5.6 The map
qOW L.V /! L.VO/

is surjective.

Proof Let L0 be a k–dimensional totally isotropic subspace of V , and let v0 2 V be
such that hv; v0i 2 I for all v 2 L0 . Let e1; : : : ; ek be an orthonormal basis of L0 .
By completing it to a symplectic basis of V , it is easy to verify that the map

V.I/! Ik; w 7! .he1; wi; : : : ; hek; wi/;
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is surjective. Thus we can find w0 2 V.I/ with hei ; v0i D hei ; w0i for all 1� i � k .
Then v1 D v0 � w0 has the same projection in VO as v0 and is orthogonal to L0
with respect to the symplectic form. The lemma follows then by recurrence on the
dimension.

5.3 Affine charts on Lagrangian Grassmannians and reduction
modulo I

Now we turn to a more detailed study of the map qO and certain transversality properties.
Recall from Section 2.1 that given transverse Lagrangians l1; l2 in V , we have a map

jl1;l2 W Q.l1/! L.V /l2

which to f 2Q.l1/ associates the Lagrangian

Lf D fvCTf v j v 2 l1g;

where Tf W l1! l2 is defined by the equation

bf .v; w/D hv; Tf wi D hw; Tf vi; v; w 2 l1:

If l1; l2 are orthogonal for . � ; � / and fe1; : : : ; eng is an orthonormal basis of l1 , then
fJe1; : : : ; Jeng is an orthonormal basis for l2 , and the symmetric matrix Af of f in
this basis is given by .Af /ij D hei ; Tf .ej /i D �.Jei ; Tf .ej //. Thus it follows from
Lemma 5.3 that f belongs to Q.l1/.O/ if and only if the matrix coefficients of Tf
with respect to the basis fe1; : : : ; eng and fJe1; : : : ; Jeng are in O , which in turn is
equivalent to Tf .l1.O//� l2.O/.

Lemma 5.7 If l1; l2 are orthogonal Lagrangians in the symplectic vector space V ,
then qO.l1/ and qO.l2/ are orthogonal, and the diagram

Q.l1/.O/ //

xpO

��

Q.l1/
jl1;l2

�
// L.V /l2 // L.V /

qO

��

Q.qO.l1//
jqO.l1/;qO.l2/

�
// L.VO/

qO.l2/ // L.VO/

commutes. The image under qO of a Lagrangian that does not belong to jl1;l2.Q.l1/.O//
is not transverse to qO.l2/.

Proof Since l1 and l2 are orthogonal, we have for f 2Q.l1/,

jl1;l2.f /.O/D fvCTf .v/ j v 2 l1.O/; Tf .v/ 2 l2.O/g:
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First notice that, if f belongs to Q.l1/.O/, then Tf .l1.O// is contained in l2.O/, and
thus we get

jl1;l2.f /.O/D fvCTf .v/ j v 2 l1.O/g:

Now Tf induces a well-defined map xTf W qO.l1/! qO.l2/ with the property that

qO.jl1;l2.f //D fvC
xTf .v/ j v 2 qO.l1/g:

But bf .v; w/ is, by definition, equal to hv; Tf .w/i, and thus b xf .v; w/ is equal to
hv; xTf .w/iO for v;w 2 qO.l1/. This implies that jqO.l1/;qO.l2/. xpO.f // is equal to
qO.jl1;l2.f // and proves the commutativity of the diagram.

If f does not belong to Q.l1/.O/, we can assume without loss of generality that
Tf .e1/ is not in l2.O/. Writing Tf .e1/D

Pn
iD1 �iJei , let i0 be such that j�i0 j D

maxfj�i j W 1� i � ng. Then �i0 does not belong to O , and hence �D ��1i0 belongs
to I . This implies that Tf .�e1/ belongs to l2.O/ and its ei0 coordinate is equal to 1.
Thus �e1CTf .�e1/ belongs to jl1;l2.f /.O/, and

0¤ pO.�e1CTf .�e1// 2 qO.jl1;l2.f //\ qO.l2/:

Lemma 5.8 Assume .a; b; c; d/ 2 L.V /.4/ is a maximal 4–tuple such that qO.a/ is
transverse to qO.b/, and qO.c/ is transverse to qO.d/. Then for every x1 2 ..b; c//
and x2 2 ..d; a//, the subspace qO.x1/ is transverse to qO.x2/.

Proof Pick m 2 ..qO.a/; qO.b/// and M 2 L.V / with qO.M/Dm (see Lemma 5.6).
As a consequence of Remark 5.4 and the definition of the Kashiwara cocycle, we get
that M 2 ..a; b//. It follows then that .b; x1; c; d; x2; a/ forms a maximal 6–tuple, and
these six Lagrangians are all transverse to M , as illustrated in the following picture:

x2

d

c

x1

b

M

a

Thus these points are in the image of jJM;M W Q.JM/! L.V /M. Denote by fl 2
Q.JM/ the quadratic form with jJM;M .fl/D l 2 L.V /M. We have from the maxi-
mality property of the 6–tuple that

fb� fx1 � fc� fd � fx2 � faI

see Lemma 2.10(2). Applying now Lemma 5.7 to l1 D JM and l2 DM , we deduce,
from the fact that qO.a/ and qO.b/ are transverse to m D qO.M/, that fa and fb
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are in Q.JM/.O/. From the inequalities above, we deduce that fx1 and fx2 are in
Q.JM/.O/; it follows then from the commutativity of the diagram in Lemma 5.7 that
qO.x1/ and qO.x2/ are transverse to mD qO.M/. Also,

fqO.x2/�fqO.x1/� fqO.d/�fqO.c/� 0;

where the last inequality follows from the hypothesis that qO.d/ is transverse to qO.c/.
Thus qO.x2/ is transverse to qO.x1/.

5.4 Choosing the scale and constructing the maximal framing

Let �W � ! Sp.V / be a representation admitting a maximal framing �W S ! L.V /.
We assume that there is a complex structure J in XV and an order convex subring O
of F such that �.�/� Sp.V /.O/. We define then �OW �! Sp.VO/ as the composition
�O WD�Oı� and �OW S!L.VO/ as the composition �O WD qOı� . Our goal is to show:

Theorem 5.9 If � is a maximal S–framing for �W �! Sp.V /, then �O is a maximal
S–framing for �OW �! Sp.VO/.

Remark 5.10 Since � is finitely generated, for any choice of a compatible complex
structure J it is possible to find an infinitesimal � such that �.�/ � Sp.V /.O� /,
where O� is the order convex subring described in Example 5.1. However, as we
will discuss in Section 10, the choice of � depends on the complex structure J ; see
Proposition 10.6.

In view of the definition of maximality of triples of Lagrangians and Remark 5.4, in
order to prove Theorem 5.9, we have to show that if x ¤ y are distinct points in S ,
then qO.�.x// and qO.�.y// are transverse Lagrangians. As a first step, we show:

Lemma 5.11 Assume that there exist two distinct points x; y in S such that qO.�.x//

and qO.�.y// are not transverse. Then there exists a hyperbolic element 
 2 � such
that qO.�.


C// and qO.�.

�// are not transverse.

Proof From Lemma 5.8, it follows that we can choose I either ..x; y// or ..y; x//
so that for every t1; t2 in I , we have that qO.�.t1// and qO.�.t2// are not transverse.
Now pick a hyperbolic element 
 2 � with f
C; 
�g � I .

The strategy of the proof consists in showing that for every hyperbolic element 
 2 � ,
the Lagrangians qO.�.


�// and qO.�.

C// are transverse. This will be a consequence

of the properties of the eigenvalues of �.
/ using the collar lemma.

We first observe that eigenvalues behave well with respect to reduction modulo I :
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Lemma 5.12 Let B 2 GL.m;O/ be a matrix, and denote by ˇi 2K the eigenvalues
of B . Then:

(1) jˇi j 2O ;
(2) if xB denotes the image of B in GL.m;FO/, and x̌i are the images of ˇi in KO ,

then the eigenvalues of xB are precisely x̌i .

Proof The first assertion follows from the fact that if ˇi is an eigenvalue of B , then
there exists a vector v 2 V.O/ n V.I/ such that kBvk D jˇi jkvk; see Lemma 3.4.
The second assertion follows from the fact that the characteristic polynomial of the
reduction xB is the reduction of the characteristic polynomial of B .

Remark 5.13 Clearly, if g belongs to GL.V /.O/, for each subspace W of V pre-
served by g , the restriction gjW belongs to GL.W /.O/, and the restriction commutes
with the reduction: �O.g/jqO.W / D �O.gjW /. However, it is worth pointing out that
the Jordan decomposition of a matrix B 2 GL.m;O/ is not necessarily defined in
GL.m;O/, and in particular, the exponents of the minimal polynomial of a matrix B
need not to be related with the exponents of the minimal polynomial of the reduction
of B . For example, if � belongs to I , then the reduction of the not diagonalizable
matrix

�
2 �
0 2

�
is diagonalizable, and the reduction of the diagonalizable matrix

�
1 1
0 1C�

�
is not diagonalizable.

This last example shows that generalized eigenspaces relative to distinct eigenvalues
might not have transverse images in the quotient if the corresponding eigenvalues
coincide modulo I . We will now deduce from the collar lemma that, in case of maximal
S–framed representations, the intermediate eigenvalues have distinct reductions:

Lemma 5.14 Let �W � ! Sp.V / be a representation admitting a maximal framing.
Assume that �.�/� Sp.V /.O/. Then for every hyperbolic element 
 2 � , we have

j�n.
/j � 1 2O n I;

where j�1.
/j � � � � � j�n.
/j> 1 are the eigenvalues of 
 of absolute value greater
than 1.

Proof Let ı 2 � be a hyperbolic element with positive intersection number with 
 ,
and let �1.ı/ be the eigenvalue of �.ı/ of largest modulus. If j�n.
/j < 2, then the
collar lemma (Theorem 3.3) implies

j�n.
/j � 1D
j�n.
/j

2� 1

j�n.
/jC 1
�

1

3j�1.ı/j2n
:

Now observe that, since �.ı/ 2 Sp.2n;O/, we have that j�1.ı/j belongs to O , from
which the claim follows.
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We have now all the necessary ingredients to prove Theorem 5.9:

Proof of Theorem 5.9 Let us assume by contradiction that there exist x; y in S with
qO.�.x// nontransverse to qO.�.y//. As a consequence of Lemma 5.11, we can find
a hyperbolic element 
 in � such that qO.�.


C// is nontransverse to qO.�.

�//.

If now j�1.
/j � � � � � j�n.
/j > 1 are the absolute values of the eigenvalues of
�.
/j�.
C/ , counted with multiplicity, then it follows from Lemmas 5.14 and 5.12
that the absolute values j�1.
/j � � � � � j�n.
/j> 1 of the eigenvalues of the restric-
tion of �O.
/ to qO.�.


C// are all strictly larger than 1. Since j�1.
/j�1 � � � � �
j�n.
/j

�1<1 are then the absolute values of the eigenvalues of the restriction of �O.
/

to qO.�.

�//, this implies that the �O–invariant vector space qO.�.


C//\qO.�.

�//

must be zero since otherwise �O.
/ would have at least a nonzero eigenvalue which
would be an element in KO both of absolute value strictly larger and smaller than 1.
Thus qO.�.


C//\ qO.�.

�//D 0, which is a contradiction. Hence, for every x ¤ y

in S , we have that qO.�.x// is transverse to qO.�.y//.

6 Fields with valuation and the projection to the building

In this section, F will denote an ordered field with a compatible valuation vW F !
R[f1g, meaning that we require v.y/� v.x/ whenever 0� x � y .

Example 6.1 (compare Example 5.1) Let E be an ordered field, � 2 E an infinitesi-
mal and O� the order convex local subring consisting of elements comparable with � .
On O� , we define the valuation

v� .x/D supft 2R W jxj � � tg:

Then v� passes to the quotient E� WDO�=I� by the maximal ideal I� and defines an
order compatible valuation.

We introduce on F the norm kxk WDe�v.x/ . This defines an ultrametric norm on F with
valuation ring U WD fx 2 F W kxk� 1g whose maximal ideal is M WD fx 2 F W kxk<1g.
Observe that since the valuation is order compatible, the norm is order compatible as
well: if 0 < x < y , then kxk � kyk.

Let .V; h � ; � i/ be a symplectic vector space over F , J0 2XV a compatible complex
structure and . � ; � /J0 the corresponding scalar product. We denote by BV the affine
building associated to Sp.V /; see [20, Section 3.2; 13, Theorem 4.3]. It is well known
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that the set of vertices B0V of BV can be identified with the homogeneous space
Sp.V /=Sp.V /.U/, where, as in Section 5, we define

V.U/D fv 2 V j .v; v/ 2 Ug
and

Sp.V /.U/D fg 2 Sp.V / j g.V.U//D V.U/g:

The stabilizer of the complex structure J0 2XV is

U.J0/D fg 2 Sp.V / j gJ0g�1 D J0g

D fg 2 Sp.V / j g preserves the scalar product . � ; � /J0g;

and hence is contained in Sp.V /.U/. As a result, we can define the projection

�BW XV D Sp.V /=U.J0/ ! B0V D Sp.V /=Sp.V /.U/:

Remark 6.2 Parreau [20] gave an explicit description of the building associated to
SL.2n;F/ as the space of good norms on F2n of determinant one. It is possible to
verify that, considering the affine building associated to Sp.2n;F/ as a subbuilding of
the affine building associated to SL.2n;F/, the map �B corresponds to the map that
associates to a point J 2XV the corresponding good norm �J .v/D k.v; v/J k.

For F DR, Siegel [26] gave explicit formulas for the Riemannian distance on XR . We
use the cross-ratio R defined in Section 4.1 to define in our context a distance-like func-
tion as follows. Observe that, given X;W 2 TV , the cross-ratio R.X; �.W /;W; �.X//
is always well defined: indeed, the Hermitian form ih � ; �. � /i is positive definite on X
and W and negative definite on �.W / and �.X/; in particular, X and �.W / are
transverse, and so are W and �.X/. Moreover, all the eigenvalues of the cross-ratio
R.X; �.W /;W; �.X// belong to F and are between 0 and 1: indeed, since F is real
closed, for each pair X;W 2 XF , we can find g 2 Sp.V / such that g �X D i Id and
g �W D iD for a diagonal matrix D with positive entries, and we have

gR.X; �.W /;W; �.X//g�1 DR.i Id;�iD; iD;�i Id/D
.Id�D/2

.IdCD/2
:

We can thus define

(9) d.Z;W /D

s
nX
iD1

�
ln




1Cpr i1�

p
r i





�2;
where r1; : : : ; rn are the eigenvalues of R.X; �.W /;W; �.X//.

Geometry & Topology, Volume 21 (2017)



Maximal representations, non-Archimedean Siegel spaces, and buildings 3577

In the case we considered above, where X D i Id and W D iD , (9) specializes to

d.i Id; iD/D

s
nX
iD1

.ln kdik/2;

where d1; : : : ; dn are the entries of D .

The function d is clearly Sp.V /–invariant since the eigenvalues of the cross-ratio are.
Denote by dB the CAT(0) distance on BV . Using the transitivity of the symplectic
group on apartments in BV and the invariance of d , one verifies:

Proposition 6.3 For any X; Y 2 TV , we have

dB.�B.X/; �B.Y //D d.X; Y /:

As a result, we get that d is a pseudodistance on TV , and BV is the Hausdorff quotient
of TV modulo this pseudodistance.

We will denote by LB.g/ the translation length of an element g 2 Sp.V / considered
as an isometry of the affine building BV .

7 On elements with fixed points

We place ourselves in the framework of Section 6 and consider a representation �W �!
Sp.V / admitting a maximal framing .S; �/. In this section, we want to analyze how
elements of � which have zero translation length in the building BV interact. As a
crucial step in the analysis, we associate to any such 
 2 � a pair .bC
 ; b

�

 / of points

in BV which are fixed by �.
/ and are canonically constructed from the maximal
framing � .

Recall from Section 6 that we denote by �BW TV ! BV the Sp.V /–equivariant projec-
tion from the Siegel upper half-space to the affine building associated to Sp.V /, and
given an element g 2 Sp.V /, we denote by LB.g/ the translation length of g on BV .
Moreover, for ease of notation, we will denote by Y
 the F–tube Y�.
�/;�.
C/ and
by Y
 its projection to BV :

Y
 D �B.Y
 /:

It follows from the equivariance of �B that Y
 is a subbuilding of BV associated to a
subgroup of Sp.V / isomorphic to GL.n;F/. Recall from Section 4.3 that given any
pair of transverse Lagrangians a; b 2 L.V /, we defined an orthogonal projection

prYa;b W ..a; b//[ ..b; a//! Ya;b:

The first goal of the section is to prove:
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Proposition 7.1 Let 
 2 � be an element which is not boundary parallel. Assume
that LB.�.
//D 0. Then both maps

FC
 W ..

�; 
C//! Y
 ; x 7! �B.prY
 .�.x///

and
F�
 W ..


C; 
�//! Y
 ; x 7! �B.prY
 .�.x///

are constant.

Denoting by bC
 (resp. b�
 ) the constant images of the maps FC
 (resp. F�
 ) in
Proposition 7.1 we have:

Corollary 7.2 The points bC
 and b�
 are fixed by �.
/.

If 
 2 � corresponds to a simple closed geodesic, it is possible to construct examples
of representations �W �! Sp.V / such that the points bC
 and b�
 are different. The
second main result of the section gives sufficient conditions for the two points to
coincide:

Proposition 7.3 Assume that 
 and � in � are hyperbolic elements with intersecting
axes, and that LB.�.
//D LB.�.�//D 0. Then

bC
 D b
�

 D b

C
� D b

�
� D �B.Y
 \Y�/:

Corollary 7.4 Assume that LB.�.
//D 0. If the closed geodesic corresponding to 

is not simple, then bC
 D b

�

 .

Before proceeding to the proofs of Propositions 7.1 and 7.3, we observe that in certain
situations, one can get a uniform lower bound on the translation lengths LB.�.
// for
all hyperbolic elements 
 crossing a given hyperbolic element �. This is in fact an
immediate corollary of the collar lemma:

Corollary 7.5 Assume that � 2 � is a hyperbolic element, and let us denote by
j�1.�/j � � � � � j�n.�/j> 1 the eigenvalues of �.�/ of absolute value larger than 1. If
ı D kj�n.�/j � 1k< 1, then for any element 
 intersecting �, we have

LB.�.
//�
1

2nı
:

In particular, if the closed geodesic represented by � is not simple, kj�n.�/j � 1k � 1.
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Proposition 7.3 also allows us to give sufficient conditions for a representation � to
have a global fixed point. We say that a generating set X for � is connected if the
graph .X;E/, where E consists of the pairs .s1; s2/ of elements of X whose axes
intersect, is connected.

Corollary 7.6 Let X be any connected generating set for � . If �W � ! Sp.V / is a
representation admitting a maximal framing, the following are equivalent:

(1) � has a global fixed point in BV ;

(2) LB.�.s//D 0 for all s 2X .

Remark 7.7 There exist connected generating sets consisting of 2g simple closed
curves. In particular, Corollary 7.6 refines, in our setting, [22, Corollary 3].

Recall from Section 2.3 that we say that g 2 Sp.V / is Shilov hyperbolic if there
exists a g–invariant decomposition V D LCg ˚L

�
g such that all the eigenvalues of the

restriction Mg of g to LCg are in absolute value strictly greater than one. It is however
worth remarking that, in general, g does not necessarily have a hyperbolic dynamic
on L.V /. It follows from Lemma 5.14 that, as soon as � admits a maximal framing,
for any hyperbolic element 
 2 � , its image �.
/ is Shilov hyperbolic.

Lemma 7.8 Let g 2 Sp.V / be Shilov hyperbolic, and let f�1; : : : ; �ng � F Œi � be the
set of eigenvalues of Mg . Then

LB.g/D 2

s
nX
iD1

.ln k�ik/2:

Proof Since g is Shilov hyperbolic, it stabilizes the F–tube Y
L
C
g ;L
�
g

, and similarly it
stabilizes the projection

Y
L
C
g ;L
�
g
D �B.YLCg ;L�g /:

This latter is a subbuilding of BV associated to GL.n;F/. The desired statement then
follows from [20].

Lemma 7.9 Let g 2 Sp.V / be Shilov hyperbolic. Then the following are equivalent:

(1) LB.g/D 0;

(2) kdetMgk D 1;

(3) kdetR.LCg ; S; gS;L
�
g /k D 1 for every S in ..LCg ; L

�
g //.
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Proof In view of Lemma 7.8, we have that

LB.g/D 2

s
nX
iD1

.ln k�ik/2;

while

kdetMgk D

nY
iD1

k�ik and detR.LCg ; S; gS;L
�
g /D .detMg/

�2:

The equivalence follows easily from the assumption that j�i j > 1 for all i and the
order compatibility of the norm.

Lemma 7.10 Let us assume that the 5–tuple of Lagrangians .x1; x2; x3; x4; x5/ is
maximal. Then

detR.x1; x2; x3; x5/� detR.x1; x2; x4; x5/:

Proof We may assume x1D 0 and x5D l1 ; then we have 0�x2�x3�x4 . In this
case, a computation gives that R.x1; x2; x3; x5/ is conjugate to y1 D x�1=22 x3x

�1=2
2 ,

and R.x1; x2; x4; x5/ is conjugate to y2 D x�1=22 x4x
�1=2
2 . Since each eigenvalue

of y1 is positive and smaller than the corresponding eigenvalue of y2 , one obtains the
desired inequality.

Lemma 7.11 Assume that .a; x; y; b/ in L.V /4 is maximal. Then

(1) kdetR.a; x; y; b/k � 1;

(2) d.prYa;b.x/; prYa;b.y//� ln kdetR.a; x; y; b/k �
p
n d.prYa;b.x/; prYa;b.y//.

Proof Since Sp.V / is transitive on maximal triples, we can assume that aD 0; bD l1
and x corresponds to the matrix C Id. Since the triple .x; y; l1/ is maximal, y
corresponds to a positive-definite matrix Y with all eigenvalues strictly bigger than
one. The first statement is immediate since detR.a; x; y; b/D det.Y /.

It follows from the definition of the orthogonal projection that prYa;b .x/D i Id and
prYa;b .y/D iY . If �1; : : : ; �n are the eigenvalues of Y , the explicit formula for the
distance d gives

d.i Id; iY /D

s
nX
iD1

.ln k�ik/2;

and we have

ln kdetR.a; x; y; b/k D
nX
iD1

ln k�ik:

The second assertion in the lemma then follows from Cauchy–Schwartz and the fact
that ln k�ik � 0 for every i .
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Lemma 7.12 If LB.�.
// D 0, then for any x; y 2 ..
�; 
C// with .
�; x; y; 
C/
positively oriented, we have

kdetR.�.
�/; �.x/; �.y/; �.
C//k D 1:

Proof Since .
�; x; y; 
C/ is positively oriented, and 
C is the attractive fixed point
of 
 , we can pick n� 1 with .x; y; 
nx/ positively oriented. Then by Lemma 7.10,
we have

1� detR.�.
�/; �.x/; �.y/; �.
C//

� detR.�.
�/; �.x/; �.
/n�.x/; �.
C//;

and the latter has norm 1 by Lemma 7.9(3).

Proof of Proposition 7.1 Let s and t be points in ..
�; 
C// and assume with-
out loss of generality that the quadruple .
�; t; s; 
C/ is positively oriented. Then
.�.
�/; �.t/; �.s/; �.
C// is a maximal quadruple; thus by Lemma 7.11, we have
d.prY
 .�.t//; prY
 .�.s/// � ln kdetR.�.
�/; �.t/; �.s/; �.
C//k. The right hand
side vanishes by Lemma 7.12, and hence we obtain, using Proposition 6.3, that
�B.prY
 .�.t///D �B.prY
 .�.s///.

Let us now assume that there are two elements 
; � in �1.†/ whose axes intersect.
We want to show that if both �.
/ and �.�/ fix a point in BV , then they share a fixed
point. We begin with a preliminary computation:

Lemma 7.13 Let 
 and � be two hyperbolic elements of � with intersecting axes.
Assume LB.�.
// D LB.�.�// D 0 and that the quadruple .��; 
�; �C; 
C/ is pos-
itively oriented. Then for every x 2 ..
�; 
C//, all eigenvalues of the cross-ratio
R.�.��/; �.
�/; �.x/; �.
C// have the form 1Cf , where f 2F>0 satisfies kf kD 1.

Proof Pick g 2 Sp.V / such that g.�.��/; �.
�/; �.
C// D .� Id; 0; l1/, and set
pD g.�.�C//; see Figure 2. Now pick x 2 ..
�; �C// and set qD g.�.x//. Observe
that 0� q� p .

By Lemma 7.12, since LB.�.
//D 0, we have

kdetR.�.
�/; �.x/; �.�C/; �.
C//k D 1;

which implies kdetpk D kdet qk.

Let �1 � � � � � �n > 0 and �1 � � � � � �n > 0 denote the eigenvalues of q and p ,
respectively. Since 0� q� p , we deduce that 0 < �i < �i and hence k�ik � k�ik.
This implies that k�ik D k�ik since we know that their products are equal.

Exploiting that LB.�.�//D 0 together with Lemma 7.12 we get

kdetR.�.��/; �.
�/; �.x/; �.�C//k D 1;
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�� 
� x �C y

     
� Id 0 q p r

Figure 2: The points needed for the proof of Lemma 7.13

which implies that k.detp/.det.p� q//�1 det.IdCq/k D 1. From this, we deduce
nY
iD1

k1C�ik D kdet.IdCq/k D




det.p� q/

detp





� 1;
where the last inequality follows from 0� p� q� p . Together with the observation
that 1C�i � 1 and the ultrametric inequality, this implies k�ik � 1 for all i , and thus
k�ik D k�ik � 1.

Now let y 2 ..�C; 
C// and set r Dg.�.y//. Then 0�p� r . Again by Lemma 7.12
we deduce that

kdetR.�.
�/; �.�C/; �.y/; �.
C//k D 1;

which implies kdetpk D kdet rk.

Let �1 � � � � � �n > 0 denote the eigenvalues of r . Since p � r , we deduce that
0 < �i < �i , and hence k�ik � k�ik. This implies, as above, that k�ik D k�ik. Since
LB.�.�//D 0, Lemma 7.12 implies that

kdetR.�.�C/; �.y/; �.
C/; �.��//k D 1I

that is, kdet.IdCr/kD kdet.r�p/k. Since 0� r�p� r , we obtain kdet.r�p/k�
kdet rk. On the other hand, 0� r � IdCr , and hence kdet.IdCr/k D kdet.r/k, or
equivalently,

Qn
iD1 k1C .1=�i /k D 1. This, together with the information that �i > 0

and the ultrametric inequality, implies k�ik � 1, and thus k�ik D k�ik � 1.

To conclude the proof, we observe that R.�.��/; �.
�/; �.x/; �.
C// is conjugate to
R.� Id; 0; q; l1/D IdCq and hence has as all eigenvalues of the form 1Cf with f
positive satisfying kf k D 1.

Remark 7.14 Recall from Definition 4.14 that Y
 and Y� are orthogonal if and only
if R.�.��/; �.
�/; �.�C/; �.
C// D 2 Id. Lemma 7.13 should be interpreted as a
weaker form of orthogonality for the projections Y
 and Y� .
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Lemma 7.15 Let .a; c; b; d/ 2 L.V /4 be a maximal quadruple, and assume that all
the eigenvalues of R.a; c; b; d/ have the form 1Cf for some f 2 F>0 with kf kD 1.
Then the points

prYc;d.a/; prYc;d.b/; prYa;b.c/; prYa;b.d/; Ya;b \Yc;d

have pairwise pseudodistance zero.

Proof Pick g 2 Sp.V / such that g.a; c; b; d/ D .� Id; 0;D; l1/ where D is diag-
onal with strictly positive entries. Then a computation gives prY0;l1.� Id/ D i Id,
prY0;l1.D/D iD and Y0;l1\Y� Id;D D i

p
D .

Now since DD diag.d1; : : : ; dn/, the assumption on the eigenvalues implies kdikD 1,
and the explicit formula for the distance gives the desired statement.

Proof of Proposition 7.3 We may assume that .��; 
�; �C; 
C/ is positively oriented.
Applying Lemma 7.13 to x D �C , we obtain that the pseudodistances of the points
prY
 .�.�

C//, prY
 .�.�
�//, prY�.�.


C//, prY�.�.

�//, Y
 \Y� are all zero. This

concludes the proof once one notices that (see Proposition 7.1)

bC
 D �B.prY
.�.�
C///;

b�
 D �B.prY
.�.�
�///;

bC� D �B.prY�.�.

�///;

b�� D �B.prY�.�.

C///:

8 Decomposition theorem

Let �W �1.†; x/!Sp.V / be a representation into a symplectic group over a real closed
field F with valuation, and let �BW TV ! BV denote the projection to the building.
Recall from the introduction that if †D

S
v2V †v is a decomposition of the surface †

into subsurfaces with geodesic boundary, we consider the associated presentation of �
as fundamental group of a graph of groups with vertex set V and vertex groups �1.†v/.
We denote by zV the vertex set of the associated Bass–Serre tree T . For every v 2 V
and w 2 zV lying above v , the stabilizer �w of w in � is isomorphic to �1.†v/. In
this section, we prove the result mentioned in the introduction as Theorem 1.8:

Theorem 8.1 Assume that �W �! Sp.V / admits a maximal framing. Then there is a
decomposition †D

S
v2V †v of † into subsurfaces with geodesic boundary such that

(1) for every 
 2 � whose associated closed geodesic is not contained in any
subsurface, LB.�.
// > 0;
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(2) for every v 2 V , there is the following dichotomy:

(PT) for every w 2 zV lying above v , and any 
 2 �w which is not boundary
parallel, �.
/ has positive translation length;

(FP) for every w2 zV lying above v, there is a point bw 2BV which is fixed by �w.

The proof of the theorem is based on the analysis of the incidence structure of the set

L� D f
 2 � j 
 ¤ e; 
 hyperbolic; LB.�.
//D 0g:

Let
PL� D f
 2 L� j 
 is primitiveg=
 � 
�1;

and denote by x
 2 PL� the equivalence class of 
 . Let

A� D fax.
/ j 
 2 L�g

denote the set of axes of elements in L� , so there is a bijective correspondence
A� Š PL� .

On PL� we put a graph structure by requiring that x
 is adjacent to x� if they are distinct
and their axes intersect. We denote by G� this graph and proceed to study its connected
components. Let C� G� be a connected component with vertex set V.C/. We observe
that if the component consists of a single vertex x
 , then the closed geodesic associated
to 
 is simple. Indeed, for each � in � , the conjugate �
��1 belongs to L� and if
�
��1 ¤ x
 , the corresponding axes do not intersect.

Let us assume from now on that jV.C/j � 2, and let

�C D f
 2 � j 
 stabilizes Cg
and

�C D

[
x
2V.C/

f
�; 
Cg:

Then we clearly have that if x
 belongs to V.C/, then 
 is an element of �C and �C is
a subset of the limit set ƒ.�C/� @H2 of �C . In particular, since �C is �C–invariant,
we get x�C Dƒ.�C/.

Lemma 8.2 There is a point pC 2 BV with b˙
 D pC for all 
 such that x
 2 V.C/.

Proof Indeed, if x
 is adjacent to x�, we have bC
 D b
�

 D b

C
� D b

�
� ; see Lemma 7.15.

The lemma follows from the assumption that C is connected.

Lemma 8.3 For every 
 2 �C , we have �.
/pC D pC .
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Proof For every 
 2 �C , if � gives a vertex of V.C/, the same holds for 
�
�1 .
Hence we get

b˙� D b
˙


�
�1
D �.
/b˙� :

Lemma 8.4 Let g be an oriented geodesic with endpoints g� and gC. Assume
that �C \ ..g

�; gC// ¤ ∅ and �C \ ..g
C; g�// ¤ ∅. Then there exists x
 2 C with

ax.
/\g ¤∅.

Proof Let us choose a class x� 2 C with �C 2 ..g�; gC// and a class x� 2 C with
�� 2 ..gC; g�//. Since C is connected, there is a sequence x̨1 D x�; x̨2; : : : ; x̨n D x�
of classes in C such that, for every i , the axis ax.˛i / intersects ax.˛iC1/. But then
clearly there is an index j such that ax. j̨ / intersects the geodesic g .

If X is a subset of xH2 D H2 [ @H2 , we denote by Co.X/ the closed convex hull
of X in H2 . To any component C we associate the closed convex subset YC of H2

defined by
YC D Co.ƒ.�C//D Co.�C/:

We say that an element 
 2 �C is a boundary component if the axis of 
 is a boundary
component of YC .

Proposition 8.5 For every primitive, hyperbolic element 
 2 �C which is not a
boundary component, we have

x
 2 V.C/:

Proof Since 
 stabilizes C and is not a boundary component, we have that the
intersection �C\..


�; 
C// is not empty, and similarly, �C\..

C; 
�// is not empty.

Thus we conclude by Lemma 8.4.

Our next aim is to show that the image p.YC/ of YC under the universal covering map
pW H2!† is a compact subsurface of † with geodesic boundary.

Proposition 8.6 Let C � G� be a connected component with more than one vertex.
For every 
 2 � , one of the following holds:

(1) 
YC D YC ;

(2) 
YC\YC is a boundary component of YC ;

(3) the intersection 
YC\YC is empty.

Proof First we show that if the intersection 
 VYC\YC is not empty, then 
CD C, and
hence 
YC D YC . Let x 2 
 VYC\YC , and assume by contradiction that 
C¤ C, which
implies that 
V.C/\V.C/D∅.
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Claim 1 The point x does not belong to ax.�/ for any x� 2 C.

Proof Assume, instead, that x belongs to ax.�/ for some element � with x�2C. If the
intersection �
C\ ..��; �C// is empty, then �
C is contained in the closed interval
ŒŒ�C; ����, and hence Y
C is contained in one of the closed halfplanes determined
by ax.�/. This contradicts the hypothesis that x belongs to the interior of Y
C . Thus
we have that both intersections �
C\ ..��; �C// and �
C\ ..�C; ��// are not empty.
But then, by Lemma 8.4, there is an element � 2 
C whose axis ax.�/ intersects ax.�/.
This implies that either x� D x�, or the elements x� and x� are adjacent in the graph G� .
Both contradict the fact that 
V.C/\V.C/D∅, and this proves Claim 1.

Now we can define Bxg , for every xg 2 C, to be the unique closed interval in S1

with endpoints fg�; gCg and such that x does not belong to the convex hull Co.Bg/.
According to Claim 1, this is well defined.

Claim 2 For every xg in C, the intersection �
C\Bxg is empty.

Proof Indeed, assume that the intersection is not empty for some xg 2 C. Since xg does
not belong to 
C, this implies that the intersection �
C\ VBg is not empty. Since x
belongs to 
 VYC , we get that the intersection �
C\ .S1 nBg/ is not empty, and hence,
by Lemma 8.4, there is x� 2 
C whose axis ax.�/ intersects ax.g/ nontrivially. This
again contradicts the assumption 
V.C/\V.C/D∅.

Claim 3 The union
S
xg2CBxg is connected.

Proof Indeed, for any pair of adjacent elements x
 and x� in C, we have that the
intersection Bx
\Bx� is not empty. Now enumerate C by a possibly redundant sequence
x
1; x
2; : : : of consecutive adjacent vertices. Then the union

S1
iD1Bx
i is connected.

Since the union
S
xg2CBxg is connected, it is an interval of S1 say with endpoints

˛1; ˛2 , numbered such that

..˛1; ˛2//�
[
xg2C

Bxg � ŒŒ˛1; ˛2��:

It follows then from Claim 2 that the intersection �
C \ ..˛1; ˛2// is empty; on the
other hand, �C �

S
xg2CBxg � ŒŒ˛1; ˛2��. This implies that YC and Y
C lie in different

half-planes determined by the geodesic joining ˛1 to ˛2 and hence the intersection

 VYC\YC is empty. This gives a contradiction.

Assume now that 
YC is different from YC and that the intersection 
YC \ YC is
not empty. Let x be a point in the intersection 
YC \ YC ; then x belongs to the
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boundary of 
YC and also to the boundary of YC . Let g and g0 be the geodesics giving
respectively the connected components of @.
YC/ and @.YC/ containing x .

If g \ g0 D fxg, then the intersection of the interiors 
 VYC \ VYC is not empty which,
together with what we proved, implies that the 
 VYC is equal to VYC and leads to
a contradiction. Thus gDg0� @.
YC/\@YC . Since the intersection 
 VYC\ VYC is empty,
we deduce that 
YC and YC lie on different sides of g , and hence .
YC/\YC D g .

Proposition 8.7 Let C � G� be a component with more than one vertex. Let �C be
the stabilizer of C in � and YC � H2 the closed convex hull of the limit set of �C .
Then the map

�CnYC ,! �nH2

induces an embedding with image a compact surface with geodesic boundary.

Proof Let us enumerate the vertices fx
1; x
2; : : : g of V.C/ in such a way that for
each i , we have x
i adjacent to x
iC1 . Let zx0 be the intersection ax.
1/\ ax.
2/, and
define Xn D

Sn
iD1 ax.
i /. By construction, Xn is connected. Let furthermore x0

denote the projection x0 D p.zx0/.

Let �n < � be the image of the natural map �1.p.Xn/; x0/! �1.†; x0/ induced by
the inclusion p.Xn/ ,!†. Then �n is the fundamental group of the surface †n �†
obtained by taking an appropriate tubular neighborhood of p.Xn/ � † and adding
to it all components of the complement which are either simply connected or whose
fundamental group is generated by a parabolic element of � . Then †n is a subsurface
with smooth boundary and of finite topological type. Since �n < �nC1 , there exists
N � 1 with �n D �N for all n�N .

We will finish the proof by showing that �C D �N . Since �nzx0 � Ap.Xn/ , we have
�n < �C . Conversely, let us take 
 2 �C ; then 
 zx0 D ax.

1
�1/\ ax.

2
�1/,
and since �C preserves V.C/, we have that 

1
�1and 

2
�1 are in V.C/. Thus

 zx0 2Xn for n large enough, which implies 
 2�n . As a conclusion, we get �N D�C ,
which implies that �CnYC in † is isotopic to †N .

Proof of Theorem 8.1 The set of isolated components of G� is a �–invariant subset.
Since we know that each isolated component of G� corresponds to a geodesic of H2

that projects to a simple closed curve, we have that the projection of all the isolated
components is a collection C of pairwise disjoint simple closed curves which cut the
surface † in subsurfaces f†vgv2V for some index set V .
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Moreover, for any component C consisting of more than one element, we have that

YC D Co
�[
x
2C

ax.
/
�

is a subsurface in H2 which projects to a subsurface of † whose boundary consists of
elements of C . In particular, there exists v 2 V with p.YC/D†v .

9 Quasi-isometric embeddings

Let �W �1.†; x/! Sp.V / be a representation admitting a maximal framing and †DS
v2V †v be the corresponding decomposition given by Theorem 8.1. We assume,

as usual, that † is equipped with a hyperbolic metric of finite area and denote by
pW H2!† the canonical projection, so †D �nH2 .

As we have seen in Section 8, the decomposition of the surface † comes from a
�–invariant decomposition

H2
D

[
w2zV

Sw

into subsurfaces with totally geodesic boundary. The Bass–Serre tree T D .zV; E/
can be identified with the incidence tree of the set fSw j w 2 zVg. Recall that a pair
fw1; w2g forms an edge if the intersection Sw1 \Sw2 is not empty. In this case, the
intersection corresponds to the axis of an element of � that acts on the building BV
with zero translation length and determines an isolated component of the graph G� .

Assume now that for every subsurface †v we are in the second case of the dichotomy
in the decomposition theorem. Then for every w 2 zV , the stabilizer �w of w in � has
a canonical fixed point bw 2 B0V which equals b˙
 for each 
 2 �w .

Theorem 9.1 The map
zV! B0V ; w 7! bw ;

is a �–equivariant quasi-isometry.

Let � 2 � be an element whose corresponding geodesic is not contained in a subsur-
face. The axis ax.�/ determines a sequence .wn/n2Z of vertices in T , namely the
consecutive sequence of surfaces Swn crossed by ax.�/. This gives a geodesic path
in T , which is the axis of the isometry of T induced by �.
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˛C L
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Figure 3: The setting in the proof of Lemma 9.2

Lemma 9.2 Let us assume that the axis ax.�/ crosses the surface Sw . Let 
 2 �w be
an element which is not boundary parallel and such that ax.
/ intersects ax.�/. Then

bw D �B.prY�.�.

C///D �B.prY�.�.


�///:

In particular, bw belongs to Y� .

Proof Without loss of generality, we assume that the 4–tuple .��; 
�; �C; 
C/

is positively oriented. We will show that all of the eigenvalues of the cross-ratio
R.�.��/; �.
�/; �.�C/; �.
C// have the form 1C f for a positive f satisfying
kf k D 1.

Since 
 is not boundary parallel, we can find ˛ 2 �w such that ˛� belongs to
..��; 
�// and ˛C belongs to ..
�; �C//; see Figure 3. Since .˛�; 
�; ˛C; 
C/
is positively oriented, we can pick an element g 2 Sp.V / with g.˛�; 
�; 
C/ D

.� Id; 0; l1/. For such g , we set g�.��/ D �T , g�.�C/ D S and g�.˛C/ D L.
With this notation we have T � Id and S � L � 0; moreover, the cross-ratio
R.�.��/; �.
�/; �.�C/; �.
C// is conjugate to R.�T; 0; S; l1/D IdCT �1S .

First observe that all the eigenvalues of R.�T; 0; S; l1/ are smaller than the corre-
sponding eigenvalues of R.� Id; 0; S; l1/. Indeed, the first matrix is conjugate to
IdCS1=2T �1S1=2 and the second equals IdCS , moreover all the eigenvalues of T
are by assumption greater than 1. Now ˛ and 
 cross and have zero translation
length since they both belong to �w . Since �C belongs to ..˛C; 
C//, it follows from
Lemma 7.13 that all the eigenvalues of R.�.˛�/; �.
�/; �.�C/; �.
C// have the form
1C� for a positive � satisfying k�k D 1. This implies that for each eigenvalue �i of
IdCT �1S , we have k�i � 1k � 1.

On the other hand, all the eigenvalues of R.�T; 0; S; l1/ are bigger than the cor-
responding eigenvalues of R.�T; 0; L; l1/: indeed the first matrix is conjugate
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to IdCT �1=2ST �1=2 and the second is conjugate to IdCT �1=2LT �1=2 . This
implies that, denoting by �i the eigenvalues of R.�T; 0; L; l1/ we have that
k�i � 1k � k�i � 1k. This is enough to conclude: we have by Lemma 4.4 that
R.�T; 0; L; l1/ŠR.L; l1;�T; 0/, and as a consequence of Lemma 7.13, this latter
cross-ratio has all its eigenvalues of the form 1Cf for some positive f of norm one.

Now we exploit that bw is in particular equal to b˙
 . This latter point is, in view of
Proposition 7.1, equal to �B.prY
 .�.�

�///. Moreover, we deduce from Lemma 7.15
that

�B.prY
.�.�
�///D �B.prY�.�.


�///D �B.prY�.�.

C///;

and this concludes.

Lemma 9.3 Let a; b 2 L.V / be transverse subspaces, and fix x1; : : : ; xk 2 ..a; b//
such that .a; xi ; xiC1; b/ is maximal for all i . Then

k�1X
iD1

d.prYa;b.xi /; prYa;b.xiC1//�
p
n d.prYa;b.x1/; prYa;b.xk//:

Proof Since for each pair of symmetric matrices S , T we have detR.0; S; T; l1/D
detS�1 detT , we deduce

detR.a; x1; xk; b/D
k�1Y
jD1

detR.a; xj ; xjC1; b/:

Thus we get

ln kdetR.a; x1; xk; b/k D
k�1X
jD1

ln kdetR.a; xj ; xjC1; b/k:

From Lemma 7.11, we deduce immediately

k�1X
iD1

d.prYa;b.xi /; prYa;b.xiC1//�
p
n d.prYa;b.x1/; prYa;b.xk//:

Proof of Theorem 9.1 Let v;w be vertices of T , and pick an element � 2 � whose
associated axis in T contains the geodesic path between v and w . Let us name
v0 D v; v1; : : : ; vk D w the vertices in such path.

We choose, for every i an element 
i 2 Svi whose axis ax.
i / intersects the axis
ax.�/ nontrivially, and with the property that 
Ci 2 ..�

�; �C//. Then we have that, for
every i , the 4–tuple

.�.��/; �.
Ci /; �.

C
iC1/; �.�

C//
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is maximal, and hence by Lemma 9.2 and 9.3, we have

k�1X
iD0

dB.bvi ; bviC1/�
p
n dB.bv0 ; bvk /:

Notice that for any pair of adjacent vertices l; r in T , the distance dB.bl ; br/ is positive:
otherwise it is easy to verify that for each pair of hyperbolic elements 
l 2 �l and

r 2 �r , the composition 
l
r fixes bl D br and corresponds to an element of �
whose axis crosses the common boundary component of Sl and Sr , contradicting the
decomposition of Theorem 8.1.

Now, since the number of �–orbits on the set of edges of T is finite, there are positive
constants C1; C2 with

C1 � dB.bl ; br/� C2

for every pair .l; r/ of adjacent vertices. Thus we get

kC1 �
p
n dB.bv0 ; bvk /;

which implies

dT .v0; vk/�

p
n

C1
dB.bv0 ; bvk /:

The inequality
dB.bv0 ; bvk /� C2k D C2dT .v0; vk/

is immediate.

10 Ultralimits of maximal representations

In this section, we apply the general theory developed so far to the field of hyperreals
and the Robinson field in order to deduce the decomposition theorem for ultralimits of
maximal representations.

10.1 Hyperreals and Robinson fields

Let !W P.N/ ! f0; 1g be a nonprincipal ultrafilter on the set of natural numbers.
Recall that the ultraproduct

Q
! Xi of a sequence .Xi /i2N , of sets is the quotient ofQ

i2N Xi by the equivalence relation .xi /� .yi / if !.fi j xi D yig/D 1. We denote
by �! W

Q
i2N Xi !

Q
! Xi the quotient map and write X! for

Q
! X . In particular,

R! is the field of hyperreals, and if Xi are vector spaces over R (resp. R–algebras,
groups), then

Q
! X is a R!–vector space (resp. an R!–algebra, a group) and �! is a

morphism in the appropriate category. For a R–vector space V , the map

V �R!! V! ; .v; Œ.li /�/ 7! Œ.liv/�;

Geometry & Topology, Volume 21 (2017)



3592 Marc Burger and Maria Beatrice Pozzetti

induces an R!–isomorphism V ˝R R!! V! . For V finite-dimensional at least, we
deduce from the isomorphism EndR! .V ˝R R!/Š .EndV /˝R R! that the mapY

i2N

End.V /! End.V!/; .Ti /i 7! T;

where T .Œvi �/ D ŒTi .vi /� induces an algebra isomorphism .End.V //! Š End.V!/
which restricts to a group isomorphism .GL.V //!ŠGL.V!/. By abuse of notation, we
will also denote by �! W

Q
N GL.V /! GL.V!/ the induced map. Given a symplectic

form h � ; � i on V , let h � ; � i! denote the symplectic form on V! obtained by extending
the scalars from R to R! . Given a sequence of representations �i W � ! Sp.V /,
we will denote by �! the representation of � into Sp.V!/ obtained by composingQ
i2N �i with �! .

Proposition 10.1 Assume that �i W �! Sp.V / is a sequence of maximal representa-
tions. Then �! W �! Sp.V!/ admits a maximal framing.

The proof uses the following lemma, which is a straightforward verification:

Lemma 10.2 (1) The map
Q

N Grk.V /!Grk.V!/ defined by .Li /i2N 7!
Q
! Li

induces a .GL.V //! Š GL.V!/–equivariant bijection .Grk.V //! Š Grk.V!/
and restricts to a .Sp.V //! Š Sp.V!/–equivariant bijection L.V /! Š L.V!/.

(2) Let fi W Wi ! R be quadratic forms with signature ni 2 Z. Assume that the
sequence dimWi is bounded, and let f! W

Q
! Wi !R! be the quadratic form

given by f!.Œ.vi /�/D Œ.fi .vi //�. Then f! has signature n where n is defined
by !.fi j ni D ng/D 1.

Proof of Proposition 10.1 Since each �i is maximal, there exists a maximal framing
�i W @H2 ! L.V /. Define then �! W @H2 ! L.V!/ by composing

Q
�i W @H2 !Q

N L.V / with the quotient map
Q

N L.V / ! L.V!/. The maximality of the so
obtained framing follows then from Lemma 10.2(2).

Let now � 2R! be an infinitesimal and recall the definition of the local ring

O� D fx 2R! W jxj< �
�k for some k 2N g

with associated maximal ideal

I� D fx 2R! W jxj< �
k for all k 2N g:

The quotient is the Robinson field R!;� DO�=I� associated to � [24; 16].
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Remark 10.3 Assuming the continuum hypothesis, a deep result of Erdös, Gillman
and Henriksen [8] implies that the field R! does not depend on the choice of the
ultrafilter. And under the same hypothesis, Thornton showed that the normed field
R!;� does not depend on the choice of the ultrafilter ! nor on the infinitesimal � [28,
Theorem 2.34].

If instead we assume the negation of the continuum hypothesis, it was shown by
Kramer, Shelah, Tent and Thomas [12, Theorem 1.8] that there exists an uncountable
set of nonprincipal ultrafilters such that the associated Robinson fields are pairwise
nonisomorphic.

If .�i / is a divergent sequence of real numbers and we set � D Œ.e��i /� 2R! we have
that the field R!;� is the field denoted by R!;� in [22].

Now let �! be a representation into Sp.V!/ admitting the maximal framing .S; �!/.
Choose a compatible complex structure J! and an infinitesimal � 2 R! such that
�!.�/ � Sp.V!/.O� /, and denote by V!;� the vector space V!.O� /=V!.I� /. Ac-
cording to Theorem 5.9, composing �! with �� W Sp.V!/.O� /! Sp.V!;� / we obtain
a representation which admits q� ı�! W S ! L.V!;� / as maximal framing.

Thus we obtain in particular:

Corollary 10.4 If .�i /i2N W � ! Sp.V / is a sequence of maximal representations
where V is a real symplectic vector space, �! W � ! Sp.V!/ the corresponding
representation over the field of hyperreals, J! a choice of compatible complex struc-
ture and � an infinitesimal such that �!.�/ � Sp.V!/.O� /, then the representation
�!;� W �! Sp.V!;� / admits a maximal framing defined on @H2 .

In the compact case we obtain a converse:

Theorem 10.5 Assume that the surface �nH2 is compact. Then a representation
�W �! Sp.V!;� / admits a maximal framing if and only if there is a sequence �i W �!
Sp.V / of maximal representations such that �!;� D � .

Proof Let

Repg WD
�
.A1; B1; : : : ; Ag ; Bg/ 2 Sp.V /2g

ˇ̌̌ nY
iD1

ŒAi ; Bi �D Id
�

be the R–variety of representations of � in Sp.V /. Then it follows from [28] that
the reduction modulo I� induces a surjection Repg.O� /! Repg.R!;� /. Thus we
can lift � to a representation �! W �! Sp.V!/.O� / which we represent by a sequence
.�i /i2N of representations of � into Sp.V /.
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Let �W S ! L.V!;� / be a maximal framing for � . It follows from the collar lemma
that for every hyperbolic element 
 2 � , the image �.
/ is Shilov hyperbolic. Then
�!.
/ needs also to be Shilov hyperbolic and we have q� .LC�!.
//D L

C

�.
/
because

of uniqueness of attractive fixed Lagrangians.

Fix a decomposition of †D �nH2 into pairs of pants, let P �† denote any such pair
of pants and let fc1; c2; c3g be standard generators of �1.P /; in particular, c1c2c3D e .
Let �1; �2; �3 be the attractive fixed points in @H2 of c1; c2; c3 . Then .�1; �2; �3/ and
.�1; c1 � �3; �2/ are positively oriented. Thus the images under � of the two triples are
maximal, and hence the triples

.LC
�!.c1/

; LC
�!.c2/

; LC
�!.c3/

/ and .LC
�!.c1/

; �!.c1/L
C

�!.c3/
; LC

�!.c2/
/

are maximal. It follows that there is a set EP � N of full !–measure such that for
each i in EP , �i .c1/; �i .c2/; �i .c3/ are Shilov hyperbolic and both

.LC
�i .c1/

; LC
�i .c2/

; LC
�i .c3/

/ and .LC
�i .c1/

; �i .c1/L
C

�i .c3/
; LC

�i .c2/
/

are maximal. It follows then from [27, Theorem 5] that �i j�1.P /! Sp.V / is maximal
for each i in EP . Thus if P1; : : : ; P2g�2 is the pair of pants decomposition, we have
that for all i 2

T2g�2
jD1 EPj , the restriction �i j�1.Pj / is maximal. By additivity of the

Toledo invariant (see [6, Theorem 1]), we deduce that �i is maximal. Since
T2g�2
jD1 EPj

is of full !–measure, this concludes the proof.

10.2 Asymptotic cones

We finish the paper deducing the statements about ultralimits of maximal representations
from the general theory of representations admitting a maximal framing.

Proof of Theorem 1.1 Let �k W �!Sp.V / be a sequence of maximal representations,
Jk 2XV a sequence of basepoints, namely a sequence of compatible complex structures,
and �D .�k/k2N an adapted sequence of scales. If the sequence � is bounded on a
set of full !–measure, then we may assume

sup
k2N

max

2S

d.�k.
/Jk; Jk/ <1;

and hence, if we conjugate �k by gk 2 Sp.V / with gkJk D x a fixed basepoint, it
follows that the sequence .�k D gk�kg�1k /k2N is relatively compact in the space of
representations. In this case, !X� is just the Siegel space XR with rescaled distance,
and !�� is an ordinary accumulation point of the sequence .�k/k2N .

If the sequence � is unbounded, let � WD .e��k /k2N , which is an infinitesimal in R! ,
and let J! WD Œ.Jk/k2N �2End.V!/ which is a compatible complex structure. Then we
conclude from the fact that � is adapted to .�k; Jk/k2N that �!.�/� Sp.V!/.O� /.
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Furthermore, it follows from [22] that the action on the Bruhat–Tits building of
Sp.V!;� / coming from the representation �!;� W � ! Sp.V!;� / coincides with the
ultralimit !��W � ! Iso.!X�/ under the identification of !X� with the Bruhat–Tits
building BV!;� . Theorem 1.1 follows then from Corollary 10.4 and Theorem 8.1.

We now characterize the cases which lead to actions without a global fixed point. Recall
from the introduction that when S is a finite generating set for � , and � is a maximal
representation we denote by DS .�/.x/ the displacement function.

The function DS .�/ is convex and, since �.�/ is not contained in any proper parabolic
subgroup of Sp.V /, we have that for every C > 0, the convex set fx jDS .�/.x/�C g
must be compact; in particular, DS .�/.x/ achieves its minimum that we will denote
by �S .�/Dminx2X DS .�/.x/.

The function � 7! �S .�/ descends then to a proper function

Hommax.�;Sp.V //=Sp.V /! .0;1/

on the character variety of maximal representations. Let now .�k/k2N be a sequence
of maximal representations, .xk/k2N 2XN a sequence of basepoints and � an adapted
sequence of scales. Furthermore, let yk 2 X be such that �S .�k/DDS .�k/.yk/.

Proposition 10.6 The representation !�� on !X� has no global fixed point if and
only if

lim
!

�k

�S .�k/
<1 and lim

!

d.yk; xk/

�k
<1;

in which case !X� D !X� , the distances on the asymptotic cones are homothetic and
the actions !�� and !�� coincide.

Remark 10.7 We can also deduce the fact that if !�� has no global fixed point
then the limit lim! �k=�S .�k/ is finite by combining [22, Proposition 4.4] and [21,
Corollary 3].

Proof of Proposition 10.6 For the “if” part: changing the sequence on a set of !–
measure zero, we may assume that for some constant C > 0, we have �S .�k/=C �
�k � C�S .�k/ and d.yk; xk/ � C�k for all k 2 N . This readily implies that the
asymptotic cones !X� and !X� are equal, that the induced distances are homothetic
with factor lim! �k=�S .�k/ and that the actions !�� and !�� coincide. Thus we have
to verify that !�� does not have a global fixed point. But this follows immediately
from the fact that

max

2S

d.�k.
/x; x/

�S .�k/
� 1 for all x 2 X :
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We next show the “only if” part. Let T be a finite connected generating set, and let us
denote by K the maximal length of an element of T with respect to the generating
set S . Since !�� does not have a global fixed point, it follows from Corollary 7.6 that
there is 
0 2 T with L.!��.
0//D lim! L.�k.
0//=�k > 0. Since

L.�k.
0//� d.�k.
0/yk; yk/�K�S .�k/�KDS .�k/.xk/

and lim! DS .�k/.xk/=�k < 1, we may assume that the sequences .�k/k2N and
.�S .�k//k2N are equivalent, namely that there are positive constants C1; C2 such that
C1�S .�k/� �k � C2�S .�k/ for all k 2N .

Pick now two hyperbolic elements 
; � in � with intersecting axes. If �k W S1!L.V /
denotes the boundary map associated to �k , we have

Y�k.
C/;�k.
�/\Y�k.�C/;�k.��/ D fzkg;

and the sequence .zk/k2N in !X� represents a point in the intersection Y�
 \Y�� ; see
Section 7. Thus we get lim! d.xk; zk/=�k <1. The same applies to !X� and hence
lim! d.yk; zk/=�S .�k/ <1. Using the triangle inequality and taking into account
that the sequences .�k/k2N and .�S .�k//k2N are equivalent, we deduce

lim
!

d.xk; yk/

�k
<1:

Proof of Corollary 1.3 The first inequality follows from the collar lemma, while the
last follows by contradiction from Proposition 10.6.

Proof of Corollary 1.4 Applying iteratively Theorem 1.1, it is possible to obtain a
canonical decomposition of the surface in subsurfaces with geodesic boundary with
the property that all curves strictly contained in a subsurface have the same growth
rate. The set C of curves defining this decomposition is the union of the curves given
by Theorem 1.1 and all the curves contained in subsurfaces of type (FP) selected by
applying Theorem 1.1 to the restrictions of the representations to those subsurfaces.
One can apply Theorem 1.1 at most 3g� 3Cp times corresponding to the case when
at each step precisely one curve is added and all the complementary pieces are of type
(FP). Hence there are at most 3g� 3Cp distinct growth rates among curves having
nontrivial intersection with C . There are three possibilities for the remaining curves:
either a curve is contained in a subsurface defined by the decomposition C , or it is one
of the curves in C or it corresponds to a puncture in the surface. The claim follows
since there are at most 2g� 2Cp complementary components.
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Appendix

Proposition A.1 Let F be a real closed field. Let n be a positive integer and assume
that a1; : : : ; an � 1. Then we have

.a1a2 � � � an� 1/
n
� .an1 � 1/.a

n
2 � 1/ � � � .a

n
n � 1/;

with equality if and only if a1 D � � � D an .

For F DR, this follows easily from the convexity of the function ex=.ex � 1/; here
we reproduce the proof due to Thomas Huber for general real closed fields. We start
with a key lemma:

Lemma A.2 Let n be a positive integer, and let c; x � 1. Then we have

(10) .cx� 1/n � .cnx� 1/.x� 1/n�1;

with equality if and only if nD 1 or c D 1.

Proof We use induction. For nD 1, the inequality is in fact an equality. By induction,

.cx� 1/nC1 D .cx� 1/.cx� 1/n � .cx� 1/.cnx� 1/.x� 1/n�1

(observe that all factors are nonnegative), and it suffices to show that

.cx� 1/.cnx� 1/� .cnC1x� 1/.x� 1/

holds. But the difference of the left and the right hand side factors as

x.c � 1/2.cn�1C � � �C cC 1/

and is clearly nonnegative.

Now we turn to the proof of the main result and proceed again by induction. For
nD 1, there is nothing to show; hence let n� 2. By symmetry, we may assume that
a D a1 � ai for all i � 2. By the induction hypothesis, the right hand side of the
inequality does not decrease when we replace a2; : : : ; an by their geometric mean
b D .a2 � � � an/

1=.n�1/ ; notice that in a real closed field, positive numbers admit kth

roots for any natural number k � 1. Therefore, it suffices to show the inequality

.abn�1� 1/n � .an� 1/.bn� 1/n�1;

where a � b � 1. But this is a direct consequence of our lemma: just set c D a=b � 1
and x D bn � 1 in (10). Equality only holds for c D 1, that is, for a D b . But this
implies a1 D � � � D an by the maximal choice of a1 .
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