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Cusp volumes of alternating knots

MARC LACKENBY

JESSICA S PURCELL

We show that the cusp volume of a hyperbolic alternating knot can be bounded above
and below in terms of the twist number of an alternating diagram of the knot. This
leads to diagrammatic estimates on lengths of slopes, and has some applications to
Dehn surgery. Another consequence is that there is a universal lower bound on the
cusp density of hyperbolic alternating knots.

57M25, 57M50

1 Introduction

A major goal in knot theory is to relate geometric properties of the knot complement
to combinatorial properties of the diagram. In this paper, we relate the diagram of a hy-
perbolic alternating knot to its cusp area, answering a question asked by Thistlethwaite.
He observed using computer software such as SnapPea [29; 11] and other programs,
including one developed by Thistlethwaite and Tsvietkova [26], that all alternating
knots with small numbers of crossings have cusp area related to their twist number.
This led him to ask if all alternating knots have cusp area bounded below by a linear
function of their twist number. This question is finally settled in the affirmative in this
paper. Specifically, we show the following.

Theorem 1.1 Let D be a prime, twist reduced alternating diagram for some hyperbolic
knot K , and let tw.D/ be its twist number. Let C denote the maximal cusp of the
hyperbolic 3–manifold S3 XK . Then

A.tw.D/� 2/� Area.@C / < 10
p

3.tw.D/� 1/;

where A is at least 2:278� 10�19 .

The terms twist reduced, twist number, and maximal cusp are defined below.

Theorem 1.1 has the following almost immediate corollary concerning the length of
slopes on a cusp of an alternating knot.
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Corollary 1.2 Every slope, except possibly the meridional slope, on the maximal
cusp of a hyperbolic alternating knot has length at least B.tw.D/� 2/, where B is
at least 7:593� 10�20 and D is a prime, twist reduced alternating diagram of the knot.

This result has several applications. We mention the following, purely topological
consequence.

Theorem 1.3 For any closed 3–manifold M with sufficiently large Gromov norm,
there are at most finitely many prime alternating knots K and fractions p=q such that
M is obtained by p=q surgery along K .

This is related to [17, Problem 3.6] in Kirby’s list, which is attributed to Clark: is there
a closed 3–manifold M that can be obtained by Dehn surgery along infinitely many
distinct knots in the 3–sphere? This was answered affirmatively by Osoinach [23], who
provided examples of such 3–manifolds M (see also Abe, Jong, Luecke and Osoinach
[1]). However, Theorem 1.3 gives a negative answer to the version of Kirby’s problem
that restricts to prime alternating knots and 3–manifolds with large Gromov norm.

Alternating diagrams

We now recall various definitions concerning alternating diagrams that we will use
throughout the paper.

In a diagram of a knot or link, a twist region is a (possibly empty) string of bigon
regions in the 4–valent diagram graph, such that the knot is alternating within this
region, and such that the string is maximal, in the sense that no other bigons of the
diagram lie on either side. A single crossing adjacent to no bigons is also a twist region.

The twist number tw.D/ of a diagram D is its number of twist regions. See Figure 1.

twist regions

Figure 1: A diagram with twist number 3 (figure adapted from [19])
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Two crossings are twist equivalent if there is a simple closed curve in the projection
plane of the diagram that meets the diagram exactly at the two crossings, and at each
of these crossings, runs between opposite regions.

Note that we can apply a sequence of flypes to an alternating diagram to put all twist
equivalent crossings together into a single twist region. When this is done, we say the
diagram is twist reduced. More precisely, we say a diagram is twist reduced if for any
simple closed curve meeting the diagram at precisely two crossings, and such that, at
each of these crossings, it runs between opposite regions, the curve encloses a string of
bigons on one side. By the above observation, every alternating diagram has a twist
reduced alternating diagram. See Figure 2.

U V ) U V D � 0 crossingsor

Figure 2: A twist reduced diagram (figure from [19])

The twist number tw.K/ of a prime alternating knot K is the number of twist regions
in a prime, twist reduced diagram. The twist number can be seen to be a well-defined
invariant of an alternating knot in several ways, for example by using the invariance of
“characteristic squares” under flyping as in Lackenby [19, Section 4] and then applying
the solution to the Tait flying conjecture by Menasco and Thistlethwaite [22], or by
relating twist number to the Jones polynomial as in Dasbach and Lin [12].

Cusps

Menasco [21] showed that any nonsplit prime alternating link that is not a .2; q/–torus
link is hyperbolic, using results of Thurston [28] on the geometrisation of Haken
manifolds. One important feature of a hyperbolic knot or link complement is its cusp(s),
and several key geometric invariants arise from the study of cusps of hyperbolic
3–manifolds.

Definition 1.4 If M is a finite-volume hyperbolic 3–manifold, then it has ends of
the form T 2 � Œ1;1/. Each end can be realised geometrically as the image p.H / of
some horoball H in H3 , where pW H3!M is the covering map. This is known as a
cusp. For each end, there is a 1–parameter family of cusps that are obtained from each
other by changing the choice of horoball H , but keeping the same limiting point on
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the sphere at infinity. If the cusps are expanded in the hyperbolic manifold until each is
tangent to itself or another, the result is called a choice of maximal cusps. When the
manifold has just one end, for example in the case of a hyperbolic knot complement,
then there is a unique maximal cusp. When we speak of the cusp volume of a hyperbolic
alternating knot, we mean the volume of this maximal cusp. Similarly, the cusp area
is the Euclidean area of the torus that is the boundary of the maximal cusp. By an
exercise in hyperbolic geometry, the cusp area is twice the cusp volume.

Finally, the cusp density of M is defined to be the largest possible volume in a choice
of maximal cusps divided by the total volume of the manifold.

Cusp density

Our results have interesting consequences for cusp density. By work of Böröczky
[8], the cusp density of a hyperbolic knot or link complement is at most

p
3=.2v3/,

where v3 � 1:01494 is the volume of an ideal regular tetrahedron. The cusp density
of the figure–8 knot realises this bound (see Thurston [27]). It follows from work of
Eudave-Muñoz and Luecke [13] that general knots in S3 may have arbitrarily small
cusp density. However, Theorem 1.1 implies that alternating knots have universally
bounded cusp density.

Corollary 1.5 The cusp density of an alternating knot has a universal lower bound.

This is a consequence of Theorem 1.1, because the cusp volume of S3 XK is at least
.A=2/.tw.K/�2/, whereas it is a theorem of Lackenby, with improvements due to Agol
and D Thurston [19], that the hyperbolic volume of S3XK is at most 10v3.tw.K/�1/.

Slope length

Definition 1.6 A slope on a torus is an isotopy class of essential simple closed curves.
If M is a compact 3–manifold with interior admitting a complete, finite volume
hyperbolic structure, and C is a choice of maximal cusps, then a slope � on @M
has an associated length. This is defined to be the length of any Euclidean geodesic
representative for � on @C .

Cusp area and slope length are closely related, since high cusp area forces every slope,
except possibly one, to be long.

In the case of the meridional slope for a knot in the 3–sphere, its length is well known
to be bounded, but nevertheless, several interesting questions about meridional length
remain open. It was shown by Thurston [27] that with respect to any maximal cusp,
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the length of any slope is at least one. By work of Agol [6] and Lackenby [18], the
length of the meridian of a knot in S3 can be no more than six. For an alternating knot,
the meridian has length less than three (see Adams, Colestock, Fowler, Gillam and
Katerman [5]). In fact, no alternating knots have been found with meridional length
more than two (see Adams [4]).

While the meridian of a knot in S3 has universally bounded length, the next shortest
curve on a cusp does not. Several different results in the past gave evidence that
for alternating knots, its length is bounded below by the twist number. For example,
Lackenby [18] showed that, in a combinatorial metric on the cusp torus, the second
shortest curve had length bounded below by a linear function of the twist number.
Unfortunately, the combinatorial metric that Lackenby used cannot be applied to the
Euclidean metric on the torus in any known way, and so Lackenby’s result does not
give geometric information on the cusp. Purcell [24] showed that for knots with a
high number of crossings in each twist region, including alternating knots, the second
shortest curve had length bounded below by a constant times the twist number. However,
this result gave no information about knots with a small number of crossings in any
twist region. Futer, Kalfagianni and Purcell [15] showed the cusp area is bounded
below by twist number for 2–bridge knots, which are a subset of alternating knots.

Corollary 1.2 gives that the length of every nonmeridional slope for a hyperbolic
alternating knot must be long, unless the knot lies in one of the limited families with
bounded twist number. Corollary 1.2 is an immediate consequence of Theorem 1.1, as
follows. For suppose that � is some nonmeridional slope on the boundary of a maximal
cusp C , and let � be the meridian. Let L.�/ and L.�/ be their lengths, and denote
the modulus of their intersection number by �.�; �/. Then, an elementary calculation
in Euclidean geometry (for example as in the proof of [10, Lemma 2.1]) gives that

L.�/L.�/� Area.@C /�.�; �/:

The length of � is at most 3, by [5], and so we deduce that

L.�/�
Area.@C /�.�; �/

L.�/
� B.tw.K/� 2/;

where B is greater than 7:593� 10�20 .

Applications to Dehn surgery

The above results on slope length are significant because slope length has important
consequences for Dehn surgery. It is a well-known consequence of the 6–theorem of
Agol [6] and Lackenby [18], together with Perelman’s proof of the geometrisation con-
jecture, that if M is a finite-volume hyperbolic 3–manifold and s1; : : : ; sk are slopes on
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distinct components of @M , such that, with respect to some horoball neighbourhood C

of the cusps, each si has length more than 6, then the manifold M.s1; : : : ; sk/ obtained
by Dehn filling along these slopes is hyperbolic. It was shown by Futer, Kalfagianni
and Purcell [14] that if these slopes all have length at least `min > 2� on @C , then the
hyperbolic volume of M.s1; : : : ; sk/ satisfies

Volume.M.s1; : : : ; sk//�

�
1�

�
2�

`min

�2�3=2

Volume.M /:

Therefore, applying Corollary 1.2, we deduce the second inequality in the following
result.

Theorem 1.7 Let K be a hyperbolic alternating knot. If tw.K/� 1:361� 1020 , then
any manifold M obtained by a nontrivial surgery along K is hyperbolic and satisfies

1
2
v8.tw.K/=2� 1/� 1

2
Volume.S3

XK/

� Volume.M /

< Volume.S3
XK/� 10v3.tw.K/� 1/;

where v8 � 3:66386 is the volume of a regular hyperbolic ideal octahedron, and
v3 � 1:01494 is the volume of a regular hyperbolic ideal tetrahedron.

Two of the remaining inequalities are upper and lower bounds on the volume of
hyperbolic alternating link complements, due to Lackenby [19], with improvements by
Agol and D Thurston [19], and Agol, Storm and W Thurston [7]. The third inequality is
the fact that hyperbolic volume decreases when Dehn filling is performed (see Thurston
[27]).

We can also deduce Theorem 1.3 from Theorem 1.1, together with a theorem of
Cooper and Lackenby [10] which asserts that, for any � > 0 and any closed orientable
3–manifold M , there are at most finitely many cusped hyperbolic 3–manifolds X and
slopes s on @X with length at least 2�C� , such that M is obtained by Dehn filling X

along s .

Let M be a closed 3–manifold with Gromov norm more than 8:561� 1020 . Suppose
that M is obtained by p=q surgery along a prime alternating knot K . Let X be
the exterior of K . Then X is hyperbolic, and since Gromov norm does not increase
when Dehn filling is performed, the Gromov norm of X is also at least 8:561� 1020 .
Since Gromov norm and hyperbolic volume are proportional, the volume of X is
at least 8:561� 1020v3 . Hence, by Lackenby’s theorem, with improvements due to

Geometry & Topology, Volume 20 (2016)



Cusp volumes of alternating knots 2059

Agol and D Thurston [19], the twist number of K is at least 8:561� 1019 . So, by
Corollary 1.2, the length of the filling slope p=q is at least

.7:593� 10�20/� .8:561� 1019
� 2/ > 6:5:

Setting � D 6:5� 2� , and applying the theorem of Cooper and Lackenby, we obtain
Theorem 1.3.

Crossing arcs

In his experimental analysis of the hyperbolic structures of alternating knot comple-
ments, Thistlethwaite observed several geometric features that are related to cusp area,
and formulated various conjectures. To explain one of these conjectures, we need the
following definitions.

Definition 1.8 Let ˛ be an arc in S3 , such that ˛ \K D @˛ . Suppose that ˛ is
homotopic in S3XK to a geodesic 
 . A maximal cusp for S3XK intersects 
 in two
half-open intervals which contain the ends of 
 , together possibly with some closed
intervals. Define the length of ˛ to be the length of the arc that results from removing
the two half-open intervals from 
 .

Definition 1.9 A crossing arc is defined to be an embedded arc in S3 with endpoints
on K , which projects to a single point lying at a crossing in the diagram of K .

Thistlethwaite conjectured that crossing arcs in alternating knots have universally
bounded length, with length bounded above by log 8. Since two crossing arcs are
homotopic in S3 X K only if they belong to the same twist region (as shown in
Lackenby and Purcell [20, Proposition 7.12]), and since short arcs contribute to cusp
area, Thistlethwaite’s conjecture would imply Theorem 1.1. In fact, our proof of
Theorem 1.1 hinges on the fact that many distinct geodesic arcs in S3XK have bounded
length. However, we cannot show that crossing arcs are short, but expect this to be
the case. Therefore, we offer Theorem 1.1 as additional evidence for Thistlethwaite’s
conjecture.

Organisation

The results in this paper are organised as follows. In Section 2, we prove the main
result for alternating knots with a bounded number of crossings per twist region. This
case is simpler to explain than the general case, and yet introduces the main tools and
techniques we will use in general, particularly Theorem 2.7. We apply this theorem to
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the checkerboard surfaces of the diagram. In Section 3, we remind the reader of an
essential immersed surface, originally appearing in Lackenby and Purcell [20], which
will play the role of the checkerboard surfaces in the general case. We use this to give
a proof of Theorem 1.1.

Acknowledgements Purcell is supported in part by NSF grant DMS-1252687, and
by Australian Research Council grant DP160103085.

2 Bounded crossings in each twist region

In this section, we prove a version of the main theorem in the case that our alternating
knot has a bounded number of crossings per twist region. That is, we show that such
knots have cusp volume bounded above and below by linear functions of the twist
number.

We work through this case separately because it is somewhat simpler than the most
general case, and also because it allows us to develop and apply many of the tools we
will use in the general setting.

Checkerboard surfaces

Recall the checkerboard surfaces of an alternating link complement are obtained by
colouring the regions of the diagram in a checkerboard manner, in blue and red, say,
and then attaching twisted bands at crossings to connect regions of the same colour.
Note that the checkerboard surfaces intersect only at crossings, and then in a single arc
running from the strand of the link at the top of the crossing to the strand of the link at
the bottom. This is a crossing arc, as in Definition 1.9.

The following result is due to Menasco and Thistlethwaite [22].

Lemma 2.1 The checkerboard surfaces arising from a prime alternating diagram are
essential.

Any essential surface in a hyperbolic 3–manifold can be given a pleating (see Thurston
[27], or for a more detailed proof, see Canary, Epstein and Green [9], or Lackenby [18]).
We pleat both checkerboard surfaces in S3 XK . This gives an induced hyperbolic
metric on the disjoint union of the two checkerboard surfaces.

Lemma 2.2 Let S denote the disjoint union of the two checkerboard surfaces for the
alternating knot K with a prime, twist reduced diagram, which we also denote by K .
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Then the Euler characteristic of S is �.S/D 2� cr.K/, where cr.K/ is the number of
crossings of the diagram. Thus under the hyperbolic metric obtained from pleating S

in S3 XK , the area of S is Area.S/D 2�.cr.K/� 2/.

This result is not hard, and appears elsewhere (see, for example [5]). We offer a
particularly simple proof.

Proof In the disjoint union of red and blue surfaces, each crossing arc appears twice:
once in the red, and once in the blue. In S3XK , replace each of the crossing arcs with
two homotopic arcs, each with an endpoint on the overstrand of the crossing, but with
separated endpoints on the understrand of the crossing. Attach red and blue regions
of the diagram to these arcs. The result is just the plane of projection of the diagram,
punctured once by each overcrossing; hence it has Euler characteristic 2 � cr.K/.
But by construction, this Euler characteristic is exactly the Euler characteristic of the
disjoint union of the two checkerboard surfaces. The area formula follows immediately
from the Gauss–Bonnet theorem.

Lemma 2.3 Let S denote the disjoint union of two essential properly immersed
surfaces S1 and S2 in S3XK . Give S a hyperbolic metric, by pleating S and pulling
back the path metric on S3XK . Let H denote the maximal cusp of S3XK . Suppose
that, for i D 1 and 2, the boundary of Si is a single curve on @N.K/ with integral
slope �i . Then S has an embedded cusp HS with cusp area at least j�1 � �2j, such
that HS maps into H under the map from S to S3XK . Moreover, if K is neither the
figure-eight knot nor the knot 52 , the area of HS is at least 4

p
2 j�1� �2j.

Proof For i D 1; 2, there exists an embedded cusp Hi for Si with area at least the
length of a geodesic representative 
i for @Si on @H , and which has image in S3XK

contained in H , for example by a lemma of Futer and Schleimer [16, Lemma 2.5].

Orient 
1 and 
2 so that their intersection numbers with the meridian of K are opposite.
If we resolve the intersections between 
1 and 
2 so that they respect these orientations,
the result is a collection of meridians with the same length as 
1 [ 
2 . The number
of these meridians is j�1� �2j. Each has length at least 1, by standard arguments in
hyperbolic geometry. So, the length of 
1[ 
2 is at least j�1� �2j, and this forms a
lower bound for the area of HS DH1[H2 .

In fact, Adams [2] proved that the meridian of any hyperbolic knot in the 3–sphere has
length at least 4

p
2, with the exception of the figure-eight and 52 knots. Hence, using

this bound, the length of 
1[
2 is at least 4
p

2 j�1��2j, and again this forms a lower
bound for the area of HS DH1[H2 .
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Lemma 2.4 Let S denote the disjoint union of the two checkerboard surfaces for the
hyperbolic alternating knot K . Then S has an embedded cusp HS such that the area
of HS is at least twice the number of crossings in the prime, twist reduced diagram
of K , and such that HS maps into the maximal cusp for S3 XK . That is,

Area.HS /� 2 cr.K/:

Moreover, if K is neither the figure-eight knot nor the knot 52 , the area of HS is at
least 25=4 cr.K/.

Proof Colour the two checkerboard surfaces red and blue, and denote them R and B .
Denote their disjoint union by S . Note that R and B are properly embedded in the
exterior of K , each with boundary a single curve with integral slope.

We claim that the difference in slopes of @R and @B is twice the crossing number.
This is because R and B intersect exactly in crossing arcs, with boundary slopes
intersecting once at an overcrossing, once at an undercrossing. See Figure 3.

Figure 3: The red and blue surfaces run over two meridians per overcrossing.

Thus Lemma 2.3 gives the required cusp for S , with area at least 2 cr.K/. Moreover,
when K is neither the figure-eight knot nor the knot 52 , the area of the cusp is at least
25=4 cr.K/.

The above lemma is simple, but quite striking. It is easy to construct hyperbolic
surfaces with large area but with small cusp area, but Lemma 2.4 asserts that this type
of geometry never occurs among checkerboard surfaces of alternating knots, when in
pleated form.

This lower bound on the cusp area of S is central to our argument. We will use it in
the next subsection to establish the existence a large collection of disjoint properly
embedded essential arcs in S , each of which has bounded length. By Lemma 2.1,
these can be homotoped to geodesics in S3 XK without increasing their length. We
will see in the next subsection that each such arc gives a definite contribution to the
cusp volume of S3 XK . However, it may be the case that distinct geodesics in S are
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homotoped to the same geodesic in S3 XK . In the remainder of this subsection, we
investigate this phenomenon more thoroughly.

Consider a twist region of the diagram. A small regular neighbourhood of this twist
region in the diagram is a disc, and a regular neighbourhood of this disc is a 3–ball
in S3 . The intersection between this ball and a checkerboard surface is the subsurface
that is associated with this twist region. Note that if the twist region has c crossings,
then one of these subsurfaces has Euler characteristic 2� c and the other is a disc. See
Figure 4.

Figure 4: The subsurface of a checkerboard surface associated with a twist region

The following is [20, Proposition 7.12].

Lemma 2.5 Let S denote the disjoint union of the two checkerboard surfaces of a
prime, twist reduced, alternating diagram of a hyperbolic knot K . Suppose a1 and a2

are disjoint essential embedded arcs in S that are not homotopic in S , but are homotopic
in S3 XK after including S into S3 XK . Then either a1 and a2 are isotopic in S

to crossing arcs in the same twist region of the diagram, or they both lie on the same
checkerboard surface and both are isotopic in that checkerboard surface to arcs in the
same subsurface associated with some twist region.

The proof of this result does not require all of the machinery of [20], but mostly just the
techniques developed in Section 7 of that paper. The proof is rather reminiscent of the
arguments in [18] and [19]. Since the arcs a1 and a2 are homotopic in S3 XK , there
is a map of a rectangle into S3 X int.N.K//, with the left and right edges mapped
to a1 and a2 , and the top and bottom mapped to @N.K/. One then considers the
inverse image of the checkerboard surfaces in this rectangle, which divides the rectangle
into regions. Each region is mapped into the complement of the checkerboard surfaces,
and so one can view its boundary as specifying a curve in the alternating diagram.
Lemma 2.5 is then proved by analysing these curves and by ruling out various trivial
configurations, until the map of the rectangle into S3Xint.N.K// is of a very restricted
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form. The conclusion of the lemma then follows quickly. For more details, see [20,
Section 7].

Corollary 2.6 Let S denote the disjoint union of the two checkerboard surfaces for
a prime, twist reduced, alternating diagram of the hyperbolic knot K . Suppose that
each twist region contains at most N crossings. Then, for any collection of disjoint
embedded essential nonparallel arcs in S , all of which are homotopic in S3 XK , the
number of such arcs is most 3N � 1.

Proof We may assume that, in this collection, there is more than one arc lying in the
same checkerboard surface, B , say. By Lemma 2.5, all the arcs lying in B can be
isotoped to lie in the subsurface associated with some twist region. We may arrange
that, after this isotopy, the arcs remain disjoint, embedded and nonparallel. The number
of disjoint essential arcs, no two of which are parallel, that can lie in such a subsurface
is at most 3N �2. Also, by Lemma 2.5, any arc in the collection in R can be isotoped
to lie in the subsurface associated to this twist region. This can support at most one
such arc, up to isotopy.

Short arcs and cusp volume

The following result will be used to show that there are many geodesic arcs of bounded
length in a hyperbolic alternating knot complement.

Recall that, in Definition 1.8, we defined the length of an arc in S3 , with both endpoints
on K . We present a variation of this definition now. Let F be a finite-volume hyperbolic
surface, and let H be an embedded horoball neighbourhood of its cusps. Let ˛ be a
bi-infinite geodesic in F , with both its ends in H . Then the intersection between ˛
and H consists of two half-open intervals containing these ends, plus perhaps some
closed bounded intervals. Define the length of ˛ with respect to H to be the length of
the arc obtained by removing the two half-open intervals. Thus, if ˛ also intersects H

in some closed bounded intervals, then these do contribute to the length of ˛ .

Theorem 2.7 Let F be a (possibly disconnected) finite-area hyperbolic surface. Let H

be an embedded horoball neighbourhood of the cusps of F . Let kDArea.H /=Area.F /
and let d > 0. Then there is a collection of at least

.ked � 1/�

.ed � 1/.sinh.d/C 2�/
j�.F /j

embedded disjoint bi-infinite geodesic arcs, each with both ends in H , and each having
length at most 2d with respect to H .
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Before we give the proof of this theorem, we make a couple of observations about it.
On the one hand, the lower bound on the number of geodesic arcs that it provides,
with length at most 2d , can be viewed as somewhat inefficient. This is because,
as d tends to infinity, the lower bound decreases to zero, whereas clearly the number
of geodesics with length at most 2d is an increasing function of d . However, the real
utility of the theorem is its universal nature. The maximal number of disjoint embedded
geodesic arcs in a cusped hyperbolic surface F is 3j�.F /j. Theorem 2.7 asserts that
one may find a collection of such arcs, with cardinality which is a definite fraction of
this maximum, and where all the arcs have bounded length. The fraction depends little
on the topology and geometry of F : just the cusp density of F and the length of the
arcs determine this fraction. It is the general nature of this estimate that is crucial for
our proof of Theorem 1.1.

Proof Pick a maximal collection of embedded disjoint bi-infinite geodesic arcs G ,
each with both ends in H , and each having length at most 2d with respect to H .
Use the upper half space model of H2 . Let zH be the inverse image of H in H2 .
We may arrange that one component H1 of zH is fy � 1g. For each component g

of G , pick lifts zg and zg0 to H2 , each of which starts on H1 , but which do not
differ by a covering transformation that preserves H1 . These run to other components
Hzg and Hzg0 of zH . Let I.zg/ be an open interval on @H1 centred at the point where zg
exits, with length 2� . Define I.zg0/ similarly. Each of these projects to an interval
in @H with length also 2� (or possibly to all of @H ).

For each component g of G , its intersection with H is two half-open intervals, plus
possibly some closed intervals (which may be points). For each closed interval, pick
a lift of this to H2 that lies in H1 . This lift lies in a lift yg of g in H2 . Consider
the vertical projection of yg\H1 onto @H1 . Its image in @H is termed the vertical
projection of the interval onto @H .

We define I to be the union of the following subsets of @H :

(1) for each geodesic g in G , the images of I.zg/ and I.zg0/ in @H ;

(2) for each geodesic g in G and for each closed interval of g \H , the vertical
projection of this interval onto @H .

Claim 1 The length of I is at most jGj.2 sinh.d/C 4�/.

Clearly, for each geodesic g in G , the intervals I.zg/ and I.zg0/ contribute at most 4�

to the length of I . So, we consider the projection of the closed intervals in g \H

onto @H . Let `1; : : : ; `n be the lengths of these intervals. Then the projections of
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these intervals onto @H have lengths 2 sinh.`1=2/; : : : ; 2 sinh.`n=2/. Since sinh is
increasing and convex on the positive real line, and `1C� � �C`n � 2d , we deduce that
the total length of these projected intervals is at most 2 sinh d . This proves the claim.

Claim 2 For each lift yg of a component of G , if yg intersects @H1 , then the vertical
projection of yg onto @H1 lies entirely in the inverse image of I .

We may assume that yg has maximal projection onto @H1 , in the sense that this
projection is not contained within the projection of some other lift of G . Let x be one
of the two points of yg\@H1 . Let x̨ be the geodesic ray starting at x running vertically
into H1 . Then x̨ � x is disjoint from the inverse image of G , by our assumption
about the maximality of the projection of yg . Let x̌ denote the subset of yg that is a
geodesic ray starting at x and exiting H1 . Then x̨ [ x̌ is a piecewise geodesic, and
after a small isotopy, it can be made disjoint from the inverse image of G . Hence,
it maps to an arc in F that is disjoint from G . This is embedded, because x̨ and x̌

both have images that are embedded in F , and these images have disjoint interiors.
Straighten x̨ [ x̌ to a geodesic 
 that hits @H1 orthogonally. Then the image of 
 is
also embedded and is isotopic to an arc disjoint from G . Its length outside the cusp is
less than 2d . So, the image of 
 lies in G , by the maximality of G . Therefore I.
 /

maps to I .

Now the triangle with sides x̨ , x̌ and 
 has area less than � . On the other hand, the
area contained in the portion of H1 lying over I.
 / on the side of 
 containing x

is � . Hence I.
 / contains the interval in @H1 between 
 \@H1 and x . Hence, this
entire interval lies in the inverse image of I . Since this argument applies to both points
of yg\ @H1 , the claim is proved.

For the parts of @H not lying in I , expand H by vertical distance d , giving a (closed)
neighbourhood H 0 of the cusps. See Figure 5.

I.zg/ I.zg0/

lift of H 0

Hzg Hzg0 Hzg Hzg0

zg zg0

Figure 5: Expanding H to form H 0
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Claim 3 H 0 is disjoint from G �H and is embedded in F .

Suppose that H 0 intersects G�H or is not embedded in F . We view H 0 as obtained
from H by slowly expanding it vertically. There is some first moment in time when
H 0 intersects G or when H 0 becomes nonembedded.

Let us suppose that H 0 intersects G�H first. Emanating from this point of intersection,
there is a geodesic segment which runs vertically in H 0 to the boundary of the cusp H .
Pick a lift ˛ of this geodesic segment in H2 with one endpoint in @H1 . Let x be the
other endpoint. Note by choice of H 0 , the geodesic segment ˛ has length at most d .
The starting point x of ˛ lies on a lift yg of a component of G . This bi-infinite
geodesic yg has ends in horoballs H1 and H2 that are not H1 . The length of yg
between H1 and H2 is at most 2d , and so one of the components ˇ of yg � x has
length at most d outside of H1 , say. Extend ˛ and ˇ to infinite geodesic rays x̨ and x̌

running into H1 and H1 , respectively, and meeting at x . Note that x̌ misses H1 ,
because otherwise, by Claim 2, the entire vertical projection of yg onto @H1 has image
in I , whereas, by assumption, ˛ \ @H1 does not have image in I . See Figure 6.
Straighten x̨ [ x̌ to a geodesic 
 that hits @H1 and @H1 orthogonally. Clearly, the
image of 
 in F has length at most 2d with respect to H . Also, the image of 

is embedded in F , because it is a geodesic homotopic to x̨ [ x̌, which has image
embedded in F . So the image of 
 lies in G , by the maximality of G . Consider the
triangle formed by 
 , x̨ and x̌. This has area less than � . Since ˛ avoids I.
 /, and
x̌ misses H1 , we deduce that the region lying between x̨ and 
 in H1 has area
at least � , which is a contradiction, proving the claim in this case.

H1

˛



x

ˇ

H1 H2

Figure 6: The case where H 0 intersects G �H first

Suppose now that when H 0 is formed by expanding H , it becomes nonembedded first.
Then at this moment in time, the neighbourhood fails to be embedded at some point.
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Emanating from this point, there are two geodesic segments which run to the boundary
of the horoball neighbourhood H , and which lift to geodesic segments ˛1 and ˛2

in H2 running to the boundary of distinct horoballs in H2 . We may take one of
these to be H1 . The geodesic segments ˛1 and ˛2 each have length at most d , by
choice of H 0 . So extending to infinite rays x̨1 and x̨2 and concatenating, we obtain a
piecewise geodesic that has length at most 2d with respect to lifts of H . Its image
in F is embedded (because this moment in time was the first time when H 0 bumped
into itself). It also misses G . So, it is isotopic to an embedded geodesic g that has
length at most 2d with respect to the cusp. Thus, g lies in G by the maximality
of G . So at the two points where g intersects @H , there are the images of the two
intervals I.zg/ and I.zg0/. Now, neither of these intervals is expanded when forming H 0 ,
and so at least one of x̨1 and x̨2 misses both intervals, say x̨1 does. Consider the
triangle formed by g , x̨1 and x̨2 . This has area less than � . But the region lying
between x̨1 and g inside H has area at least � . This contradiction proves the claim.

The claim implies the theorem, because then

Area.H 0/� Area.H /C .ed
� 1/Length.@H � I/

� Area.H /C .ed
� 1/Length.@H /� .ed

� 1/jGj.2 sinh.d/C 4�/

D ed Area.H /� .ed
� 1/jGj.2 sinh.d/C 4�/:

Thus

Area.F /� Area.H 0/

� ed Area.H /� .ed
� 1/jGj.2 sinh.d/C 4�/

D ked Area.F /� .ed
� 1/jGj.2 sinh.d/C 4�/:

So,

jGj �
ked � 1

.ed � 1/

Area.F /
.2 sinh.d/C 4�/

D
.ked � 1/�

.ed � 1/.sinh.d/C 2�/
j�.F /j:

Recall from Definition 1.8, the definition of the length of an arc in S3 XK , measured
with respect to a maximal cusp.

Lemma 2.8 Suppose that a one-cusped hyperbolic 3–manifold M contains at least p

homotopically distinct essential arcs, each with length at most L measured with respect
to the maximal cusp H of M . Then the cusp area Area.@H / is at least p

p
3e�2L .
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Proof Consider the universal cover H3 of M , arranged so that one component of the
lift of the maximal cusp H is the horoball H1 D fz � 1g. Let T be a fundamental
domain for the cusp torus @H on @H1 .

Let G be our collection of essential arcs, with jGj � p . Each arc a in G has geodesic
representative in M which lifts to give two vertical geodesics meeting T : for oriented a,
one such lift runs from infinity to a point on C below T , and the other lift runs from a
point on C below T to infinity. One end of each arc is at infinity. The other runs into a
horoball centred at some other point on C . Since the maximal cusp is embedded, each
of these horoballs is disjoint in H3 . Hence each gives a circular “shadow” on @H . We
estimate the size of the shadows and apply a circle packing argument to obtain our area
estimate.

Because the (hyperbolic) length of each arc a is at most L, the horoball at the end of
each lift of a in T has (Euclidean) diameter at least e�L . Each such horoball projects
onto @H1 , giving a disk of diameter e�L on @H . Note that while larger horoballs may
partially cover smaller ones, if we shrink all horoballs to have diameter exactly e�L ,
then the collection of horoballs will remain embedded in H3 , and so the projections of
these smaller disks onto @H are all disjoint. Hence each arc a in G corresponds to
two embedded disks on @H of diameter e�L .

It follows that the area of the cusp torus @H is at least 2p ��.e�L=2/2 D p�e�2L=2.
We can improve this estimate using a disk packing argument (see [8, Theorem 1]): the
area of @H must be at least 2

p
3=� times the sum of the areas of the disks, or

Area.@H /�
2
p

3

�
�
p�e�2L

2
D p
p

3e�2L:

Theorem 2.9 Suppose K is a hyperbolic alternating knot with a prime, twist reduced
diagram, which we also call K , with no more than N crossings in each twist region.
Let H be a maximal cusp of the hyperbolic manifold S3 XK . Then the cusp area
satisfies

1:844� 10�4

.3N � 1/
.tw.K/� 2/� Area.@H / < 10

p
3.tw.K/� 1/:

Proof The upper bound comes from the upper bound on the hyperbolic volume of
an alternating knot complement, proved by Lackenby and improved by Agol and
D Thurston in [19]. From this result, we know

Volume.S3
XK/� 10v3.tw.K/� 1/;

where v3 � 1:01494 is the volume of a regular hyperbolic ideal tetrahedron.
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Böröczky [8] proved that the cusp volume of a hyperbolic 3–manifold is at most
p

3=.2v3/ times the volume of the manifold. Hence we have

Volume.H / < 5
p

3.tw.K/� 1/:

Finally, by basic hyperbolic geometry, we have Area.@H /D 2 Volume.H /.

For the lower bound, we first note that it trivially holds in the case of the figure-eight
knot and the knot 52 , because these both have tw.K/D 2. So, we can assume that
K is neither of these knots. Let S denote the disjoint union of the two checkerboard
surfaces. Since S is essential, it may be pleated in S3XK , and the pleating pulls back
to give a hyperbolic metric on S . Let HS be an embedded cusp for S coming from
Lemma 2.4, with Area.HS /� 25=4 cr.K/. By Lemma 2.2, S has area 2�.cr.K/�2//.
Set k D Area.HS /=Area.S/. Then, k >

4
p

2=� . Set d D log.2=k/ < log.23=4�/.
Then by Theorem 2.7, there are at least

.ked � 1/�

.ed � 1/.sinh.d/C 2�/
j�.S/j> .0:083/j�.S/j

disjoint geodesic arcs in S of length at most 2d with respect to HS . Map these
into S3 XK . Because the checkerboard surfaces are essential, each such arc remains
essential under the mapping. Moreover, the length of each such arc may only decrease
in S3XK , either by straightening, or by cutting off more length since the image of HS

is contained in H . Hence each has length at most 2d with respect to the maximal cusp
of S3 XK .

By Corollary 2.6, at most 3N �1 of these arcs may be homotopic to the same arc. Thus
in S3 XK , we have at least .0:083/j�.S/j=.3N � 1/ homotopically distinct essential
arcs of length at most 2d .

Now Lemma 2.8 implies that the cusp area satisfies

Area.@H /�
.0:083/j�.S/j

3N � 1

p
3e�4d

>
.0:083/

p
3 j�.S/j

8�4.3N � 1/

�
1:844� 10�4

.3N � 1/
.cr.K/� 2/

�
1:844� 10�4

.3N � 1/
.tw.K/� 2/:
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3 An essential twisted surface

In the previous section, we showed that the complement of a hyperbolic alternating
knot contains essential arcs of bounded length by considering the checkerboard surfaces
of the knot. We want the number of such arcs to be bounded below by a linear function
of the twist number of the knot. When there is a bounded number of crossings per twist
region, then the checkerboard surfaces give us this result. However, in general, if there
are a high number of crossings in a twist region, then the arcs with bounded length on
the checkerboard surface may all be homotopic within this twist region. We need to
find arcs that we can guarantee are not all concentrated within a constant number of
twist regions.

In order to do so, we use an essential immersed surface in the knot complement,
called a twisted checkerboard surface. Two variations of this surface are defined
in [20], and proved to be �1 –injective and boundary-�1 –injective. A map f W S !M

of a surface S into a compact 3–manifold M with f .@S/ � @M is said to be
boundary-�1 –injective if, for any arc ˛W I ! S with endpoints in @S , the existence
of a homotopy (rel endpoints) of f ı˛ into @M implies the existence of a homotopy
(rel endpoints) of ˛ into @S .

In this section, we review the definitions of these surfaces, and remind the reader of
key results in [20]. Using these results, we give a proof of Theorem 1.1.

Twisted surfaces

Recall that K is a hyperbolic alternating knot with a prime, twist reduced diagram,
which we also refer to by K . For each twist region of K with at least N crossings
(N will be determined explicitly below), augment the diagram, in the sense of Adams
[3]. That is, add an unknotted circle to the diagram encircling the two strands of the
twist region. This circle is called a crossing circle. It bounds a disk, the crossing disk,
which meets the knot transversely in two points.

The result of adding crossing circles to all twist regions with at least N crossings yields
the diagram of a link. We will denote this link and its diagram by L.

Recall that S3XL is homeomorphic to S3XL0 , where L0 is any link obtained from L

by removing any even number of crossings from each twist region encircled by a
crossing circle in the diagram of L (eg [25]). We will work with the diagram in which
each twist region encircled by a crossing circle has 1 or 2 crossings remaining. We
denote this link (and its diagram) by L2 . Finally, for L2 , remove the crossing circles
from the diagram. The result is a knot which we denote by K2 . An example is shown
in Figure 7.
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Figure 7: Examples of diagrams for K (far left), L (middle left), L2 (middle
right) and K2 (far right) (figure from [20])

To form the twisted checkerboard surface, start with the checkerboard surfaces of K2 .
These are embedded surfaces in S3 X �.K2/, where �.K2/ denotes a small regular
neighbourhood of K2 . Colour these surfaces red and blue.

A small regular neighbourhood of each crossing circle in L2 will intersect either the
red or the blue checkerboard surface in two meridional disks. Thus when we remove
these disks from the surfaces, we obtain two surfaces embedded in S3X �.L2/, which
we also colour red and blue, and denote by R2 and B2 .

Because S3X�.L2/ is homeomorphic to S3X�.L/, the surfaces R2 and B2 are also
embedded in S3 X �.L/. Notice that under the homeomorphism, a meridional curve
on the boundary of a regular neighbourhood of the j th crossing circle will be sent to a
curve with slope ˙1=nj , where 2nj crossings were removed from the corresponding
twist region to go from the diagram of L to that of L2 .

Finally, to obtain S3 X �.K/ from S3 X �.L/, we perform meridional Dehn filling on
each crossing circle of L. That is, we reinsert a regular neighbourhood of the crossing
circle so that the meridian of the crossing circle bounds a disk in the attached solid
torus.

To obtain the twisted checkerboard surfaces, when we reinsert the regular neighbourhood
of the crossing circles, we also attach annuli or Möbius bands to the surfaces R2 and B2 ,
as follows. Let Cj denote the j th crossing circle in L. Recall that one of R2 or B2

meets @�.Cj / in two curves, corresponding to two meridians of a crossing circle of L2 .
Because the boundary slopes are each ˙1=nj on @�.Cj /, a meridional disk of �.Cj /

meets the surface 2nj times. For each meridional disk, attach an interval I to opposite
points of intersection on the disk, ensuring that in S3X�.K/, the interval runs through
the core of the solid torus �.Cj /. When we take such an interval for each disk D2�f�g

in D2 �S1 , the result is that we have attached an I –bundle to the surface R2 or the
surface B2 . When nj is odd, so that we are attaching opposite boundary components
when we attach the interval, the I –bundle is an annulus, connecting the two boundary
components of R2 (or B2 ) on @�.Cj /. When nj is even, the intervals connect one
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boundary component on @�.Cj / to itself, hence we are attaching two Möbius bands
to R2 (or B2 ). This is illustrated in Figure 8.

Figure 8: A cross section of the solid torus added to S3X�.L/ , and how the
surface extends into it (figure from [20])

When we do this process for each crossing circle, we obtain two surfaces, denoted
SR;2 and SB;2 , and immersions �R;2W SR;2! S3 XK and �B;2W SB;2! S3 XK .
Again we colour the surfaces red and blue.

Lemma 3.1 Let twN .K/ denote the number of twist regions of K with at least N

crossings, and let cr.�/ denote the number of crossings of a diagram. Then the Euler
characteristics of the red and blue twisted checkerboard surfaces satisfy

j�.SR;2/C�.SB;2/j D cr.K2/C 2 twN .K/� 2:

Proof By Lemma 2.2, the absolute value of the Euler characteristic of the disjoint
union of the checkerboard surfaces in K2 is cr.K2/�2. To obtain surfaces R2 and B2 ,
remove two disks for each crossing circle, so that

j�.R2/C�.B2/j D cr.K2/C 2 twN .K/� 2:

Finally, connect pairs of boundary components by annuli or attach pairs of Möbius
bands for each crossing circle. This has no effect on Euler characteristic.

The next theorem is the main result of [20].

Theorem 3.2 Let SR;2 and SB;2 be the surfaces constructed as above, by twisting
checkerboard surfaces around crossing circles encircling each twist region with at
least N crossings. Let �R;2W SR;2! S3XK be the immersion of SR;2 into S3XK ,
and similarly for SB;2 . Then �R;2 and �B;2 are �1 –injective and boundary-�1 –
injective, provided N � 91.

We also showed the following result, analogous to Lemma 2.5, in [20, Theorem 7.1].
As in Lemma 2.5, this also refers to subsurfaces associated to twist regions, but we
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need to clarify what this means in the case of the twisted checkerboard surfaces. Each
arises from a twist region of the knot K2 . We choose the associated subsurfaces of the
checkerboard surface for K2 as follows. If the twist region is encircled by a crossing
circle of L2 , we choose the subsurface in R2 or B2 so that it is punctured twice by this
crossing circle. However, the subsurfaces are disjoint from all other crossing circles.
Hence, they form subsurfaces of R2 and B2 . Since there are inclusions R2 � SR;2

and B2 � SB;2 , we obtain subsurfaces of SR;2 and SB;2 which are the subsurfaces
associated with a twist region of K2 .

Theorem 3.3 Suppose N � 121 and suppose that two distinct essential arcs in the
surface SB;2 have homotopic images in S3 XK , but are not homotopic in SB;2 . Then
the two arcs are homotopic in SB;2 into the same subsurface associated with some twist
region of K2 .

Just as in Corollary 2.6, we obtain the following result.

Corollary 3.4 Suppose N � 121. Let C be a collection of disjoint embedded essential
nonparallel arcs in SB;2 tSR;2 which are all homotopic in S3 XK . Then the number
of arcs in C is at most 2.3N � 2/.

Proof By Theorem 3.3, all the arcs of C that lie in SB;2 can be homotoped in SB;2 to
lie in a subsurface associated with a twist region of K2 . Note that after this homotopy,
the arcs remain disjoint, embedded and nonparallel. One way of proving this is to use a
hyperbolic structure on SB;2 , and to realise the arcs that separate the subsurface from
the remainder of SB;2 as geodesics, and also to realise the arcs in C as geodesics. Then
the geodesics in C are disjoint, embedded and nonparallel, and lie in the subsurface
associated with the twist region of K2 . The number of disjoint embedded essential
nonparallel arcs in such a subsurface is at most 3N � 2. Note that when a twist
region of K2 is encircled by a crossing circle, it has at most 2 crossings, and so in
this case, the maximal number of disjoint embedded essential nonparallel arcs in a
corresponding subsurface is at most 6, which is less than 3N � 2. By switching roles
of SB;2 and SR;2 , we obtain the same result for all the arcs of C that lie in SR;2 .
Hence there are at most 2.3N � 2/ arcs in total.

Because each twisted checkerboard surface is boundary-�1 –injective in S3 XK , in
the hyperbolic structure on S3 XK it can be given a pleating. (This is proved, for
instance, in [18, Lemma 2.2].) The pleating pulls back to give a hyperbolic structure
on the surface. The following, analogous to Lemma 2.4, gives information on that
hyperbolic structure.
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Proposition 3.5 Let S denote the disjoint union of SB;2 and SR;2 , with immersion
f W S ! S3 XK . Consider the hyperbolic structure on S given by pulling back a
pleating of its image in the hyperbolic structure on S3XK . Let H be the maximal cusp
for S3XK . Then there is an embedded cusp for S contained in the preimage f �1.H /

with area at least 2 tw.K/. Moreover, if K is neither the figure-eight knot nor the
knot 52 , then the area of this cusp is at least 25=4 tw.K/.

Proof The boundary of the red surface on �.K/ is a single curve with integral
slope, and similarly for the boundary of the blue surface. The difference in slope
j@SB;2�@SR;2j is twice the crossing number of K2 , because the surfaces R2 and B2

intersect exactly in the crossing arcs of K2 , with boundary slopes intersecting once at
an overcrossing, and once at an undercrossing, just as in Figure 3. Thus Lemma 2.3
implies there is an embedded cusp for S contained in the preimage f �1.H /, with
cusp area at least 2 cr.K2/. Moreover, if K is neither the figure-eight knot nor the
knot 52 , then the area of this cusp is at least 25=4 cr.K2/.

Finally, because the diagram of K2 contains at least one or two crossings per twist
region of K , we obtain the required lower bound on cusp area.

Bounding cusp volume

We are now ready to give the proof of the main theorem.

Theorem 1.1 Let D be a prime, twist reduced alternating diagram for some hyperbolic
knot K , and let tw.D/ be its twist number. Let C denote the maximal cusp of the
hyperbolic 3–manifold S3 XK . Then

A.tw.D/� 2/� Area.@C / < 10
p

3.tw.D/� 1/;

where A is at least 2:278� 10�19 .

Proof The proof of the upper bound is identical to that of Theorem 2.9, so we only
need prove the lower bound. Again, this is trivial in the case where K is the figure-eight
knot or the knot 52 , and so we will assume that it is neither of these knots.

Form the surfaces SR;2 and SB;2 as above, first by removing all but one or two crossings
from twist regions of K with at least N D 121 crossings to yield the knot K2 , and
then twisting the checkerboard surfaces of K2 and attaching annuli and Möbius bands.
Now let S denote the disjoint union of SR;2 and SB;2 , and let f W S!S3XK denote
the immersion. By Theorem 3.2, S is �1 –injective and boundary-�1 –injective, hence
it can be pleated. Give S the hyperbolic metric induced by the pleating.

Geometry & Topology, Volume 20 (2016)



2076 Marc Lackenby and Jessica S Purcell

Let H denote the maximal cusp of S3XK . By Proposition 3.5 there exists an embedded
cusp HS for S contained in the preimage f �1.H / such that Area.HS /� 25=4 tw.K/.
By Lemma 3.1,

Area.S/D 2�.cr.K2/C 2 twN .K/� 2/ < 240� tw.K/:

Set k D Area.HS /=Area.S/� 4
p

2=.120�/, and set d D log.2=k/. By Theorem 2.7,
there exist at least

.ked � 1/�

.ed � 1/.sinh.d/C 2�/
j�.S/j>

j�.S/j

65143

disjoint geodesic arcs in S that have length at most 2d with respect to HS . Map
these arcs into S3 XK . Because S is boundary-�1 –injective, each such arc remains
essential under the mapping. Moreover, its length may only decrease in S3XK , either
by straightening the arc in S3 XK , or by cutting off more length on one end, since
HS may be a strict subset of f �1.H /. Hence each such arc has length at most 2d

with respect to the maximal cusp of S3 XK .

By Corollary 3.4, for any subcollection C of these arcs, all of which are homotopic
in S3 XK , the number of arcs in C is at most 2.3N � 2/D 722. So, in S3 XK , we
will have at least j�.S/j=.722� 65143/ homotopically distinct embedded essential
arcs of length at most 2d .

Now, as in the proof of Theorem 2.9, Lemma 2.8 implies that the cusp area satisfies

Area.@H /�

p
3 j�.S/j

722� 65143
e�4d

�
2
p

3

.240�/4.722� 65143/
.tw.K/� 2/

� 2:278� 10�19.tw.K/� 2/:
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