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Cross-effects and the classification of Taylor towers

GREGORY ARONE

MICHAEL CHING

Let F be a homotopy functor with values in the category of spectra. We show that
partially stabilized cross-effects of F have an action of a certain operad. For functors
from based spaces to spectra, it is the Koszul dual of the little discs operad. For
functors from spectra to spectra it is a desuspension of the commutative operad.
It follows that the Goodwillie derivatives of F are a right module over a certain
“pro-operad”. For functors from spaces to spectra, the pro-operad is a resolution of the
topological Lie operad. For functors from spectra to spectra, it is a resolution of the
trivial operad. We show that the Taylor tower of the functor F can be reconstructed
from this structure on the derivatives.

55P65, 55P48; 18D50

Let C and D each be either the category of based topological spaces, or the category
of spectra. Let F W C! D be a homotopy functor. Goodwillie’s homotopy calculus
provides a systematic way to decompose F into homogeneous pieces which are
classified by certain spectra with †n actions, denoted @nF and, by analogy with
ordinary calculus, called the derivatives or Taylor coefficients of F .

A key problem in the homotopy calculus is to describe all the relevant structure on
the symmetric sequence @�F , and to reconstruct the original functor F (or at least its
Taylor tower) from this structure. In [2] we gave a general description of this structure.
In this paper we give an alternative description of the structure on @�F in cases when F

takes values in the category of spectra. We interpret this structure as that of a “module
over a pro-operad”. The structure arises from actions of certain operads on the partially
stabilized cross-effects of F . Thus we connect the module structure on @�F with
Goodwillie’s presentation of @�F as stabilized cross-effects of F .

Let us review briefly our previous results on the subject. Let ITop� be the identity
functor on the category of based spaces. It was shown by the second author in [6]
that @�ITop� has an operad structure. In fact, @�ITop� is a topological realization of
the classical Lie operad, and we refer to @�ITop� informally as the topological Lie
operad. In [1] we showed that for a functor F W Topf

�! Sp , the symmetric sequence
@�F is a right module over @�ITop� . We also remarked in [1] that the module structure
was not sufficient for recovering the Taylor tower of F , and therefore there had to be
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additional structure, that still had to be described. In [2] we gave a description of this
extra information. Specifically, we constructed a comonad C, defined on the category
of right @�ITop� –modules, which acts on the derivatives of a homotopy functor F . We
showed that the Taylor tower of F can be recovered from this action.

The methods of [2] were quite general (applying to functors between any combinations
of the categories of based spaces and spectra). The comonad C has the form @�ˆ,
where @� is Goodwillie differentiation, and ˆ is a functor right adjoint to @� . In this
paper we provide a more concrete description of this comonad, for functors that take
values in Sp .

To understand our results, recall that the Goodwillie derivatives of F can be recov-
ered from the cross-effects of F via “multilinearization”. Explicitly, for a functor
F W Topf

�! Sp we have

@nF ' hocolimL!1†
�nL crn F.SL; : : : ;SL/;

where crn F denotes the n th cross-effect of F and SL is the topological L–sphere.
We show in Proposition 3.54 that, for fixed L, the symmetric sequence of partially
linearized cross-effects

dLŒF � WD†��L cr� F.SL; : : : ;SL/

naturally forms a right module over an operad KEL that is given by the Koszul dual
of the stable little L–discs operad EL . (Strictly speaking, this is true when F is
polynomial, or when F is analytic and L is sufficiently large.)

Our construction of the right modules dLŒF � is quite complicated: see the sequence of
steps listed just before Definition 3.11 for a summary. A key role here is played by a
version of Koszul duality that relates comodules over the operad EL to modules over
the Koszul dual operad KEL . This is described further in Propositions 3.44 and 3.67.

The Koszul dual operads KEL form an inverse sequence

(0.1) � � � ! KELC1! KEL! � � � ! KE2! KE1! KE0:

We refer to such an inverse sequence as a pro-operad. We denote the above pro-operad
by KE� . Note that the homotopy inverse limit of the sequence KE� is KE1 , which is
equivalent to the topological Lie operad @�ITop� . Therefore we refer to the sequence
KE� as the Lie pro-operad.

For polynomial functors F , we construct a model for the maps

dLŒF �! dLC1ŒF �

Geometry & Topology, Volume 20 (2016)



Cross-effects and the classification of Taylor towers 1447

between the partially linearized cross-effects that respects the operad maps

KELC1! KEL:

It follows that the symmetric sequence of derivatives @�F ' dŒF � WD hocolimL dLŒF �

inherits a limiting structure. We refer to this structure as a right module over the Lie
pro-operad. This structure includes, but contains strictly more information than, a right
module over the topological Lie operad by itself.

More precisely, we define modules over a pro-operad as coalgebras over a certain
comonad, constructed as follows. First note that the category of right modules over
any operad P can be identified with the category of coalgebras over a certain comonad
CP on the category of symmetric sequences. The sequence (0.1) of operads induces a
directed sequence of comonads

CKE0
! CKE1

! CKE2
! � � � :

If we write
CKE� WD hocolimL CKEL

;

then CKE� has a canonical comonad structure, and we define a module over the pro-
operad KE� to be a coalgebra over CKE� .

Remark 0.2 Our notion of a right module over a pro-operad is modelled on that of a
discrete set with a continuous action of a profinite group. In particular, a module over
a pro-operad is (for us, in this paper) not an object in the pro-category of symmetric
sequences. Rather, it often can be presented as a filtered colimit of symmetric sequences.
This is analogous to the fact that a discrete set X with a continuous action of a profinite
group G is the union (ie colimit) of sets with actions of finite quotients of G .

Ultimately, we show (Proposition 3.54) that dŒF � has a natural KE�–module structure
for all pointed simplicial functors F from Top� to Sp . Our Theorem 3.64 then says
that CKE� is equivalent to the abstract comonad C considered in [2]. It follows that the
Taylor tower of a functor F can be recovered from the KE�–module structure on dŒF �.
We show in Theorem 3.75 that there is an equivalence between the homotopy categories
of polynomial functors and bounded KE�–modules. We also show (Theorem 3.92)
that there is an equivalence between the homotopy categories of analytic functors
(up to Taylor tower equivalence) and KE�–modules satisfying suitable connectivity
conditions.

There are other approaches to the classification of polynomial functors from based
spaces to spectra, most notably by Dwyer and Rezk (unpublished) in terms of functors
on the category of finite sets and surjections. Polynomial functors from based spaces
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to spectra are also equivalent to their left Kan extensions from the full subcategory of
finite pointed sets. In Theorem 3.82 we describe how our approach is related to these
others.

The story for a functor F W Sp!Sp is quite analogous. The derivatives @�F are again
the homotopy colimit, over L, of partially linearized cross-effects

dLŒF � WD†��L cr� F.†1SL; : : : ; †1SL/

and again these cross-effects, for fixed L, form a right module over a certain operad
S�L . The operad S�L can be thought of as the L–fold desuspension of the commutative
operad, and all of its terms are sphere spectra of varying dimensions. Again there is an
inverse sequence

(0.3) � � � ! S�.LC1/
! S�L

! � � � ! S�2
! S�1

! S0
' Com :

We refer to this sequence as the sphere pro-operad. Note that the homotopy inverse
limit of this sequence is equivalent to the trivial operad.

We show that the derivatives @�.F /' dŒF � WD hocolimL dLŒF � form a coalgebra over
the corresponding comonad

CS� WD hocolimL CS�L :

We show in Theorem 4.27 that the comonad CS� is equivalent to that constructed in [2].
The Taylor tower of F W Sp! Sp can then be recovered from the CS� –coalgebra dŒF �

and there is an equivalence between the homotopy categories of polynomial functors
and bounded coalgebras, as well as between analytic functors and suitably connected
coalgebras.

There is some connection and overlap between our results on functors from Sp to
Sp and work of Randy McCarthy [16] which involves a right Com–module structure
on the symmetric sequence cr� F.†1SL; : : : ; †1SL/. The S�L –module structure
that we use is equivalent to a desuspension of McCarthy’s structure. Ultimately,
McCarthy classifies n–excisive endofunctors of Sp in terms of structure on the spectrum
F
�W

n S0
�
. Namely, he shows that if F is n–excisive, then the spectrum F

�W
n S0

�
is a module over a certain ring spectrum, and that the functor F can be recovered from
this module structure.

Since F
�W

n S0
�

is equivalent to a wedge sum of copies of cross-effects cr1F; : : : ; crnF

evaluated at S0 , it seems likely that McCarthy’s result can be rephrased in terms of
structure on the sequence of cross-effects of F . In this form, it would be analogous to
the result of Dwyer and Rezk that classifies polynomial functors from Top� to Sp in
terms of structure on the cross-effects.
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As far as we know, until now all work on classifying polynomial functors approached
the problem via describing the structure on the sequence of cross-effects of a functor.
Our approach focuses instead on the derivatives of a functor. For functors from Top�
to Sp we have a good understanding of the relationship between the structure on the
cross-effects and the structure on derivatives: it is given by a form of Koszul duality
between comodules over the commutative operad, and divided power modules over the
Lie operad. It would be interesting to find a similar connection in the Sp to Sp case
and for other classes of functors.

Some open problems, possible directions for future research

Do something similar for space-valued functors Consider, for example, functors
F WTop�! Top� . By results of [1], @�F is a bimodule over @�ITop� , and we seek to
describe the additional structure on @�F . One answer is given in [2], which says that
@�ITop� is a coalgebra over a certain comonad in the category of @�ITop� –bimodules.
But it seems desirable to have a more concrete description of the additional structure,
perhaps in the form of a compatibility condition between the left and right module
structures on @�F . At the moment we are unable to provide such a description. We
also do not know how to relate the module structure on @�F with the view of @�F as
the stabilized cross-effects of F .

Give an explicit description of KEL , and use it to understand the connection be-
tween the two classes of functors Let F WTop�! Sp be a functor. Then F†1 is
a functor from Sp to Sp . There is an equivalence of symmetric sequences @�F '
@�F†

1 . This means that there should be a forgetful functor from modules over
the sphere pro-operad to modules over the Lie pro-operad. Presumably, the forgetful
functor is induced by maps of operads KEL! S�L . It does not seem obvious how to
construct such a map of operads. This is partly because we do not have a geometric
model for KEL .

This question ties in with another conjecture about the operad KEL . Namely, it is
conjectured that there is an equivalence of operads KEL '†

�LEL . Corresponding
results on the level of homology are due to Getzler and Jones [11], and on the chain
level are due to Fresse [10]. Assuming this conjecture, notice that the obvious map
of operads EL! Com induces a map KEL '†

�LEL! S�L . We speculate that the
KE�–module structure on @�F†1 is equivalent to the pullback along this hypothetical
map of operads.

If this speculation is correct, we would obtain a new proof of the well-known fact that
the Taylor tower of the functor †1�1†1 splits as a product of its layers. Indeed,
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we show in Example 4.33 that the action of the pro-sphere operad on @�†1�1 is
pulled back from an action by the single operad ComD S0 . It would follow that the
KE�–module structure on @�†1�1†1 is pulled back from a KE0 –module structure.
But KE0 is the trivial operad, so it would follow that the Taylor tower of †1�1†1

splits.

Describe the chain rule for functors from Sp to Sp on the level of modules over
the sphere pro-operad Let F;G be functors from spectra to spectra. By the results
of [7], there is an equivalence of symmetric sequences, where the right-hand side is the
composition product of @�F and @�G :

@�.FG/' @�F ı @�G:

By our present results, @�F , @�G and @�.FG/ are modules over the sphere pro-
operad. This suggests that there should be a composition product in the category of
such modules, refining the composition product of symmetric sequences. Moreover,
we speculate that the product can be made associative (or at least A1–associative),
and that the chain rule can be made associative as well.

Outline

In Section 1 we review basic facts about Taylor towers and derivatives, and also about
symmetric sequences, operads and modules. We also review our construction of the
homotopy category of coalgebras over a comonad. The construction that we use here
is a slight variation of the one in [2]. In Section 2 we introduce pro-operads, and we
define the category of modules over a pro-operad as the category of coalgebras of an
associated comonad. In the long Section 3 we analyze functors from Top� to Sp . In
Sections 4 and 5 we do the same from functors from Sp to Sp .

Acknowledgements

Conversations with Bill Dwyer contributed considerably to the Koszul duality between
EL –comodules and KEL –modules that we use in this paper. The first author was
supported by National Science Foundation grant DMS-0968221 and the second author
by National Science Foundation grant DMS-1144149.

1 Background

1.1 Taylor towers and derivatives

Definition 1.1 (Categories) Let Top� be the category of based topological spaces
and let Sp be the category of S –modules of Elmendorf, Kriz, Mandell and May [9].
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We refer to the objects of Sp as spectra to avoid confusion with the other uses of
the term “module” in this paper. Each of the categories Top� and Sp is enriched in
simplicial sets and we write HomC.X;Y / for the simplicial set of maps from X to
Y in the category C. The category Sp is closed symmetric monoidal and we write
Map.X;Y / for the internal mapping spectrum in Sp .

The suspension spectrum and zeroth space functors give us the standard adjunction:

†1W Top�� Sp W�1

Let Topf
� denote the full subcategory of Top� consisting of finite based cell complexes,

and let Spf denote the full subcategory of Sp consisting of finite cell spectra (with
respect to the usual generating cofibrations for the stable model structure on Sp ; see
[9, VII]).

Definition 1.2 (Functors) Let C be either Top� or Sp , and consider a functor
F W C! Sp . We say that F is a homotopy functor if it preserves weak equivalences,
is simplicial if it induces maps HomC.X;Y /! HomSp.FX;FY / of simplicial sets,
is finitary if it preserves filtered homotopy colimits, and is pointed if F.�/Š �, where
� denotes either a one-point space in Top� , or a trivial spectrum in Sp .

Definition 1.3 (Categories of functors) For C equal to either Top� or Sp , let
ŒCf ;Sp�� denote the category whose objects are the pointed simplicial functors F W Cf!

Sp , and whose morphisms are the corresponding simplicially enriched natural transfor-
mations. Since Cf is skeletally small, ŒCf ;Sp�� is a locally small category. Also note
that any simplicial functor preserves simplicial homotopy equivalences. Since every
object of Cf is both cofibrant and fibrant (in the standard model structure on either
Top� or Sp ), it follows that any object in ŒCf ;Sp�� also preserves weak equivalences.

We can extend a pointed simplicial functor F W Cf ! Sp to all of C by (enriched)
homotopy left Kan extension along the inclusion Cf!C. The result of this construction
is a reduced finitary homotopy functor. Moreover, any reduced finitary homotopy
functor F W C! Sp arises, up to natural equivalence, in this way. We therefore view
ŒCf ;Sp�� as a model for the collection of reduced finitary homotopy functors C! Sp .

For a functor F 2 ŒCf ;Sp�� we say that F is n–excisive if it takes a strongly cocartesian
.nC1/–cube in Cf to a cartesian cube in Sp . We say F is polynomial if it is n–excisive
for some n.

The category ŒCf ;Sp�� has a projective model structure in which weak equivalences
and fibrations are detected objectwise. We denote the associated homotopy category

Geometry & Topology, Volume 20 (2016)



1452 Gregory Arone and Michael Ching

as ŒCf ;Sp�h� . This homotopy category has subcategories given by restricting to func-
tors satisfying various conditions; for example, we have the homotopy categories
ŒCf ;Sp�h�;n�exc of n–excisive functors, and ŒCf ;Sp�h�;poly of all polynomial functors.

Definition 1.4 (Taylor tower and derivatives) For a pointed simplicial functor F W Cf!

Sp there is a Taylor tower of pointed simplicial functors PnF W Cf ! Sp of the form

F ! � � � ! PnF ! Pn�1F ! � � � ! P2F ! P1F ! P0F D �;

where PnF is n–excisive in the sense of [12]. The layers of the Taylor tower are the
functors DnF W Cf ! Sp given by the objectwise homotopy fibres

DnF WD hofib.PnF ! Pn�1F /:

Goodwillie showed that for each n� 1 there is a spectrum @nF with †n –action such
that

DnF.X /' .@nF ^X^n/h†n

for X 2 Cf . We refer to @nF as the n th derivative of F .

Definition 1.5 (Cross-effects and co-cross-effects) The n th derivative of a functor
can be calculated using cross-effects. The n th cross-effect of F W C!Sp is the functor
of n variables crn F W C�n! Sp given by

crn F.X1; : : : ;Xn/ WD thofib
S�n

�
F

�_
i 62S

Xi

��
:

This is the iterated (or total) homotopy fibre of an n–cube formed by applying F to
the wedge sums of subsets of X1; : : : ;Xn , where the morphisms in the cube are given
by the relevant collapse maps Xi!�.

For spectrum-valued functors, the cross-effect can also be calculated by taking a total
homotopy cofibre. The n th co-cross-effect of F W Cf!Sp is the functor crn F W C�n!

Sp given by

crn F.X1; : : : ;Xn/ WD thocofib
S�n

�
F

�_
i2S

Xi

��
:

The morphisms in this n–cube are given by the inclusion maps � ! Xi . For any
F W C! Sp , there is a natural equivalence

crn F.X1; : : : ;Xn/' crn F.X1; : : : ;Xn/:

In particular, taking cross-effects commutes with both homotopy limits and homotopy
colimits.
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One of Goodwillie’s main results is that the derivatives of a functor can be recovered
by multilinearizing the cross-effects. Specifically, [13, Theorem 6.1] implies that for a
functor F W C! Sp , we have a natural equivalence

@nF ' P.1;:::;1/.crn F /.S0; : : : ;S0/;

where the right-hand side is the multilinearization of the n th cross-effect of F . The
multilinearization P.1;:::;1/.crn F / is the homotopy colimit of maps

crn F ! T.1;:::;1/.crn F /! T 2
.1;:::;1/.crn F /! T 3

.1;:::;1/! � � �

where, for a functor GW Cn! Sp that is reduced in each variable, there are natural
equivalences

T.1;:::;1/G.X1; : : : ;Xn/'†
�nG.†X1; : : : ; †Xn/:

Thus we can express Goodwillie’s result as an equivalence

(1.6) @nF ' hocolimL†
�nL crn F.SL; : : : ;SL/:

The maps in this homotopy colimit take the form

(1.7) †�nL crn F.SL; : : : ;SL/!†�n.LC1/ crn F.SLC1; : : : ;SLC1/:

In building our models for the derivatives of F , we need models for these maps.

Definition 1.8 When the functor H W C! Sp is pointed and simplicial, it determines
natural maps

tX W X ^H.Y /!H.X ^Y /

for a based simplicial set X and Y 2 C. We refer to this as the tensoring map for H .

Lemma 1.9 Let GW Cn!Sp be a model for the n th cross-effect of a functor F W C!

Sp that is pointed simplicial in each variable. Then the map (1.7) is, up to equivalence,
given by the tensoring map

†�n.LC1/†nG.SL; : : : ;SL/ //
t
S1ı���ıtS1

†�n.LC1/G.SLC1; : : : ;SLC1/:

Proof It is sufficient to do the case C D Top� since the result for GW Spn
! Sp

follows from that for G.†1�; : : : ; †1�/W Topn
�! Sp . We illustrate with the case

nD 1. In this case, we have the following diagram. For X 2Top� , with CX denoting
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the (reduced) cone on X and �X D holim.�!X  �/Š HomTop�.S
1;X /:

G.X /

G.�†X / G.holim.CX !†X  CX //

�G.†X / holim.G.CX /!G.†X / G.CX //

uu ))
//�

�� ��
//�

The vertical maps come from the fact that G is pointed simplicial, and the bottom
square commutes by naturality of that enrichment. The composite of the right-hand
two maps is the canonical map G.X /! T1G.X /, and the composite of the left-hand
two is adjoint to the tensoring map tS1 for G . It is sufficient then to show that the top
triangle commutes up to homotopy. Since G is simplicial, it is therefore sufficient to
show that the underlying triangle of spaces

X

�†X holim.CX !†X  CX /
tt **

//�

commutes up to homotopy. A point in this homotopy limit consists of a path  W Œ0; 1�!
†X from a point in one cone to a point in the other cone. Writing

†X D Œ0; 2�=f0� 2g ^X

with cones Œ0; 1�^X and Œ1; 2�^X , where 0 and 2 are treated as the basepoints, the
required homotopy

H W X � Œ0; 1�! holim.CX !†X  CX /

is given by
.x; t/ 7! .s 7! .t C 2s.1� t/;x//:

Definition 1.10 We refer to the terms †�nL crn F.SL; : : : ;SL/ in the homotopy
colimit (1.6) as the partially stabilized cross-effects of the functor F .

1.2 Symmetric sequences, operads, modules and comodules

Definition 1.11 (Symmetric sequences) We write Œ†;Sp� for the category of sym-
metric sequences in Sp , that is, the category of functors †! Sp , where † is the
category of nonempty finite sets and bijections. Given A 2 Œ†;Sp� we often write
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A.n/ WD A.n/, where nD f1; : : : ; ng and consider A as the sequence of spectra A.n/,
for n� 1, each with an action of †n .

We also define a bisymmetric sequence to be a functor BW † �†! Sp , so that B

consists of spectra B.m; n/ for m; n� 1 with commuting actions of †m and †n .

The category Œ†;Sp� has a cofibrantly generated model structure in which weak equiv-
alences and fibrations are detected termwise. A symmetric sequence is †–cofibrant if
it is cofibrant in this model structure. The category Œ†;Sp� is also enriched in Sp : the
spectrum of maps between two symmetric sequences A and A0 is given by

Map†.A;A
0/ WD

Y
n

Map.A.n/;A0.n//†n :

The model structure respects this enrichment, making Œ†;Sp� into a Sp–enriched
model category.

A symmetric sequence A is n–truncated if A.m/D � for all m> n. We say that A is
bounded if it is n–truncated for some n. For any symmetric sequence A we have its
n–truncation A�n , which is the symmetric sequence given by

A�n.I/ WD

�
A.I/ if jI j � n;

� otherwise:

Associated to A is its truncation sequence consisting of maps of symmetric sequences

A! � � � ! A�n! A�.n�1/! � � � ! A�1:

Definition 1.12 (Operads of spectra) An operad of spectra is a monoid in the category
Œ†;Sp� with respect to the composition product of symmetric sequences (see, for
example, [6, 2.11]). Explicitly, an operad P consists of a symmetric sequence together
with

� a composition map

P˛W P.k/^

k̂

jD1

P.nj /! P.n/

for each surjection ˛W n � k of nonempty finite sets, where nj WD j˛
�1.j /j,

and

� a unit map �W S ! P.1/,

that satisfy associativity, unitality and equivariance conditions.
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An operad of spectra is reduced if the unit map �W S ! P.1/ is an isomorphism. We
consider only reduced operads in this paper.

There is a cofibrantly generated model structure on the category of reduced operads
of spectra, described in [1, Appendix], in which weak equivalences and fibrations
are detected on the underlying symmetric sequences, ie termwise. An operad is
†–cofibrant, n–truncated or bounded if its underlying symmetric sequence has the
corresponding property. The truncation sequence associated to an operad is a sequence
of operads.

Note that by design our operads do not include a term P.0/ so that they describe only
non-unital structures.

Definition 1.13 (Modules over operads of spectra) Given an operad P of spectra, a
(right) P–module consists of a symmetric sequence M together with a right action of P

with respect to the composition product. Explicitly, such an M has a structure map

M˛W M.k/^

k̂

jD1

P.nj /!M.n/

for each surjection ˛W n � k , which satisfy appropriate conditions.

Since we only consider right modules over operads in this paper, we refer to these just
as P–modules and write Mod.P/ for the category of P–modules (whose morphisms
are maps of the underlying symmetric sequences that commute with the structure maps).
The category Mod.P/ has a cofibrantly generated stable model structure that is enriched
in Sp , in which weak equivalences and fibrations are detected termwise. Note that all
homotopy limits and colimits of diagrams of P–modules are also computed termwise.
A P–module is †–cofibrant, n–truncated or bounded if its underlying symmetric
sequence has the corresponding property. The truncation sequence of a P–module is a
sequence of P–modules.

In this paper we consider also what we call a “comodule” over an operad. In order to
say what this means, we recall that a module can be interpreted as a spectrally enriched
functor P! Sp for a particular category P associated to the operad P.

Definition 1.14 For an operad P of spectra we define a Sp–enriched category P as
follows:

� The objects of P are the nonempty finite sets.
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� For two nonempty finite sets I and J , the morphism spectrum P.I;J / is given
by

P.I;J / WD
_

I�J

^
j2J

P .Ij /;

where the wedge product is taken over all surjections ˛W I � J and we write
Ij WD ˛

�1.j /.

� The composition and identity maps for the category P are determined by the
operad multiplication and unit maps, respectively.

The category P is also known as the PROP associated to the operad P.

Lemma 1.15 Let P be an operad of spectra. There is an equivalence between the
category Mod.P/ of (right) P–modules and the category of Sp–enriched functors
Pop! Sp (with morphisms the Sp–enriched natural transformations).

Proof A Sp–enriched functor MW Pop! Sp consists of objects M.I/ for each finite
set I , and (suitably associative and unital) maps

P.I;J /!Map.M.J /;M.I//:

Equivalently, for each surjection I � J , there is a map

M.J /^
^

j2J

P.Ij /!M.I/:

These maps form precisely the data for a P–module.

Lemma 1.15 inspires the following definition.

Definition 1.16 Let P be an operad of spectra. A (right) P–comodule is a Sp–enriched
functor P! Sp . More explicitly, a P–comodule consists of objects N.I/, one for
each nonempty finite set I , and maps

N.I/^
^

j2J

P.Ij /! N.J /;

one for each surjection ˛W I � J . In particular, a P–comodule N has an underlying
symmetric sequence.

We write Comod.P/ for the category of P–comodules, with morphisms given by the
Sp–enriched natural transformations. The category Comod.P/ is enriched over Sp and
has a cofibrantly generated model structure in which weak equivalences and fibrations

Geometry & Topology, Volume 20 (2016)



1458 Gregory Arone and Michael Ching

are detected termwise, and homotopy limits and colimits are computed termwise. We
say that a P–comodule is †–cofibrant, n–truncated or bounded if its underlying
symmetric sequence has the corresponding property.

Example 1.17 A right Com–comodule can be identified with a functor �! Sp ,
where � is the category of nonempty finite sets and surjections. A right Com–module
can similarly be identified with a functor �op! Sp .

The dual definitions of module and comodule permit a natural “coend” construction
between a module and comodule. We require a homotopy-invariant version of this
construction which we now describe.

Definition 1.18 Let P be a reduced operad of spectra, N a P–comodule and M a
P–module. We define the spectrum N ẑP M to be the realization of the simplicial
spectrum given by

Œr � 7!
_

n0;:::;nr

N.n0/^†n0
P.n0; n1/^†n1

� � � ^†nr�1
P.nr�1; nr /^†nr

M.nr /;

where the wedge sum is taken over all sequences of positive integers n0; : : : ; nr (though
only the non-increasing sequences contribute non-trivial terms) and with face maps

� d0 given by the comodule structure maps N.n0/^†n0
P.n0; n1/! N.n1/,

� di for i D 1; : : : ; r �1 given by the operad composition maps P.ni�1; ni/^†ni

P.ni ; niC1/! P.ni�1; niC1/,

� dr given by the module structure maps P.nr�1; nr /^†nr
M.nr /!M.nr�1/,

and degeneracy maps

� sj for j D 0; : : : ; r given by the operad unit map S Š P.nj ; nj /†nj
.

Lemma 1.19 Let P be a †–cofibrant operad of spectra and N a †–cofibrant P–
comodule. Let M �!� M0 be a weak equivalence of P–modules. Then the induced
map

N ẑP M! N ẑP M0

is a weak equivalence of spectra. Similarly, let M be a †–cofibrant P–module and
N �!� N0 a weak equivalence of P–comodules. Then the induced map

N ẑP M! N0 ẑP M

is a weak equivalence of spectra.
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Proof The simplicial spectra involved here are all proper in the sense of [9, X.2.2].
The conditions imply that the induced maps of simplicial spectra are levelwise weak
equivalences. Then [9, X.2.4] implies that the given maps are weak equivalences.

Lemma 1.19 tells us that when P is †–cofibrant, the homotopy coend N ẑP M has the
“correct” homotopy type if either N or M is †–cofibrant.

1.3 Coalgebras over comonads and their homotopy theory

In this paper we are concerned with comonads on the category Œ†;Sp� of symmetric
sequences of spectra.

Recall that a comonad C on Œ†;Sp� is an endofunctor CW Œ†;Sp�! Œ†;Sp� equipped
with natural transformations �W C! CC (the comultiplication) and �W C! IŒ†;Sp�

(the counit) that make C into a comonoid with respect to composition of functors. For
a comonad CW Œ†;Sp�! Œ†;Sp�, a C–coalgebra is a symmetric sequence A together
with a structure map � W A!CA that forms a coaction of the comonoid C. Morphisms
of coalgebras are maps in Œ†;Sp� that commute with the structure maps, and we have
a category Coalg.C/ of coalgebras over C. We say that a C–coalgebra is †–cofibrant,
n–truncated or bounded if its underlying symmetric sequence has the corresponding
property.

Our main examples of comonads arise from operads.

Definition 1.20 For an operad P of spectra, we define an endofunctor

CPW Œ†;Sp�! Œ†;Sp�

by

CP.A/.k/ WD
Y

n

� Y
n�k

Map.P.n1/^ � � � ^P.nk/;A.n//

�†n

;

where †n acts on the set of surjections n � k by pre-composition, and †k acts by
post-composition.

The operad structure on P determines a comonad structure on CP with the operad
composition determining the comultiplication, and the operad unit map determining
the counit. Note that the functor CP is enriched in Sp .

Lemma 1.21 The comonad CP is that associated to an adjunction

UPW Mod.P/� Œ†;Sp� WRP;

where UP is the forgetful functor. In particular, for any P–module M, the symmetric
sequence UP.M/ has a canonical CP–coalgebra structure.
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Proof The right adjoint RP is defined by the same formula as CP . The P–module
structure on RP.A/ is determined by the operad composition map for P. It is easy to
check that RP so defined is right adjoint to UP , and then CP DUPRP is the associated
comonad. The CP–coalgebra structure on UP.M/ is given by the unit map

UP.M/! UPRPUP.M/

for the adjunction .UP;RP/.

Definition 1.22 We refer to the P–module RP.A/ as the cofree P–module associated
to the symmetric sequence A.

Lemma 1.23 The functor M 7! UPM determines an equivalence of categories

Mod.P/' Coalg.CP/:

Proof Since UP is right adjoint to the free P–module functor FP , the composite
UPRP is right adjoint to the functor monad UPFP whose algebras are the P–modules.
The structure maps for a right P–module correspond precisely under this adjunction to
the structure maps for a CP–coalgebra structure on the same symmetric sequence.

Definition 1.24 Suppose that �W P! P0 is a morphism of operads of spectra. There
is an induced map of comonads

C� W CP0 ! CP:

If M is a CP0 –coalgebra with structure map � then the composite

M //� CP0M //
C� CPM

gives M the structure of a CP–module. This corresponds to pulling back the P0–module
structure on M along the map � . This construction makes P 7!CP into a contravariant
functor from the category of operads in Sp to the category of comonads on Œ†;Sp�.

Lemma 1.25 Let P be a cofibrant operad (in the projective model structure on the
category of reduced operads of spectra). Then the comonad CP preserves all weak
equivalences.

Proof We can rewrite CP.A/.k/ asY
n

� Y
nDn1C���Cnk

Map.P.n1/^ � � � ^P.nk/;A.n//
†n1
�����†nr

�
:

Since P is cofibrant, each P.ni/ is a cofibrant †ni
–spectrum, and hence P.n1/^ � � � ^

P.nk/ is a cofibrant †n1
� � � � �†nk

–spectrum. It follows that CP preserves weak
equivalences (since all objects in Œ†;Sp� are fibrant).
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We now turn to the homotopy theory of coalgebras over comonads. This topic was
studied in detail in [2, Section 1] and we first recall some definitions and results from
there, though with one change. In this paper we work with comonads on the category
of symmetric sequences that respect the spectral enrichment of that category. In this
case we are able to define mapping spectra for coalgebras as well as mapping spaces.

Definition 1.26 Let CW Œ†;Sp�! Œ†;Sp� be a Sp–enriched comonad on the category
of symmetric sequences. We define the derived mapping spectrum for two C–coalgebras
A, A0 to be the spectrum

eMapC.A;A
0/ WD Tot

�
Map†.A;A

0/� Map†.A;C.A
0//
!
!
!
� � �
�
:

This is the (fat) totalization of a cosimplicial spectrum constructing using the comonad
structure on C, the coalgebra structures on A and A0 , and the spectral enrichment of C.

As in [2], though with mapping spectra instead of mapping spaces, the derived mapping
spectra eMapC.A;A

0/ determine an A1–Sp–enriched category with composition maps
parametrized by a certain A1–operad A. We obtain the homotopy category of C–
coalgebras, which we denote Coalg.C/h , with objects the †–cofibrant C–coalgebras,
and morphism sets

ŒA;A0�C WD �0
eMapC.A;A

0/:

A morphism f W A!A0 in this homotopy category is determined by a derived morphism
of C–coalgebras which consists of compatible maps of symmetric sequences

fk W �
k
C ^A! Ck.A0/:

By [2, Proposition 1.16], such a morphism induces an isomorphism in the homotopy
category if and only if the map f0W A! A0 is an equivalence of symmetric sequences.

In our classifications of analytic functors, we require a slight modification of the
homotopy category constructed in Definition 1.26.

Definition 1.27 Let CW Œ†;Sp�! Œ†;Sp� be a Sp–enriched comonad on the category
of symmetric sequences. We say that C preserves truncations if whenever A is n–
truncated, then C.A/ is also n–truncated. In this case, for every C–coalgebra A and
each n, there is a unique C–coalgebra structure on the truncations A�n such that the
truncation sequence for A consists of (strict) maps of C–coalgebras.

We define the pro-truncated mapping spectrum for two C–coalgebras A;A0 to be the
spectrum

AMapt
C.A;A

0/ WD Tot holimn Map†.A;C
�A0�n/:

Geometry & Topology, Volume 20 (2016)



1462 Gregory Arone and Michael Ching

The homotopy limit is taken over the maps of cosimplicial spectra induced by the
truncation maps A0�n!A0

�.n�1/
which, we note, are strict morphisms of C–coalgebras.

Since totalization commutes with homotopy limits, this definition is weakly equivalent
to holimn

eMapC.A;A
0
�n/, the homotopy limit of the corresponding derived mapping

spectra of Definition 1.26.

Proposition 1.28 Suppose that CW Œ†;Sp� ! Œ†;Sp� is a Sp–enriched comonad
that preserves truncations and weak equivalences between †–cofibrant objects. Then
the pro-truncated mapping spectra of Definition 1.27 are the mapping spectra in an
A1–Sp–enriched category whose objects are the †–cofibrant C–coalgebras.

Proof Since C preserves truncations, we have isomorphisms

Map†.A;C
k.A0�n//ŠMap†.A�n;Ck.A0�n//:

We therefore have maps

Map†.A;C
�.A0�n//� Map†.A

0;C�.A00�n//!Map†.A;C
�.A00�n//;

where � denotes the box-product of [18] applied to cosimplicial spectra. The box-
product is enriched over spaces in each variable and so we have canonical, and suitably
associated maps of the form

.holimn X �n/� .holimn Y �n /! holimn.X
�

n � Y �n /:

Combining these with those above we get

holimn Map†.A;C
�.A0�n//� holimn Map†.A

0;C�.A00�n//

! holimn Map†.A;C
�.A00�n//:

Taking totalizations, and applying the arguments of [2, Proposition 1.14], we get
composition maps for the desired spectral A1–category.

Definition 1.29 With C as above, we define the pro-truncated homotopy category
of C–coalgebras, which we denote as Coalgt.C/h , to have objects the †–cofibrant
C–coalgebras and morphism sets

ŒA;A0�tC WD �0
AMapt

C.A;A
0/:

A morphism f W A! A0 in this homotopy category is determined by what we call a
pro-truncated derived morphism of C–coalgebras. This consists of maps of symmetric
sequences

fk;nW �
k
C ^A! Ck.A0�n/
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that are compatible both with the truncation sequence for A0, and with various cosim-
plicial structure maps.

In particular, the maps f0;n together make up a morphism of symmetric sequences

f0W A! A0;

and the maps f1;n ensure that the large rectangle in the diagram

A A0 holimn A0�n

C.A/ C.A0/ holimn C.A0�n/

//f0

�� ��

//�

��
//C.f0/ //

commutes up to homotopy, though this does not in general imply that the left-hand
square commutes up to homotopy.

Remark 1.30 The pro-truncated homotopy category is in general coarser than the
homotopy category of C–coalgebras defined in [2]. The subcategories of bounded
coalgebras are equivalent in both homotopy categories, but, when C does not commute
with homotopy limits, the pro-truncated category can have more equivalences between
unbounded coalgebras.

Proposition 1.31 A pro-truncated derived morphism of †–cofibrant C–coalgebras
f W A!A0 , in the sense of Definition 1.29, induces an isomorphism in the pro-truncated
homotopy category if and only if the underlying map

f0W A! A0

is a weak equivalence of symmetric sequences.

Proof The argument is almost identical to that of [2, Proposition 1.16] using the fact
that a map f0W A!A0 of †–cofibrant symmetric sequences is a weak equivalence if
and only if for every bounded symmetric sequence X , the induced map

f �0 W Map†.A
0;X /!Map†.A;X /

is a weak equivalence.

Lemma 1.32 Let P be a †–cofibrant operad of spectra. Then the comonad CP

preserves truncations and the following categories are equivalent:

(1) The homotopy category associated to the projective model structure on Mod.P/.
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(2) The homotopy category of CP–coalgebras of Definition 1.26.

(3) The pro-truncated homotopy category of CP–coalgebras of Definition 1.29.

Proof Let M;M0 be †–cofibrant P–modules (ie CP–coalgebras). Then the homotopy
category associated to the projective model structure on Mod.P/ is determined by the
mapping spectra

MapP .M;M
0/' Tot Map†..UPFP /

�.M/;M0/;

where FP W Œ†;Sp�! Mod.P/ is the free P–module functor. Applying the adjunc-
tions .UP;RP/ and .FP;UP/, this is equivalent to the derived mapping spectra of [2,
Definition 1.10]:

eMapCP
.M;M0/D Tot Map†.M; .UPRP/

�M0/:

Finally, notice that CP commutes with homotopy limits, from which it follows that

eMapCP
.M;M0/'AMapt

CP
.M;M0/:

The homotopy categories associated to these three mapping spectrum constructions are
therefore equivalent.

2 Pro-operads and their modules

We now consider inverse sequences of operads and sequences of modules over them.
In this section we develop some theory for these objects and see how they are related
to coalgebras over associated comonads.

Definition 2.1 (Modules over pro-operads) A pro-operad is a cofiltered diagram in
the category of operads of spectra. The only pro-operads that we consider in this paper
are straightforward inverse sequences of operads so we focus on these. Let P� denote
a sequence of operads of the form

� � � ! P2! P1! P0:

A module over the pro-operad P� is a direct sequence M� of symmetric sequences

M0
!M1

!M2
! � � �

together with a PL –module structure on ML for each L, such that the map

ML
!MLC1
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is a morphism of PLC1 –modules. Here, ML inherits a PLC1 –module structure via
the operad morphism PLC1! PL .

A morphism of P�–modules f W M�
1
! M�

2
consists of maps f LW ML

1
! ML

2
for

each L such that each diagram

ML
1 MLC1

1

ML
2 MLC1

2

//

�� ��
//

commutes. There is a category Mod.P�/ whose objects are the P�–modules, with
morphisms as defined above. By recent work of Greenlees and Shipley [14], the
category Mod.P�/ can be given a strict projective model structure arising from the
projective model structures on the categories Mod.PL/, in which a morphism f is a
weak equivalence (or a fibration) if and only if each map f L is a weak equivalence
(or, respectively, a fibration) of PL –modules.

Remark 2.2 More generally, given a pro-operad P� indexed by an arbitrary (small)
cofiltered category I , we can define a P�–module to be a diagram of symmetric
sequences M� indexed by Iop such that each Mi is a Pi –module, and, for each
morphism i ! i 0 in I , the map Mi0 !Mi is a morphism of Pi –modules.

We now consider the structure that is inherited by the homotopy colimit of a module
over a pro-operad. The main result we need for this is that the homotopy colimit of a
diagram of comonads (calculated objectwise) inherits a canonical comonad structure.

Definition 2.3 (Colimits of comonads) Let C� be a diagram in the category of
comonads on Œ†;Sp� indexed by a small category I . We define the colimit colimi Ci

objectwise, that is,
.colimi Ci/.A/ WD colimi.Ci.A//:

Then colimi Ci has a canonical comonad structure with comultiplication given by the
composite

colimi Ci.A/! colimi Ci.Ci.A//! colimi Ci.colimi0 Ci0.A//;

in which the first map is built from the comultiplication maps for the comonads Ci

and the second is induced by the natural maps Ci! colimi0 Ci0 , and counit given by

colimi Ci.A/! A

is built from the counit maps Ci.A/! A for the individual comonads Ci .
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Definition 2.4 (Tensoring of comonads) Let C be a simplicially enriched comonad
on the category Œ†;Sp� and let X be a simplicial set. We define the objectwise
tensoring of C by X to be the functor X ˝C given by

.X ˝C/.A/ WDXC ^C.A/:

Then X ˝C inherits a canonical comonad structure with comultiplication given by
the composite

XC ^C.A/!XC ^XC ^C.C.A//!XC ^C.XC ^C.A//;

in which the first map is built from the diagonal on X and the comultiplication for C,
and the second is given by the simplicial enrichment of C, and counit map given by

XC ^C.A/! C.A/! A;

where the first map is induced by the collapse map X !� and the second is the counit
for C.

Definition 2.5 (Homotopy colimits of comonads) Let C� be a diagram of simplicially
enriched comonads on Œ†;Sp� indexed by a small category I . We define the homotopy
colimit hocolimi Ci objectwise by the coend

.hocolimi Ci/.A/ WD hocolimi.Ci.A//D�
r
˝r2�

� _
i0!���!ir

Cir
.A/

�
;

where we use the standard model for the homotopy colimit of a diagram of spectra as the
geometric realization of a simplicial object: � is the simplicial indexing category and
this is a coend over �. Notice that the homotopy colimit is defined by a combination
of tensoring with the simplicial sets �r and taking colimits. Using the constructions
of Definitions 2.3 and 2.4 we thus obtain a canonical comonad structure on the functor
hocolimi Ci .

Definition 2.6 Let P� be an inverse sequence of operads in Sp as before. By the
construction in Definition 1.24 we obtain a corresponding sequence of comonads

CP0
! CP1

! CP2
! � � � :

We define a new comonad

CP� W Œ†;Sp�! Œ†;Sp�; CP�.A/ WD hocolimL CPL
.A/;

with comonad structure given by the construction of Definition 2.5. Note that the
functor CP� is enriched in Sp since each individual CPL

is.
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We now show that when M� is a module over the pro-operad P� , the homotopy colimit
of the sequence M� becomes a coalgebra over the comonad CP� of Definition 2.6. The
coalgebra structure map can be built from corresponding maps for tensors and strict
colimits, just as is the comonad structure on CP� .

Definition 2.7 (Colimits of coalgebras) Let C� be a diagram of comonads on Œ†;Sp�

indexed by a small category I , and let M� be a diagram of symmetric sequences indexed
by Iop such that, for each morphism i ! i 0 in I , the map

Mi0
!Mi

is a morphism of Ci0 –coalgebras, where the coalgebra structure on Mi is given by the
composite Mi ! Ci.M

i/! Ci0.M
i/. So M� is a “module” over the diagram C� in

the sense of Remark 2.2.

Then we define a .colimi Ci/–coalgebra structure on the symmetric sequence colimi M
i

with structure map

colimi M
i
! colimi Ci.M

i/! colimi Ci.colimi0 M
i0/:

Definition 2.8 (Tensoring of coalgebras) Let C be a simplicially enriched comonad
on Œ†;Sp�, M a C–coalgebra, and X a simplicial set. Then we make X˝M WDXC^M

into a .X ˝C/–coalgebra via the structure map

XC ^M!XC ^XC ^C.M/!XC ^C.XC ^M/:

Definition 2.9 (Homotopy colimits of coalgebras) Suppose that C� and M� are as
in Definition 2.7. We then get a .hocolimi Ci/–coalgebra structure on the homotopy
colimit

hocolimi M
i
D�r

C ^r2�

� _
i0!���!ir

Mir

�
by combining the constructions of Definitions 2.7 and 2.8, as in Definition 2.5.

Definition 2.10 Let P� be an inverse sequence of operads and M� a P�–module in
the sense of Definition 2.1. Let M be the homotopy colimit symmetric sequence

M WD hocolimL ML:

By the construction of Definition 2.9, M inherits the structure of a CP� –coalgebra.
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Remark 2.11 If M� is a P�–module, then each term ML is a module over the operad
limP� given by the inverse limit (in the category of operads) of the sequence P� . It
follows that the homotopy colimit M also has a canonical structure of a module over
limP� . In general, the structure of a CP� –coalgebra includes and extends that of a
limP�–module. Another way to see this is via the existence of a canonical map of
comonads

CP� ! ClimP� ;

which is typically not an equivalence.

There is one technical construction that we need for modules over inverse sequences of
operads. That is, we need to be able to construct a replacement for a given module in
which all terms are †–cofibrant. We show how to do this now.

Definition 2.12 Let P� be an inverse sequence of reduced operads in Sp such that
each PL is cofibrant in the projective model structure on reduced operads of spectra.
Let

M� W M0
!M1

!M2
! � � �

be a P�–module. We recursively construct a commutative diagram of the form

(2.13)

M0 M1 M2 : : :

M0 M1 M2 : : :
��

�

//

��
�

//

��
�

//

// // //

in which ML �!
� ML is a weak equivalence of PL –modules, and each ML is †–

cofibrant.

First, let M0 �!
� M0 be a cofibrant replacement for M0 as a P0 –module. Note that

M0 is then †–cofibrant because a cofibrant module over the cofibrant operad P0 is
†–cofibrant by [1, Proposition 2.3.14]. Now, suppose that we have built the diagram
as far as the weak equivalence ML �!

� ML . We can factor the composite

ML
�!
� ML // MLC1

in the category of PLC1 –modules as a cofibration followed by a trivial fibration which
we write as

ML // // MLC1 // //� MLC1:

Then ML // // MLC1 is a cofibration of PLC1 –modules with †–cofibrant domain,
hence is a †–cofibration by [1, Lemma A.0.11]. It follows that MLC1 is †–cofibrant
as required. Recursively this defines the diagram (2.13).
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We refer to the P�–module M� as a †–cofibrant replacement for M� . Notice that
because each ML is †–cofibrant, it follows that the homotopy colimit

M WD hocolimL ML

is a †–cofibrant CP� –coalgebra. In particular M determines an object in the homotopy
category of CP� –coalgebras described in Definition 1.26, as well as in the pro-truncated
homotopy category of Definition 1.29.

3 Functors from based spaces to spectra

We now take up the study of homotopy functors from based spaces to spectra. Recall
that we are writing Topf

� for the full subcategory of Top� consisting of the finite
cell complexes, and that ŒTopf

�;Sp�� is the category of pointed simplicially enriched
functors F W Topf

�! Sp .

In [2] we proved that the Taylor tower (expanded at the one-point space �) of a functor
F 2 ŒTopf

�;Sp�� is determined by the action of a certain comonad C on the symmetric
sequence @�F formed by the derivatives of F (at �). The comonad CD @�ˆ arises
from an adjunction

(3.1) @�W ŒTopf
�;Sp��� Œ†;Sp� Wˆ

in which the left adjoint @� is a model for the functor taking a (cofibrant) F to
its symmetric sequence of derivatives. The main result of this section is a separate
description of C as the comonad associated to an inverse sequence of operads via the
constructions of the previous section. We start by describing that sequence.

3.1 Koszul duals of the stable little disc operads

The little disc operads of Boardman and Vogt [5] were introduced to classify iterated
loop spaces, but have since been seen to arise in a variety of other contexts in algebraic
topology: for example, Ayala and Francis show in [4] that algebras over the little
n–discs operad classify certain types of homology theory on n–dimensional manifolds;
the Deligne conjecture (proved by McClure and Smith [17] and others) shows that the
Hochschild complex on an associative algebra forms an algebra over the chain model
for the little 2–discs operad.

In this paper we show that the sequence of operads of spectra given by the suspension
spectra of the topological little disc operads captures the information needed to recover
the Taylor tower of a functor F W Topf

�! Sp from its derivatives. More precisely, the
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Koszul duals of this direct sequence form an inverse sequence KE� whose associated
comonad CKE� coacts on the derivatives of any such F .

Throughout this paper we use the Fulton–MacPherson models for the little disc operads,
as described by Getzler and Jones [11]. The only place where the precise model matters
is in our proof of Lemma 3.31.

Definition 3.2 For a fixed non-negative integer L, we write EL for the operad of
unbased spaces in which

EL.r/

is given by the Fulton–MacPherson compactified configuration space of r points in RL .
Recall that a point in EL.r/ includes an r –tuple y D Œy1; : : : ;yr � of points in RL

defined up to translation and positive scalar multiplication. When two or more of the
points yi are equal, the point y also includes information about the relative directions
and distances between these “equal” points. More details on the definition of EL can
be found in [21].

There is a sequence of operads of the form

E0! E1! � � � ! EL! ELC1! � � � ;

where the map
EL.r/! ELC1.r/

extends points in RL to RLC1 via the standard inclusion. Note that E0 is the trivial
operad of unbased spaces which we also denote by 1.

We write Com for the commutative operad of unbased spaces with Com.r/D � for
all r � 1. Since Com is terminal among operads of unbased spaces, there are operad
maps EL!Com that are compatible with the maps in the above sequence.

Definition 3.3 The stable little L–discs operad is the reduced operad EL of spectra
given by

EL.n/ WD†
1EL.n/C;

with operad structure maps induced by those of EL . There is a corresponding sequence
of operads of spectra of the form

(3.4) E0! E1! � � � ! EL! ELC1! � � � :

Note that E0 is the trivial operad of spectra which we also denote by 1.

Let Com be the commutative operad of spectra, given by

Com.n/ WD†1Com.n/C Š S;
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the sphere spectrum. There are then operad maps EL! Com that are compatible with
the maps in the sequence (3.4). The induced map

E1 WD colimEL! Com

is a weak equivalence of operads.

Definition 3.5 (Koszul dual) Let P be a reduced operad of spectra. Then the Koszul
dual of P is a cofibrant replacement (in the projective model category of reduced
operads of spectra) for the Spanier–Whitehead dual of the reduced bar construction
on P. We denote such a replacement by KP. The construction K is a contravariant
functor from the category of reduced operads of spectra to itself, and for operads formed
from finite spectra, there is an equivalence of operads KKP' P described in [8].

Definition 3.6 Applying the Koszul duality functor to the sequence (3.4), we obtain
an inverse sequence of operads of spectra

(3.7) KE� W � � � ! KE2! KE1! KE0:

Associated to the pro-operad KE� we have a comonad CKE� given as in Definition 2.6.

Explicitly, for a symmetric sequence A and positive integer k , we have an equivalence

(3.8) CKE�.A/.k/

' hocolimL

Y
n�k

� Y
n�k

Map
�
KEL.n1/^ � � � ^KEL.nk/;A.n/

��h†n

:

Remark 3.9 It is conjectured that the operad KEL is equivalent to an L–fold desus-
pension of EL itself. Corresponding results on the level of homology are due to Getzler
and Jones [11], and on the chain level are due to Fresse [10].

Remark 3.10 Recall from Remark 2.11 that a CKE� –coalgebra forms, in particular, a
module over the operad limKEL which is equivalent to KCom, and hence to @�ITop� ,
the operad formed by the derivatives of the identity on the category of based spaces,
described in [6]. We therefore have a forgetful functor

Coalg.CKE�/!Mod.@�ITop�/

associated to the comonad map CKE� ! CKCom .

The main goal of the rest of this section is to prove that the comonad CKE� acts on
(a suitable choice of model of) the derivatives of a functor F W Top�! Sp , that CKE�

is equivalent to the comonad C constructed from the adjunction (3.1), and hence that
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the Taylor tower of F can be recovered from the derivatives of F together with their
structure as a CKE� –coalgebra.

We should remark here that the construction of models for the derivatives of a functor
F W Topf

� ! Sp on which CKE� acts is rather involved (see steps (1)–(5) described
below), as is the proof of Theorem 3.64 that CKE� is equivalent to C. The reader who
wishes to skip some of the technical constructions is advised to turn to Theorem 3.75
and following, where the main results of this section are laid out.

3.2 Models for the derivatives of functors from based spaces to spectra

Let F W Topf
� ! Sp be a pointed simplicial functor. In this section we construct a

module d�ŒF � over the sequence of operads KE� , such that the homotopy colimit
dŒF � D hocolim dLŒF � is equivalent to the symmetric sequence @�F of Goodwillie
derivatives of F . It then follows that these derivatives form a CKE� –coalgebra by the
construction of Definition 2.10.

When F is a polynomial functor, the term dLŒF � in the module d�ŒF � (which is a KEL –
module) is equivalent to the symmetric sequence of partially stabilized cross-effects
of F , that is,

dLŒF �.n/'†�nL crn F.SL; : : : ;SL/:

More generally, when F is �–analytic in the sense of [12], this equivalence holds for
L� � .

Here is an outline of the construction of dŒF � for a given F W Topf
�! Sp :

(1) Construct a Com–comodule NŒF � (and hence, by pulling back, a EL –comodule
for each L) that models the cross-effects of F evaluated at S0 , and show that a
polynomial functor F can be recovered from NŒF � (Proposition 3.15).

(2) Show that the “derived indecomposables” of NŒF � as a EL –comodule (which
can be described as a homotopy coend of the form NŒF � ẑEL

1) recover the
partially stabilized cross-effects of a polynomial functor F (Proposition 3.24).

(3) Construct a model for the derived indecomposables of an EL –comodule that
has a KEL –module structure (Proposition 3.44) and thus obtain the required
construction for polynomial functors (Proposition 3.47).

(4) Generalize the construction of these models to analytic functors F using the
Taylor tower (Lemma 3.49).

(5) Produce the necessary models for any functor by left Kan extension from repre-
sentables (Proposition 3.54).
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We start then with (1).

Definition 3.11 For each positive integer n, the construction Y 7!†1Y ^n defines a
pointed simplicial functor Topf

�! Sp . Let C†1Y ^n denote a (functorial) cofibrant
replacement of this in the category ŒTopf

�;Sp�� . A surjection n � k determines a
natural transformation

†1Y ^k
!†1Y ^n

by way of the diagonal on a based space Y , and hence, via naturality of the cofibrant
replacement, a natural map

C†1Y ^k !C†1Y ^n :

For each Y , these maps make C†1Y ^� into a Com–module, naturally in Y 2 Topf
� .

Definition 3.12 For F 2 ŒTopf
�;Sp�� and n 2N we define

NŒF �.n/ WD NatY 2Topf�
.C†1Y ^n ;FY /:

This is the spectrum of natural transformations between two functors in ŒTopf
�;Sp�� ,

that is, the enrichment of ŒTopf
�;Sp�� over Sp . The Com–module structure maps on

C†1Y ^� make the symmetric sequence NŒF � into a Com–comodule (naturally in F ).

Lemma 3.13 For any F 2 ŒTopf
�;Sp�� , there is a natural equivalence

NŒF �.n/' crn F.S0; : : : ;S0/;

where the right-hand side is the nth cross-effect of F , evaluated at the zero-sphere in
each variable.

Proof We can write †1Y ^n as the total homotopy cofibre of the n–cube of spectra
given by

J 7!†1HomTopf�
.JC;Y /

for subsets J � n, and whose edges are determined by the maps JC! IC for I � J

that collapse J�I to the basepoint. Applying Nat.�;F / to this total homotopy cofibre
n–cube, and using the Yoneda lemma we get the total homotopy fibre of the n–cube
that defines the given cross-effect.

Corollary 3.14 The construction F 7! NŒF � preserves homotopy colimits (defined
objectwise on both sides).

Proof The cross-effects in Lemma 3.13 are equivalent to the corresponding co-cross-
effects. It is easy to see that taking co-cross-effects preserves homotopy colimits.
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The next result is unpublished work of Bill Dwyer and Charles Rezk. It says that the
value F.X / of a polynomial functor F at a based space X can be recovered from the
Com–comodule N.F / by way of a homotopy coend with the Com–module †1X^� .

Proposition 3.15 Let F W Topf
�! Sp be a polynomial functor and let zNŒF � denote a

†–cofibrant replacement for the Com–comodule NŒF �. Then the canonical evaluation
map

�W zNŒF � ẑCom C†1X^� �! F.X /

is a weak equivalence for each X 2 Topf
� .

Proof Since both sides preserve objectwise (co)fibration sequences in F , we can use
the Taylor tower to reduce to the case that F is n–homogeneous, that is, of the form

F.X /D .E ^X^n/h†n

for some spectrum E with †n –action. Both sides also commute with the homotopy
orbit construction, the left-hand side by Corollary 3.14, and with smashing with a fixed
spectrum so we can reduce to the case that

F.X /D†1X^n:

For this case, we first claim that there is an equivalence of Com–comodules

(3.16) �W Com.n;�/ �!� NatY 2Topf�
.C†1Y ^� ; †1Y ^n/:

The map � is constructed as follows. Notice that Com.n; k/D
W

n�k S . Then for
each surjection ˛W n � k , we have a corresponding natural transformation

C†1Y ^k //�
†1Y ^k //�˛

†1Y ^n;

where �˛ is the diagonal map X^k ! X^n associated to ˛ . It is clear from the
definition that � is a morphism of Com–comodules, where Com.n;�/ has the free
comodule structure built from the composition maps in the category Com.

To see that � is an equivalence, we consider the following commutative diagram:_
n�k

S
NatY 2Topf�

.C†1Y ^k ; †1Y ^n/

thofib
J�k

†1J n
C thofib

J�k
NatY 2Topf�

.†1HomTop�.JC;Y /; †
1Y ^n/

��
�

//�

��

�

//�
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The right-hand vertical map is the equivalence described in the proof of Lemma 3.13.
The left-hand vertical map is given as follows: a surjection n � k determines an
element of kn

C that maps to the basepoint in J n
C for any proper subset J � k . There is

therefore an induced map into the total homotopy fibre. It is easy to check that this map
is an equivalence. The bottom horizontal map is induced by a levelwise equivalence of
k –cubes by the enriched Yoneda Lemma, so is an equivalence. It follows that � is an
equivalence.

Now consider the diagram

(3.17)

Com.n;�/ ẑCom C†1X^� C†1X^n

NatY 2Topf�
.C†1Y ^� ; †1Y ^n/ ẑCom C†1X^� †1X^n

��
� �

//

��

�

//�

where the bottom map is the evaluation map that we want to show is an equivalence,
the left vertical map is induced by � and so is an equivalence, the right-hand map is the
fixed equivalence used in the construction of � , and the top horizontal map is induced
by the augmentation of the simplicial object underlying

Com.n;�/ ẑCom C†1X^�;

that is built from the composition maps_
n0;:::;nr

Com.n; n0/^†n0
� � � ^†nr�1

Com.nr�1; nr /^†nr
C†1X^nr !C†1X^n :

This simplicial object has extra degeneracies and so the augmentation map is an
equivalence. It can be checked that the diagram (3.17) is commutative and so it follows
that the evaluation map is an equivalence as required.

Remark 3.18 The equivalence of Proposition 3.15 is part of a classification of reduced
polynomial functors Topf

�! Sp in terms of Com–comodules (also from unpublished
work of Dwyer and Rezk) to which we return in Theorem 3.82.

We now turn to part (2) of our construction of dŒF �. We start by taking derivatives of
each side of the equivalence in Proposition 3.15 to get models for the derivatives of a
polynomial functor F . To state this result we use the following definition.

Definition 3.19 Let 1 be the bisymmetric sequence given by

1.I;J / WD
_

IŠJ

S;
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where S is the sphere spectrum and the wedge sum is taken over the set of bijections
from I to J . Thus 1.I;J / is trivial if jI j ¤ jJ j. Notice also that this notation is
consistent with that of Definition 1.14 applied to the trivial operad 1.

Corollary 3.20 Let F W Topf
�! Sp be a polynomial functor. Then there are natural

†n –equivariant equivalences

NŒF � ẑCom 1.�; n/ �!� @n.F /;

where, for each n, the symmetric sequence 1.�; n/ is given a trivial Com–module
structure.

Proof This follows from Proposition 3.15 by applying @� to each side, using the fact
that taking derivatives commutes with arbitrary homotopy colimits (for Sp–valued
functors) and that there are equivalences of Com–modules

@n.†
1X^�/' 1.�; n/:

Notation 3.21 Let P be an operad, N a P–comodule, and B a bisymmetric sequence
that has a P–module structure on its first variable. We then write N ẑP B for the
symmetric sequence given by

.N ẑP B/.n/ WD N.�/ ẑP B.�; n/:

Remark 3.22 For a P–comodule N, the symmetric sequence

N ẑP 1

is a model for the “derived indecomposables” of N, that is, for the left derived functor
of the adjoint to the trivial comodule structure functor Œ†;Sp�! Comod.Com/. We
can rephrase Corollary 3.20 as saying that, for a polynomial functor F W Topf

�! Sp ,
the derived indecomposables of the Com–comodule NŒF � recover the derivatives of F .

Now recall from Definition 3.2 that we have a sequence of operads

E0! E1! E2! � � �

and an equivalence of operads hocolimL EL �!
� Com. Using Definition 1.18 (and the

fact that homotopy colimits commute with each other), one can show that there is a
corresponding equivalence

(3.23) hocolimL NŒF � ẑEL
1 �!� NŒF � ẑCom 1' @�F;

Geometry & Topology, Volume 20 (2016)



Cross-effects and the classification of Taylor towers 1477

where NŒF � is given an EL –module structure by pulling back the Com–module structure
along the operad map EL! Com. This expresses the derivatives of F as a homotopy
colimit of the derived indecomposables of NŒF � as an EL –comodule, as L!1.

We now prove that these derived indecomposables recover the partially stabilized
cross-effects of F , thus completing part (2) of our construction.

Proposition 3.24 Let F be a polynomial functor. Then there are equivalences of
symmetric sequences

NŒF � ẑEL
1'†��L cr� F.SL; : : : ;SL/

that are natural in F and make the following diagrams commute in the homotopy
category of symmetric sequences:

(3.25)

NŒF � ẑEL
1 †��L cr� F.SL; : : : ;SL/

NŒF � ẑELC1
1 †��.LC1/ cr� F.SLC1; : : : ;SLC1/

��

//�

��
//�

Here the left-hand vertical map is induced by the operad map EL! ELC1 , and the
right-hand map is that of (1.7).

Proof Our strategy is to use Proposition 3.15 to reduce to the case that F is one of the
functors †1X^n . Proving the result in those cases seems to require some significant
geometric input about the relationship of the operad EL to the sphere SL . For us, this
input is contained in the construction of the equivalence in Lemma 3.31 below.

By Proposition 3.15, we can write

F.X /' NŒF � ẑCom C†1X^�:

Since taking cross-effects commutes with homotopy colimits, this gives us

(3.26) †�kL crk F.SL; : : : ;SL/' NŒF � ẑCom†
�kL crk.†

1X^�/.SL; : : : ;SL/;

where the Com–module structure on the right-hand side comes from that on †1X^� .
The cross-effects of the homogeneous functors †1X^� are easily calculated: we have

crk.†
1X^n/.X1; : : : ;Xk/'

_
˛Wn�k

†1X
n1

1
^ � � � ^†1X

nk

k
;

where, as usual, we write ni WD j˛
�1.i/j for a surjection ˛W n � k .
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This model for crk.†
1X^n/ is pointed simplicial in each variable with tensoring

maps

Sk
^

_
n�k

†1X
n1

1
^ � � � ^†1X

nk

k
!

_
n�k

†1.†X1/
^n1 ^ � � � ^†1.†Xk/

^nk

induced by the diagonal maps Sk D .S1/^k //�˛
.S1/^n associated to the surjections

n � k . By Lemma 1.9, the map (1.7) for the functor †1X^n is modelled by the map_
n�k

†�kL†1.SL/^n
!

_
n�k

†�k.LC1/†1.SLC1/^n

induced also by the diagonal maps �˛ . For each fixed k , we therefore have a com-
mutative diagram in the homotopy category of Com–modules (with variable n) of the
form

(3.27)

_
n�k

†�kL.†1SL/^n †�kL crk.†
1X^n/.SL; : : : ;SL/

_
n�k

†�k.LC1/.†1SLC1/^n †�k.LC1/ crk.†
1X^n/.SLC1; : : : ;SLC1/

//�

�� ��
//�

The Com–module structure on the left-hand side terms in (3.27) is given by composition
of surjections combined with the diagonal maps for SL and SLC1 .

The next step is to construct a diagram (in the homotopy category of Com–modules)
of the form

(3.28)

Com.n;�/ ẑEL
1.�; k/

_
n�k

†�kL.†1SL/^n

Com.n;�/ ẑELC1
1.�; k/

_
n�k

†�k.LC1/.†1SLC1/^n

//�

�� ��
//�

Combining (3.28) with (3.27) and applying NŒF � ẑCom � to the resulting diagram,
we get, by (3.26), the required diagram (3.25). Note that there are equivalences
NŒ†1X^n�' Com.n;�/, which preserve both the Com–comodule structure and the
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Com–module structure on the variable n, so the construction of diagram (3.28) amounts
to proving the proposition in the case F D†1X^n .

To get (3.28) we first note that there are natural isomorphisms of Com–modules

(3.29) Com.n;�/ ẑEL
1.�; k/Š

_
n�k

k̂

iD1

B.1;EL;Com/.ni/;

where the right-hand side is the two-sided operadic bar construction, as described in [6].
The above isomorphism can be identified by comparing the structure of the simplicial
spectra underlying the homotopy coend and the bar construction.

The most significant part of the proof now concerns the construction of equivalences
of Com–modules

(3.30) B.1;EL;Com/ //� †�L.†1SL/^�:

We make this construction at the unstable level. For an operad P of unbased spaces, let
us write PC for the corresponding operad of based spaces given by adding a disjoint
basepoint to each term. The following lemma is the key calculation underlying the
proof of Proposition 3.24.

Lemma 3.31 There is a weak equivalence of ComC–modules (in the category of
based spaces)

fLW B.1C;ELC;ComC/ //� SL.��1/;

where we identify SL.n�1/ with the one-point compactification of .RL/n=RL (the
space of n–tuples Œy1; : : : ;yn� of vectors in RL defined up to translation) and give the
collection SL.��1/ a ComC–module structure via the diagonal map RL!RL �RL .
These maps make the following diagrams commute:

B.1C;ELC;ComC/ SL.��1/

B.1C;ELC1C;ComC/ S .LC1/.��1/

//fL

�� ��
//fLC1

where the right-hand vertical map is induced by the fixed inclusion RL ! RLC1 ,
which induces the operad map EL! ELC1 .

Proof Write MEL for the symmetric sequence (of unbased spaces) given by

MEL.r/ WD

�
EL.r/ if r � 2;

∅ if r D 1.
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Note that MEL has a right EL –module structure coming from the operad structure
on EL and that there is a homotopy cofibre sequence

MELC! ELC! 1C

of right ELC–modules. Applying the bar construction, we obtain a homotopy cofibre
sequence

(3.32) B. MELC;ELC;ComC/! B.ELC;ELC;ComC/! B.1C;ELC;ComC/

of right ComC–modules.

Now let SL.n�1/�1 denote the sphere in the vector space .RL/n=RL , or equivalently,
the space of n–tuples Œy1; : : : ;yn� of vectors in RL , not all equal, defined up to
translation and positive scalar multiplication. Notice that SL.n�1/ is the unreduced
suspension of SL.n�1/�1 so that we have a homotopy cofibre sequence of right ComC–
modules

(3.33) S
L.��1/�1
C !ComC! SL.��1/:

The second map here sends the non-basepoint of ComC.n/ to the point in SL.n�1/

that represents the n–tuple Œ0; : : : ; 0�.

Our goal now is to construct an equivalence between the sequences (3.32) and (3.33)
of which the required equivalence fL will be part.

Notice first that

B. MELC;ELC;ComC/D B. MEL;EL;Com/C:

We now claim that MEL is cofibrant as an EL –module (in the projective model structure
on right modules over an operad in the category of compactly generated spaces). To
see this, suppose we are given a diagram of EL –modules

(3.34)

M

MEL M0
����

�

//

where the right-hand vertical map is a trivial fibration in the projective model structure
on modules over the operad EL (ie each map M.n/!M0.n/ is a Serre fibration and
weak homotopy equivalence). We recursively construct a lifting l W MEL!M as follows.
Suppose we have constructed maps

lr W MEL.r/!M.r/;
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for each r < k , that commute with the relevant EL –module structure maps. Together
the lr determine the top horizontal map in a commutative diagram

(3.35)

@ MEL.k/ M.k/

MEL.k/ M0.k/

��

��

//

����

�

//

where @ MEL.k/ denotes the boundary of the manifold with corners MEL.k/. (Recall that
this boundary is identical to the union of the images of the non-trivial module structure
maps

MEL.r/�EL.k1/� � � � �EL.kr /! MEL.k/:/

Since the inclusion @ MEL.k/! MEL.k/ is a relative cell complex, we can choose a lift

lk W MEL.k/!M.k/

for the diagram (3.35) which continues the recursion. Together the maps lk determine
the required lift for the diagram (3.34). It follows that MEL is a cofibrant EL –module,
as claimed.

It then follows that there is an equivalence of Com–modules

LW B. MEL;EL;Com/ �!� MEL ıEL
Com:

We claim that there is then an isomorphism of Com–modules

(3.36) MEL ıEL
ComŠ SL.��1/�1:

To see this we first define a map of Com–modules

gW MEL ıCom! SL.��1/�1:

The n th term on the left-hand side can be written asa
k�2

� a
n�k

EL.k/

�
†k

:

Given an integer k and surjection ˛W n � k , we can define a map

g˛W MEL.k/! SL.n�1/�1
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as follows. A point x in MEL.k/ consists of a k –tuple Œx1; : : : ;xk � of vectors in RL

defined up to translation and scalar multiplication, together with extra information if
some (but not all) of the xi are equal. We set

g˛.x/ WD Œx˛.1/; : : : ;x˛.n/� 2 SL.n�1/�1:

Together the maps g˛ determine the required map g . We now show that g induces an
isomorphism of the form (3.36).

First note that the two composites in the following diagram are equal:

MEL ıEL ıCom � MEL ıCom! SL.��1/�1;

so that g determines a map

xgW MEL ıEL
Com! SL.��1/�1:

To see that each xgn is a bijection, we construct its inverse which we denote xhn .

A point y 2 SL.n�1/�1 is represented by an n–tuple Œy1; : : : ;yn� of vectors in RL,
not all equal, defined up to translation and positive scalar multiplication. We can
write yi D x˛.i/ for a k –tuple x D Œx1; : : : ;xk � of distinct vectors, also defined up
to translation and positive scalar multiplication, where k � 2 is a positive integer
and ˛W n � k is a surjection. Note that k and ˛ are uniquely determined, up to
action of †k , by the condition that all xi are distinct. This data determines a point in
MEL ıCom (where, in particular, the k –tuple x represents a point in the interior of the
space MEL.k/), and hence a point in . MEL ıEL

Com/.n/ which we take to be xhn.y/.

It is now relatively easy to see that xhn is inverse to xgn and so that xgn is a continuous
bijection. The space . MELıEL

Com/.n/ is compact (since each EL.k/ is for 2� k � n)
and SL.n�1/�1 is Hausdorff. Therefore xgn is a homeomorphism, and we obtain the
required isomorphism (3.36). We then have a commutative diagram of ComC–modules

B. MELC;ELC;ComC/ B.ELC;ELC;ComC/

S
L.��1/�1
C

ComC

��

L �

//

��

�

//

where the right-hand map is the standard bar resolution map. We therefore get an
induced equivalence between the homotopy cofibres which provides the required
equivalence

fLW B.1C;ELC;ComC/ �!
� SL.��1/:
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It is easy to see that the maps gL commute with the maps induced by the inclusion
RL!RLC1 , and hence the maps fL do too, completing the proof of Lemma 3.31.

Remark 3.37 Low-dimensional calculations suggest that the based space

B.1C;ELC;ComC/.n/

is actually homeomorphic to SL.n�1/ though we do not need that claim here.

Proof of Proposition 3.24 (continued) We now get the required stable equivalences
(3.30) from the maps fL of Lemma 3.31 by the composite

B.1;EL;Com/Š†
1B.1C;ELC;ComC/ �!

� †1SL.��1/
�!
� †�L.†1SL/^�:

The final equivalence is adjoint to the map

SL.k�1/
^SL

! .SL/^k

that is the one-point compactification of the map of Com–modules (in the k variables)

.RL/k=RL
�RL

! .RL/k

given by
.Œy1; : : : ;yk �;u/ 7! .y1�mCu; : : : ;yk �mCu/;

where m is the coordinate-wise minimum of the vectors y1; : : : ;yk . (That is, mi WD

min1�j�k.yj /i .)

Using (3.29) we then get the required diagram (3.28). This completes the proof of
Proposition 3.24.

We now turn to part (3) of the construction of dŒF �: showing that the derived inde-
composables NŒF � ẑEL

1 can be given the structure of a KEL –module. Behind this
construction is a form of derived Koszul duality for comodules and modules over an
operad P and its Koszul dual KP. For any operad P of spectra and P–comodule N,
we construct a model for the symmetric sequence

N ẑP 1

that is a module over the Koszul dual operad KP. At the heart of our construction is a
particular bisymmetric sequence BP , equivalent to 1, that has a P–module structure in
one variable, and a KP–module structure in the other. We define this now.
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Definition 3.38 For an operad P of spectra, let BP be the bisymmetric sequence given
on finite nonempty sets I;J by

BP.I;J / WD
Y

I�J

^
j2J

B.1;P;P/.Ij /;

where the product is indexed by the set of surjections from I to J. Recall from [6]
that the symmetric sequence B.1;P;P/ has both a right P–module structure and a left
BP–comodule structure (where BPD B.1;P; 1/ is the cooperad given by the reduced
bar construction on P). We use these structures to produce the required operad actions
on BP .

We make BP into a right P–module in its first variable as follows. For each surjection
˛W I � I 0 we have to describe a map

r˛W BP.I
0;J /^

^
i02I 0

P.Ii0/! BP.I;J /:

The target here is a product indexed by surjections ˇW I � J and we define each
component individually. There are two cases. If ˇ does not factor as ˛ for some
surjection  W I 0� J then we take the relevant component of r˛ to be the trivial map.
If ˇ does factor in this way then  is uniquely determined. We then build the relevant
component of r˛ from the projection map

p W BP.I
0;J /!

^
j2J

B.1;P;P/.I 0j /

and by taking the smash product, over j 2 J, of the maps

B.1;P;P/.I 0j /^
^

i02I 0
j

P.Ii0/! B.1;P;P/.Ij /

associated to the right P–action on B.1;P;P/ and the surjections Ij � I 0j given by
restricting ˛ .

We also make BP into a right KP–module in its second variable as follows. For each
surjection ˛W J � J 0 we have to describe a map

(3.39) s˛W BP.I;J
0/^

^
j 02J 0

KP.Jj 0/! BP.I;J /:

The target is still indexed by surjections ˇW I � J and again we define each component
individually. Let  D ˛ˇW I � J 0. Then we build the relevant component of s˛ from
the projection

p W BP.I;J
0/!

^
j 02J 0

B.1;P;P/.Ij 0/
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and by taking the smash product, over j 0 2 J 0 , of maps

B.1;P;P/.Ij 0/^KP.Jj 0/!
^

j2Jj 0

B.1;P;P/.Ij /

associated to the left coaction by the cooperad BP on B.1;P;P/. Recall that the Koszul
dual KP is the Spanier–Whitehead dual of BP and the above map is adjoint to the
coaction map associated to the surjection Ij 0 � Jj 0 given by restricting ˇ .

Lemma 3.40 The constructions of Definition 3.38 make BP into a spectrally enriched
functor Pop�KPop!Sp , that is, a bisymmetric sequence with commuting right module
structures for the operads P and KP on the first and second variables respectively.

Proof We have to check associativity and unit conditions for each of the actions, and
then a commutativity condition between them. For the P–action on the first variable,
the unit condition is that the map r˛ associated to the identity ˛W I � I be the identity
on BP.I;J /, which it is.

The associativity condition concerns the maps r˛ , r˛0 , r˛0˛ for surjections ˛W I � I 0

and ˛0W I 0� I 00 . The key point is then the following: a surjection ˇW I � J factors
via ˛0˛ if and only if ˇ factors as ˛ , and then  factors via ˛0 . If these factorizations
do not exist, then the components of r˛0˛ and of r˛0r˛ corresponding to ˇ are both
trivial. If the factorizations do exist, then those components are equal by the associativity
of the right P–action on B.1;P;P/.

For the KP–action on the second variable, the corresponding checks are similar, but
they are easier since there are no separate cases in the construction of the maps s˛ .
The associativity condition follows from the coassociativity of the coaction of BP on
B.1;P;P/.

To see that the two actions commute, suppose we have surjections ˛W I � I 0 and
ıW J � J 0 . We have to show that the following square commutes:

(3.41)

^
J 02J 0

KP.Jj 0/^BP.I
0;J 0/^

^
i02I 0

P.Ii0/
^

j 02J 0

KP.Jj 0/^BP.I;J
0/

BP.I
0;J /^

^
i02I 0

P.Ii0/ BP.I;J /

//r˛

��
sı

��
sı

//r˛
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Since the target is a product, we can check commutativity by considering the components
of the composite maps corresponding to each surjection ˇW I � J in turn. There are
three cases.

If ˇ D ˛ for some  W I 0 � J then also ıˇ D .ı /˛ . In this case, the relevant
components of the horizontal maps in (3.41) are given by the P–action on B.1;P;P/.
The required commutativity then follows from the commutativity of the corresponding
diagram

B.1;P;P/.I 0j 0/^
^

i02I 0
j 0

P.Ii0/ B.1;P;P/.Ij 0/

BP.Jj 0/^
^

j2Jj 0

B.1;P;P/.I 0j /^
^

i02I 0
j 0

P.Ii0/ BP.Jj 0/^
^

j2Jj 0

B.1;P;P/.Ij /

//

�� ��
//

where the vertical maps are given by the BP–coaction maps on B.1;P;P/ associated
to the restrictions of ˇ to Ij 0 for j 0 2 J 0 .

Secondly, suppose that ˇ does not factor via ˛ , but that ıˇD 0˛ for some  0W I 0�J 0 .
Then the relevant component of the bottom horizontal map in (3.41) is trivial. We need
to show that the other composite in (3.41) is trivial. This composite is given by the
smash product, over j 0 2 J 0 , of the following part of the previous diagram:

B.1;P;P/.I 0j 0/^
^

i02I 0
j 0

P.Ii0/ B.1;P;P/.Ij 0/

BP.Jj 0/^
^

j2Jj 0

B.1;P;P/.Ij /

//

��

The only obstruction to factoring ˇ via ˛ is that there must be some two elements
i1; i22I with ˛.i1/D˛.i2/ but ˇ.i1/¤ˇ.i2/. In this case, let j 0D 0˛.i1/D

0˛.i2/

and consider the above diagram for this particular j 0 . To see that this composite is
trivial, we recall from [6, Definition 7.8] the structure of the bar construction B.1;P;P/.
In particular, B.1;P;P/.I 0j 0/ is stratified by trees with leaves labelled surjectively by
the set I 0j 0 . Since ˛.i1/D ˛.i2/, these two elements must label the same leaf of such
a tree. It follows that the image of the top horizontal map is contained in the strata
corresponding to trees (with leaves labelled by Ij 0 ) where i1 and i2 label the same
leaf. But then according to the definition of the vertical map, since ˇ.i1/¤ ˇ.i2/, each
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such stratum is mapped to the basepoint in the bottom-right corner. It follows that the
above composite is trivial as required.

Finally, suppose that neither ˇ nor ıˇ factors via ˛ . In this case, the relevant compo-
nents of both horizontal maps in (3.41) are trivial and the square commutes.

Lemma 3.42 There is an equivalence of bisymmetric sequences

BP ' 1

that preserves the P–module structure on the first variable.

Proof For finite sets I;J , the equivalence of right P–modules B.1;P;P/ �!� 1

determines a natural equivalenceY
I�J

^
j2J

B.1;P;P/.Ij /!
Y

I�J

^
j2J

1.Ij /;

and this preserves the right P–module structures in the I variable (with that on the
right-hand side the trivial structure). The right-hand side is the same as 1.I;J / but
with

W
†n

S replaced by the equivalent
Q
†n

S (when nD jI j D jJ j).

Remark 3.43 Lemma 3.42 tells us that the P–module structure on each symmetric
sequence BP.�;J / is equivalent to the trivial structure. The same is true about the
KP–module structure on each BP.I;�/. This is proved via equivalences

1' BP

that preserve the KP–module structure on the second variables. The essential point,
however, is that these two structures are not equivalent when taken together. That
is, the bisymmetric sequence BP is not equivalent to 1 in the category of functors
Pop�KPop

!Sp . There is no zigzag of equivalences between BP and 1 that preserves
both structures simultaneously.

Proposition 3.44 Let P be an operad of spectra and zN a †–cofibrant P–comodule.
Then the symmetric sequence

zN ẑP BP

is equivalent to zN ẑP 1, and has a canonical KP–module structure.

Proof The only part to prove is the equivalence to zN ẑP 1, which follows from
Lemmas 3.42 and 1.19.

We now consider the naturality of the construction of BP in the operad P.
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Lemma 3.45 Let �W P! P0 be a morphism of operads in Sp . The induced natural
transformation of bisymmetric sequences

B� W BP! BP0

is a morphism of P–modules (in the first variables, with the P–action on BP0.�;J /

given by pulling back along � ), and of KP0–modules (in the second variables, with the
KP0–action on BP.I;�/ given by pulling back the KP–action along the operad map
K�W KP0! KP).

Proof This is an easy but lengthy diagram chase.

We are now in position to describe models for the partially stabilized cross-effects of a
polynomial functor that have the desired KEL –module structure.

Definition 3.46 For a polynomial functor F 2 ŒTopf
�;Sp�� , write zNŒF � for a (func-

torial) †–cofibrant replacement of the Com–comodule NŒF � of Definition 3.12. We
then define a KEL –module dLŒF � by

dLŒF � WD zNŒF � ẑEL
BEL

;

with KEL –module structure arising as in Proposition 3.44. We also have, for each L,
a map of symmetric sequences

mL
W dLŒF �! dLC1ŒF �

given by the composite

zNŒF � ẑEL
BEL
! zNŒF � ẑEL

BELC1
! zNŒF � ẑELC1

BELC1
;

in which the second map is induced by the operad map EL! ELC1 and the first is the
corresponding map of EL –modules BEL

! BELC1
from Lemma 3.45. The map mL

is also a morphism of KELC1 –modules by Lemma 3.45.

The sequence
d�ŒF � W d0ŒF �! d1ŒF �! d2ŒF �! � � �

is therefore a module over the pro-operad KE� , in the sense of Definition 2.1. It follows
that the homotopy colimit

dŒF � WD hocolimL dLŒF �

is a coalgebra over the comonad CKE� .
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Proposition 3.47 Let F 2 ŒTopf
�;Sp�� be polynomial. Then we have natural equiva-

lences of symmetric sequences

†��L cr� F.SL; : : : ;SL/' dLŒF �

such that the following diagrams commute in the homotopy category of symmetric
sequences, where the left-hand maps are those of (1.7):

†��L cr� F.SL; : : : ;SL/ dLŒF �

†��.LC1/ cr� F.SLC1; : : : ;SLC1/ dLC1ŒF �

//�

�� ��
mL

//�

Taking homotopy colimits as L!1 we get an equivalence

@�.F /' dŒF �:

Proof This follows from Propositions 3.44 and 3.24.

We have therefore constructed models for the partially stabilized cross-effects of
a polynomial functor as a module over the sequence of operads KE� , and for the
Goodwillie derivatives as a coalgebra over the associated comonad CKE� . We now
extend these constructions to analytic functors by taking the inverse limit over the
Taylor tower (part (4) of our overall construction).

Recall that a functor F W Topf
�!Sp is �–analytic if it satisfies Goodwillie’s condition

for being stably n–excisive in a way that depends in a controlled manner on � . Specif-
ically, there should exist a number q such that F satisfies condition En.n��q; �C1/

of [12, Definition 4.1]. We say that F is analytic if it is �–analytic for some � .

Definition 3.48 For an analytic functor F 2 ŒTopf
�;Sp�� , we define

dLŒF � WD holimn dLŒPnF �;

where the homotopy inverse limit is formed in the category of KEL –modules (or,
equivalently, in the underlying category of symmetric sequences). The maps in the
inverse diagram for the homotopy limit are those induced by the maps in the Taylor tower
of F . The maps mL for each PnF induce corresponding maps (of KELC1 –modules)

mL
W dLŒF �! dLC1ŒF �;

and hence we obtain a KE�–module d�ŒF � and hence a CKE� –coalgebra

dŒF � WD hocolimL dLŒF �:
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(If F is polynomial, this new definition of d�ŒF � is termwise equivalent to that of
Definition 3.46.)

Lemma 3.49 For a �–analytic functor F W Topf
�! Sp and positive integer L, there

are natural maps in the homotopy category of symmetric sequences of the form

†��L cr� F.SL; : : : ;SL/! dLŒF �

that are equivalences when L� �C 1, and such that the following diagrams commute,
where the left-hand maps are those of (1.7):

†��L cr� F.SL; : : : ;SL/ dLŒF �

†��.LC1/ cr� F.SLC1; : : : ;SLC1/ dLC1ŒF �

//

�� ��

mL

//

Taking the homotopy colimit as L ! 1, we obtain an equivalence of symmetric
sequences

@�.F /' dŒF �:

Proof By Proposition 3.47 we have

dŒPnF �'†��L cr�.PnF /.SL; : : : ;SL/:

Therefore
dLŒF �' holim†��L cr�.PnF /.SL; : : : ;SL/

'†��L cr�.holim PnF /.SL; : : : ;SL/;

since taking cross-effects commutes with taking homotopy limits. The required map is
then induced by the natural transformation

F ! holim PnF:

Since F is �–analytic, the natural map F ! holim PnF is an equivalence on �–
connected spaces. It follows that we have an equivalence

†��L cr� F.SL; : : : ;SL/ �!� †��L cr�.holim PnF /.SL; : : : ;SL/

when L� 1� � , which yields the first claim. Taking homotopy colimits over the L

variable on each side then gives the second claim.
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The final goal of this section (part (5)) is to extend our constructions to arbitrary
(ie non-analytic) functors from based spaces to spectra. For this, we recall from [2,
Proposition 4.3] that the derivatives of an arbitrary functor F can be obtained by
forming the coend between the values F.X / and the derivatives of the representable
functors †1HomTop�.X;�/. Since the functor represented by a finite spectrum X

is analytic, we can use the models for derivatives from Definition 3.48, and since the
comonad CKE� is enriched in spectra, its coaction on those derivatives extends to the
coend.

Definition 3.50 For X 2 Topf
� , we write

RX W Topf
�! Sp

for the representable functor given by

RX .Y / WD†
1HomTop�.X;Y /:

Definition 3.51 For X 2 Topf
� , we now apply the construction of Definition 2.12 to

the module d�ŒRX � of Definition 3.48 to get a KE�–module d�ŒRX � and a morphism
of KE�–modules

d�ŒRX �! d�ŒRX �

formed from weak equivalences

dLŒRX � �!
� dLŒRX �

and such that each dLŒRX � is †–cofibrant. In particular, the homotopy colimit

dŒRX � WD hocolim dLŒRX �

is a †–cofibrant CKE� –coalgebra that is equivalent, as a symmetric sequence, to
@�.RX /.

Remark 3.52 It is important that the functor

.Topf
�/

op
! Œ†;Sp�I X 7! dŒRX �;

be simplicially enriched in order to make Definition 3.53 below. The reader can check
that we have built dŒRX � from a succession of simplicially enriched constructions,
including: applying Goodwillie’s construction Pn ; forming the natural transformation
objects NŒF �; taking cofibrant replacements (which can be done simplicially by work of
Rezk, Schwede and Shipley [20]; forming homotopy coends over EL ; taking homotopy
limits; applying functorial factorizations as in the construction of Definition 2.12; and
taking homotopy colimits.
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Finally, then, we obtain models for the derivatives of any pointed simplicial functor
F W Topf

�! Sp by enriched left Kan extension from our models for the representable
functors.

Definition 3.53 For any F 2 ŒTopf
�;Sp�� and each L, define a KEL –module dLŒF �

by taking the enriched coend

dLŒF � WD F.X /^X2Topf�
dLŒRX �

over the simplicial category Topf
� . We then obtain a CKE� –coalgebra dŒF � given by

dŒF � WD hocolimL dLŒF �Š F.X /^X2Topf�
dŒRX �:

Notice that, by the dual Yoneda Lemma, we have RY .X / ^X dŒRX � Š dŒRY � so
that this definition of dŒF � is consistent with that already made for the functors RX

themselves.

Note that in Definition 3.53 we use a strict (not homotopy) coend which typically only
has the correct homotopy type when F is a cofibrant object in the projective model
structure on ŒTopf

�;Sp�� .

Proposition 3.54 Let F W Topf
�! Sp be pointed simplicial and let c denote an arbi-

trary cofibrant replacement functor for the projective model structure on ŒTopf
�;Sp�� .

There are natural maps (in the homotopy category of symmetric sequences)

�L.F /W †
��L cr� F.SL; : : : ;SL/! dLŒcF �

such that the diagrams

†��L cr� F.SL; : : : ;SL/ dLŒcF �

†��.LC1/ cr� F.SLC1; : : : ;SLC1/ dLC1ŒcF �

//�L.F /

�� ��
//�LC1.F /

commute, where the left-hand maps are those of (1.7) and the right-hand maps are
those that form the KE�–module d�ŒcF �. Taking the homotopy colimit as L!1 we
therefore get a map

�.F /W @�.F / �!
� dŒcF �;

and this is an equivalence for all F .
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Proof From Lemma 3.49 we have a zigzag of maps (in which all the backwards maps
are equivalences)

(3.55) †��L cr�.RX /.S
L; : : : ;SL/ // dLŒRX �:

Since cF is a cofibrant functor, the coend construction cF.X /^X � preserves weak
equivalences between objectwise †–cofibrant diagrams .Topf

�/
op ! Œ†;Sp�. So

applying this coend construction to the zigzag of maps (3.55), we obtain a corresponding
zigzag

(3.56) cF.X /^X †��Lecr�.RX /.S
L; : : : ;SL/ // dLŒcF �;

where ecr�.RX / denotes a †–cofibrant replacement of the cross-effects of RX . The
strict coend on the left-hand side is equivalent to the corresponding homotopy coend
since cF is cofibrant. Therefore, because taking cross-effects commutes with homotopy
colimits, the left-hand term in (3.56) is equivalent to

†��L cr�.cF.X /^X RX /.S
L; : : : ;SL/;

which is equivalent to
†��L cr�.F /.SL; : : : ;SL/

by the dual Yoneda Lemma. It follows that the zigzag (3.56) represents the required
map �L.F / in the homotopy category of symmetric sequences.

It remains to show that �.F / D hocolim �L.F / is an equivalence. We know from
Lemma 3.49 that the homotopy colimit of the maps (3.55), as L!1, is an equivalence
for each X . Since this homotopy colimit commutes with the homotopy coend, we
deduce that �.F / is an equivalence as required.

This completes the construction (started in Definition 3.11) of a model for the derivatives
of a pointed simplicial functor F W Topf

�! Sp that form a CKE� –coalgebra.

Note that for an analytic functor F 2 ŒTopf
�;Sp�� we have now defined two different

CKE� –coalgebra models for the derivatives of F : the object dŒF � of Definition 3.48
and the object dŒF � of Definition 3.53. It is important to know that these objects are
actually equivalent as CKE� –coalgebras.

There is a small technical obstacle to constructing an equivalence of CKE� –coalgebras
between dŒF � and dŒF �, which is that the construction F 7! dŒF � is not enriched in
spectra. (In particular, we do not have a natural map (of CKE� –coalgebras) of the form
X ^ dŒF �! dŒX ^F � for a spectrum X .) The underlying reason for this is that the
cofibrant replacement in the category of Com–comodules used to form the object zNŒF �
is not enriched in spectra. The following lemma shows that there is at least a zigzag of
coalgebra maps (which are, in fact, equivalences).
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Lemma 3.57 For �–analytic F 2 ŒTopf
�;Sp�� , cofibrant X 2 Sp , and L � �C 1,

there are, naturally in L, zigzags of equivalences of KEL –modules

dLŒX ^F �'X ^ dLŒF �

and a zigzag of equivalences of CKE� –coalgebras

dŒX ^F �'X ^ dŒF �:

The CKE� –coalgebra structure on the right-hand side relies on the fact that the comonad
CKE� itself is enriched over spectra.

Proof Consider first the case that F is polynomial. Then there is a zigzag of equiva-
lences of †–cofibrant Com–comodules

(3.58) X ^ zNŒF � �� DŒX ^ zNŒF �� �!� DŒX ^NŒF �� �!� zNŒX ^F �;

where the tildes denote a fixed cofibrant replacement functor in the category of Com–
comodules. The final equivalence is induced by the natural map of Com–comodules

X ^NatY 2Topf�
.C†1Y ^� ;FY /! NatY 2Topf�

.C†1Y ^� ;X ^FY /;

and is an equivalence by Lemma 3.13.

We get from (3.58) the required chain of equivalences of KEL –modules

X ^ dLŒF � WDX ^ zNŒF � ẑEL
BEL
' zNŒX ^F � ẑEL

BEL
D dLŒX ^F �:

It is important for this that each term in the chain (3.58) is †–cofibrant. Note that these
equivalences are compatible with the operad maps KELC1! KEL and thus induce a
corresponding chain of equivalences of CKE� –coalgebras

X ^ dŒF �' dŒX ^F �:

Now suppose that F is �–analytic with L � �C 1. Then we have a sequence of
maps/equivalences of KEL –modules of the form

(3.59) X ^dLŒF �DX ^holimn dLŒPnF � ! holimn X ^ dLŒPnF �

' holimn dLŒX ^PnF �

' holimn dLŒPn.X ^F /�D dLŒX ^F �:

By Lemma 3.49 the composite can be identified (in the homotopy category of symmetric
sequences) with the map

X ^†��L cr� F.SL; : : : ;SL/!†��L cr�.X ^F /.SL; : : : ;SL/;
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which is an equivalence since cross-effects are equivalent to co-cross-effects, and hence
commute with smashing by X . Taking the homotopy colimit of the equivalences (3.59)
as L!1 we get the required equivalence

X ^ dŒF �' dŒX ^F �:

Lemma 3.60 For a cofibrant �–analytic functor F 2 ŒTopf
�;Sp�� and L � �C 1,

there are, naturally in L, zigzags of equivalences of KEL –modules

dLŒF �' dLŒF �

and a zigzag of equivalences of CKE� –coalgebras

dŒF �' dŒF �:

Proof In the case F DRX , the required equivalence follows immediately from the
construction of d�ŒRX � from d�ŒRX � in Definition 3.51. For arbitrary F , we have

dŒF �D F.X /^X dŒRX �' F.X /^X dŒRX �' dŒF.X /^X RX �Š dŒF �;

and similarly for dL instead of d, with the penultimate equivalence arising from
Lemma 3.57.

Corollary 3.61 If F is �–analytic and L� �C 1, then the map

�L.F /W †
��L cr� F.SL; : : : ;SL/! dLŒcF �

of Proposition 3.54 is an equivalence.

Proof The map �L.F / is equivalent to the composite

†��L cr�.cF /.SL; : : : ;SL/ �!� dLŒcF � �!� dLŒcF �

given by the equivalences of Lemmas 3.49 and 3.60.

3.3 Classification of polynomial functors from based spaces to spectra

The main goal of this section is to prove Theorem 3.75, which provides an equivalence
between the homotopy theory of polynomial functors from based spaces to spectra and
the homotopy theory of bounded CKE� –coalgebras. Our approach is to make use of
the general theory of [2] in which we have already constructed another comonad C
whose coalgebras classify polynomial functors.
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Definition 3.62 The functor

dW ŒTopf
�;Sp��! Œ†;Sp�

constructed in Definition 3.53 has a right adjoint ˆ given by

ˆ.A/.X / WDMap†.dŒRX �;A/:

Since dŒRX � is a †–cofibrant symmetric sequence, the right adjoint ˆ preserves
fibrations and acyclic fibrations, so that .d; ˆ/ is a Quillen adjunction (with respect to
the projective model structures on both sides).

We can now apply the work of [2] to the adjunction .d; ˆ/. This gives us a comonad C
on the category of symmetric sequences that acts on dŒF � for any F 2 ŒTopf

�;Sp�� .
According to [2, Theorem 3.13], the Taylor tower of a functor F can then be recovered
from dŒF � by a cobar construction, and the homotopy theory of pointed simplicial
polynomial functors Topf

� ! Sp is equivalent to the homotopy theory of bounded
C–coalgebras. Here we show that C is equivalent, as a comonad, to CKE� , and we
deduce that the Taylor tower of F can be recovered from the CKE� –coalgebra structure
on dŒF � constructed in Definition 3.53.

Definition 3.63 The comonad CW Œ†;Sp�! Œ†;Sp� can be written as

C WD dcˆ;

where c is a cofibrant replacement comonad for the category ŒTopf
�;Sp�� . See [2,

Section 3] for more details.1

The functor C takes values in CKE� –coalgebras (since d does) and so we get a morphism
of comonads

� W C! CKE�

given by the composite

C.A/! CKE�.C.A// // CKE�.A/;

where the first map is given by the CKE� –coalgebra structure on C.A/ and the second
by the counit for the comonad C. The map � respects the comonad structures because
the comultiplication for C is a natural map of CKE� –coalgebras.

1More precisely, we constructed C in [2] using a Quillen equivalence uW ŒTopf�;Sp�c � ŒTopf�;Sp�� Wc ,
where ŒTopf�;Sp�c is a model category in which every object is cofibrant. The comonad C is then given
by ducˆ . In this case the composite uc provides a cofibrant replacement comonad for the category
ŒTopf�;Sp�� which we denote by c .
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Theorem 3.64 The comonad map

�AW C.A/! CKE�.A/

is an equivalence for any symmetric sequence A.

Proof Our proof is based on the construction, for bounded symmetric sequences A,
of natural zigzags of equivalences of KEL –modules

(3.65) dLŒcˆA�' CKEL
.A/

that commute with the KE�–module structure maps

dLŒcˆA�! dLC1ŒcˆA�

on the left-hand side, and the comonad maps

CKEL
.A/! CKELC1

.A/

on the right-hand side.

We start by noting that there are equivalences of Com–comodules

NŒˆA�D NatY 2Topf�
.C†1Y ^�; ˆA.Y //

ŠMap†.dŒC†1Y ^��;A/

'Map†.1.�;�/;A.�//

' A;

where A has the trivial Com–comodule structure. We therefore get, using Lemma 3.60,
an equivalence of KEL –modules

(3.66) dLŒcˆA�' zNŒˆA� ẑEL
BEL
' A ẑEL

BEL
;

where A is given the trivial EL –comodule structure. Note that ˆA is analytic because
A is bounded and so Lemma 3.60 applies here.

We next claim that when A is bounded, A ẑEL
BEL

is equivalent to the cofree KEL –
module generated by A. This is part of a version of Koszul duality between EL –
comodules and KEL –modules under which trivial EL –comodules correspond to cofree
KEL –modules. We record this claim as a separate proposition.

Proposition 3.67 Let A be a bounded trivial †–cofibrant EL –comodule. Then there
is a zigzag of equivalences of KEL –modules

A ẑEL
BEL
' CKEL

.A/:
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In other words, the derived indecomposables of a bounded trivial EL –comodule form a
cofree KEL –module.

Proof To define the required zigzag, we introduce a symmetric sequence equivalent
to A, but that accepts a natural map from A ẑEL

BEL
. We define

yA.n/ WD A.n/^†n

Y
†n

S:

Note that there is an isomorphism A.n/ Š A.n/ ^†n

W
†n

S and that, since A is
†–cofibrant, the map

A! yA;

induced by the map from coproduct to product, is an equivalence.

We can now define a map of symmetric sequences A ẑEL
BEL
! yA as follows. For

given n, we have a map

(3.68) ŒA ẑEL
BEL

�.n/! ŒADn ẑEL
BEL

�.n/

induced by the projection A! ADn , where ADn is the symmetric sequence with A.n/

in the n th term and trivial otherwise. The right-hand side in (3.68) is the geometric
realization of a simplicial spectrum that is constant with terms

A.n/^†n
BEL

.n; n/Š yA.n/

since BEL
.n; n/Š

Q
†n

S by Definition 3.38. It follows that we have isomorphisms

(3.69) ŒADn ẑEL
BEL

�.n/Š yA.n/:

Composing (3.68) and (3.69) we get the required map of symmetric sequences

�W A ẑEL
BEL
! yA:

We can now define the zigzag of maps required by the proposition. We have maps of
KEL –modules

(3.70) A ẑEL
BEL
! CKEL

.A ẑEL
BEL

/
�
�! CKEL

.yA/ �� CKEL
.A/;

where the first map is given by the KEL –module structure on BEL
. It is now sufficient

to check that this composite is an equivalence.

We start by reducing to the case that A D 1.n;�/, ie A consists of only a free †n –
spectrum concentrated in arity n. Since A is a trivial EL –comodule, we have an
equivalence of EL –comodules

A'
_
n

A.n/^h†n
1.n;�/:
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To reduce our claim to the case AD 1.n;�/ it is sufficient to check that the functors
� ẑEL

BEL
and CKEL

commute with: (1) smashing with a cofibrant spectrum; (2)
taking homotopy orbits with respect to †n –action; and (3) finite coproducts. For
� ẑEL

BEL
these are clear and for CKEL

they follow from the next lemma.

Lemma 3.71 For bounded symmetric sequences A, there is a natural equivalence of
spectra

CKEL
.A/.k/'

_
mDm1C���Cmk

ŒBEL.m1/^ � � � ^BEL.mk/^A.m/�h†m1
�����†mk

;

where the coproduct is taken over all ordered partitions of a positive integer m as a sum
of positive integers m1; : : : ;mk .

Proof From Definition 1.20 we have

CKEL
.A/.k/D

Y
m

� Y
m�k

Map.KEL.m1/^ � � � ^KEL.mk/;A.m//

�†m

:

First note that the terms in the outer product can be written asY
mDm1C���Cmk

�
Map.KEL.m1/^ � � � ^KEL.mk/;A.m//

�†m1
�����†mk;

where the product is taken over all ordered partitions as in the statement of the lemma.
Since each KEL.mj / is cofibrant as a †mj –spectrum, the strict fixed points here
are equivalent to the corresponding homotopy fixed points. Furthermore, we have
equivariant equivalences

(3.72) Map.KEL.m1/^� � �^KEL.mk/;A.m//'BEL.m1/^� � �^BEL.mk/^A.m/;

and each of the products involved here is finite (since A is bounded), so altogether we
can write

CKEL
.A/.k/'

_
mDm1C���Cmk

�
BEL.m1/^ � � � ^BEL.mk/^A.m/

�h†m1
�����†mk:

All that remains is to show that the homotopy fixed points here are equivalent to the
corresponding homotopy orbits. To see this we note that the †m –spectrum BEL.m/

can be built from finitely many †m –free cell spectra (because each space EL.k/ is
a finite free †k –cell complex). Therefore the norm map from homotopy orbits to
homotopy fixed points is an equivalence.
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Continuing with the proof of Proposition 3.67, this completes the reduction to the
case AD 1.n;�/, so we now consider this case. Recall that we have to prove that the
composite

(3.73) 1.n;�/ ẑEL
BEL
! CKEL

. 1.n;�/ ẑEL
BEL

/! CKEL
.y1.n;�//

is an equivalence. For this we really need to get our hands on the definition of BEL
in

Definition 3.38, including the EL and KEL –module structures described there.

The k th term in this map of symmetric sequences takes the form

1.n;�/ ẑEL
BEL

.�; k/

!

� Y
n�k

Map.KEL.n1/^ � � � ^KEL.nk/; 1.n;�/ ẑEL
BEL

.�; n//

�†n

Š

� Y
n�k

Map.KEL.n1/^ � � � ^KEL.nk/;y1.n; n//

�†n

;

where the first map comes from the right KEL –module structure on BEL
. The only

relevant structure map is that of the form

BEL
.n; k/^

k̂

iD1

KEL.ni/! BEL
.n; n/;

which, by (3.39), is built from the smash product of the maps

B.1;EL;EL/.ni/^KEL.ni/! B.1;EL;EL/.1/^ � � � ^B.1;EL;EL/.1/Š S

that are dual to the left BEL –comodule structure maps for B.1;EL;EL/.

Now notice that by analyzing the homotopy coend we get equivalences

1.n;�/ ẑEL
BEL

.�; k/ �!�
Y

n�k

k̂

iD1

B.1;EL; 1/.ni/:

(This amounts to the fact that B.1;EL; 1/ is equivalent to the derived indecomposables
of the EL –module structure on B.1;EL;EL/.) Putting this together with the KEL –
module structure from above, we have to show that the maps

B.1;EL; 1/.ni/!Map.KEL.ni/;B.1;EL; 1/.1/^ : : :^B.1;EL; 1/.1//

ŠMap.KEL.ni/;S/;

given by the cooperad structure on BEL , are equivalences. But these are just evaluation
maps for the Spanier–Whitehead duals of the finite spectra BEL.ni/ and hence are
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indeed equivalences. It follows that (3.73) too is an equivalence as required. This
completes the proof of Proposition 3.67.

We return now to the rest of the proof of Theorem 3.64. Together with (3.66), the
equivalence of Proposition 3.67 forms the required equivalences (3.65) of the form

�L
W dLŒcˆA�' CKEL

.A/

for bounded symmetric sequences A. Note that taking homotopy colimits over L gives
us an equivalence of CKE� –coalgebras C.A/' CKE�.A/.

Suppose now that A is an arbitrary symmetric sequence. We then have a zigzag of
equivalences of CKE� –coalgebras

�W hocolimL holimn dLŒcˆA�n�' hocolimL holimn CKEL
.A�n/;

where we take the homotopy limit along the truncation maps A�n! A�.n�1/ and the
homotopy colimit as L!1. Now the right-hand side above is equivalent to CKE�.A/

(because the homotopy limit commutes with CKEL
and holimn A�n ' A). For the

left-hand side, we have a diagram (in the homotopy category of symmetric sequences)

hocolimL†
��L cr�.ˆA/.SL; : : : / hocolimL holimn†

��L cr�.ˆA�n/.S
L; : : : /

hocolimL dLŒcˆA� hocolimL holimn dLŒcˆA�n�

��
�

//�

��
�

//

in which the vertical maps are the equivalences of Proposition 3.54. The top horizontal
map is an equivalence because cross-effects commute with homotopy limits, so we
deduce that the bottom horizontal map is an equivalence. It therefore follows that � is
a zigzag of equivalences of CKE� –coalgebras

�W C.A/' CKE�.A/:

Finally, we consider the following diagram (in the homotopy category)

C.A/ CKE�.C.A// CKE�.A/

CKE�.A/ CKE�.CKE�.A// CKE�.A/
��

� �

//

��

� �

//�C

��

� �

// //
�CKE�

where the left-hand horizontal maps are given by the CKE� –coalgebra structures on C
and CKE� , respectively.
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The composite of the bottom row is the identity, and the composite of the top row
is � . To show that � is an equivalence, it is sufficient then to show that this diagram
commutes in the homotopy category. The left-hand square commutes because � is a
zigzag of equivalences of CKE� –coalgebras. To see that the right-hand square commutes
(in the homotopy category) it is sufficient to show that

C.A/

A

CKE�.A/
��

�
$$

�C

::

�CKE�

commutes up to homotopy. This follows by comparing the description of �C given in
[2, Lemma 4.10] with that of the counit for CKE� in Definition 1.20: in each case the
counit map is, up to homotopy, a projection on the summand of the respective comonad.
This completes the proof of Theorem 3.64.

Remark 3.74 Theorem 3.64 provides an alternative proof of the result of [2, Proposi-
tion 6.1] that describes the comonad C up to homotopy in terms of “divided power”
module structures for the operad @�I formed from the derivatives of the identity on
based spaces. For a bounded symmetric sequence A we have, using Lemma 3.71,

C.A/.k/
' CKE�.A/.k/

' hocolimL

_
mDm1C���Cmk

�
BEL.m1/^ � � � ^BEL.mk/^A.m/

�
h†m1

�����†mk

'

_
mDm1C���Cmk

�
hocolimL.BEL.m1/^ � � � ^BEL.mk//^A.m/

�
h†m1

�����†mk

'

_
mDm1C���Cmk

�
BCom.m1/^ � � � ^BCom.mk/^A.m/

�
h†m1

�����†mk

'

Y
mDm1C���Cmk

�
Map.@m1

I ^ � � � ^ @mk
I;A.m//

�
h†m1

�����†mk

;

where the last equivalence is given by the equivalence @�I ' KCom of [6].

We showed in [2] that the functor d induces an equivalence between the homotopy
theory of polynomial functors in ŒTopf

�;Sp�� and the homotopy theory of bounded
C–coalgebras. Using Theorem 3.64 we can now replace C with CKE� in that statement.
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Theorem 3.75 The functor d induces an equivalence

ŒTopf
�;Sp�h�;poly �!

� Coalgb.CKE�/
h

between the homotopy category of polynomial pointed simplicial functors Topf
�! Sp

and the homotopy category of bounded KE�–coalgebras of Definition 1.26. Moreover,
for cofibrant polynomial functors F;G 2 ŒTopf

�;Sp�� , we have equivalences of mapping
spectra

(3.76) NatTopf�
.F;G/' eMapCKE�

.dŒF �; dŒG�/:

Proof We prove (3.76) first. This is made more difficult by the fact that the comonad C
is not enriched in Sp and so we are unable to define mapping spectra for C–coalgebras.
Instead we have only mapping spaces eHomC.�;�/ defined as in [2, Definition 1.10].
We do then have a sequence

�1NatTopf�
.F;G/ �!� eHomC.dŒF �; dŒG�/ �!

� �1eMapCKE�
.dŒF �; dŒG�/;

where the first equivalence is [2, Corollary 3.15] and the second equivalence follows
from Theorem 3.64. This implies that the map

NatTopf�
.F;G/! eMapCKE�

.dŒF �; dŒG�/

induces an isomorphism on homotopy groups �k for k � 0. For k < 0, we can apply
the result just proved to see that

NatTopf�
.F; †�kG/! eMapCKE�

.dŒF �; dŒ†�kG�/

is an equivalence on �0 and hence so is the equivalent map

†�k NatTopf�
.F;G/!†�k eMapCKE�

.dŒF �; dŒG�/:

Therefore the map (3.76) induces an isomorphism on �k for all k , so is an equivalence
of spectra.

It now follows that d determines a fully faithful embedding of the homotopy theory
of polynomial functors in ŒTopf

�;Sp�� into the homotopy theory of bounded CKE� –
coalgebras. To complete the proof, we must show that every bounded CKE� –coalgebra A

is in the image of this embedding.

Given a bounded CKE� –coalgebra A, we define a functor FAW Topf
�! Sp by

FA.X / WD eMapCKE�
.dŒRX �;A/Š Tot.ˆC�KE�A/;

with the asterisk denoting the cosimplicial variable. We then claim that FA is polyno-
mial, and that dŒcFA� is equivalent to A in the homotopy category of CKE� –coalgebras.
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If A is N –truncated, then so is Cr
KE�
.A/ for any r. Therefore, each term in the

cosimplicial object ˆC�KE�A is N –excisive, by [2, Remark 3.10]. It follows that the
(fat) totalization Tot.ˆC�KE�A/D FA is also N –excisive.

Since d is a simplicial functor we have natural maps

fr W �
r
C ^ dŒc Tot.ˆC�KE�A/�! dcˆCr

KE�
A! Cr

KE�
A;

where the first map is the projection from the totalization, and the second is the counit
associated to the comonad CD dcˆ. These commute with coface maps in the relevant
way and determine a derived CKE� –coalgebra map f W dŒcFA�! A (in the sense of
Definition 1.26).

By [2, Proposition 1.16], it is sufficient to show that f0 is an equivalence of symmetric
sequences. We can write f0 , up to equivalence, as a composite

dŒc Tot.ˆC�KE�A/�! Tot.dcˆC�KE�A/ �!
� Tot.C�C1

KE�
A/ �!� A;

where the second map is induced by the equivalence of Theorem 3.64 and the third is the
coaugmentation equivalence associated to the extra codegeneracies in the cosimplicial
object C�C1

KE�
A. It remains then to show that the first map is an equivalence; that is,

d commutes with the totalization of the cosimplicial object ˆC�KE�A. The proof of this is
virtually identical to that of [2, Corollary 3.16], using the equivalence � W dcˆ�!� CKE�

of Theorem 3.64.

3.4 Comparison of classifications of polynomial functors

We take this opportunity to describe how the result of Theorem 3.75 is related to other
approaches to the classification of polynomial functors from based spaces to spectra.
We have already mentioned the work of Dwyer and Rezk in which a polynomial
functor F W Topf

�! Sp corresponds to the bounded Com–comodule NŒF �. One half
of this equivalence was observed in Proposition 3.15 where we showed that F can be
recovered from NŒF � via a homotopy coend with †1X^� . In Theorem 3.82 below
we show the other half: that any bounded Com–comodule is equivalent to NŒF � for
some polynomial functor F .

Another classification of polynomial functors from based spaces to spectra follows
from the observation that such a functor F is determined, by left Kan extension, by
its values on the full subcategory of finite pointed sets. In fact, an n–excisive F is
determined by its values on sets of cardinality at most n (not including the basepoint).
This fact can be related to the classification described in the previous paragraph via a
homotopical version of an equivalence of Pirashvili [19].
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Definition 3.77 Let ��n denote the category whose objects are the non-empty finite
sets of cardinality at most n, and whose morphisms are the surjections. Notice that
an n–truncated Com–comodule can be identified with a functor ��n ! Sp . Also,
let ��n denote the category whose objects are the pointed finite sets of cardinality at
most n (not including the basepoint), and whose morphisms are functions that preserve
the basepoint. We write � and � for the corresponding categories of finite sets without
restriction on the cardinality.

In [19] Pirashvili showed, among other things, that there is an equivalence of categories

Œ��n;Ab�' Œ��n;Ab��

between the category of functors from ��n to the category of abelian groups Ab , and
the category of pointed functors from ��n to Ab (ie those that send the one-point set
to the zero group). In fact, if one includes the empty set as an object of ��n , then one
can remove the pointedness restriction on the right-hand side.

A homotopical version of this equivalence for contravariant functors was constructed
by Helmstutler in [15] but the covariant version does not appear to be in the literature,
so we prove it now. This result includes the case nD1 where there is no restriction,
beyond finiteness, on the cardinality of the sets involved.

Theorem 3.78 For each 1� n�1, there is a Quillen equivalence of the form

(3.79) LW Comod�n.Com/D Œ��n;Sp�� Œ��n;Sp�� WR;

where Œ��n;Sp� is the category of functors ��n!Sp , and Œ��n;Sp�� is the category
of pointed functors ��n! Sp (ie those which take the one-element set to the trivial
spectrum). Each of these functor categories has the projective model structure in which
weak equivalences and fibrations are detected objectwise, and the Quillen functors are
given by

L.N/.JC/ WD N^Com
E†1.JC/^�

and
R.G/ WDMapJC2��n

.E†1.JC/^� ;G.JC//:

Here E†1.JC/^� is as in Definition 3.11.

Proof The same proof works for all n; we describe it for nD1.

First note that for each k , the functor �! Sp given by

JC 7!
E†1.JC/^k
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is cofibrant in the projective model structure. It follows that R preserves fibrations and
trivial fibrations, so .L;R/ is a Quillen adjunction.

We now identify the right adjoint R in terms of taking the cross-effects of a functor
GW � ! Sp , just as in Pirashvili’s original result. First observe that there is an
equivalence of spaces, natural in JC 2 � , of the form

(3.80) thocofib
I�K

�.IC;JC/ �!
� .JC/

K ;

given by identifying a pointed function IC! JC with an I –tuple in JC . (The left-
hand side is the total homotopy cofibre of a cube of discrete spaces indexed by subsets
I � K where, for I � I 0 , the map �.IC;JC/! �.I 0C;JC/ is given by extending
a function by the basepoint on I 0 � I . The total homotopy cofibre of this cube is
equivalent to the strict total cofibre, ie .JC/K , since, for each face, the map from its
pushout to terminal vertex is an inclusion of discrete spaces, hence a cofibration.)

Applying MapJC2�
.�;G.JC// to (3.80) we get an equivalence

(3.81) R.G/.K/ �!� thofib
I�K

MapJC2�
.�.IC;JC/;G.JC//Š thofib

I�K
G.IC/;

and the right-hand side here is the definition of the K th cross-effect of G evaluated at
.1C; : : : ; 1C/.

An important consequence of (3.81) is that the right derived functor of R preserves
homotopy colimits. This follows from the fact that the total homotopy fibre of a cube
of spectra can be calculated via the corresponding total homotopy cofibre. Another
consequence is that a natural equivalence between functors �! Sp can be detected
by R, in the following sense.

Let G!G0 be a natural transformation between pointed functors �! Sp such that
the induced map R.G/!R.G0/ is a weak equivalence of Com–comodules. We prove
by induction on jKj that G.KC/!G0.KC/ is a weak equivalence of spectra for any
finite set K . For jKj D 0 this follows from the fact that G and G0 are pointed. For
arbitrary K , consider the following diagram of spectra:

R.G/.K/ thofib
I�K

G.IC/

R.G0/.K/ thofib
I�K

G0.IC/
��

�

//�

��

//�

The horizontal maps are the equivalences of (3.81) and the left-hand vertical map is an
equivalence by hypothesis. It follows that the right-hand vertical map is an equivalence.
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Now note that we also have the following diagram of spectra in which the rows are
fibration sequences:

thofib
I�K

G.IC/ G.KC/ holimI¨K G.IC/

thofib
I�K

G0.IC/ G0.KC/ holimI¨K G0.IC/

//

��

�

//

�� ��

�

// //

where the right-hand vertical map is an equivalence by the induction hypothesis. It
follows that G.KC/!G0.KC/ is also an equivalence, as desired.

Using these preliminary results, we now turn to showing that the adjunction .L;R/ is
a Quillen equivalence, which we do by showing that the derived unit and counit are
both equivalences.

Consider first the derived unit map �NW N ! RLN for a Com–comodule N. We
prove that this is an equivalence by using the cofibrantly generated model structure
on Comod.Com/ to reduce to the case where N is the source or target of one of the
generating cofibrations, ie is of the form

N.I/ WDE ^Com.n; I/

for some finite spectrum E and some n� 1. In this case, we have

LN.JC/DE ^Com.n; I/^Com
E†1.JC/^� ŠE ^ D†1.JC/^n

and hence
RLN.k/DMap�.

E†1.JC/^k ;E ^ D†1.JC/^n /:

Since E is finite, it is sufficient to show the canonical map

Com.n; k/!Map�.
E†1.JC/^k ; D†1.JC/^n /;

that takes a surjection n � k to the map induced by the diagonals on the pointed finite
sets .JC/, is an equivalence. This follows by the argument used to prove that (3.16) is
an equivalence, relying on the equivalence (3.80) from above.

Now recall that any Com–comodule N is a retract of a cell complex, which is in
turn formed by taking (homotopy) pushouts and sequential colimits, starting from the
generating cofibrations. Since these homotopy colimits commute with both L and R,
we deduce that �N is an equivalence for any N.
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Finally, consider the derived counit map �G W LRG!G for pointed GW �! Sp . We
know that the map

�RG W RG! RLRG

is an equivalence, and so by the triangle identity, we deduce that

R.�G/W RLRG! RG

is an equivalence. But since we have shown that R reflects equivalences, it follows that
�G is an equivalence too. This completes the proof that .L;R/ is a Quillen equivalence.

Theorem 3.82 There is a diagram of functors, as follows, which commutes up to
natural equivalence and in which each functor determines an equivalence of homotopy
categories:

(3.83)

Coalg�n.CKE�/

Comod�n.Com/ ŒTopf
�;Sp��;n�exc

Œ��n;Sp��

77
hocolimL�ẑEL

BEL

//�^Com
C†1X^�

''
L

gg
d

77

LKan

In this diagram,

� Coalg�n.CKE�/ is the category of n–truncated CKE� –coalgebras;

� Comod�n.Com/ is the category of n–truncated Com–comodules;

� ŒTopf
�;Sp��;n�exc is the category of n–excisive pointed simplicial functors

Topf
�! Sp ;

� Œ��n;Sp�� is as in Theorem 3.78;

and

� L is the left adjoint of the Quillen equivalence in Theorem 3.78;

� LKan denotes left Kan extension along the inclusion ��n! Topf
� ;

� d is as in Definition 3.53.
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Proof Theorem 3.75 implies that d determines an equivalence of homotopy theories.
The top triangle commutes up to natural equivalence by the construction of d. We turn
then to the horizontal functor in diagram (3.83).

We have already shown in Proposition 3.15 that the evaluation map

NatY 2Topf�
.C†1Y ^� ;FY / ẑCom C†1X^� ! F.X /

is an equivalence when F is polynomial. We now show that the unit map

N.r/! NatY 2Topf�
.C†1Y ^r ;N ẑCom C†1Y ^� /

is an equivalence when N is a cofibrant Com–comodule. To see this, note that by
Corollary 3.14, it is sufficient to show that, for each r , the map

N.r/! N ẑCom NatY 2Topf�
.C†1Y ^r ;C†1Y ^� /

induced by the identity on C†1Y ^� is an equivalence. But by (3.16) there is an
equivalence

NatY 2Topf�
.C†1Y ^r ;C†1Y ^� /' Com.�; r/;

and the map

N.r/! N ẑCom Com.�; r/

is an equivalence because the right-hand side is a simplicial object with extra degen-
eracies. It now follows that the horizontal map in (3.83) induces an equivalence of
homotopy theories. It then also follows that the top-left map induces an equivalence.

By Theorem 3.78, L also induces an equivalence, so it only remains to show that the
bottom triangle commutes up to natural equivalence. Notice that we have a commutative
diagram

Comod�n.Com/ ŒTopf
�;Sp��;n�exc

Œ��n;Sp��

//�^Com
C†1X^�

''�^Com
E†1.JC/^� ww

res

where res is restriction to the subcategory ��n � Topf
� . Since the other two functors

induce equivalences, it follows that res does too. Since LKan is left adjoint to res, it
induces the inverse equivalence to res on the homotopy category and hence the bottom
triangle in the original diagram commutes up to natural equivalence.
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3.5 Classification of analytic functors from based spaces to spectra

One of the main advantages of using CKE� –coalgebras to classify polynomial functors
from based spaces to spectra (over the other categories appearing in Theorem 3.82) is
that this approach generalizes, to some extent, to non-polynomial functors.

Here we consider functors that are “analytic at the one-point space �” in the sense
described below. This condition is weaker than Goodwillie’s notion of analyticity since
it only concerns the values of a functor in a “neighbourhood” of �, that is, only on
highly connected spaces.

Definition 3.84 We say that a homotopy functor F W Topf
�! Sp satisfies condition

E�n .c; �/ if for any strongly cocartesian .nC 1/–cube X W P.S/! Topf
� such that

X .∅/!X .s/ is a ks –connected map between �–connected spaces for any s 2 S , the
cube F.X / is .�cC

P
ks/–cartesian.

We say that F W Topf
�! Sp is �–analytic at � if there is a constant q such that F

satisfies
E�n .n�� q; �C 1/

for all n� 1. We say that F is analytic at � if it is �–analytic at � for some number � .

Remark 3.85 These conditions should be compared to those of Goodwillie [12,
Definition 4.1]. Since a map between �–connected spaces is �–connected, it is easy
to see that Goodwillie’s condition En.c; �/ implies our E�n .c; �/. It follows that a
functor that is �–analytic in the sense of Goodwillie is, in particular, �–analytic at �.
More generally, we can say that F is �–analytic at X , for some based space X , if
it satisfies the analyticity condition on cubes of spaces that are .�C 1/–connected
over X .

Definition 3.86 Let A be a symmetric sequence of spectra. We say that A is �–
analytic if there is a constant c such that A.n/ is .��nC c/–connected for all n. We
say A is analytic if it is �–analytic for some � .

Lemma 3.87 Let F W Topf
� ! Sp be a functor that is �–analytic at �. Then the

symmetric sequence @�F is �–analytic in the sense of Definition 3.86.

Proof For each n�2, we apply the condition E�
n�1

..n�1/��q; �C1/ to the strongly
cocartesian n–cube with initial maps �!SL for L� �C2. These maps are .L�1/–
connected and so we deduce that the cube T 7!F

�W
T SL

�
is .q�.n�1/�Cn.L�1//–

cartesian. It follows that the total homotopy cofibre of this cube of spectra, which is
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precisely the n th co-cross-effect crn F.SL; : : : ;SL/, is .q�.n�1/�Cn.L�1/Cn�1/–
connected.

Since the cross-effect is equivalent to the co-cross-effect, we deduce that the desus-
pended cross-effect

†�nL crn F.SL; : : : ;SL/

is .�n�C�Cq�1/–connected. Taking the homotopy colimit as L!1, we deduce
that @nF has this same connectivity, and so the symmetric sequence @�F is �–analytic,
with the constant c in Definition 3.86 equal to �C q� 1.

Lemma 3.88 Consider a sequence of functors

(3.89) � � � ! Fn! Fn�1! � � � ! F1

that looks like a Taylor tower in the sense that it induces equivalences Pn.FnC1/ �!
�

Pn.Fn/'Fn for each n. Suppose that the symmetric sequence f@n.Fn/g is �–analytic
for some � � 0. Then

F WD holimn Fn

is �–analytic at �, and the sequence (3.89) is equivalent to the Taylor tower of F .

Proof Let us write Dn for the homotopy fibre of the natural transformation Fn!

Fn�1 . Then we have
Dn.X /' .An ^X^n/h†n

;

where An WD @n.Fn/. Choose a constant c such that An is .��nC c/–connected for
all n.

To show that F is �–analytic at �, consider a strongly cocartesian .nC 1/–cube
X of .�C 1/–connected based spaces with each initial map X .∅/! X .s/ being
ks –connected. In particular, then, the cube .†��†1X / is a strongly cocartesian cube
of 1–connected spectra with each initial map being .��C ks/–connected. We can
apply a version of [12, Example 4.4] for cubes of spectra to deduce that, for each m,
the cube .†��m†1X^m/ is .��.nC 1/C

P
ks/–cartesian.

Since Am is .��mC c/–connected, it therefore follows that the cube Dm.X / is�
�m� �mC c � �.nC 1/C

X
ks

�
D

�
��n� �C cC

X
ks

�
–cartesian. By induction on m, using the fibre sequences Dm ! Fm ! Fm�1 we
deduce that each cube Fm.X / is .��n��CcC

P
ks/–cartesian, and so the homotopy

limit F.X / is .��n��C c�1C
P

ks/–cartesian. This verifies that F is �–analytic
at � with the number q in Definition 3.84 equal to c � �� 1.
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Now suppose that X is a k –connected based space. Then Dn.X /D .An^X^n/h†n
is

Œ.k � �/nC c�–connected. As long as k � � , it follows that the map F.X /! Fn.X /

is Œ.k��/.nC1/C c�1�–connected, for each n. This means that F and Fn agree to
order n in the sense of Goodwillie [13, Definition 1.2] from which it follows by [13,
Proposition 1.6] that PnF ' PnFn ' Fn .

Corollary 3.90 If F W Topf
� ! Sp is analytic at �, then P1F WD holimn PnF is

analytic at � and the map F ! P1F induces an equivalence of Taylor towers.

Definition 3.91 Let us say that a functor F W Topf
�! Sp is strongly analytic at � if

F is analytic at � and the map F!P1F WD holim PnF is an equivalence. It follows
from Corollary 3.90 that, for any F W Topf

� ! Sp that is analytic at �, the functor
P1F is strongly analytic at �, and the map F ! P1F determines an equivalence of
Taylor towers. We can therefore think of the category of functors strongly analytic at �
as a model for the category of all functors that are analytic at � up to equivalence of
Taylor towers.

We write ŒTopf
�;Sp�h

�;an.�/
for the subcategory of the homotopy category ŒTopf

�;Sp�h�
consisting of the functors that are strongly analytic at �.

Now consider the restriction of dW ŒTopf
�;Sp�� ! Coalg.CKE�/ to strongly analytic

functors. Firstly, the argument of Theorem 3.75 implies that d determines weak
equivalences

NatTopf�
.F;G/ �!� eMapCKE�

.dŒF �; dŒG�/

for any F;G 2 ŒTopf
�;Sp�� such that G ' P1G . It follows that d is a fully faithful

embedding of ŒTopf
�;Sp�h

�;an.�/
into the homotopy category of CKE� –coalgebras. We

have not been able to explicitly identify the image of this embedding. Instead, however,
by considering the “pro-truncated” version of the homotopy theory of CKE� –coalgebras,
as constructed in Definition 1.29, we have the following result.

Theorem 3.92 The functor d sets up an equivalence

ŒTopf
�;Sp�h

�;an.�/ ' Coalgt
an.CKE�/

h

between the homotopy category of functors Topf
�! Sp that are strongly analytic at �,

and the pro-truncated homotopy category of analytic CKE� –coalgebras. Moreover, for
cofibrant F;G 2 ŒTopf

�;Sp��;an.�/ , we have equivalences

NatTopf�
.F;G/ �!� eMapCKE�

.dŒF �; dŒG�/'AMapt
CKE�

.dŒF �; dŒG�/:
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Proof For two functors F;G strongly analytic at � we have already noted that there
is an equivalence of spectra

NatTopf�
.F;G/ �!� eMapCKE�

.dŒF �; dŒG�/:

Since the map
NatTopf�

.F;G/! holimn NatTopf�
.F;PnG/

is an equivalence, so too is the map

eMapCKE�
.dŒF �; dŒG�/! holimn

eMapCKE�
.dŒF �; dŒG��n/'

AMapt
CKE�

.dŒF �; dŒG�/:

So, between CKE� –coalgebras of the form dŒG� where G is strongly analytic at �,
pro-truncated mapping spectra are equivalent to ordinary mapping spectra. In particular,
then, the functor d is an embedding of the homotopy category of strongly analytic
functors into the pro-truncated homotopy category of analytic CKE� –coalgebras.

To see that this embedding is an equivalence, let A be an arbitrary analytic CKE� –
coalgebra. Let F be the functor given by

F WD holimn FA�n
;

where FA�n
is as in the proof of Theorem 3.64. Then F is strongly analytic at � by

Lemma 3.88.

We claim that there is a derived equivalence, in the pro-truncated sense of Definition 1.27,
of CKE� –coalgebras f W dŒcF �! A. This consists of the maps

fk;nW �
k
C ^ dŒc holimn FA�n

�!�k
C ^ dŒcFA�n

�! Ck
KE�
.A�n/

constructed by projecting from the homotopy limit, together with the corresponding
maps from the proof of Theorem 3.64. It is sufficient then to show that the composite

f0W dŒc holimn FA�n
�! holimn dŒcFA�n

�! holimn A�n ' A

is an equivalence. The first map is an equivalence by Lemma 3.88, and the second map
is an equivalence by Theorem 3.64, so the required result follows.

Examples 3.93 Under the equivalence of Theorem 3.92, we can identify the analytic
functors with split Taylor tower with those CKE� –coalgebras A whose structure is
induced via the map of comonads (of symmetric sequences)

IŒ†;Sp� D C1 D CKE0
! hocolim CKEL

D CKE� :
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More generally, it is possible to characterize those functors whose corresponding
CKE� –coalgebra is induced via the map of comonads

CKEL
! CKE�

for some fixed L, ie those functors whose derivatives possess a KEL –module structure
from which the Taylor tower can be constructed. We leave this analysis to a future
paper.

4 Functors from spectra to spectra

We now turn to pointed simplicial functors Spf ! Sp , where Spf is the category of
finite cell spectra. We denote the category of such functors by ŒSpf ;Sp�� . As with
the spaces to spectra case there is an inverse sequence of operads that acts on the
sequence of partially stabilized cross-effects of a functor F 2 ŒSpf ;Sp�� . We start by
constructing this sequence.

4.1 Desuspensions of the commutative operad

Underlying the sequence of operads we are interested in is a notion of “desuspension”
for operads of spectra. This uses a certain cooperad S , in the category of based spaces,
whose terms are homeomorphic to spheres. The structure maps for this cooperad
are homeomorphisms and so S is also an operad in a canonical way. This operad is
isomorphic to the operad S1 of [3].

Definition 4.1 For a nonempty finite set I we set

RI
0 WD

˚
t 2RI

ˇ̌
min
i2I

ti D 0
	
:

We then write
S.I/ WD .RI

0/
C:

This is the based space given by the one-point compactification of RI
0

. Note that S.I/
is homeomorphic to S jI j�1 . The permutation action of the symmetric group †I on
RI restricts to an action on RI

0
and hence on S.I/. This makes S into a symmetric

sequence of based spaces.

Definition 4.2 We construct a cooperad structure on the symmetric sequence S as
follows. It arises from a cooperad structure on the unbased spaces Rn

0
of Definition 4.1.
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For a surjection of nonempty finite sets ˛W I � J , writing Ij WD ˛
�1.j /, there is a

continuous map

d˛W R
I
0 !RJ

0 �

Y
j2J

R
Ij
0

given by
d˛..ti/i2I WD ..vj /j2J ; f.uj ;i/i2Ij gj2J /;

where
vj WDmin

i2Ij
ti

and
uj ;i WD ti � vj for i 2 Ij :

The condition that the minimum of the ti is zero implies that the minimum of the vj is
zero. For each j 2 J , we clearly have mini2Ij uj ;i D 0.

The functions d˛ extend to the one-point compactifications to give maps

d˛W S.I/! S.J /^
^

j2J

S.Ij /:

Example 4.3 If ˛W f1; 2; 3g ! f1; 2g is the map given by ˛.1/ D 1, ˛.2/ D 2,
˛.3/D 2, then

d˛.t1; t2; t3/D Œ.t1;m/; .0/; .t2�m; t3�m/�;

where mDminft2; t3g.

Lemma 4.4 Each map d˛ of Definition 4.2 is a homeomorphism, and together they
make S into a reduced cooperad of based spaces. (The inverses d�1

˛ thus make S into
a reduced operad.)

Proof We define an inverse to d˛ on non-basepoints by

d�1
˛ ..vj /j2J ; f.uj ;i/i2Ij gj2J / WD .ti/i2I ;

where
ti WD u˛.i/;i C v˛.i/:

The map d�1
˛ is continuous and inverse to d˛ . We leave the reader to check the unit

and associativity conditions for S to be a cooperad.
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Definition 4.5 Let A be a symmetric sequence of spectra. We define the desuspension
of A to be the symmetric sequence S�1A given by

.S�1A/.n/ WDMap.S.n/;A.n//

with the diagonal †n –action. Here Map.�;�/ denotes the cotensoring of Sp over
based spaces.

Now suppose that P is an operad of spectra. Then we make S�1P into an operad of
spectra by convolving the operad structure on P with the cooperad structure on S in
the following way. For a surjection ˛W I � J we have structure map

Map.S.J /;P.J //^
^

j2J

Map.S.Ij /;P.Ij //

!Map.S.J /^
^

j2J

S.Ij /;P.J /^
^

j2J

P.Ij //

!Map.S.I/;P.I//;

where the first map is the canonical smash product of mapping spectra and the second
employs the cooperad structure on S and the operad structure on P. We refer to S�1P

with this structure as the (operadic) desuspension of P.

We can iterate the desuspension process to get operads S�LP given by

S�LP.I/ŠMap.S.I/^L;P.I//:

Definition 4.6 For each nonempty finite set I , we define a map

�I W S
0
! S.I/

by sending the non-basepoint in S0 to the point in S.I/ given by the origin 0 2RI
0

.

Lemma 4.7 The maps �I together form a morphism of cooperads (of based spaces)

�W Comc
C! S;

where Comc
C is the commutative cooperad in based spaces (given by S0 in each term

with trivial †n –actions and homeomorphisms as structure maps).

Proof It is sufficient to check that for each surjection ˛W I � J , we have

d˛.0/D .0; f0gj2J /;

which follows from the definition of d˛ .
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Definition 4.8 For any operad P of spectra, the map � of Lemma 4.7 induces a natural
map of operads

�W S�1P! P:

Iterating this construction, we get, for each operad P of spectra, an inverse sequence

S��PW � � � ! S�2P! S�1P! P:

The example we are concerned with in this paper is the sequence of desuspensions of
PD Com, the commutative operad of spectra.

Definition 4.9 We write S�L for a (functorial) cofibrant replacement (in the projective
model structure on operads) of S�L Com. Applying this cofibrant replacement to the
sequence in Definition 4.8 gives us an inverse sequence of operads

S� W � � � �! S�2
�! S�1

�! S0
�!
� Com:

Associated to this sequence, by the construction of Definition 2.6, is a comonad CS�

on the category of symmetric sequences given by

CS�.A/.k/ WD hocolimL CS�L.A/.k/

D hocolimL

Y
n

� Y
n�k

Map.S�L.n1/^ � � � ^ S�L.nk/;A.n//

�†n

:

4.2 Models for the derivatives of a functor from spectra to spectra

Our next task is to construct models for the partially stabilized cross-effects of a pointed
simplicial functor F 2 ŒSpf ;Sp�� that admit the structure of a S�L –module. From
these we obtain models for the derivatives of F that form a CS� –coalgebra. We focus
first on the representable functors.

Definition 4.10 Let X 2 Spf. The functor represented by X is the pointed simplicial
functor RX W Spf ! Sp given by

RX .Y / WD†
1HomSp.X;Y /:

A significant difference from the case ŒTopf
�;Sp�� is that there are simple models for

the cross-effects of the representable functors from spectra to spectra.

Lemma 4.11 The n th cross-effect of RX is given by

crn RX .Y1; : : : ;Yn/'†
1HomSp.X;Y1/^ � � � ^HomSp.X;Yn/:
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Proof Finite coproducts of spectra are equivalent to the corresponding products.
Therefore, the co-cross-effect (and hence the desired cross-effect) is given by the total
homotopy cofibre

thocofib
S�n

�
†1HomSp

�
X;
Y
i2S

Yi

��
;

which is equivalent to

†1 thocofib
S�n

�Y
i2S

HomSp.X;Yi/

�
:

The total homotopy cofibre of the cube of simplicial sets whose terms are
Q

i2S Zi is
equivalent to the smash product Z1 ^ � � � ^Zn . We thus obtain the required formula
for the cross-effect.

Corollary 4.12 The partially stabilized cross-effects of RX are therefore given by

†�nL crn.RX /.S
L; : : : ;SL/'†�nL†1HomSp.X;S

L/^n;

with the stabilization maps of (1.7) given by the maps

Map
�
SnL; †1HomSp.X;S

L/^n
�
!Map

�
Sn.LC1/; †1HomSp.X;S

LC1/^n
�

induced by the n–fold smash power of the canonical map

S1
^†1HomSp.X;S

L/!†1HomSp.X;S
LC1/:

Proof The models for crn RX in Lemma 4.11 are pointed simplicial in each variable
and so, by Lemma 1.9, the maps (1.7) are given by the relevant tensoring maps, which
are as shown.

We now construct models for these partially stabilized cross-effects that admit actions
of the operads S�L . The key is to identify the desuspension spheres with terms of the
cooperad S.

Definition 4.13 For X 2 Spf and a non-negative integer L, we define a symmetric
sequence dLŒRX � by

dLŒRX �.I/ WDMap
�
.S1
^S.I//^L; †1HomSp.X;S

L/^I
�
:

We then make the symmetric sequence dLŒRX � into a right S�L Com–module (and
hence a S�L –module via pullback) by combining the cooperad structure on S with the
right Com–module structure on †1HomSp.X;S

L/^� described in Definition 3.11
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(ie that given by the diagonal on the space HomSp.X;S
L/). Explicitly, for a surjection

˛W I � J , we have a map

�˛W d
LŒRX �.J /^

^
j2J

S�L.Ij /! dLŒRX �.I/

given by the composite

Map
�
.S1/^L

^S.J /^L; †1HomSp.X;S
L/^J

�
^

^
j2J

Map
�
S.Ij /

^L;Com.Ij /
�

!Map
�
.S1/^L

^S.J /^L
^

^
j2J

S.Ij /
^L; †1HomSp.X;S

L/^J
^

^
j2J

Com.Ij /

�
!Map

�
.S1/^L

^S.I/^L; †1HomSp.X;S
L/^I

�
;

where the first map is the canonical smash product of mapping spectra, and the second
is induced by the L–fold smash power of the cooperad structure map

d˛W S.I/! S.J /^
^

j2J

S.Ij /

and the right Com–module structure map

�˛W †
1HomSp.X;S

L/^J
!†1HomSp.X;S

L/^I

associated to ˛ .

Lemma 4.14 We have equivalences of symmetric sequences (natural in X )

†��L cr�.RX /.S
L; : : : ;SL/' dLŒRX �:

Proof This follows from Corollary 4.12.

Our next task is to provide models for the maps between the desuspended cross-effects
that respect these operad actions.

Definition 4.15 There are homeomorphisms

hI W R�RI
0

//Š RI

given by
.t; .ti/i2I / 7! .t C ti/i2I ;

which extend to homeomorphisms (which we also call hI )

S1
^S.I/ //Š .S1/^I ;
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where we identify .S1/^I with the one-point compactification of RI. The following
diagram of homeomorphisms then commutes:

(4.16)

R�RJ
0 �

Y
j2J

R
Ij
0 R�RI

0

RJ
�

Y
j2J

R
Ij
0 RI

//
d�1
˛

��
hJ

��

hI

//

Q
hIj

Definition 4.17 We construct a map of symmetric sequences

mLW d
LŒRX �! dLC1ŒRX �

as follows. For a positive integer n the required map mL.n/,

Map
�
.S1
^S.n//^L; †1HomSp.X;S

L/^n
�

!Map
�
.S1
^S.n//^LC1; †1HomSp.X;S

LC1/^n
�
;

is adjoint to a composite of the homeomorphism given by applying hn to the final copy
of S1 ^S.n/,

.S1
^S.n//^.LC1/ //Š .S1

^S.n//^L
^Sn;

and the n–fold smash power of the canonical map

S1
^†1HomSp.X;S

L/!†1HomSp.X;S
LC1/:

Lemma 4.18 The homotopy colimit of the sequence

d0ŒRX � //m0
d1ŒRX � //m1

d2ŒRX � //m2
� � �

is naturally (in X ) equivalent to the symmetric sequence @�.RX / of derivatives of the
representable functor RX .

Proof It follows from the definition of mL , and Corollary 4.12, that mL models the
stabilization map

†��L cr�.RX /.S
L; : : : ;SL/!†��.LC1/ cr�.RX /.S

LC1; : : : ;SLC1/

of (1.7). The claim follows.
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Unfortunately the map mL is not a morphism of S�.LC1/–modules. (We explain why
not in Section 5; see diagram (5.2) and after.) We therefore cannot apply our general
theory to produce a CS� –coalgebra structure on the homotopy colimit in Lemma 4.18.

However, we show in Section 5 that it is possible to extend mL to a morphism of
S�.LC1/–modules of the form

m0LW B.d
LŒRX �; S

�.LC1/; S�.LC1//! dLC1ŒRX �;

where the left-hand side is the standard bar resolution of dLŒRX � as a S�.LC1/–module.

Recall that for any operad P and P–module M, the bar resolution is a weak equivalence
of P–modules

pW B.M;P;P/ �!� M:

The map p has a section
sW M �!� B.M;P;P/

that is a morphism of symmetric sequences, but not of P–modules. The map s is given
by the composite

M
�
�!M ıP! B.M;P;P/

of the unit map for the operad P with the inclusion of the 0–simplices into the bar
construction. We then have the following proposition.

Proposition 4.19 There is a natural morphism of S�.LC1/–modules

m0LW B.d
LŒRX �; S

�.LC1/; S�.LC1//! dLC1ŒRX �

such that the following diagram commutes:

B.dLŒRX �; S
�.LC1/; S�.LC1//

dLŒRX � dLC1ŒRX �

))

m0
L

OO

s �

//
mL

The construction of the map m0
L

is quite involved; we defer the proof of Proposition 4.19
to Section 5.

We now use the maps m0
L

to construct a sequence of S�L –modules whose actions do
commute with the operad maps S�.LC1/! S�L .
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Definition 4.20 For X 2 Spf , we construct the diagram

B.d2ŒRX �; S
�3; S�3/ : : :

B.d1ŒRX �; S
�2; S�2/ d2ŒRX �

B.d0ŒRX �; S
�1; S�1/ d1ŒRX �

d0ŒRX � d1ŒRX � d2ŒRX � : : :

//
m0

2

��
� p

//
m0

1

��
� p

��

�//
m0

0

��
� p

��
�

//
m0

//
m1

//
m2

so that each rectangle is a homotopy pushout in the category of S�L –modules for
respective values of L. We thus obtain a sequence

d0ŒRX �D d0ŒRX � //
m0

d1ŒRX � //
m1

d2ŒRX � //
m2

� � �

such that dLŒRX � is an S�L –module, and such that the map

mLW d
LŒRX �! dLC1ŒRX �

is a morphism of S�.LC1/–modules that is equivalent (in the homotopy category)
to mL . In other words d�ŒRX � is a module over the pro-operad S� .

Finally, by applying the construction of Definition 2.12, we obtain a diagram

(4.21)

d0ŒRX � d1ŒRX � d2ŒRX �
: : :

d0ŒRX � d1ŒRX � d2ŒRX � : : :

//m0

��

�

//m1

��

�

//m2

��

�

//
m0 //

m1 //
m2

in which each vertical map is an equivalence of S�L –modules for the appropriate L,
and each dLŒRX � is †–cofibrant.

We are now in a position to choose models for the derivatives of representable functors
as CS� –coalgebras.
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Definition 4.22 For X 2 Spf , we define

dŒRX � WD hocolimL dLŒRX �:

As in Definition 2.10, this symmetric sequence has the structure of a CS� –coalgebra,
where CS� is the comonad of Definition 4.9. Moreover, dŒRX � is †–cofibrant and the
functor X 7! dŒRX � is simplicially enriched.

Lemma 4.23 The CS� –coalgebra dŒRX � is naturally equivalent to the symmetric
sequence @�.RX / of derivatives of the representable functor RX D†

1HomSp.X;�/.

Proof By Proposition 4.19, the homotopy colimits of the horizontal sequences in
(4.21) are equivalent to the homotopy colimit in Lemma 4.18.

Having established a CS� –coalgebra structure on the derivatives of the representable
functors, we left Kan extend to all pointed simplicial F W Spf ! Sp .

Definition 4.24 For an arbitrary pointed simplicial functor F W Spf ! Sp , we define
dLŒF � by the enriched coend

dLŒF � WD F.X /^X2Spf dLŒRX �

over the simplicial category Spf , and

dŒF � WD F.X /^X2Spf dŒRX �Š hocolimL dLŒF �:

The diagram d�ŒF � is a module over the pro-operad S� and its homotopy colimit dŒF �
is therefore a CS� –coalgebra.

Proposition 4.25 For F 2 ŒSpf ;Sp�� cofibrant, we have natural equivalences of
symmetric sequences

†��L cr� F.SL; : : : ;SL/ �!� dLŒF �

and, taking the homotopy colimit as L!1, an equivalence

@�.F / �!
� dŒF �:

Proof Since taking cross-effects commutes with homotopy colimits, this follows from
Lemmas 4.14 and 4.23.

Note that we have a stronger result than in the case of functors from spaces to spectra:
the terms dLŒF � are equivalent to the partially stabilized cross-effects without any
analyticity condition on F .
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4.3 Classification of polynomial functors from spectra to spectra

We now turn to the classification of polynomial functors from spectra to spectra. The
structure of this section is similar to the corresponding section for functors from spaces
to spectra. The main result is that the comonad CS� is equivalent to the comonad C
constructed in [2] which is known to act on the derivatives of such a functor, and from
which the Taylor tower can be recovered.

Definition 4.26 The functor dW ŒSpf ;Sp��! Œ†;Sp� is simplicially enriched and has
a simplicial right adjoint ˆW Œ†;Sp�! ŒSpf ;Sp�� given by

ˆ.A/.X / WDMap†.dŒRX �;A/:

We then define a comonad C on Œ†;Sp� by

CD dcˆ;

where c is a comonad cofibrant replacement functor for ŒSpf ;Sp�� . Since d takes
values in CS� –coalgebras, so too does C and the comonad structure map C! CC is
a map of CS� –coalgebras. Therefore we obtain a map of comonads � W C!CS� given
by the composite

�AW C.A/! CS�.C.A//! CS�.A/;

in which the first map is given by the CS� –coalgebra structure on dŒcˆA�, and the
second by the counit for C.

Theorem 4.27 For any symmetric sequence A, the comonad map

�AW C.A/! CS�.A/

is a weak equivalence.

Proof We follow a similar approach to the proof of Theorem 3.64. The main step is
to construct, when A is bounded, equivalences of S�L –modules of the form

�L
W dLŒcˆA�' CS�L.A/

that commute with the maps dL! dLC1 on the left-hand side, and those induced by
the operad morphisms S�.LC1/! S�L on the right-hand side. The remainder of the
proof of Theorem 3.64, the part starting after the proof of Lemma 3.71, then applies in
the same way to deduce Theorem 4.27.
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Since both sides of the required equivalence commute with products, we can reduce
to the case that A is concentrated in a single term, say the n th. Recall that by [2,
Corollary 5.11] there is then a natural equivalence

ˆA.X /' .A.n/^X^n/h†n :

Then there is a †n –equivariant equivalence

dLŒcˆA�.n/'†�nL crn.ˆA/.SL; : : : ;SL/

'†�nL

� _
n�n

A.n/^ .SL/^n

�h†n

' A.n/:

It is therefore enough to show that there is an equivalence of S�L –modules

dLŒcˆA�' CS�L.dLŒcˆA.n/�/;

or alternatively that the S�L –module structure map

dLŒcˆA�.k/!

� Y
n�k

Map
�
S�L.n1/^ � � � ^ S�L.nk/; d

LŒcˆA�.n/
��†n

is an equivalence for each k .

Since the functor dL (which computes partially stabilized cross-effects) commutes
both with taking homotopy fixed points and with smashing with a fixed spectrum, it is
then sufficient to show that the S�L –action map

dLŒc.X^n/�.k/!

� Y
n�k

Map
�
S�L.n1/^ � � � ^ S�L.nk/; d

LŒc.X^n/�.n/
��†n

is an equivalence.

Recall that we have

dLŒc.X^n/�.k/' c.X^n/^X2Spf Map
�
.S1
^ S.k//^L; †1HomSp.X;S

L/^k
�
:

Considering the definition of the S�L –module structure here, and consolidating the
sphere factors on one side, it is sufficient to show that there is an equivalence

(4.28) c.X^n/^X2Spf †1HomSp.X;S
L/^k

�!
�

Y
n�k

SnL;

where the component corresponding to a surjection ˛W n � k is given by the composite

c.X^n/^X2Spf †1HomSp.X;S
L/^k //�˛

X^n
^X2Spf †1HomSp.X;S

L/^n

// .SL/^n
Š SnL;
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where the first map is given by the diagonal map associated to the surjection ˛ , and the
second is the canonical evaluation map. To see that (4.28) is an equivalence, consider
the commutative diagram

thocofib
I�k

X^n
^X2Spf †1HomSp

�
X;
Y
I

SL

�
thocofib

I�k

�Y
I

SL

�̂ n

X^n
^X2Spf †1HomSp.X;S

L/^k

Y
n�k

SnL
��

�

//�

��

�

//

where the top map is an equivalence by the enriched co-Yoneda Lemma, the left-
hand map is an equivalence because for any based space Y , the smash power Y ^k is
equivalent to the total homotopy cofibre of the k –cube with terms

Q
I Y for I � k ,

and the right-hand map is an equivalence by direct calculation.

Theorem 4.29 The functor d induces an equivalence

ŒSpf ;Sp�h�;poly ' Coalgb.S�/
h

between the homotopy category of polynomial pointed simplicial functors Spf ! Sp

and the homotopy category of bounded CS� –coalgebras of Definition 1.26. Moreover,
for cofibrant polynomial functors F;G 2 ŒSpf ;Sp�� , we have equivalences of simplicial
mapping objects

(4.30) NatSpf .F;G/' eMapCS�
.dŒF �; dŒG�/:

Proof The proof is entirely analogous to that of Theorem 3.75, using Theorem 4.27
instead of Theorem 3.64.

4.4 Classification of analytic functors from spectra to spectra

As in the case of functors from spaces to spectra, the classification result of the previous
section extends naturally to analytic functors in the following way.

Definition 4.31 The notions of analytic at � and strongly analytic at � from Defini-
tions 3.84 and 3.91 generalize immediately to functors from spectra to spectra. We
therefore have a category ŒSpf ;Sp��;an.�/ of pointed simplicial functors F W Spf! Sp

that are strongly analytic at �, and an associated homotopy category ŒSpf ;Sp�h
�;an.�/

.
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Theorem 4.32 The functor d sets up an equivalence

ŒSpf ;Sp�h
�;an.�/ ' Coalgt

an.CS�/
h

between the homotopy category of pointed simplicial functors Spf ! Sp that are
strongly analytic at � and the pro-truncated homotopy category of analytic CS� –
coalgebras. Moreover, for cofibrant F;G 2 ŒSpf ;Sp��;an.�/ we have equivalences

NatSpf .F;G/ �!� eMapCS�
.dŒF �; dŒG�/ �!� AMapt

CS�
.dŒF �; dŒG�/:

Proof This is analogous to the proof of Theorem 3.92.

Example 4.33 The derivatives of the functor †1�1W Sp! Sp are given by

@�.†
1�1/' Com:

The symmetric sequence Com has a canonical right Com–module structure coming
directly from the operad structure, and hence Com is a CCom D CS0 –coalgebra. The
comonad map

CS0 ! hocolimL!1CS�L D CS�

then endows Com with a CS� –coalgebra structure. It follows from [2, Lemma 5.19]
that this structure encodes the Taylor tower of †1�1 .

5 Proof of Proposition 4.19

The goal of this section is to prove Proposition 4.19; that is, to construct a map

(5.1) m0LW B.d
LŒRX �; S

�.LC1/; S�.LC1//! dLC1ŒRX �;

where the source is the standard simplicial bar resolution of dLŒRX � as a S�.LC1/–
module.

First recall that S�L is a cofibrant replacement for the desuspension S�L Com and the
S�L –module structure on dLŒRX � is pulled back from a S�L Com–module structure
along the equivalence S�L! S�L Com. It is therefore sufficient to construct maps of
the form m0

L
with S�.LC1/ replaced with S�.LC1/ Com. To keep the notation under

control we will just write S�.LC1/ in this section, but we mean S�.LC1/ Com.

We construct the map m0
L

by defining, for each non-negative integer N, a map of
S�.LC1/–modules

mN
L W �

N
C ^ dLŒRX � ı S

�.LC1/
ı � � � ı S�.LC1/„ ƒ‚ …

N C1 terms

! dLC1ŒRX �:
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We then show that these maps commute with the face and degeneracy maps in the
simplicial bar construction and the coface and codegeneracy maps on the simplexes �N.

For example, m0
L

is the S�.LC1/–module map

m0
LW d

LŒRX � ı S
�.LC1/

! dLC1ŒRX �

which is induced by the map of symmetric sequences mL of Definition 4.17. At the
next stage, m1

L
is an S�.LC1/–module map

m1
LW �

1
C ^ dLŒRX � ı S

�.LC1/
ı S�.LC1/

! dLC1ŒRX �

which is induced by a map of symmetric sequences

�1
C ^ dLŒRX � ı S

�.LC1/
! dLC1ŒRX �

that forms a homotopy which measures the failure of mL to be a map of S�.LC1/–
modules on the nose. For larger N, the maps mN

L
form a set of higher coherent

homotopies.

To illustrate the situation, we can give an explicit description of the two composites in
the following (non-commutative) diagram

(5.2)

dLŒRX � ı S
�.LC1/ dLC1ŒRX � ı S

�.LC1/

dLŒRX � ı S
�L

dLŒRX � dLC1ŒRX �

//mL

��
�

��

�LC1

��
�L

//mL

where � is the map of Definition 4.8, �L denotes the S�L –module structure on dLŒRX �

and mL is the map of Definition 4.17. Each of these composites is built from maps
indexed by surjections ˛W I � J of finite sets, with the component corresponding
to ˛ taking the form

(5.3)

Map
�
.S1
^S.J //^L; †1HomSp.X;S

L/^J
�
^

^
j2J

Map
�
S.Ij /

LC1;S
�

Map
�
.S1
^S.I//^LC1; †1HomSp.X;S

LC1/^I
���
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The components of the two composites in (5.2) share some features: both can be
expressed using

(i) the diagonal map HomSp.X;S
L/^J ! HomSp.X;S

L/^I , and

(ii) a homeomorphism

.S1
^S.J //^L

^

^
j2J

S.Ij /
^L
Š .S1

^S.I//^L

coming from the L–fold smash product of the one-point compactification of the
homeomorphism d�1

˛ of Lemma 4.4. The map (5.3) then arises by combining the
maps (i) and (ii) with

(iii) a map

(5.4) S1
^S.I/! .S1/^I

^

^
j2J

S.Ij /;

and

(iv) the I –fold assembly map

.S1/^I
^HomSp.X;S

L/^I
! HomSp.X;S

LC1/^I :

It is the map (5.4) in which the two composites of (5.2) differ:

� the composite mL�L� is determined by the smash product (over j 2 J ) of the
maps

�W S0
! S.Ij /

of Definition 4.6, combined with the homeomorphism hI W S
1^S.I/Š .S1/^I

of Definition 4.15;
� the composite �LC1mL is determined by the composite

S1
^S.I/ //d˛

S1
^S.J /^

^
j2J

S.Ij /

//hJ
.S1/^J

^

^
j2J

S.Ij /

//
�

S1

.S1/^I
^

^
j2J

S.Ij /:

It is the difference between these two maps which implies that (5.2) does not commute
and hence that mL is not a map of S�.LC1/–modules. However, the two maps are
homotopic and we use a homotopy

zr1
W �1
C ^S1

^S.I/! .S1/^I
^

^
j2J

S.Ij /
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to construct the map m1
L

which forms the first stage in the construction of the map m0
L

.
The map zr1 is the map induced on one-point compactifications by an underlying
homotopy of the form

r1
W �1
�U ! U �U I .t;u/ 7! .tu; .1� t/u/;

where U D
Q

j2J R
Ij
0

.

In order to build the map m0
L

on all levels of the bar construction, we need “higher
coherent” versions of the homotopy r1. These take the following form.

Definition 5.5 Let V0; : : : ;VN be finite-dimensional real vector spaces, and for each
i D 0; : : : ;N suppose Ui � Vi is a subset that is closed under non-negative scalar
multiplication. Then we define continuous functions

rN
W �N

�U0 � � � � �UN ! U0 � � � � �UN �U0 � � � � �UN

by identifying a point in the simplex �N as a sequence t D .t0; : : : ; tN / with all tj � 0

and
PN

jD0 tj D 1, and then by setting

rN .t;u0; : : : ;uN /

to be equal to�
.t1C� � �CtN /u0; : : : ; .tjC1C� � �CtN /uj ; : : : ; 0; t0u0; : : : ; .t0C� � �Ctj /uj ; : : : ;uN

�
:

Note that the UN term does not really feature in the homotopy. This term corresponds
to the “free” copy of S�.LC1/ that appears when we take a map of symmetric sequences
with target dLC1ŒRX � and extend it to a map of S�.LC1/–modules. Including this
term in the homotopy also makes the interactions with coface and codegeneracy maps
more clear. Those interactions are described by the following result.

Lemma 5.6 (a) Let U0; : : : ;UN be as in Definition 5.5. For an integer 1� j �N ,
the following diagram commutes:

�N�1
�U0 � � � � � .Uj�1 �Uj /� � � � �UN U0 � � � � �UN �U0 � � � � �UN

�N
�U0 � � � � �UN U0 � � � � �UN �U0 � � � � �UN

//rN�1

��
ıj

��
Š

//rN

where ıj W �N�1!�N is the coface map given by

.t0; : : : ; tN�1/ 7! .t0; : : : ; tj�1; 0; tj ; : : : ; tN�1/:
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(b) For j D 0, the following diagram commutes:

�N�1
�U1 � � � � �UN U1 � � � � �UN �U1 � � � � �UN

�N
�U0 �U1 � � � � �UN U0 �U1 � � � � �UN �U0 �U1 � � � � �UN

//rN�1

��
ı0��

��
���

//rN

where �W U1� � � ��UN !U0�U1� � � ��UN is the inclusion .u1; : : : ;uN / 7!

.0;u1; : : : ;uN /.

(c) For an integer 0� i �N , the following diagram commutes:

�NC1
�U0 � � � �

� � � �Ui�1 � 0�Ui � � � � �UN

U0 � � � � � 0� � � �
� � � �UN �U0 � � � � �UN

�N
�U0 � � � � �UN U0 � � � � �UN �U0 � � � � �UN

��
� i

//rNC1

��
Š

//rN

where 0 is a zero-dimensional vector space and � i W �NC1!�N is the code-
generacy map given by

.t0; : : : ; tNC1/ 7! .t0; : : : ; ti�1; ti C tiC1; tiC2; : : : ; tNC1/:

Proof Each of these is easily checked directly from the definitions.

We now show how to construct the maps mN
L

that generalize the map m1
L

described
before Definition 5.5, and from which the desired map m0

L
is built.

Definition 5.7 Now let I;J be nonempty finite sets and suppose that

� W I D I .NC1/ // //˛N
I .N / // //˛N�1

� � � // //˛1
I .1/ // //˛0

I .0/ D J

is a sequence of surjections (which determines a sequence of partitions of I ). We apply
the construction of Definition 5.5 to the sets

Uk WD

Y
j2I .k/

R
I
.kC1/

j

0
;

which are subsets of the vector spaces Vk D
Q

j2I .k/ RI
.kC1/

j that are closed under
non-negative scalar multiplication. This gives us a map

r�W �N
�U0 � � � � �UN ! U0 � � � � �UN �U0 � � � � �UN :
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We can now compose r� with various homeomorphisms as follows:

�N
�R�RI

0
//

Q
d˛

�N
�R�RJ

0 �U0 � � � � �UN

//r�
R�RJ

0 �U0 � � � � �UN �U0 � � � � �UN

//
Q

d�1
˛

R�RI
0 �U0 � � � � �UN

//hI
RI
�U0 � � � � �UN :

Taking one-point compactifications, we get

zr�W �N
C ^S1

^S.I/! .S1/^I
^

N̂

kD0

^
j2I .k/

S.I .kC1/
j /:

We now combine (ie smash/compose as appropriate) this with

(i) the diagonal map HomSp.X;S
L/^J ! HomSp.X;S

L/^I ,

(ii) the homeomorphisms

.S1
^S.J //^L

^

N̂

kD0

^
j2I .k/

S.I .kC1/
j /^L //

Q
d�1
˛

.S1
^S.I//^L;

(iv) the I –fold assembly map .S1/^I^HomSp.X;S
L/^I!HomSp.X;S

LC1/^I ,

to get a map

Map..S1
^S.J //^L; †1HomSp.X;S

L/^J /^

N̂

kD0

^
j2I .k/

Map.S.Ij /
^LC1;S/

Map
�
.S1
^S.I//^LC1; †1HomSp.X;S

LC1/^I
�
:

��

m�
L

That is, we have a map

m�
LW �

N
C ^ dLŒRX �.J /^

N̂

kD0

^
j2I .k/

S�.LC1/.I
.kC1/
j /! dLC1ŒRX �.I/:

Putting these together for all sequences of surjections � we get the desired map

mN
L W �

N
C ^ dLŒRX � ı S

�.LC1/
ı � � � ı S�.LC1/

! dLC1ŒRX �:
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In order to show that the maps mN
L

fit together to the desired map (5.1), we have to
check that the maps m�

L
respect the face and degeneracy maps in the bar construction.

Lemma 5.8 Let I;J be nonempty finite sets and suppose that as before � is a
sequence of surjections

I D I .NC1/ // //˛N
� � � // //˛0

I .0/ D J:

(a) For an integer 1� r �N , let dr .�/ denote the sequence of surjections

.˛0; : : : ; ˛r�1 ı˛r ; : : : ; ˛N /:

Also write

zI
.r/

j WD .˛r�1 ı˛r /
�1.j /:

Then the following diagram commutes:

�N�1
C ^ dLŒRX �.J /^ � � � ^

^
j2I .r�1/

S�.LC1/.zI
.r/

j /^ � � �

�N�1
C ^ dLŒRX �.J /^ � � � ^

^
j2I .r�1/

S�.LC1/.I
.r/
j /

^

^
j2I .r /

S�.LC1/.I
.rC1/
j /^ � � �

dLC1ŒRX �.I/

�N
C ^ dLŒRX �.J /^ � � � ^

^
j2I .r�1/

S�.LC1/.I
.r/
j /^

^
j2I .r /

S�.LC1/.I
.rC1/
j /^ � � �

))

m
dr .�/

L

OO
�

��
ıj

55

m�
L

where

�W
^

j2I .r�1/

S�.LC1/.I
.r/
j /^

^
j2I .r /

S�.LC1/.I
.rC1/
j /!

^
j2I .r�1/

S�.LC1/.zI
.r/

j /

is the smash product of operad composition maps for S�.LC1/ , and ıj is induced
by the corresponding coface map �N�1!�N.
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(b) For the case r D 0, let d0.�/ denote the sequence .˛1; : : : ; ˛N /. Then the
following diagram commutes:

�N�1
C ^ dLŒRX �.I

.1//^

N̂

kD1

^
j2I .k/

S�.LC1/.I
.kC1/
j /

�N�1
C ^ dLŒRX �.J /^

N̂

kD0

^
j2I .k/

S�.LC1/.I
.kC1/
j /

dLC1ŒRX �.I/

�N
C ^ dLŒRX �.J /^

N̂

kD0

^
j2I .k/

S�.LC1/.I
.kC1/
j /

))

m
d0.�/

L

OO

�

��
ı0

55

m�
L

where
�W dLŒRX �.J /^

^
j2I .0/

S�.LC1/.I
.1/
j /! dLŒRX �.I

.1//

is the S�.LC1/–module structure map on dLŒRX �, pulled back from the S�L –
module structure of Definition 4.13 along the operad map �W S�.LC1/! S�L .

(c) For an integer 0� r �N , denote the sequence .˛0; : : : ; ˛r�1; 1I .r / ; ˛r ; : : : ; ˛N /

by sr .�/. Then the following diagram commutes:

�NC1
C ^ dLŒRX �.J /^

N̂

kD0

^
j2I .k/

S�.LC1/.I
.kC1/
j /^

^
j2I .r /

S�.LC1/.1/

�NC1
C ^ dLŒRX �.J /^

N̂

kD0

^
j2I .k/

S�.LC1/.I
.kC1/
j /

dLC1ŒRX �.I/

�N
C ^ dLŒRX �.J /^

N̂

kD0

^
j2I .k/

S�.LC1/.I
.kC1/
j /

))

m
si .�/

L

OO

�

��

�r

55

m�
L

where �W S0 �!
� S�.LC1/.1/ is the unit map for the operad S�.LC1/ , and �r is

induced by the corresponding codegeneracy map �NC1!�N .
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Proof Working through the definitions of the maps m�
L

, and the relevant operad and
module structure maps, each of these claims follows from the corresponding part of
Lemma 5.6.

The following result is then a restatement of the required Proposition 4.19.

Proposition 5.9 The maps m�
L

of Definition 5.7 together define a morphism of
S�.LC1/–modules

m0LW B.d
LŒRX �; S

�.LC1/; S�.LC1//! dLC1ŒRX �

such that the composite

dLŒRX � //s

�
B.dLŒRX �; S

�.LC1/; S�.LC1// //
m0

L
dLC1ŒRX �

is equal to the map mL of Definition 4.17.

Proof The existence of a map m0
L

follows from Lemma 5.8. To see this is a morphism
of S�.LC1/–modules, it is sufficient to show that each map mN

L
is a morphism of

S�.LC1/–modules. Let �D .˛0; : : : ; ˛N / be a sequence of surjections of finite sets

I D I .NC1/ // //˛N
� � � // //˛0

I .0/ D J

and let �0 D .˛0; : : : ; ˛N�1/. Then it is sufficient to show that the following diagram
commutes:

dLC1ŒRX �.I
.N //^

^
j2I .N /

S�.LC1/.I
.NC1/
j /

�N
C^d

LŒRX �.J /^

N̂

kD0

^
j2I .k/

S�.LC1/.I
.kC1/
j / dLC1ŒRX �.I/

��

�LC1

//
m�

L

44m�
0

L

where �LC1 is the S�.LC1/–module structure map for dLC1ŒRX � associated to the
surjection ˛N (from Definition 4.13). This follows from the fact that in the map rN

of Definition 5.5, the term UN is mapped by the identity into the first copy of UN in
the target, and by zero into the second copy.

Finally, the composite m0
L
ı s is equal to the composite

dLŒRX �.I/ //�
dLŒRX �.I/^

^
i2I

S�.LC1/.1/ //
m�

L
dLC1ŒRX �.I/;

where � is the sequence consisting just of the identity map I //D I . Following through
the definitions we see that this is precisely mL .
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