
msp
Geometry & Topology 19 (2015) 3233–3287

2�–grafting and complex projective structures, I

SHINPEI BABA

Let S be a closed oriented surface of genus at least two. Gallo, Kapovich and Marden
asked whether 2� –grafting produces all projective structures on S with arbitrarily
fixed holonomy (the Grafting conjecture). In this paper, we show that the conjecture
holds true “locally” in the space GL of geodesic laminations on S via a natural
projection of projective structures on S into GL in Thurston coordinates. In a sequel
paper, using this local solution, we prove the conjecture for generic holonomy.

57M50; 30F40, 20H10

1 Introduction

Let F be a connected and oriented surface. A (complex) projective structure on F is a
.yC;PSL.2;C//–structure, where yC is the Riemann sphere. Equivalently, a projective
structure on F is a pair .f; �/, where

� f W zF ! yC (developing map) is an immersion, where zF is the universal cover
of F ,

� �W �1.F /! PSL.2;C/ (holonomy representation) is a homomorphism,

such that f is �–equivariant, ie f � 
 D �.
 / �f for all 
 2 �1.F /; see for example
Thurston [31, Section 3.4]. The pair .f; �/ is defined up to an element ˛ of PSL.2;C/,
ie .f; �/ � . f̨; ˛ � ˛�1/. (For general background about projective structures, see
Dumas [9] and Kapovich [23].) Throughout this paper let S be a closed oriented
surface of genus g > 1.

We aim to characterize the set P� of all projective structures with fixed holonomy
�W �1.S/! PSL.2;C/. This basic question is discussed in Hubbard [17, page 274],
Kapovich [22, Section 7.1, Problem 2], Gallo, Kapovich and Marden [12, Prob-
lem 12.1.1.] and Dumas [9, Section 1]; see also Goldman [13, Section 1.10]. This
aims for an understanding of the geometry behind general representations �1.S/!

PSL.2;C/, which are not necessarily discrete.

Let P be the space of all (marked) projective structures on S , and let � be the
PSL.2;C/–character variety of S , ie the space of homomorphisms �W �1.S/ !
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PSL.2;C/, roughly, up to conjugation by an element of PSL.2;C/; see [23]. Then
there is an obvious forgetful map HolW P! �, called the holonomy map. Clearly P�
is a fiber of Hol. In addition P, is diffeomorphic to R2.6g�6/ and moreover it enjoys
a natural complex structure (see [9]). Then Hol is a local biholomorphism (Hejhal [16],
Hubbard [17] and Earle [10]), and thus P� is a discrete subset of P.

There is a surgery operation of a projective structure, called 2� –grafting, that produces
a different projective structure, preserving its holonomy representation (Section 3.2): It
inserts a cylinder along an appropriate essential loop (admissible loop) on a projective
surface. Given n 2 Z>0 , we can graft a projective surface n times along the same
admissible loop; we denote it by assigning weight 2�n to the loop.

If there are disjoint admissible loops on a projective surface, we can simultaneously
graft along all loops and obtain a new projective structure with the same holonomy.
Similarly we use a multiloop with 2� –multiple weights (weighted multiloop) to specify
a general grafting along a multiloop.

For some special discrete representations �1.S/! PSL.2;C/, graftings are known
to produce all projective structures in P� (see Goldman [14], Ito [19] and Baba
[2]; see also Section 1.1). Then, more generally, Gallo, Kapovich and Marden [12,
Problem 12.1.2] asked the following question.

Question 1.1 (Grafting conjecture) Given two projective structures sharing (arbitrary)
holonomy �W �1.S/! PSL.2;C/, is there a sequence of graftings and ungraftings
that transforms one to the other?

Holonomy representations are quite general. In fact, a homomorphism �W �1.S/!

PSL.2;C/ is the holonomy representation of some projective structure (on S ) if and
only if � satisfies:

(i) Im.�/ is a nonelementary subgroup of PSL.2;C/.

(ii) � lifts to z�W �1.S/! SL.2;C/.

(See Gallo, Kapovich and Marden [12]). Recall that the character variety � consists
of two connected components (see Goldman [15]), one of which consists of the repre-
sentations with the lifting property in (ii). Thus Hol is almost onto this component.
In particular, holonomy representations are not necessarily discrete or faithful, and
many holonomy representations have dense images in PSL.2;C/ (cf Minsky [27,
Lemma 2.1]). Moreover if �W �1.S/ ! PSL.2;C/ satisfies (i) and (ii), then P�
contains infinitely many distinct projective structures, which can be constructed by
grafting (implicitly in [12]; see also Baba [1]).
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1.1 Projective structures with fuchsian holonomy

We recall the characterization of P� when �W �1.S/! PSL.2;C/ is a discrete and
faithful representation into PSL.2;R/, called a fuchsian (holonomy) representation.
Then Im.�/DW � is called a fuchsian group, and its domain of discontinuity is a union
of two disjoint round disks in yC . Then, by quotienting out the domain by � , we obtain
two distinct projective structures with fuchsian holonomy � (uniformizable projective
structures), which have different orientations. Let C0 denote the one of our fixed
orientation. Then C0 is isomorphic to the hyperbolic surface H2= Im.�/ as projective
surfaces and every essential loop on C0 is admissible.

Theorem 1.2 (Goldman [14]; also Kapovich [21]) If C 2 P� , then C is obtained
by grafting C0 along a weighted multiloop M ,

C D GrM .C0/:

In Theorem 1.2, M is unique up to an isotopy, and the same assertion holds moreover
for quasifuchsian representations (although the proof is easily reduced to a fuchsian
case by a quasiconformal map). Let ML be the space of measured laminations on S .
Then P� is naturally identified with the discrete subset MLN of ML that consists of
weighted multiloops.

Let C and C 0 be the projective structures sharing the fuchsian holonomy � . Then
C D GrM .C0/ and C 0 D GrM 0.C0/ for unique weighted multiloops M and M 0 on
C0 by Theorem 1.2. Then Ito’s work [18, Theorem 1.3] entails the following:

Theorem 1.3 C and C 0 can be transformed to a common projective structure in P�
by grafting C along M 0 and C 0 along M ,

GrM 0.C /D GrM .C 0/

(see also Calsamiglia, Deroin and Francaviglia [5]).

1.2 Thurston coordinates

(More details in Section 3.3.) In a geometric manner, Thurston gave a natural homeo-
morphism

P! T�ML;

where T is the space of marked hyperbolic structures S (Teichmüller space). Thus,
given C 2 P, we denote its Thurston coordinates by C Š .�;L/, where � 2 T and
L 2ML.
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For example, suppose that a projective structure C Š .�;L/ has fuchsian holonomy
�W �1.S/! PSL.2;R/. Then � is H2= Im.�/, and L is the weighted multiloop M

given by Theorem 1.2, so that C D GrL.�/; see Goldman [14].

Without restricting holonomy, let C Š .�;L/ 2 P. Suppose that there is a weighted
multiloop M on � such that each loop of M does not intersect L transversally (for
example, M is supported on some closed leaves of L). Note that, by the transversality,
the addition M CL is a well-defined measured lamination. Then there is a correspond-
ing circular admissible (weighted) multiloop M on C that is equal to M in ML, such
that GrM.C /Š .�;LCM /. Then we may simply write GrM .C / to denote GrM.C /,
abusing notation.

Given a projective structure C Š .�;L/ in Thurston coordinates, there is a natural
marking-preserving map �WC ! � , called the collapsing map, which is a diffeomor-
phism except on the inverse image of the closed leaves of L. Nonetheless, there is a
natural measured lamination L on � such that leaves of L are circular and L descends
to L by � . Thus L is a natural representative of L on C . (See Section 3.3.)

1.3 Traintracks and measured laminations

(See Section 6.3 for details.) A (fat) traintrack T on a surface is a subsurface that is a
union of rectangles .branches/ with disjoint interiors glued along vertical edges in a
certain manner. We say that a traintrack carries a measured lamination if T contains a
measured lamination in a natural manner without “backtracks”. Then the transversal
measure assigns each branch of T a non-negative real number (weight).

When a single traintrack T carries two measured laminations L and M , the sum
LCM is defined to be a measured lamination carried by T that is given by adding
the weights of L and M branch-wise. Similarly, when appropriate, we obtain the
difference L �M that is a measured lamination carried by T represented by the
differences on the weights of L and M .

1.3.1 Existence of admissible traintracks Given an admissible loop ` on a projec-
tive surface C , an isotopy of ` on C does not necessarily keep ` admissible. On the
other hand, given a loop ` on C whose holonomy is loxodromic, in general it is hard to
tell if ` can be isotoped an admissible loop. Thus, we introduce admissible traintracks
in order to specify admissible loops (Definition 6.1), still allowing a “uniform amount”
of isotopies. If a traintrack T on C is admissible, then it is foliated by circular arcs
parallel to vertical edges (Section 6.1). Indeed, if a loop ` is carried by T and it is
transversal to this circular foliation, then ` is admissible (Lemma 7.2). Note that we do
not need to isotope ` to make it admissible, and in addition ` stays admissible under
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an isotopy through such transversal loops carried by T . Moreover, such an isotopy
preserves the resulting projective structure Gr`.C /. In fact:

Corollary 7.5 Given C Š .�;L/ 2 P and a geodesic lamination � on � containing
the underlying lamination jLj, there is an admissible traintrack on C fully carrying � .

Suppose that there is an admissible traintrack T on C 2P, and let ` be a loop carried
by T transversal to the circular foliation so that ` is admissible. Then the grafting of C

along ` restricts to the grafting of T along `. Then Gr`.T / is naturally an admissible
traintrack on Gr`.C /. In this paper, in oder to compare different projective structures
sharing holonomy, we construct admissible traintracks on them that are related by
grafting.

In [1], given arbitrary C Š .�;L/ 2P, the author constructed an admissible loop ` on
C , so that ` is a good approximation of a minimal sublamination of L in the Chabauty
topology on the space GL of geodesic laminations (using the “closing lemma" in [6,
I.4.2.15]). Corollary 7.5 a provides more general way of constructing admissible loops.
In particular, if a loop on � is close to L in ML or if it intersects leaves of L only at
uniformly small angles (see Definition 1.5), then there is an admissible loop on C in
the same isotopy class.

1.4 Local characterization of P� in PML

Let PML be the space of projective measured laminations on S . Note that PML is
homeomorphic to the sphere of dimension 6g � 7. We show that if two projective
structures in P� are close in PML in Thurston coordinates, then they are related by a
single grafting along a weighted multiloop:

Theorem A (See Theorem 8.7) Let C Š .�;L/ be a projective structure on S with
(arbitrary) holonomy � . Then for every � > 0, there is a neighborhood U of the
projective class ŒL� in PML such that if another projective structure C 0Š .� 0;L0/ with
holonomy � satisfies ŒL0� 2 U , then one of the following is true:

(i) ŒL�D ŒL0�, and L�L0 is a weighted multiloop M 0 such that C D GrM 0.C 0/.

(ii) There are an admissible traintrack T on C carrying both L and L0 and a
weighted multiloop M carried by T, such that M is �–close to L0�L on T

(Section 6.3) and
GrM .C /D C 0:
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Remark 1.4 In (ii), by “�–close”, we mean, roughly, that M is a good approximation
of L�L0 for sufficiently small � > 0 (see Section 6.3).

Case (i) may happen only when L and L0 are both multiloops. Since generic measured
laminations are not multiloops, for generic C 2 P, only (ii) occurs.

In the case of (i), the weight of L is larger than that of L0 on every branch; whereas,
in the case of (ii), the weight is smaller on every branch. This dichotomy is due to the
discreteness of P� in P and the smallness of U .

Let �W �1.S/! PSL.2;C/ be a fuchsian representation. Let C be H2= Im � DW � ,
the uniformizable structure with holonomy � as in Section 1.1. Then C Š .�;∅/,
where ∅ is the empty lamination. Then, for every C 0 Š .�;M / with holonomy � , we
have C 0 D GrM .C / by Theorem 1.2. Thus Theorem A(i) holds true with U D PML

and M DM �∅. Hence Theorem A generalizes Theorem 1.2.

1.5 Local characterization of P� in GL

Let GL be the set of geodesic laminations on S . Naturally ML projects to GL by
forgetting transversal measures. Theorem B below gives a local characterization P�
in GL analogous to Theorem A. Note that geodesic laminations are more essential
to pleated surfaces than measured laminations are. Indeed, Theorem B is essentially
stronger than Theorem A, and in particular it generalizes not only Theorem 1.2 but
also Theorem 1.3.

Definition 1.5 If ` and `0 are simple geodesics on a hyperbolic surface � intersecting
at a point p , we let †p.`; `

0/ denote the angle, taking a value in Œ0; �=2�, between `
and `0 at p . Let � and �0 be (possibly measured) geodesic laminations on � . Then
the angle between � and �0 is

sup
p
†p. p̀; `

0
p/ 2 Œ0; �=2�;

taken over all points p in the intersection of � and �0 , where p̀ and `0p are the leaves
of � and �0 , respectively, intersecting at p . We denote this angle by †� .�; �0/ or
simply †.�; �0/.

In Definition 1.5, if � or �0 is a geodesic lamination on a different hyperbolic surface
homeomorphic to � , then we always take its geodesic representative on � in order to
measure the angle †� .�; �0/.

Let C Š .�;L/ be a projective structure on S with holonomy �W �1.S/! PSL.2;C/.
Then L determines whether C is obtained by grafting another projective structure
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in an obvious way as described in Section 1.2. If L contains a closed leaf ` and its
weight w.`/ is equal to or more than 2� , then change the weight of ` by subtracting
a 2� –multiple so that 0� w.`/ < 2� . By applying this weight reduction to all closed
leaves of L, we obtain a measured lamination L0 such that every closed leaf of L0

has weight less than 2� . Let M DL�L0 , so that M is a weighted multiloop.

Throughout this paper, let C0 denote the projective structure given by .�;L0/ in
Thurston coordinates, with L0 as above. Then C D GrM .C0/, and the holonomy of
C0 is also � . Note that, since generic L 2ML contains no closed loops, for generic
C 2 P in Thurston coordinates, we have C D C0 and M D∅.

Then analogues of Theorem 1.2 and Theorem 1.3 hold for projective structures in P�
whose geodesic laminations are close to L in terms of the angle defined above:

Theorem B (See Theorem 8.1) For every � > 0 and every projective structure
C Š .�;L/ on S with holonomy � , there exists ı > 0, such that, if another projective
structure C 0 Š .� 0;L0/ with holonomy � satisfies †� .L;L0/ < ı , then there are
admissible traintracks on T0 , T, and T0 on C0 , C , C 0 , respectively, that are isotopic
on S and carry both L and L0 (thus also L0 ), so that:

(i) C 0 is obtained by grafting C0 along a weighted multiloop M 0 carried by T0 ,
such that M 0 is �–close to the measured lamination given by L0�L0 on T0 .

(ii) If weighted multiloops yM and yM 0 are carried by T and T0 , respectively, and
yM CM D yM 0CM 0 on the traintracks, then we have

Gr yM .C /D Gr yM 0.C
0/:

(See Figure 1.) In (ii), there are infinitely many choices for yM and yM 0 satisfying the
equality; in particular we can let yM DM 0 and yM 0 DM .

yC

C

Gr yM
??

C 0

Gr yM 0
``

C0

GrM

``

GrM 0

>>

Figure 1

Moreover, given a compact subset K in the moduli space of (unmarked) hyperbolic
structures on S , there is ı > 0 such that Theorem B holds for all projective structures
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C Š .�;L/ on S with its unmarked � in K ; see Theorem 8.4. In addition Theorem B(i)
implies that, if L contains no closed leaves of weight at least 2� , then C 0 is obtained
by grafting C along a multiloop.

In the case that �W �1.S/ ! PSL.2;R/ is fuchsian, Theorem B(i) corresponds to
Theorem 1.2: Let C Š .�;∅/ denote the unique uniformizable structure in P� . Then
indeed †� .∅;L0/D 0 for every L0 2ML. For generic C 0 2 P� , we have C0 D C ,
and C 0 is obtained by grafting C along the weighted multiloop L0 �∅. Moreover,
Theorem B(ii) implies Theorem 1.3 (see Theorem 8.6).

1.6 Pleated surfaces

Consider (abstract) pleated surfaces equivariant via a fixed representation �W�1.S/!

PSL.2;C/. We show some continuity of �–equivariant pleated surfaces in terms of
their pleating laminations. (In comparison, Bonahon [3] and Keen and Series [24]
yield continuity of the pleated surfaces bounding the convex cores of hyperbolic three-
manifolds, when associated discrete representations vary.)

The correspondence between a projective structure C D .f; �/ and its Thurston coor-
dinates .�;L/ is given via a pleated surface ˇW H2!H3 (Sections 3.1 and 3.3). In
particular ˇ is equivariant under the holonomy representation of C , and it “realizes”
.�; jLj/, where jLj is the underlying geodesic lamination of L. A pair of � 2 T and
� 2 GL is realized by a pleated surface ˇWH2!H3 , if ˇ bend H2 (in H3 ) exactly
along the total lift z� of � to H2 (Section 2) and it is totally geodesic elsewhere (this is
slightly stronger than a usual notion of a realization); see Section 3.3.1.

Then, in fact, the assumptions in Theorems A and B can be interpreted in term of
pleated surfaces, by the following theorem.

Theorem C (See Theorem 5.2 for the precise statement) Let �W �1.S/! PSL.2;C/
be a homomorphism. Suppose that there is a �–equivariant pleated surface ˇW H2!

H3 realizing .�; �/ 2 T�GL.

For every � > 0, there exists ı > 0 such that if there is another �–equivariant pleated
surface ˇ0W H2!H3 realizing .�; �/ 2T�GL with †� .�; �/ < ı , then � is �–close
to � in T and ˇ0 and ˇ are �–close.

If we apply Theorem C to pleated surfaces associated with projective structures, Theo-
rem A and B may seem natural. For example, in Theorem B, if ı > 0 is sufficiently
small, then � 0 must be very close to � in T by Theorem C. Thus the differences of the
projective structures C;C0;C

0 are captured, mostly, by the differences of the measured
laminations in Thurston coordinates.
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1.7 Outline of the proofs

Theorem C (see Section 5) The closeness of � and � 0 and of ˇ and ˇ0 is given
by constructing a marking-preserving homeomorphism �W � ! � that is almost an
isometry (more precisely, it is a rough isometry with small distortion). We here
outline the construction of � . First we define a homeomorphism  from the geodesic
representative �� of � on � onto the geodesic lamination � on � so that it induces
bilipschitz maps of small distortion between corresponding leaves: If ` and `0 are
corresponding leaves of the total lifts z�� and z� to H2 , then ˇ0 j `0 is a geodesic in
H3 and, since †� .�; �/ is sufficiently small, ˇ j ` is a bilipschitz embedding of small
distortion (by Section 4). Then ˇ.`/ and ˇ0.`0/ are Hausdorff-close and they share
their endpoints on yC . The nearest point projection of ˇ.`/ onto the geodesic ˇ0.`0/
yields a desired bilipschitz map `! `0 . By applying this to all corresponding leaves
of z�� and z� , we obtain  W �� ! � .

Extend �� and � to maximal laminations on � and � that are isomorphic (as topological
laminations), so that they divides � and � into ideal triangles. Then we extend
 W �� ! � to �W � ! � , so that  is a quasi-isometry of small distortion between
all corresponding complementary ideal triangles. It turns out that  almost preserves
horocycle laminations of the triangulation, and therefore  has almost no “shearing”
between nearby ideal triangles. Thus  W � ! � is almost an isometry.

Theorem A (the proof of Theorem B is similar) If †� .L;L0/ > 0 is sufficiently
small, then we can apply Theorem C to the pleated surfaces corresponding to C and
C 0 ; then we can naturally identify � and � 0 by an almost isometric homeomorphism
preserving the marking.

There is a nearly straight traintrack T on � carrying L (Lemma 7.10). By the almost
isometry between � and � 0 , we can regard T also as a nearly straight traintrack on
� 0 carrying L0 . Then T yields corresponding traintracks T on C and T 0 on C 0 that
descend to T via the collapsing maps C ! � and C 0 ! � 0 . Moreover T and T 0

decompose C and C 0 , isomorphic, into subsurfaces in a compatible manner (Section 7).
In particular, C nT and C 0 nT 0 are isomorphic (as projective surfaces). In addition, if
B and B0 are corresponding branches of T and T 0 , respectively, then they are related
by a grafting along a multiarc. Then the multiloop for each grafting in Theorem A is
obtained as the union of such multiarcs (see Section 8, cf Baba [2]).

Moreover the number of the arc times 2� is approximately the difference of the
weights of L and L0 on the branch of T corresponding to B and B0 . Accordingly M

is approximately the difference of L and L0 on the traintrack T .
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2 Conventions and notation
� Given a projective structure C Š .�;L/ on S in Thurston coordinates, we let

C0 denote the “reduced” structure .�;L0/ constructed in Section 1.5.

� By a component, we mean a connected component.

� For a geodesic metric space X and points x;y 2 X , we denote the geodesic
segment connecting x to y by Œx;y�. Then lengthŒx;y� denotes the length of
Œx;y�.

� Let X be a manifold, and let Y be a subset of X . Given a covering map
�W zX !X , the total lift of Y is the inverse image ��1.Y /.

� We say two submanifolds intersect (at a point) �–nearly orthogonally for � > 0,
if the intersection angle is �–close to �=2.

� By a loop, we mean a simple closed curve.

� By a marking homeomorphism, we mean a homeomorphism that represents a
given marking on a geometric structure.

3 Preliminaries

3.1 Geodesic laminations and pleated surfaces

(See [6; 8] for details.) A geodesic lamination � on a hyperbolic surface � is a set of
disjoint simple geodesics whose union is a closed subset of � . The simple geodesics
of � are called leaves. Let j�j denote the closed subset. Occasionally, � may refer to
the closed subset j�j, when it is clear from the context. A geodesic lamination � is
minimal if there is no non-empty sublamination of �.

A measured (geodesic) lamination L on � is a pair .�; �/ of a geodesic lamination �
and a transversal measure � of �. If L is non-empty, by identifying � with its scalar
multiples by positive real numbers, we obtain a projective measured lamination ŒL�
of L.
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Given a geodesic lamination � on a hyperbolic surface � , a stratum is a leaf of � or
the closure of a (connected) component of � n j�j. A pleated surface ˇW H2!H3

realizing a geodesic lamination � on H2 is a continuous map such that ˇ preserves
the lengths of paths on H2 and it isometrically embeds each stratum of .H2; �/ into a
(totally geodesic) hyperbolic plane in H3 . More generally, if � is a geodesic lamination
on a hyperbolic surface � , then a pleated surface H2!H3 realizes .�; �/ if it realizes
the total lift of � to H2 . If ˇ realizes .�; �/, then, unless otherwise stated, we in
addition assume that there is no proper sublamination of � that ˇ realizes, so that ˇ
“exactly” realizes .�; �/.

3.2 Grafting

(See [14; 23].) Let C D .f; �/ be a projective structure on S . A loop ` on C is called
admissible if

(i) �.`/ 2 PSL.2;C/ is loxodromic, and
(ii) f embeds z̀ into yC , where z̀ is a lift of ` to the universal cover of S .

If ` is admissible, the loxodromic element �.`/ generates an infinite cyclic group Z

in PSL.2;C/. Then its limit set ƒ.Z/ is the union of the attracting and repelling
fixed points of �.`/ (on yC ), and Z acts on its complement yC nƒ.Z/ freely and
properly discontinuously. Thus the quotient .yC nƒ.Z//=Z is a projective torus T`
(Hopf torus). Then, by (ii), ` is isomorphically embedded in T` . Since ` is also a loop
on C , there is a canonical way to combine the projective surfaces C and T` by cutting
and pasting along ` as follows. We see that T` n ` is a cylinder and C n ` is a surface
with two boundary components. Thus we obtain a new projective structure on S by
pairing up the boundary components of T` n ` and C n ` in an alternating manner and
isomorphically identifying them. This surgery operation is called (2� –)grafting of C

along `, and we denote the new projective structure by Gr`.C /. It turns out that � is
holonomy representation Gr`.C /.

3.3 Thurston coordinates

(See [20; 25] and also [1; 9; 29].) We here explain more about the parametrization

(1) PŠ T�ML

discussed in Section 1.2.

For example, suppose that a projective structure C 2 P is isomorphic, as a projective
surface, to an ideal boundary component of a hyperbolic three-manifold. Then the
Thurston coordinates of C are the structure on the corresponding boundary component
of the convex core of the three-manifold: a hyperbolic surface bent along a measured
lamination.
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3.3.1 Bending maps Let .�;L/ 2 T�ML, and regard the measured lamination L

as a geodesic measured lamination on the hyperbolic surface � . Set LD .�; �/, where
�2GL.S/ and � is a transversal measure supported on �. Let zLD .z�; z�/2ML.H2/

be the total lift of L to H2 . Then there is a corresponding pleated surface H2!H3

obtained by bending a hyperbolic plane inside H3 along z� by the angles given by z�.
This map is called the bending map ˇW H2!H3 induced by .�;L/. Then ˇ is unique
up to a postcomposition with an element of PSL.2;C/. If C D .f; �/2P corresponds to
.�;L/2T�ML by (1), then we say that ˇ is the bending map associated with C . Since
the �1.S/–action on H2 preserves zL, there is a homomorphism �1.S/! PSL.2;C/
under which ˇ is equivariant. Then this homomorphism is unique up to a conjugation
by an element of PSL.2;C/, and it indeed is the holonomy representation � of C .

On the other hand, given a measured lamination L on H2 , this pair .H2;L/ gives a
projective structure on an open disk.

3.3.2 Maximal balls and collapsing maps (See [25, Section 4; 20, Section 1.1].)
Let C 2 P. Let zC be the universal cover of C D .f; �/. An open topological ball
B in zC is called a maximal ball if the developing map f W zC ! yC embeds B onto a
round open ball in yC and there is no such a ball in zC properly containing B . Let B

be a maximal ball, and let H be the hyperplane in H3 bounded by the round circle
@f .B/. Then, recalling yC is naturally the ideal boundary of H3 , let ˆW f .B/!H

be the canonical conformal map obtained from the nearest point projection onto H .
Let @1B be @f .B/ nf .cl.B//, where “cl” denotes the closure on zC .

Suppose that .�;L/ 2T�ML corresponds to C D .f; �/ in (1). Let ˇW H2!H3 be
the bending map induced by .�;L/. Then the maximal B corresponds to a stratum X

of zL, which is either a leaf of zL or the closure of a component of H2 n j zLj. Indeed ˇ
isometrically embeds X into the hyperbolic plane bounded by @1f .B/.

Clearly ˆ ıf embeds B onto H �H3 . The core of the maximal ball B , denoted by
Core.B/, is the convex hull of @1B with B conformally identified with H2 . Thus
we have a unique embedding �B of Core.B/ onto X �H2 so that ˇ ı�B Dˆıf on
Core.B/. Therefore, for each x 2 Core.B/, the hyperplane H is called a hyperbolic
support plane of ˇ at x . It turns out that, for different maximal balls B in zC , their
cores Core.B/ are disjoint. Moreover zC decomposes into these cores. Therefore we
can define a continuous map z�W zC !H2 by z�D �B on Core.B/ for all maximal balls
B . Then z� commutes with the action of �1.S/, and thus it descends to the collapsing
map �W C ! � , which respects the markings by homeomorphisms from S . (See [25,
Section 8] and [20, Section 2.3].)
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3.3.3 Canonical lamination on projective surfaces Each boundary component of
Core.B/ is a bi-infinite line properly embedded in zC . Then, by taking the union of
@Core.B/ over all maximal balls B in zC , we obtain a (topological) lamination z�
on zC . Then z� embeds each leaf of z� onto a leaf of z�. Since �1.S/ preserves the
decomposition of zC into the cores, z� descends to a lamination � on C , and � embeds
each leaf of � onto a leaf of �.

Moreover � is equipped with a natural transversal measure ! so that L WD .�; !/

descends to L by � . Then L is called the canonical measured lamination on C . If ˛
is a curve transversal to ! and it is of infinitesimal length, its transversal measure !.˛/
is the angle between the hyperbolic support planes in H3 corresponding the leaves of
� containing the endpoints of ˛ . The transversal measure ! is infinitesimally given by
the angles between hyperplanes supporting of ˇ .

Let M be the union of the closed leaves `1; `2; : : : ; `n of L. In particular � is a C 1 –
diffeomorphism in the complement of ��1.M /, and there ! is exactly the pullback of
� by � . We describe L on ��1.M / below.

For each i D 1; 2; : : : ; n, ��1.`i/ is a compact cylinder embedded in C . This cylinder
is foliated by closed leaves m of � that are diffeomorphic to ` by � . The total
transversal measure of ��1.`i/ is the weight w�.`i/ of `i given by �.

In addition, for every s 2 `, ��1.s/ is a circular arc connecting the boundary circles
of ��1.`i/ and it is orthogonal to each closed leaf � in ��1.`i/.

3.3.4 Thurston metric on projective structures Every projective surface C on S

has a natural hyperbolic/Euclidean type metric associated with �W .C;L/! .�;L/.

The cylinder ��1.`i/ has a natural Euclidean metric, and it is isometric to a product
of a circle of length length� .`i/ and the interval Œ0; w�.`i/�. The Riemannian metric
respects the conformal structure of C on ��1.`i/. For each closed leaf ` of � in
��1.`i/, �j` is an isometry onto `. For each s 2 `, the metric on the circular arc
��1.s/ is given by the transversal measure ! . This Euclidean metric is the restriction
of the Thurston metric on C to ��1.`i/.

On the other hand, the restriction of �W C! � to C n��1.M / is a C 1 –diffeomorphism
onto � nM . Thus C n ��1.M / has the hyperbolic metric obtained by pulling back
the hyperbolic metric of � via � .

On each stratum R of .C;L/, the Thurston metric is the restriction of the Euclidean or
hyperbolic metrics defined above. In this paper, it suffices to use the Thurston metric
on each stratum. (If L is a union of disjoint weighted loops, the Thurston metric
on C Š .�;L/ is the piecewise Euclidean/hyperbolic metric that is the sum of the
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Euclidean metric on the cylinders and the hyperbolic metric in the complement. For
general L, we can take a sequence of weighted loops `i converging to L as i !1.
Then the Thurston metric on C Š .�;L/ is the limit of the Thurston metrics on the
projective surfaces given by .�; `i/.)

3.4 Equivariant homotopies

Lemma 3.1 Let �W �1.S/! PSL.2;C/ be a homomorphism. Suppose that there
are two continuous maps ˇW zS !H3 and ˇ0W zS !H3 that are �–equivariant. Then
ˇ and ˇ0 are �–equivariantly homotopic, ie homotopic through �–equivariant maps
zS !H3 .

Proof We proceed in steps.

Step 1 We first construct an equivariant homotopy for each loop l on S . Let zl be
a lift of l to the universal cover zS of S . Then the restrictions ˇ1 j

zl and ˇ2 j
zl are

equivariant under the restriction of � to hli, the infinite cyclic subgroup of �1.S/

generated by l 2 �1.S/. Note that �.l/ may be of any type of hyperbolic isometry,
ie parabolic, elliptic, or loxodromic. Then, in each case, we can easily construct a
homotopy between ˇ1 j

zl and ˇ2 j
zl that is equivariant under � j hli.

Step 2 Next let P be a pair of pants embedded in S . Let l1; l2; l3 be the boundary
loops of P . Let zP be a lift of P to zS . Then we show that there is a homotopy between
ˇ1 j
zP and ˇ2 j

zP equivariant under � j �1.P /. For each j D 1; 2; 3, pick a lift zlj of
lj to zP . Then by Step 1 we have a homotopy connecting ˇ1 j

zlj and ˇ2 j
zlj equivariant

under � j �1.lj /. By equivariantly extending those homotopies, we have a homotopy
ˆ@ zP W @ zP � Œ0; 1�!H3 between ˇ1 j @ zP and ˇ2 j @ zP that is � j �1.P /–equivariant.
Pick disjoint arcs a1; a2; a3 properly embedded in P that decompose P into two
hexagons. Then we can easily extend the homotopy ˆ

@ zP
to a homotopy between the

lifts of arcs ai (for i D 1; 2; 3) to zP so that the extension is still equivariant under
� j �1.P /. Since the ai decompose P into simply connected surfaces, we can further
extend the homotopy to a � j�1.P /–equivariant homotopy between ˇ1 j

zP and ˇ2 j
zP .

Step 3 Pick a maximal multiloop M on S , which decomposes S into pairs of pants
Pk , for k D 1; 2; : : : ; 2.g� 1/. Let zM denote the total lift of M to zS . Then we can
obtain a �–equivariant homotopy ˆ zM between ˇ1 j

zM and ˇ2 j
zM similarly to the

way we obtained the homotopy ˆ@ zP in Step 2. For each k 2 f1; 2; : : : ; 2.g� 1/g, let
zPk be a lift of Pk to zS . Then ˆ zM induces a homotopy ˆ@ zPk

between ˇ1 j @ zPk

and ˇ2 j @ zPk that is equivariant under � j �1.Pk/. As in Step 2 we can extend
this induced homotopy to a homotopy ˆ zPk

between ˇ1 j
zPk and ˇ2 j

zPk that is
equivariant under � j �1.Pk/. By �–equivalently extending the homotopies ˆ zPk

, for
k D 1; 2; : : : ; 2.g� 1/, we obtain a �–equivariant homotopy between ˇ1 and ˇ2 .
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3.5 Isomorphisms of projective structures via developing maps

Definition 3.2 Let F be a surface and �W �1.F /! PSL.2;C/ be a homomorphism.
Let C1 D .f1; �/ and C2 D .f2; �/ be projective structures on F sharing holonomy
� , where zF is the universal cover of F and f1; f2W

zF ! yC are their developing maps.
Then C1 and C2 are isomorphic (as projective structures) via f1 and f2 , if there
is a homeomorphism �W F ! F homotopic to the identify map, such that, letting
z�W zF ! zF be the lift of � , we have f1 D f2 ı

z�W zC1 !
yC . We also say that the

isomorphism � is compatible with f1 and f2 .

4 Bilipschitz curves on pleated surfaces

Let L be a measured geodesic lamination on H2 with AreaH2.jLj/D0. Let ˇLW H
2!

H3 be the bending map induced by L. In this section, we prove:

Proposition 4.1 For every � > 0, there is ı > 0 such that, if l is a geodesic on H2

with †H2.l;L/ < ı , then

(i) ˇL is a .1C �/–bilipschitz embedding l!H3 ,

and, letting m be the geodesic in H3 connecting the endpoints of the quasigeodesic
ˇLjl ,

(ii) for each point x 2 l , ˇL.x/ is �–close to m, and, if ˇL is differentiable at x ,
then the tangent vector of ˇL j l at x is �–parallel to m,

that is, the tangent vector of ˇL j l in H3 at x is �–nearly orthogonal to the (totally
geodesic) hyperbolic plane orthogonal to m and containing ˇ.x/.

Remark 4.2 Similar statements are in [1; 7; 11]. However the condition on †H3.l;L/

is new.

Let ˆmW H3!m be the nearest point projection. Then:

Corollary 4.3 (iii) ˆm ıˇL j l is a .1C �/–bilipschitz map l!m.

Proof of corollary For each point y 2 m, ˆ�1
m .y/ is the hyperbolic lane in H3

orthogonal to m. Then H3 is foliated by the hyperplanes. Since AreaH2.�/D 0, ˇ j l
is differentiable almost everywhere. By Proposition 4.1 (ii), the curve ˇL j l stays in
a small neighborhood of m and �–orthogonally intersects the hyperplanes of H3 at
almost every point of l . If ı > 0 is sufficiently small, at almost every point on l , the
ratio of the lengths of the tangent vector along ˇL j l and of its ˆm –image is bounded
by .1C �/.
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We first prove an analogue of Proposition 4.1 for geodesic segments of bounded lengths.

Proposition 4.4 For every (large) K > 0 and (small) � > 0, there exists a ı > 0 such
that:

(i) If L is a measured geodesic lamination on H2 , and l W R!H2 is a parametrized
geodesic at unit speed such that †.l;L/<ı , then, if points x;y on l .ŠR/ satis-
fies 0< y�x <K , then we have .1��/ �distH2.x;y/ < distH3.ˇL.x/; ˇL.y//.

(ii) If ˇ j l is differentiable at x 2 R, for all y 2 ` with 0 < y � x < K , then
�y.x/ < � , where �y.x/ 2 Œ0; �� is the angle between the geodesic segment from
ˇL.x/ to ˇL.y/ and the tangent vector of ˇL j l at ˇ.x/; see Figure 2.

ˇL.x/ ˇL.y/

ˇL j l

�y.x/

Figure 2

Proof First consider a right hyperbolic triangle 4ABC in H2 (with geodesic edges)
with †C D �=2, where A;B;C are its vertices. Then it is easy to prove:

Lemma 4.5 For every K > 0 and �0 > 0, there is ı > 0 such that, if †B < ı and
dist.A;B/ <K , then

(i) .1� �0/ � dist.A;B/ < dist.B;C /� dist.C;A/, and

(ii) †A0BC < �0 for every A0 2H2 with dist.C;A0/ < dist.C;A/.

Let K> 0 and � > 0. Let �0D �=2. Then let ı > 0 be the number obtained by applying
Lemma 4.5 to K and �0 . Then we can in addition assume that ı < �=2.

Let x and y be distinct points on l with 0 < y � x < K . Let I be the minimal
sublamination of L containing the leaves that intersect Œx;y�. We can assume that
Œx;y� intersects at least one leaf of L transversally, since otherwise Proposition 4.4
clearly holds. Let m denote the leaf of I closest to x . Then, there is a unique
point z 2H2 such that 4xyz is a hyperbolic triangle with †z D �=2 and such that
Œx; z� � �.m/, where �W H2!H2 is the translation along l taking the point l \m

to x . (See Figure 3.)

Then Œx; z� is disjoint from I if x is in the complement of I . Then, since †.l;L/ < ı ,
in particular †yxz<ı . Let ˇI W H

2!H3 be the bending map induced by I . Then ˇI
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x
z

y

m

Figure 3

isometrically embeds Œx; z� into H3 . Therefore distH3.ˇI .x/; ˇI .z//D distH2.x; z/.
Since bending maps are 1–lipschitz, dist.ˇI .z/; ˇI .y//� dist.z;y/. By the triangle
inequality, we have

dist.ˇI .x/; ˇI .y//� dist.ˇI .x/; ˇI .z//� dist.ˇI .z/; ˇI .y//

� dist.x; z/� dist.z;y/:
Then, by Lemma 4.5(i), we have

dist.ˇI .x/; ˇI .y// > .1� �
0/ � dist.x;y/:

Since ˇI D ˇL on Œx;y�, dist.ˇL.x/; ˇL.y// > .1 � �0/ � dist.x;y/; thus we have
shown (i).

By Lemma 4.5(ii) applied to 4A0BC D4ˇI .y/ˇI .x/ˇI .z/, we have

†ˇI .y/ˇI .x/ˇI .z/ < �
0:

By the triangle inequality on the sphere in H3 centered at ˇI .x/ of infinitesimal radius,

�y.x/�†yxzC†ˇI .y/ˇI .x/ˇI .z/ < ıC �
0 < �:

Thus we have proved (ii).

Proof of Proposition 4.1 (i) We first show for every �0>0, there is ı>0 such that, if
a geodesic lamination L on H2 and a geodesic l W R!H2 satisfy †H2.l;L/< ı , then
�x.y/ < �

0 for all distinct points x;y on l with x < y such that ˇL j l is differentiable
at y . Pick K > 0 and �00 > 0 with �00 < �0=2. Then we can assume that Œx;y� is not
contained in a leaf of L and, by Proposition 4.4(ii), that dist.x;y/ > K . Let ı0 D
ı0.K; �00/ > 0 be the number obtained by applying Proposition 4.4 to K and �00 . Then
divide the geodesic segment Œx;y� into subsegments Œp0;p1�; Œp1;p2�; : : : ; Œpn�1;pn�,
where x D p0 < p1 < � � �< pn D y , so that:

� K=2< piC1�pi <K for i D 0; 1; : : : ; n� 1.

� p1;p2; : : : ;pn�1 are in the complement of jLj (since AreaH2.jLj/D 0).

Geometry & Topology, Volume 19 (2015)



3250 Shinpei Baba

Let ˇ be the bending map ˇL . The union of the geodesic segments Œˇ.pi/; ˇ.piC1/�

in H3 over i D 0; : : : ; n� 1 is a piecewise-geodesic curve in H3 connecting ˇ.x/ to
ˇ.y/. If †.l;L/ < ı0 , then, by Proposition 4.4(ii), we have �pn�1

.y/ < �00 and

� �†H3.ˇ.pi�1/; ˇ.pi/; ˇ.piC1// < 2�00

for all i D 1; 2; : : : ; n� 1. By Proposition 4.4(i),

dist.ˇ.pi/; ˇ.piC1// > .1� �
00/ � .K=2/

for i D 0; 1; : : : ; n� 1. Then, if �00 > 0 is sufficiently small, since the exterior angles
of the piecewise-geodesic curve are sufficiently small relative to the lengths of the
segments, we have †ˇ.x/ˇ.y/ˇ.pn�1/ < �

0=2. (See [7, Section I.4.2], also [11; 1].)
Then, by the triangle inequality,

0< �x.y/�†ˇ.pn�1/ˇ.y/ˇ.x/C �pn�1
.y/ < �0=2C �00:

Hence 0< �x.y/ < �
0 . We have

d dist.ˇ.x/; ˇ.y//
dy

D cos.�x.y//

(see [7, Section I.4.2], also [11; 1]). Then, for every � > 0, by taking smaller �0 > 0 if
necessary, we have 1=.1C �/ < cos.�x.y// � 1 for all different x;y on l such that
ˇ j l is differentiable at y . Since ˇ j l is differentiable at almost all points of l , ˇ j l
is a .1C �/–bilipschitz embedding.

(ii) For every � > 0, pick �0 > 0 with 2�0 < � . Then we have shown, in proving (i),
that there exists ı > 0, such that, if †H2.l;L/ < ı , then �x.y/ < �

0 for all different
x;y 2 l such that ˇ j l is differentiable at y . Since ˇ j l is bilipschitz, it takes the
endpoints ˙1 of the geodesic l W R! H2 to the distinct points ˇ.�1/; ˇ.1/ of
the ideal boundary of H3 . Thus taking the limits as x goes to the end points of l , we
have ��1.y/; �1.y/� �0 . Thus, we have ˇ.�1/ˇ.y/ˇ.1/ > ��2�0 . Let m be the
geodesic in H3 connecting ˇ.�1/; ˇ.1/ so that m is a bounded distance away from
ˇ j l . It is well-known that the area of a triangle in H2 is equal to � minus the sum of
the angles of its vertices. Thus the area of the geodesic triangle 4ˇ.�1/ˇ.y/ˇ.1/
is less than 2�0 . Thus, if necessary by taking a smaller �0 > 0, we can assume that
distH3.ˇ.y/;m/ < � . Recalling that ˆmW H3 ! m is the nearest point projection,
4ˇ.�1/ˇ.y/.ˆm ıˇ/.y/ has area less than �0 . Applying the same formula to this
ideal triangle, we have †H3ˇ.�1/ˇ.y/.ˆm ıˇ/.y/ < �=2� �

0 . Since ��1.y/ < �0

and 2�0 < � , by the triangle inequality, we see that the tangent vector of ˇ j l at y is
�–parallel to m.
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5 Local stability of bending maps in GL

5.1 Bending maps with a fixed bending lamination

Definition 5.1 Let X;Y be metric spaces with distance functions dX ; dY . For every
� > 0, a map �W X ! Y is an �–rough isometric embedding if dX .p; q/ � � <

dY .�.p/; �.q// < dX .p; q/C � for all p; q 2 X . It is an �–rough isometry if, in
addition, the �–neighborhood of Im.�/ is Y .

Theorem 5.2 Let .�; �/ 2 T�GL and �W �1.S/! PSL.2;C/ be a homomorphism.
Suppose that there is a �–equivariant pleated surface ˇW H2! H3 realizing .�; �/.
Then, for every � > 0, there is a ı > 0, such that, if there is a pair .�; �/ 2 T� GL

and a �–equivariant pleated surface ˇ0W H2!H3 realizing .�; �/ and †� .�; �/ < ı ,
then ˇ0 and ˇ are �–close in the following sense: There is a marking-preserving
homeomorphism  W �! � such that  is an �–rough isometry and, letting z W H2!

H2 be its lift, the maps ˇ and ˇ0 ı z are �–close in the C 0 –topology and moreover in
the C 1 –topology in the complement of the �–neighborhood of jz�j[jz�j in the universal
cover z� DH2 , where z� and z� are the total lifts of � and (the geodesic representative
of) � on � to z� .

The rest of Section 5.1 is the proof of Theorem 5.2. Suppose that there is a sequence
of �–equivariant pleated surfaces ˇi W H2 ! H3 realizing some .�i ; �i/ 2 T� GL.
Let �i;� denote the geodesic representative of �i on � . Assuming †� .�i;� ; �/! 0 as
i !1, we will construct a homeomorphism  i W � ! �i such that, for every � > 0,
if i is sufficiently large then ˇ and ˇi ı

z i W z� !H3 are �–close in the C 0 –topology
and in the C 1 –topology in the complement of the �–neighborhood of �i;� .

Outline of the construction We first construct  i W �i;�! �i such that  i is .1C�/–
bilipschitz on every leaf of �i;� for sufficiently large i and, as desired, ˇ0 ı z i ! ˇ

in the C 0 –topology. This bilipschitz property is given by Proposition 4.1. Then we
continuously extend it to  i W � ! �i so that  i is .1C �/–bilipschitz on each stratum
of .�; �i;� / and ˇ0 ı z i ! ˇ as desired. In particular, given a compact subset K

of a stratum of .�; �i;� /,  i is an �–rough isometry on K for sufficiently large i

(Lemma 5.5). We take a “sufficiently thick part” of the stratum to be the compact
subset K . Finally, in order to show that  i is an .1C�/–rough isometry, we show that
 i is an �–rough isometry along arcs transversal to the lamination � (Lemma 5.7).

Since GL is compact with the Chabauty topology, we can assume that �i;� converges
to some �1 2 GL.�/ as i !1. Then †� .�1; �/D 0. We moreover have:

Proposition 5.3 � is a sublamination of �1 .
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Proof Since †� .�1; �/D0, the union �1[� is a geodesic lamination on � . Suppose
that � is not a sublamination of �1 . Then there is a leaf of � not contained in �1 .
Below, each tilde symbol “�” denotes either the universal cover of a surface, eg z�ŠH2 ,
or the total lift of a geodesic lamination to the universal cover, eg z�. Then there are
distinct components R and R0 of z� ŠH2 minus the total lift of �1[�, such that

� a leaf of z� separates R and R0 ,

� yet R and R0 are contained in a single component P of z� n z�1 , and

� either
– R and R0 share a boundary geodesic and ˇ bends H2 along the geodesic

by the angle � , or
– ˇ.R/ and ˇ.R0/ are contained in distinct copies of H2 in H3 .

Since �i;� ! �1 , for every i 2 N , we can pick a component Pi of z� n z�i;� such
that Pi converges to P uniformly on compacts as i !1. Then Pi \R! R and
Pi\R0!R0 as i!1. Then, let Qi be the component of z�i nz�i that corresponds to
Pi so that a marking-preserving homeomorphism �i ! � induces a homeomorphism
Qi ! Pi . Then ˇi WH2 ! H3 isometrically embeds Qi in a copy Hi of H2 . By
Lemma 3.1, ˇ and ˇi are �–equivariantly homotopic, and thus ˇ j Pi and ˇi jQi are
a bounded distance apart pointwise via the homeomorphism Qi! Pi .

Claim 5.4 For every � > 0, if i is sufficiently large, then ˇ j Pi and ˇi j Qi are
�–close in the C 0 –topology via Qi! Pi .

Proof For every � > 0, if i is sufficiently large, then †z� .`; �/ < � for each boundary
geodesic ` of Pi . Therefore, by Proposition 4.1, if i is sufficiently large, then ˇi j @Qi

is �–close to ˇ j @Pi . Thus we can in addition assume that ˇi j ` is an .1C�; �/–quasi-
isometric embedding for every geodesic or geodesic segment ` in Pi not transversal
to �. This implies the claim.

By this claim, the restriction ˇ jPi becomes more and more totally geodesic as i!1.
Since Pi \R! R and Pi \R0! R, the hyperbolic plane containing ˇ.R/ must
coincide with the hyperbolic plane containing ˇ.R0/, and moreover ˇ.R/ and ˇ.R0/
must be disjoint. This is a contradiction to the third hypothesis of R and R0 above.

For each i , we enlarge the geodesic lamination �i to a maximal lamination, which
decomposes �i into ideal triangulations. By taking a subsequence if necessary, we can
assume that the maximal lamination �i converges to a maximal lamination containing
� . Thus accordingly we denote the limit by � . Similarly let �i;� be the geodesic
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lamination on � representing �i . Then we still have †� .�i;� ; �/! 0 as i !1, by
Proposition 5.3. Although �i is not a “minimal” lamination realizing ˇi , it will not
affect our arguments.

We construct a homeomorphism  i W � ! �i for all sufficiently large i . First, since
†� .�i ; �/! 0 as i!1, for every � > 0, if i is sufficiently large, by Lemma 3.1 and
Corollary 4.3 there is a bijection  i W �i;� ! �i that is a .1C �/–bilipschitz map on
each leaf of �i;� (to be precise  i W j�i;� j ! j�i j). If there is a sequence of leaves j̀ of
�i;� converging to a leaf `1 of �i;� , then ˇi j j̀ converges to ˇi j `1 uniformly on
compacts as j!1. Then, since if i is sufficiently large, ˇi j j̀ are .1C�/–bilipschitz
for all j , the endpoints of ˇi j j̀ converge to the endpoints to ˇi j `1 on yC as j !1.
Since  i is obtained from Corollary 4.3, we see that the entire map  i W �i;� ! �i is a
homeomorphism with the topology induced from z� and z�i .

Given � > 0 and a connected component � of � n �i;� , let �� be the �–thick part of
�, that is, the union of disks of radius � embedded in �. Then p 2 @�\ @�� if and
only if � contains a disk of radius � tangent to @� at p . Since � is an ideal triangle,
@�\@�� is compact, and if � > 0 is sufficiently small, then it is a union of three long
(but finite) segments of the edges of �.

For every � > 0, if � > 0 is sufficiently small, every .1C �/–bilipschitz curve in H3 ,
in particular ˇi j j̀ above, is contained in the �–neighborhood of the geodesic in H3

connecting its endpoints on yC . Thus, since @�\ @�� is bounded, we have:

Lemma 5.5 For every � > 0, if i 2N is sufficiently large, then, for every component
� of � n �i;� , the map  i restricts to an �–rough isometric embedding on @�\ @��
into the corresponding component �0 of �i n �i with respect to the path metrics on the
ideal triangles � and �0 .

Next we extend  i W �i;�!�i to �!�i by extending  i to the interior each component
� of � n �i;� in a natural way. The ideal triangle � contains a unique inscribed circle,
which is tangent to each edge of � at a single point. Then, by connecting those
tangency points, we obtain a hyperbolic triangle inscribed in �. Each component of
� minus the inscribed triangle is a hyperbolic triangle {� with a single ideal vertex v .
Then {� has two edges of infinite length sharing v , and a point of one edge corresponds
to a point on the other edge so that a horocycle centered at v passes through both points.
By connecting all pairs of such corresponding points by geodesic segments, we obtain
a foliation of {� by geodesic segments. Then continuously extend  i , which is so far
defined on @�, to {� so that  i linearly takes each such geodesic segment connecting
points on @� to geodesic segments connecting  i –images of the points on @�0 (see
Figure 4).
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Figure 4

If � > 0 is sufficiently small, then the inscribed triangle in � is contained in the
�–thick part �� for all components � of � n�i;� . Thus, by Lemma 5.5, we can further
extend  i to the inscribed triangle of � so that  i restricts to an �–rough isometric
embedding on �� into �0 .

For every � > 0, if i is sufficiently large, then ˇ j z�i;� and ˇi j z�i are �–close pointwise
via z i W z� ! z�i since  i j �i;� is defined using Corollary 4.3. In addition, for every
� > 0, if � > 0 is sufficiently small, then z� .ŠH2/ is covered by the �–neighborhoods
of the �–thick parts of the ideal triangles of z� nz�i;� . For every � > 0, if i is sufficiently
large, then ˇ and ˇi ı

z i are also �–close in the C 0 –topology via z .

For very � > 0, if i is sufficiently large, then the �–neighborhood of � contains
�i;� in � . In the complement of the �–neighborhood of z� , ˇ and ˇi ı

z i are totally
geodesic. We can in addition assume that ˇ and ˇi ı

z i are �–close, moreover, in the
C 1 –topology, for sufficiently large i .

Note that this C 1 –convergence is weaker than that in Theorem 5.2, since we have
enlarged each �i to a maximal lamination. The �–neighborhood of the extended
lamination �i;� may be bigger than the �–neighborhood Ni;� of the original lamination
�i;� . However, since ˇ and ˇi ı

z i are totally geodesic in the complement of Ni;� , it is
easy to make it C 1 –convergence there for sufficiently large i by a small perturbation.

Thus, it only remains to show:

Proposition 5.6 For every � > 0, if i 2N is sufficiently large, then  i W ø! �i is an
�–rough isometry.

Proof Let x be a point of jz�j, and let ` be the leaf of z� containing x . Consider a
(totally geodesic) hyperbolic plane H of H3 transversally intersecting the geodesic
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ˇ.`/ at ˇ.x/. Then, by the transversality, there is a neighborhood a of x in ˇ�1.H /

homeomorphic to an arc, which we call an orthogonal arc through x .

If a sequence of leaves of z� converges to `, then accordingly their ˇ–images are
geodesics in H3 converging to ˇ.`/ uniformly on compacts. Thus, for every � > 0, if
a is sufficiently short then, for a stratum R of .H2; z�/ which intersects a, the angle
†H3.ˇ.R/;H / is �–close to †.H; ˇ.`//.

Since � has measure zero in � and the pleated surface ˇWH2 ! H3 preserves the
length of paths, the length of a is equal to the total length of the arcs a n jz�j.

In particular, a intersects ` only at x and it is “transversal” in the sense that there is
a ı > 0 such that, if s is a geodesic segment in H2 with its endpoints on different
components of a nx , then s intersects ` transversally at an angle of more than ı .

We have shown that ˇi ı
z i converges to ˇ as i!1 uniformly everywhere in the C 0 –

topology and pointwise almost everywhere in the C 1 –topology. By this convergence,
if i is sufficiently large and z i.a/ intersects a stratum Ri of .H2; z�i/, then ˇi.Ri/ is
transversal to H and †.ˇi.Ri/;H / > ı for some fixed ı > 0.

Therefore, for sufficiently large i 2N , there is an arc bi embedded in ˇ�1
i .H /�H2

such that ˇi j bi converges to ˇ j a in the C 0 –topology uniformly. Note that, since �i

on �i and � on � have measure zero, ˇi j bi and ˇ j a are almost everywhere smooth.
Thus the uniform convergence ˇi j bi! ˇ j a is moreover in the C 1 –topology almost
everywhere. Similarly the length of bi is the sum of the lengths of the segments of
bi n jz�i j.

Lemma 5.7 length.bi/ converges to length.a/ as i !1.

Proof Since ˇi j bi converges to ˇ j a and pleated surfaces H2!H3 preserve length,
for every � > 0, we have length.a/ < �C length.bi/ for sufficiently large i . Thus it
suffices to show the opposite, length.bi/ < �C length.a/ for sufficiently large i .

Recall that  i W � ! �i is a marking-preserving homeomorphism taking �i;� ! �i .
Since the endpoints of a are in the complement of � , for sufficiently large i , the
components of H2 n z�i;� intersecting a bijectively correspond to the components of
H2 n z�i intersecting bi . Therefore there is a homeomorphism �i W a! bi such that, if
� and �i are corresponding complementary ideal triangles of z�i;� and z�i , respectively,
then �i takes the arc a\� to the arc bi \�i homeomorphically.

Let yai be the union of arcs of a n jz�i;� j intersecting the �–thick part of H2 n z�i;� .
Then yai is union of finitely many disjoint arcs. Let {ai D a n yai . For every � > 0, if
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i is sufficiently large, then  i is an �–rough isometry in the �–thick part of � n �i;� .
Therefore, if i is sufficiently large, �i changes the total length of yai by at most � .

For all i , we have Area.�/D Area.�i/. For all � > 0 and ı > 0, if i is sufficiently
large,  i changes the total area of the �–thick part � n �i;� by at most ı .

There is a � > 0 such that, for sufficiently large i :

� If � is a component of H2 n z� and a intersects a boundary geodesic ` of �,
then the angle between a\� and ` is at least � .

� If �i is a component of H2 n z�i and a boundary geodesic `i of �i intersects
bi , then the angle between bi \�i and `i is at least � .

� If �i;� is a component of H2 n z�i;� and a intersects a boundary geodesic ` of
�i;� , then the angle between a\�i;� and ` is at least � .

For every � > 0, if i is sufficiently large, then the  i takes the �–thick part of � n �i;�

into the .�� �/–thick part of �i n �i and the �–thin part of � n �i;� maps into .�C �/–
thick part of � n �i . Therefore, for every ı > 0, if � > 0 is sufficiently small and
i 2 Z>0 is sufficiently large, then the length of {ai is ı–close to the length of �i.{ai/,
since otherwise  i must increase the total area of the �–thin part of � n� some definite
amount, such that Area.�i/ >Area.�/; this is a contraction. Therefore for every � > 0,
if i is large enough, length.bi/ < length.a/C � .

Lemma 5.8 For every p 2 z� and � > 0, there is a neighborhood U of p in z� such
that if i 2N is sufficiently large, then z i.U /� z�i has diameter less than � .

Proof First suppose that p is in z� n z� . Let � be the component of z� n z� containing
p . Then take a sufficiently small closed ball centered at p so that it is contained in
�. Let U be the interior of the closed ball, which is an open ball centered at p . Then
for sufficiently large i , U is contained also in a component �i of z�i n z�i;� . There is
a ı > 0 such that U is contained in the ı–thick part of �i . Thus, for every � > 0,
and for i large enough,  i is an �–rough isometry near p . Thus if U is a sufficiently
small neighborhood of p , then z i.U / has diameter less than � .

Next suppose that p is on a leaf ` of z� . Then we construct a small “rectangular”
neighborhood bounded by geodesic segments disjoint from z� and curves, as above,
mapping into hyperbolic planes orthogonal to ˇ.`/ by ˇ . For ı > 0, let x1 and x2 be
the points on ` that have distance ı from p , so that p bisects the geodesic segment
Œx1;x2�. Let H1 and H2 be the hyperbolic planes in H3 that are orthogonal to ˇ.`/
at ˇ.x1/ and ˇ.x2/, respectively. Given ı > 0, let ai be an orthogonal curve on z�
passing through xi for each i D 1; 2 such that
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� lengthz� .ai/ < ı ,

� ˇ.ai/ is contained in Hi ,

� the corresponding endpoints of a1 and a2 are in the same component of z� n z� .

By the third condition, the corresponding endpoints of a1 and a2 are in the complements
of z�nz� . Thus let b1 and b2 be geodesic segments in z�nz� that connect the corresponding
endpoints of a1 and a2 .

Then length.b1/! 0 and length.b2/! 0 as ı! 0. Then let Uı be the rectangular
neighborhood of p bounded by a1; a2; b1; b2 , so that p 2 Uı .

We claim that for every � > 0, the diameter of  i.Uı/ is less than � , if ı ! 0 is
sufficiently small and i is sufficiently large. Since  i are homeomorphisms, it suffices
to show that the  i –images of the edges a1; a2; b1; b2 have length less than � .

Since length.a1/; length.a2/ < ı , by Lemma 5.7, if ı > 0 is sufficiently small and i

is sufficiently large, then  i.a1/ and  i.a2/ have length less than � .

The geodesic segments b1 and b2 are disjoint from z�i;� for sufficiently large i . There-
fore for every � > 0, the restrictions of  i to b1; b2 are �–rough isometric embeddings
for sufficiently large i . Hence, if ı > 0 is sufficiently small and i is sufficiently large,
then  i.b1/ and  i.b2/ have length less than � .

Proposition 5.9 For every p; q 2 z�.ŠH2/ and � > 0, if i 2N is sufficiently large,
then

�� < lengthz� Œp; q�� lengthz� Œ i.p/;  i.q/� < �:

Proof First suppose that p and q are in the interior of a single stratum � of .z�; z�/.
Then the assertion holds true since, given � > 0, z i is a .1C �; �/–quasi-isometric
embedding on � for sufficiently large i .

Second suppose that p and q are contained in a single leaf ` of z� . For every � > 0,
if i is sufficiently large, then, since †� .�; �i;� /! 0, we can pick orthogonal arcs ai

from p and a0i from q on z� such that length.ai/; length.a0i/ < � and, letting ri and
si be the other endpoints of ai and a0i , such that ri and si are in a single stratum of
.z�i ; z�i;� /, using Lemma 5.7. Let bi and b0i be the arcs on z�i that correspond to ai

and a0i , as discussed just before Lemma 5.7, so that ˇi j bi and ˇi j b
0
i are �–close

to ˇ j ai and ˇ j a0i , respectively, in hyperbolic planes orthogonal to ˇ.`/. Then
we can in addition assume that length.bi/; length.b0i/ < � . Let ci D Œ i.ri/;  i.si/�,
which is contained in a stratum of .z�i ; z�i/. Therefore, if i is sufficiently large, then
jlength.ci/� lengthŒri ; si �j < � . Hence, for every � > 0, since we can assume that
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the lengths of ai ; a
0
i ; bi ; b

0
i are less than � for sufficiently large i , we have �� <

lengthŒp; q�� lengthŒ i.p/;  i.q/� < � .

Last suppose that p; q are in different strata, so that Œp; q� transversally intersects z� .
Since ˇi ı

z i converges to ˇ as i !1 and ˇ; ˇi preserve length of curves, thus
lengthŒp; q� < �C lengthŒ i.p/;  i.q/� for sufficiently large i .

For each x 2 Œp; q� \ z� , let `x be the leaf of z� containing x . Then, as discussed
above, there is an orthogonal ax passing through x so that ˇ.ax/ is contained in the
hyperbolic plane, H3 , orthogonal to the geodesic ˇ.`x/ at ˇ.x/. We can in addition
assume that the endpoints of ax are in the complement of z�.

Next, using orthogonal curves, we pick a curve approximating the geodesic segment
Œp; q� that intersects � almost “orthogonally”. Namely, take finitely many points
x1; : : : ;xn on Œp; q�\ z� , and pick orthogonal curves a1; : : : ; an so that an endpoint
of ak and an endpoint of akC1 are in the interior of a single stratum of .z�; z�/ for
each k . Then let ck be the geodesic segments connecting the endpoints. Taking a
union of such aj and ck , we can construct a curve ˛ connecting p to q , such that
˛\� �

Sn
jD1 aj and ˛ n

Sn
jD1 aj is a union of disjoint geodesic segments. For every

� > 0, taking large n so that the orthogonal curves aj are sufficiently short, we can in
addition assume that

� ˛ is �–close to Œp; q� in the Hausdorff metric,

�
P

j length.aj / < � , and

� �� < lengthŒp; q��
P

i length.ck/ < � .

(For the last assertion, consider the nearest point projection of ˛ to Œp; q�). Thus,
for every � > 0, there is such an approximating curve ˛ with �� < length.˛/ �
lengthŒp; q� < � . Therefore, in order to show

lengthŒp; q�C � > lengthŒ z i.p/; z i.q/�

for sufficiently large i , it suffices to find a curve ˛i on z�i connecting z i.p/ to z i.q/

such that �� < length.˛i/� length.˛/ < � .

For each orthogonal segment aj , as defined for Lemma 5.7, there is a corresponding
curve bi;j on .H2; z�i/, such that ˇ jaj and ˇi jbi;j are contained in a single hyperbolic
plane and ˇi j ai;j converges to ˇ j aj as i!1. Then, by Lemma 5.7, length.bi;j /!

length.aj / as i !1. Thus
P

j length.bi;j / < � for sufficiently large i . Then, for
each j , we can connect the endpoints of ai;j and bi;jC1 by geodesic segments ci;j

in the complement of z�i , to obtain a curve ˛i connecting z i.p/ and z i.q/. Then,
for every � > 0, if i is sufficiently large, then the endpoints of ci;j are �–close to the
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z i –image of the endpoints of cj for all j . Since z�i;� ! z� , the segment cj is disjoint
from z�i;� for sufficiently large i . Therefore length.ci;j / is �–close to length.cj / for all
j . Since � > 0 is arbitrary, �� < length.˛/� length.˛i/ < � for sufficiently large i .

Proposition 5.6 immediately follows from Proposition 5.9 and Lemma 5.8.

6 Rectangular projective structures

6.1 Projective structures on rectangle supported on cylinders

Let c be a round circle on yC . A geodesic g in H3 is an axis of c on yC if g is
orthogonal to the (totally geodesic) hyperbolic plane in H3 bounded by c .

Let A be a round cylinder in yC , that is, A is bounded by disjoint round circles c�1

and c1 . Then the axis of A is the unique geodesic in H3 that is orthogonal to both
hyperbolic planes bounded by c�1 and c1 . Then, there is a unique foliation FA of
A given by the continuous family of round circles, fctgt2Œ�1;1� , sharing the axis g .
We call it the circular foliation on FA . Then each round circle ct possesses a smooth
metric invariant under by elliptic isometries of H3 fixing g . It is unique up to scaling,
and thus we normalize it so that the length of ct is 2� for all t 2 Œ�1; 1� (canonical
metric).

Definition 6.1 Let C D .f; �/ be a projective structure on a simply connected surface
F . (In particular � is trivial.) Let e be a simple curve on C . Then we say that
e is supported on the round cylinder A if f embeds e properly into A so that e

transversally intersects all leaves ct of A.

Let R be a rectangle, and let e1; e2; e3; e4 denote the edges of R, cyclically indexed
along @R .Š S1/; Figure 5. A projective structure C D .f; �/ on R is supported on
the round cylinder A if

(i) f immerses e1 and e3 into c�1 and c1 , respectively, and

(ii) e2 and e4 are supported on A.

Then we say that C is supported on the round cylinder A and bounded by the arcs
f j e2 and f j e4 supported on A.

Then, if C is supported on A, we can pull back, via f , the circular foliation FA on A
to a circular foliation FC on the rectangle C . Each leaf of FC immerses into a closed
leaf of FA , and thus it has a metric obtained by pulling back the canonical metric of
the closed leaf. Then we say that the height of C is �–close to W for some W > 0, if
every leaf of FC has length �–close to W .
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6.2 Grafting a rectangle supported on a cylinder

(Compare [2, Section 3.5].) Let C be a projective structure on the rectangle R supported
on the round cylinder A as above. Let m be a simple arc on C supported on A. Then
m is an arc properly embedded in A. Then, similarly to grafting a projective surface
along a loop (Section 3.2)), we can combine two projective structures C and A, by
cutting and pasting along m, and obtain a new projective structure on R supported
on A. Namely, we can pair up the boundary arcs of C nm and the boundary arcs
of A nm and isomorphically identify them to create a new projective structure on R

supported on A. We call this operation the grafting of C along m and denote this
resulting projective structure by Grm.C /. We call m an admissible arc on C . If there
is a multiarc M on C consisting of arcs supported on A (admissible multiarc), then we
can graft C along all arcs of M simultaneously and obtain a new projective structure
on R supported on A. We accordingly denote it by GrM .C /.

Lemma 6.2 Let C1 and C2 be projective structures on a rectangle R. Suppose that
they are supported on the same round cylinder and bounded by the same pair of arcs
supported on the cylinder. Then, we have either C1DGrM .C2/ or C2DGrM .C1/ for
some admissible multiarc M . Furthermore, the multiarc M is unique up to an isotopy
of M on R through admissible multiarcs.

Moreover the number of arcs of M times 2� is equal to the length difference of the
corresponding vertical edges of C1 and C2 .

Proof Let A be the round cylinder supporting C1 and C2 . Let f1W R ! A and
f2W R!A be the developing maps of C1 and C2 , respectively. Let zA be the universal
cover of A and ‰W zA!A be the universal covering map. Let m2 and m4 be the simple
arcs properly embedded in A that bound both C1 and C2 so that m2Df1.e2/Df2.e2/
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and m4 D f1.e4/ D f2.e4/. Pick a lift zm4 of m4 to zA. Then, for each k D 1; 2,
fk W R!A uniquely lifts to zfk W R! zA so that fk D‰ ı zfk and zfk embeds e4 onto
zm4 . Clearly zfk is an embedding (although fk may not be). We see that zfk.e2/ is a
lift of m2 to zA. Since projective structures have fixed orientation, zf1.e2/ and zf2.e2/

are in the same component of zA n zm4 . If zf1.e2/ D zf2.e2/, then clearly C1 D C2 .
If zf1.e2/ ¤ zf2.e2/, then, without loss of generality, we can assume that Im. zf2/ is
a proper subset of Im. zf1/, if necessary, by exchanging C1 and C2 . Thus we can
naturally regard Im. zf1/ n Im. zf2/ as a projective structure on a rectangle supported
on A, where its developing map is the restriction of ‰ to Im. zf1/ n Im. zf2/. Then its
supporting arcs are both m4 . Let d be the generic degree of the developing map of
Im. zf1/ n Im. zf2/ to A (ie the degree over a point in A nm4 ). Note that

2�d D lengthf1.e1/� lengthf2.e1/D lengthf1.e3/� lengthf2.e3/:

Note that the grafting along an admissible arc on C2 increases the length of its vertical
edges by 2� . Thus, if M is the union of n disjoint admissible arcs on C2 , then the
length of vertical edges increases by 2�n. Therefore GrM .C2/D C1 if and only if
nD d .

6.3 Fat traintracks

Given a rectangle, pick a pair of opposite edges and call them horizontal edges and the
other edges vertical, to distinguish them.

Definition 6.3 [23; 28] Let F be a topological surface. A (fat) traintrack T on F

is a collection of rectangles Rj .j 2 J / embedded in F , called branches, such that

� fRj gj2J is locally finite,

� branches can intersect only along their vertical edges, and

� if e is a vertical edge then either
– e is (homeomorphically) identified with another vertical edge of a rectangle,
– e is a union of two other vertical edges, which share an endpoint, of some

rectangles, or
– e is identified with a segment of another vertical edge containing an endpoint.

Then let jT j � S denote the union of the rectangles Ri .

Let T D fRj gj2J denote a traintrack on F , where the Rj are its branches. The
vertical edges of the Rj decompose T into the branches. The boundary of jT j is the
union of the horizontal edges. If a point of @jT j is the common end point of the second
possibility for e , then it is called a switch point.
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Let � be a lamination on F . Then the traintrack T D fRj gj2J carries � if

� the interior of jT j contains �, and

� each leaf ` of � is transversal to the vertical edges of T and each component of
`\Rj is an arc connecting the vertical edges of Rj for each j 2 J .

If, in addition, Rj \�¤∅ for all j 2 J , then we say T fully carries �. Suppose that
LD .�; �/ is a measured lamination carried by T . The weight of L on a branch Rj

is the transversal measure � of a vertical edge of Rj ; we denote it by �.Rj /. The
weights of branches satisfy some simple equations, called switch conditions.

Suppose that T carries two measured laminations L1 and L2 . Then the weights L1

and L2 are nonnegative real numbers on each branch of T . Thus there is a unique
measured lamination L1CL2 carried by T such that the weight of L1CL2 on Rj

is the sum of the weights of L1 and L2 on Rj for each j . Suppose that the weight of
L1 is at least the weight of L2 on each branch of T . Then similarly there is a unique
measured lamination L1�L2 carried by T such that the weight of L1�L2 on Rj

is the weight of L1 minus the weight of L2 on Rj for each j .

Given � > 0, we say L1 is �–close to L2 on T if the weight of L1 is �–close to that
of L2 on each branch of T . We say that L1 is a good approximation of L2 on T if
L1 is �–close to L2 for a sufficiently small � > 0.

We remark that if a traintrack T D fRj gj has weights on its branches satisfying the
switch conditions, it corresponds to a unique measured lamination. Indeed there is a
measured foliation F of jT j such that F foliates each branch Ri by arcs connecting
its vertical edges and the transversal measure of Ri given by F realizes the weight
of Ri . Then by “straightening” leaves of F fixing a hyperbolic metric on F , we obtain
a measured (geodesic) lamination.

Moreover the above addition and subtraction respect the piecewise linear structure on
the space of measured laminations. In particular, the set of all possible weight-systems
on a traintrack is a piecewise linear cone in a vector space.

Let � be a hyperbolic structure on F . Then the traintrack T is smooth if all branches
are smooth (ie the edges of its branches are smooth) and @jT j is smooth except at the
switch points.

Definition 6.4 For � > 0, a smooth traintrack T D fRj gj2J on � is called �–nearly
straight if each branch Rj is .1C �/–bilipschitz to some Euclidean rectangle and, at
each switch point, the angle of @jT j is less than � .
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For �;K > 0, T is .�;K/–nearly straight if T is �–nearly straight and, for each
branch Ri of T , K is less than the length of the horizontal edge of such a Euclidean
rectangle corresponding to Ri (which we call the length of Ri ).

Such a nearly straight (non-fat) traintrack is introduced in Thurston [30, Chapter 8];
see also Brock [4] and Minsky [26]. If � > 0 is sufficiently small, each branch of an
.�;K/–nearly straight traintrack is Hausdorff-close to an almost straight curve.

7 Decomposition of projective structures by traintracks

Definition 7.1 Let R be a branch of a traintrack T in a projective structure C D .f; �/

on S . (Recall that a branch is a rectangle.) Then the branch R is supported on a round
cylinder A on yC if A supports the restriction of C to R so that horizontal edges of
R are supported on A.

Lemma 7.2 Let T D fRkg be a traintrack on a projective surface .S;C / such that
each branch Rk is supported on a round cylinder (admissible traintrack). Note that the
circular foliations on Rk yield a circular foliation on jT j. Then, if a loop ` is carried
by T and transversal to the circular foliation on jT j, then ` is admissible.

Proof Let z̀ be a lift of ` to zS . Let zT be the lift of T of zS . Let zRk2Z denote the
branches of T intersecting z̀, so that zRk and zRkC1 are adjacent. Let C D .f; �/,
where f is the developing map and � is the holonomy. Then f injects `\ zRk for
each k . The supports of zRk have disjoint interiors. Thus f embeds z̀ into yC . Since
this embedding extends to the endpoints of z̀, taking them to distinct points, �.`/ is
loxodromic.

The following proposition will yield the traintracks on projective surfaces in Theorem A
and Theorem B.

Proposition 7.3 Let Ci Š .�i ;Li/, i 2 Z>0 , be a sequence of projective structures
on S with fixed holonomy � , and let fi be the developing map of Ci . Let Li be the
canonical lamination on Ci , which descends to Li by the collapsing map �i W Ci! �i .

Suppose that �i converges to �1 in T as i !1, and there is a geodesic lamination
�1 (on �1 ), such that, for every � > 0, the �–neighborhood of j�1j contains jLi j

for sufficiently large i .

Then there are a traintrack T DfRkg
n
kD1

on S (which depends only on �; �1; j�1j; � )
and a homeomorphism �i W S ! Ci for every i , such that for every � > 0 if i; j are
sufficiently large, then:
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(I) �i.T / carries Li , and �i.T / descends, by �i , to an .�;K/–nearly straight
traintrack Ti on �i carrying both Li and �1 , where K > 0 is an arbitrary
fixed constant that is less than one third of a shortest closed leaf on �1 (if �1
contains no closed leaves, then K > 0 is arbitrary).

(II) fi and fj induce an isomorphism from Ci n�i.T / to Cj n�j .T / as projective
surfaces; thus we can assume that �i ı�

�1
j W Cj!Ci induces this isomorphism.

(III) (i) For each branch zRk of zT , there exists a round cylinder zAk on yC that
supports its corresponding rectangle �zi.zRk/ in zCi for every sufficiently
large i , where �zi W

zS ! zCi is the lift of �i .

(ii) Moreover, if a is a vertical edge of z�i.zRk/, then the length of a (see
Section 6.1) is �–close to the transversal measure of �i.Rk/ with respect to
L (see Section 6.3), where Rk is the branch of T that lifts to zRk .

Remark 7.4 To be precise, by “descends” in (I), we mean that �i takes �i.T / to Ti

up to an �–small perturbation of vertical edges as given in Proposition 7.12. Yet �i

takes j�i.T /j � C exactly onto jTi j � �i .

In particular, by taking all Ci to be a fixed projective structure, we obtain:

Corollary 7.5 Let C Š .�;L/ be a projective structure on S , and let � be a geodesic
lamination � on � containing jLj. Let �WC ! � be its collapsing map. Let ƒ be the
lamination on C that descends to � by � . Then for every � > 0, there is an admissible
traintrack T on C carrying ƒ, so that it descends by � to an �–nearly straight track
on � up to an �–small perturbation of vertical edges.

The rest of Section 7 is the proof of Proposition 7.3.

Outline of the proof of Proposition 7.3 Construct a nearly straight traintrack T1
on �1 carrying �1 (Lemma 7.10). Indeed T1 yields all other traintracks in the
proposition. There is a �–equivariant pleated surface realizing .�1; �1/, and it is the
limit of the �–equivariant pleated surface for Ci (see Lemma 7.6). By this convergence,
for sufficiently large i , there is a corresponding nearly straight traintrack Ti on �i .
The traintrack Ti in the proposition is obtained by pulling back Ti by the collapsing
map �i WCi ! �i and perturbing the vertical edges a little bit (see Proposition 7.11).
The estimate of the lengths of vertical edges is given in Section 7.2.

Lemma 7.6 Let Ci Š .�i ;Li/ be a sequence of projective structures on S with fixed
holonomy � , such that �i converges to �1 . For each i , let ˇi WH2 ! H3 be the
�–equivariant pleated surface corresponding to Ci .

Geometry & Topology, Volume 19 (2015)



2� –grafting and complex projective structures, I 3265

Suppose that there is a geodesic lamination �1 on �1 such that, given any � > 0,
the �–neighborhood of j�1j contains (the geodesic representative of) jLi j for all
sufficiently large i . Then there is a �–equivariant pleated surface ˇ1 realizing the pair
.�1; �1/, and ˇi converges to ˇ1 . This convergence is uniform in the C 0 –topology
on S and uniform on compacts in the C 1 –topology in the complement of j�1j.

Remark 7.7 In this lemma, there may be a sublamination of �1 that realizes ˇ as
well.

Proof of Lemma 7.6 First we show that �1 is realizable by a �–equivariant pleated
surface. The assumption on �1 and Li implies that †�1.�1;Li/! 0 as i !1.
Thus, for every � > 0, if i is sufficiently large, then ˇi restricts to a .1C�/–bilipschitz
map on every leaf of z�1 on the universal cover of �i (Proposition 4.4).

Since � > 0 is arbitrary, there a unique �–equivariant map ˇ1 taking leaves of z�1 to
geodesics in H3 , so that ˇi converges to ˇ1 on z�1 uniformly as i !1. Let z�i be
the total lift of �i to H2 .

Claim 7.8 For every � > 0, if i is sufficiently large, then the restriction of ˇi to each
component R of H2 n jz�1j is a .1C �; �/–quasi-isometric embedding.

Proof The proof is similar to arguments in [1, Section 7]. For every ı > 0, if i is
sufficiently large, then, for each component R of H2 n jz�1j, the restriction ˇi jR is
totally geodesic away from the ı–neighborhood of @R. Moreover, if ı>0 is sufficiently
small and i 2 Z>0 is sufficiently large, then we can in addition assume that for every
geodesic segment s in the ı–neighborhood of @R in R, either lengthH2.s/ < � or
†.s; zLi/ is quite small, so that ˇi j s is a .1C �; �/–quasi-isometric embedding.

Then the claim immediately follows.

Since � > 0 is arbitrary in Claim 7.8, the map ˇ1 , which is already defined on @R,
must extend to R so that ˇ1 jR is a totally geodesic isometric embedding. Thus ˇi

uniformly converges to ˇ1 , realizing .�1; �1/ in the C 0 –topology. Since ˇi and ˇ1
are totally geodesic in the complements of �i and �1 , respectively, the convergence
is, in the C1–topology, uniform on compacts in the complement of z�1 .

Remark 7.9 The bending map ˇi has a natural normal vector field at all points x

away from the lifts of closed leaves of Li : namely, it is the direction of the ray from
ˇ.x/ to the fi –image of the point on zS corresponding to x . Then the limit of this
normal vector field yields a normal vector field on ˇi away from jz�1j.
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7.1 Construction of traintracks

Lemma 7.10 Let j�j be a geodesic lamination on a hyperbolic surface � homeo-
morphic to S . Then there exists a K > 0 such that for every � > 0, there exists an
.�;K/–nearly straight traintrack T D fRj gj on � fully carrying � , such that if a
vertical edge of T intersects a leaf of � , then the angle is �–close to �=2.

If � contains a closed leaf, then we can take K > 0 to be any number less than one
third of the length of the shortest closed leaf of � , and otherwise, we can take K to be
any positive number.

Such a traintrack can be obtained by taking a ı–neighborhood of j�j with sufficiently
small ı > 0 and splitting it so that each branch has a certain amount of length; the
details are left to the reader.

By Lemma 7.6, we have a �–equivariant pleated surface ˇ1 realizing .�1; �1/.
Similarly to Thurston coordinates on projective structures on S , the pair .�1; �1/
defines a projective structure C1 on S n j�1j. Indeed, since ˇ1 is a locally totally
geodesic embedding away from the total lift z�1 of �1 , it induces a �–equivariant
developing map f1 from zS minus jz�1j, so that f1.x/ projects orthogonally to the
image of ˇ1.x/ for all x 2 zS n z�1 . In particular there is a natural embedding �1 of
C1 onto �1 n j�1j.

For every � > 0, let T1.D T1;�/ be an .�;K/–nearly straight traintrack on �1 given
by Lemma 7.10, carrying �1 . Then let T1 D ��1.jT1j/ be the subset of C1 such
that the closure of C1 n T1 is a compact subset of C1 , on which C1 deformation
retracts.

Suppose that there is a nearly straight traintrack Ti on �i carrying Li . Then, since
vertical edges of Ti are transversal to Li , thus ��1

i .Ti/ DW Ti is a traintrack on Ci

carrying the canonical lamination Li . Note that Ti and Ti are the same traintrack
as topological traintracks on S and this identification is given by �i . The measured
laminations Li and Li represent the same element on ML.S/. Then if R and R are
corresponding branches of Ti and Ti , then the weight of R given by L is equal to the
weight of R given by Li . In this sense, .Ti ;Li/ is isomorphic to .Ti ;Li/ (as weighted
traintracks).

Then we show (I) and (II):

Proposition 7.11 Let � > 0. Then for sufficiently large i 2N , there exists a traintrack
Ti on �i isotopic to T1 on �1 as a topological traintrack on S , such that:

(i) Ti is .�;K/–nearly straight.

(ii) Ti carries Li .
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(iii) There is a marking-preserving �–rough isometry from �1 to �i that takes jT1j
to jTi j.

(iv) C1 njT1j is isomorphic to Ci njTi j (as projective surfaces) via their developing
maps, where Ti the traintrack on Ci that descends to Ti via the collapsing map
�i W Ci! �i .

Proof For each component P of �1 n jT1j, let P 0 be the component of �1 n j�1j
containing P . For each i , let  i W �1! �i be a marking-preserving ıi –rough isometry,
obtained by Theorem 5.2, with its distortion ıi going in the limit to 0 as i!1. Then
since a small neighborhood of j�1j contains j�i j for sufficiently large i , there is a
corresponding component P 0i of �i n j�i j such that �i.P

0
i / contains P . Let zP 0 be a

lift of P 0 to H2 . Then ˇ1 takes zP 0 isometrically into a (totally geodesic) hyperbolic
plane in H3 . The ideal boundary of this hyperplane cuts yC into two round open balls.
Then, one of those round balls is in the normal direction of ˇ1 j zP 0 (see Remark 7.9).
Let zQ0 be the region in this round ball that conformally projects onto ˇ1. zP 0/ via the
orthogonal projection to the hyperplane. Since P is a subset of P 0 , let zQ be the regain
in zQ0 conformal to ˇ1.P / via the projection.

Similarly, ˇi isometrically embeds zP 0i into H2 in H3 , and we let zQ0i be the region in
yC conformal to zP 0i via the orthogonal projection to this hyperplane. For sufficiently
large i , zQ0i contains zQ since  i. zP

0
i / contains zP and ˇi is sufficiently close to ˇ1 .

Then via the conformal isomorphisms zQ0 Š zP 0 and zQi Š
zPi , we have an embedding

z�i W
zP ! zP 0i . Then ˇi ı z�i smoothly converges to ˇ1 as i !1. Thus, for every

� > 0, if i is sufficiently large, z�i and z i are �–close on zP (in the C1 topology).

Moreover, since ˇi ! ˇ1 , if i is sufficiently large then different complementary
components of j zT1j have disjoint images in z�i n j

z�i j. Thus we have a conformal
embedding z�i W z�1 n j zT1j ! z�i n j

z�i j that commutes with the action of �1.S/. Then
it descends to an embedding �i W �1 n jT1j ! �i n j�i j. Moreover, for every � > 0, if
i is sufficiently large, �i and  i are �–close on �1 n jT1j. Since  i converges to
an isometry as i !1, therefore �i n Im �i enjoys a traintrack structure Ti carrying
Li (proving (ii)) that satisfies (i) and (iii) for sufficiently large i . There is a unique
isomorphic embedding of C n jT1j into Ci n jLi j compatible with their developing
maps, such that it descends to �i via the collapsing maps of C and Ci . Hence Ti also
satisfies (iv).

Proof of Proposition 7.3(III)(i) By the arguments above, we can assume that T1 is
.�;K/–nearly straight with the fixed constant K > 0 and sufficiently small � > 0.

Let b be a switch point of T1 . Then, since b is in the complement of j�1j, the
pleated surface ˇ1WH2 ! H3 is smooth at each lift zb of b to H2 . Thus there is
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a unique point zb on yC that orthogonally projects to ˇ1.zb/ on ˇ1 from its normal
direction (see Remark 7.9).

Pick a round circle c.zb/ on yC containing zb so that the hyperplane bounded by c.zb/
contains ˇ1.zb/ and so that it is “nearly orthogonal to the traintrack of zT1 near zb”:
namely, given any � > 0, if T1 is sufficiently straight (ie � > 0 is sufficiently small),
then for each leaf ` of �1 passing through the vertical edge of zT1 containing b , the
geodesic ˇ1.`/ is �–nearly orthogonal to the hyperplane. For different lifts zb of b ,
we �–equivariantly take such round circles c.zb/. (Note that the upper bound of the
number of branches points on T1 depends only on the topological surface S .)

Then, since each branch of zT1 has length at least K and we can pick sufficiently
small � > 0, for each branch zR1 of zT1 , letting zb1 and zb2 be the switch points on the
different vertical edges of zR1 , their corresponding round circles c.zb1/ and c.zb2/ are
disjoint (in yC ). Let A. zR1/ denote the round cylinder bounded by c.zb1/ and c.zb2/.
Then the convex hull in H3 of A. zR1/ contains most of ˇ1. zR1/.

Consider the two copies of H2 in H3 bounded by c.zb1/ and c.zb2/. Then for every
� > 0, if � > 0 is sufficiently small, the distance between these hyperplanes is at least
K � � for all branches zR1 of zT1 . Therefore the modulus of A. zR1/ is at least
.K� �/=2� .

For all sufficiently large i , set Ti D fRi;j g to be the .�;K/–nearly straight traintrack
on �i obtained by Proposition 7.11. Note that for different i , the traintracks Ti are
isomorphic as smooth traintracks and those isomorphisms restrict, for each j , to a
diffeomorphism between corresponding branches Ri;j . Accordingly, set Ti D fRi;j gj

to be the corresponding traintrack on Ci , so that �i maps Ri;j to Ri;j for each j . In
addition there is a branch R1;j of T1 corresponding to Ri;j and Ri;j .

Proposition 7.12 For every � > 0, if � > 0 is sufficiently small, then for i sufficiently
large so that Ti is .�;K/–nearly straight, we can isotope Ti on Ci by a �–small isotopy
of the vertical edges of Ti , so that, if R, R and R1 are corresponding branches of zTi ,
zTi and zT1 respectively, then:

(i) .Ti ;Li/ remains isomorphic to .Ti ;Li/ as weighted traintracks.

(ii) Each branch R of zTi is supported on the round cylinder A.R1/, and the
modulus of A.R1/ is at least .K� �/=2� .

(iii) Both horizontal edges of R intersect each leaf of the circular foliation of A.R1/
at angles in .�=2� �; �=2C �/.

(iv) The isotopy moves each vertical edge of Ti at most � in the Hausdorff distance
with respect to the Thurston metric on Ci .
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Proof In this proof, we can assume that i is sufficiently large. Let R and R be
corresponding branches of zTi and zTi , respectively. Then let P be a stratum of .H2; z�i/

that intersects R. Let P D z��1
i .P /, where z�i W

zCi!H2 is the lift of �i WCi! �i .

The horizontal edges of R are contained in different 2–dimensional strata of .H2; z�i/.
Then those strata bound a region in H2 containing all other strata intersecting R.

First suppose that P is one of those other strata, so that P intersects no horizontal
edge of R. Let PA.R1/ be P \f �1

i .A.R1//. Then we show:

� PA.R1/ is a rectangle if dimPD2, or an arc supported on A.R1/ if dimPD1.

� PA.R1/ is �–close to R\P with the Thurston metric on C .

Suppose, in addition, that P is a leaf of z�i . If � > 0 is sufficiently small, then the
geodesic ˇi.P / is �–close to the axis of A.R1/ since ˇi!ˇ1 as i!1. Thus, we
can assume that for each leaf c of the circular foliation of A.R1/, if we let Hc �H3

be the hyperbolic plane bounded by c , then ˇi.P / intersects Hc in a single point at an
angle �–close to �=2. If P has no atomic measure, fi.P/ is a circular arc on yC . Then,
if � > 0 is sufficiently small, fi.P/ intersects each leaf of the foliation of A.R1/ at
an angle �–close to �=2. In particular fi.P/\A.R1/ is a connected circular curve
supported on A.R1/. Thus, if � > 0 is sufficiently small, ˇi.P / is sufficiently close
to the axis of A.R1/, and therefore f �1

i .A.R1//\P is �–close to R\P .

If P has positive atomic measure, then P is foliated by leaves of zLi . Then if ` is a leaf
of this foliation, then fi.`/\A.R1/ is supported on A.R1/ as above. In addition,
its f �1

i –image is �–close to `\R, and there is a small isotopy between them in `.
Since P \f �1

i .A.R1// is the union of such arcs, similarly it is a rectangle supported
on A.R1/ and �–close to R\P .

Suppose that P is a complementary region of zLi . Then accordingly P is a com-
plementary region of zLi . If � > 0 is small enough, R\P is a very thin rectangle
bounded by the vertical edges of R and two boundary geodesics of P intersecting
them. Then, regardless of the choice of P , those boundary geodesics are �–close in R

and their ˇi –images are geodesics in H3 that are �–close to the axis of A.R1/ in
the convex hull Conv.A.R1//. On the other hand, the other boundary geodesics of
ˇi.P / are far away from ConvA.R1/. Then fi.P/\A.R1/ is a rectangle supported
on A.R1/. Hence, if � > 0 is sufficiently small, since fi embeds P into yC , then
P \f �1

i .A.R1// is a rectangle supported on A.R1/ and �–close to P \R.

Next suppose that P contains a horizontal edge of R. Then P \R is a thin rectangle
bounded by the vertical edges of R, a leaf ` of zLi , and a smooth boundary segment m

of j zTi j. Then, if � > 0 is sufficiently small, m is an almost geodesic (ie a bilipschitz
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curve with very small distortion), and thus ˇi.`/ and ˇi.m/ are �–close to the axis of
A.R1/ in ConvA.R1/, independent of the choice of P . Let l be the boundary leaf
of P corresponding to ` and m be the smooth boundary segment of j zTi j corresponding
to m. Then fi embeds P into yC . Thus fi.l/ is a circular arc and fi.m/ is an “almost”
circular arc on yC , and they intersect A.R1/ almost orthogonally. Therefore, if � > 0

is sufficiently small, each leaf of the foliation A.R1/ intersects fi.l/ and fi.m/
in single points �–orthogonally. Thus there is a unique thin rectangular component
of fi.P \ zTi/\A.R1/ bounded by fi.l/, fi.m/ and the boundary circular loops
of A.R1/. Let PA.R1/ be the subset of P that diffeomorphically maps onto the
component by fi . Then similarly PA.R1/ is �–close to R\P .

We have shown that if P is a stratum of .H2; zLi/ intersecting R, then PA.R1/ is
either an arc or a rectangle supported on A.R1/. Thus PA.R1/ is diffeomorphic to
the product of a point and an interval or of two intervals, where the second factor is in
the direction orthogonal to the circular leaves of A.R1/. Let R0 be the union of all
PA.R1/ over all strata P of .H2; zLi/ intersecting R. Then since the developing map
is a local homeomorphism, by continuity the product structures of PA.R1/ match up.
Therefore R0 is a (smooth) rectangle supported on A.R1/. In addition, since each
PA.R1/ is �–close to R\P , thus R0 is �–close to R if � > 0 is sufficiently small.

One can construct a desired small isotopy of the vertical edges of R. Construct small
isotopies all R\P and PA.R1/ in P for all strata P of .H2; zLi/ intersecting R so
that they match up.

7.2 Estimates of admissible multiarcs by transversal measure

Recall that T1 is an .�;K/–nearly straight traintrack carrying �1 and Ti is, for i

sufficiently large, an .�;K/–nearly straight traintrack carrying Li . Set Li D .�i ; �i/

for each i 2 N with a geodesic lamination �i and its transversal measure �i . We
prove Proposition 7.3(III)(ii):

Proposition 7.13 For every ı>0, if �>0 is sufficiently small and i 2N is sufficiently
large, then for all corresponding branches R and R of zTi and zTi respectively, we have
jlengthA.R/.a/� z�i.R/j< ı for each vertical edge a of R.

Idea of proof Let R1 be the branch of zT1 corresponding to R and Ri . Then
there are hyperbolic planes in H3 almost orthogonal to the ˇ1–image of R1 . The
collapsing map z�i W

zCi!z�i on R1 corresponds to the nearest point projections in H3

to the hyperbolic planes supporting ˇ1 on R1 . Thus this proposition is proven by
carefully relating lengthA.R/.a/ and z�i.R/ in a hyperbolic plane almost orthogonal
to ˇ1 jR1 .
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Remark 7.14 Let Li be the canonical measured lamination on Ci , which descends to
Li . Then the transversal measure of R given by zLi is equal to that of R given by zLi .
Recall that R is foliated by the circular arcs parallel to its vertical edges (Section 6.1).
Then Proposition 7.13 holds for the length of each leaf of the foliation, since the leaves
have almost the same length.

Proof of Proposition 7.13 We have the convergence ˇi! ˇ1 (Lemma 7.6). Recall
that T1 is �–nearly straight with a sufficiently small � > 0. Throughout this proof,
� > 0 is a sufficiently small number, which depends on ı > 0 but not on the choices of
sufficiently large i and the corresponding branches R and R.

For an arbitrary branch R of zTi , let I D I.R/ be the minimal sublamination of
zL containing the leaves of zLi intersecting R (cf [1]). Set I D .�I ; �I /, where
�I 2 GL.H2/ and �I D z�i j �I . Accordingly, let ˇI W H

2!H3 denote the bending
map induced by I . Then the total transversal measure of I is z�i.R/. In particular, for
every geodesic segment s on H2 transversal to I , we have �I .s/� z�i.R/. Therefore
ˇI W H

2!H3 continuously extends to @1H2 Š S1! @1H3 .

Each complementary component of j�I j is bounded by at most two leaves of �i . Thus
the geodesic lamination �I extends to a geodesic foliation FI on H2 . Furthermore,
since Ti is a .1C�;K/–nearly straight traintrack carrying �i , for every ı > 0, if � > 0

is sufficiently small, then each vertical edge of R is ı–nearly orthogonal to every leaf
of FI unless they are disjoint.

Let CI denote the projective structure on the open disk D2 associated with the measured
lamination I on H2 . Since R is connected and I is a sublamination of zLi , then
CI , as a projective surface, isomorphically embeds into zCi in a canonical way (see
[1, Section 3.8.1]). In particular, since I D zLi on R, then R canonically embeds
into CI . Let fI W D

2! yC denote the developing map of CI , and let FI denote the
canonical foliation on CI corresponding to FI , so that the collapsing map �I W CI!H2

takes each leaf of FI to a leaf of FI diffeomorphically. Then the dual tree of FI is
homeomorphic to an open interval. With the Thurston metric on C , the collapsing map
�I continuously extends to a homeomorphism between ideal boundaries @1CI and
@1H2 .Š S1/.

There are exactly two points on @1CI that are not endpoints of leaves of FI ; they
divide @1CI .Š S1/ into two open intervals. Pick one of the intervals, and let ˆ be
the projection of CI onto the interval along leaves of FI . With respect to the Thurston
metric, CI is divided into Euclidean and hyperbolic regions. Then each connected
component of the Euclidean region is foliated by leaves of FI sharing endpoints on
@1CI , and ˆ takes the component to the end point in the chosen interval.
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Since each vertical edge a of R is transversal to the foliation FI , ˆ.a/ is an arc b in
the open interval in @CI . Recalling that ˇI W H

2!H3 extends to @1H2! @1H3

and �I W CI ! H2 to @1CI ! @1H2 , we have fI D ˇI ı �I on @1CI . Since
�I W @1CI ! @1H2 is a homeomorphism, we can identify b with its image in @H2 .
Thus let ˇbW b! yC denote the (continuous) path obtained by restricting ˇI to b .

The transversal measure �I of I is defined for arcs in H2 transversal to I . Since the
total measure of �I is finite, �I continuously extends to arcs in @H2 . Then ˇI j@1H2

is determined by �I j @1H2 . In particular, ˇb can be regarded as a bending map of
b � @1H2 by the measure �I on b .

Let g � H3 be the axis of the round cylinder A.R/. For each vertical edge a of
R, there is a map to its corresponding boundary circle h of A.R/. Identifying yC
with S2 conformally, we normalize yC by an element of PSL.2;C/ so that h is the
equator. Let Conv.A/ be the convex hull of A.R/ in H3 . Then for every ı > 0,
if � > 0 is sufficiently small, then for all branches R of zTi and for all leaves l

of zLi intersecting R, since the geodesic ˇ.l/ is nearly orthogonal to the boundary
hyperplanes of Conv.A.R//, the geodesic segments ˇI .l \R/ and g\Conv.A.R//
are ı–close in the Hausdorff metric. Thus, for any (small) ı > 0, if � > 0 is sufficiently
small, then Im.ˇb/ is contained in a ı–neighborhood of an endpoint O of g on yC
in the spherical metric. In particular, Im.ˇb/ is contained in a round disk D on yC
bounded by h.

By the definition of ˆW CI ! @CI , for each x 2 a, ˆ.x/ is an endpoint of the leaf
` of FI containing x . Consider the ray from x to ˆ.x/ contained in `. Then fI

homeomorphically takes this ray onto a circular arc in yC that connects the point fI .x/

to the point fI .ˆ.x//D ˇb.ˆ.x//. Let rx W Œ0; 1�!D denote this circular arc with
rx.0/D fI .ˆ.x// and rx.1/D fI .x/. Then, since the geodesic ˇI ı �I .`/ is nearly
orthogonal to the hyperplane Conv.h/, for every ı > 0, if � > 0 is sufficiently small,
then rx and h are ı–nearly orthogonal (at the point fI .x/) and 
x.0/ is ı–close to
the center O .

There is a unique maximal ball in CI whose core contains x . By the definition of a
maximal ball, its fI –image is a round open ball Rx in yC . The boundary circle of
Rx bounds a hyperbolic plane Hx in H3 . Then rx orthogonally intersects @Rx at
the endpoint rx.0/. For all ı > 0, if � > 0 is sufficiently small, then, since ˇI ı �I .`/

is nearly orthogonal to Conv.h/, the curvature of rx W Œ0; 1�!D � S2 is less than ı
(in the induced spherical metric on D ). Let rx W Œ0; 1�!D be the spherical geodesic
segment in D connecting the endpoints of rx . Then, since rx.0/ is sufficiently close
to the center O of D and the curvature of rx.0/ is sufficiently small, for every ı > 0,
if � > 0 is sufficiently small, then, (in particular) for all x 2 a, the “almost” geodesic
segment rx is ı–close to the geodesic segment rx in the Hausdorff metric in D .
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Lemma 7.15 For every x on the arc a, there exists a small neighborhood Ux of x in
a, such that if y 2 Ux , then rx and ry are disjoint, except possibly at their endpoints
close to O (ie possibly rx.0/D ry.0/).

Proof Since fI j a is an immersion into h, if y 2 a is sufficiently close to x , then
rx.1/D fI .x/ is different from ry.1/D fI .y/. If rx.0/D ry.0/, since rx and ry

are geodesic segments in the hemisphere D , they are disjoint except at rx.0/D ry.0/.

Next assume that rx.0/¤ ry.0/ for y 2 a sufficiently close to x . The foliation FI

on CI carries a canonical transversal measure that descends to I on H2 and it has
no atomic measure. Then, by continuity, if y is sufficiently close to x , the transversal
measure of the segment in a connecting x to y is sufficiently small. Therefore rx and
ry are disjoint. Let ` be the spherical geodesic in D through rx.0/ and ry.0/ with its
endpoints on h. Then rx and ry are contained in a component P of D n `, so that
the endpoints of rx and ry on the boundary P . Since P is convex and rx and ry are
disjoint, by the uniqueness of geodesics rx and ry must be disjoint.

For each x 2 a, let 
x W Œ0; 1�!D denote the geodesic segment on D�S2 connecting
the center O to rx.1/. Then 
x intersects hD@D orthogonally at 
x.1/. Let ˛DfI ja.
Parametrize a so that ˛W a!h�S2 is an isometric immersion, and identify a with the
closed interval Œ0;A�, where A denotes the length of ˛ . Then, as x 2 Œ0;A� increases,
the circular arc 
x W Œ0; 1�!D .x 2 Œ0; 1�/ changes by the continuous rotation of D

about O D 
x.0/ monotonically. Thus define 
 W a� Œ0; 1�!D by 
 .x; t/D 
x.t/.
Then 
 .x; 1/ D ˛.x/ for all x 2 a. Then 
 j a � .0; 1� is an immersion. (The
parametrized surface 
 is a fan where the vertex of the fan is O and the angle of the
fan is A.) Let E denote the domain a� Œ0; 1� of 
 with the metric obtained by pulling
back the spherical metric on D via 
 . Then we have

(2) Area.E/D AreaS2.D/ � .A=2�/DA:

Similarly define rW a � Œ0; 1�! D by r.x; t/ D rx.t/. Then, by Lemma 7.15, the
restriction of r to a� .0; 1� is an immersion. Clearly r j a� f0g is ˇb ıˆW a!D ,
and r j a�f1g is ˛W a! @D . Let F be the rectangular domain a� Œ0; 1� of r with the
pull-back metric of the spherical metric on D . Then the boundary edges of the rectangle
F correspond to the four curves ˛ , ˇb , r0 , and r1 . Applying the Gauss–Bonnet
theorem to F with respect to the spherical metric, we have

Area.F /C
Z
@F

k dsC
X

�p D 2� � 1;

where k is the curvature at smooth points of @F , and �p are the exterior angles
at non-smooth points p of @F , which include (infinitesimal) bending angles of ˇb
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corresponding to �I . Then, since ˇbW b!D is obtained by bending b with respect
to �I j b , then the third term

P
�p is �z�i.R/C 2� .

Next consider the second termZ
@F

k ds D

Z
ˇb

k dsC

Z
r0

k dsC

Z
r1

k dsC

Z
˛

k ds:

Since r0 and r1 are geodesic segments,
R

r0
k ds D 0 and

R
r1

k ds D 0. Since ˛ is
a segment of the geodesic loop @D on S2 , we have

R
˛ k ds D 0. For every ı > 0,

if � > 0 is sufficiently small, then the curvature at every smooth point x of ˛ is less
than ı , since ˇb.x/ is sufficiently close to O and Hx is almost orthogonal to the
hyperplane in H3 bounded by @D . Since we can assume that the length of ˇb is
sufficiently small, we have

R
@F k ds < ı . Thus:

Lemma 7.16 For every ı > 0, if i 2N is sufficiently large and � > 0 is sufficiently
small, then

�ı < Area.F /� z�i.R/ < ı

for all branches R of zTi .

By Equation (2) and Lemma 7.16, to prove Proposition 7.13 it suffices to show:

Proposition 7.17 For every ı > 0, if � > 0 is sufficiently small, then for every pair of
corresponding branches R and R of zT1 and zT1 respectively, and every vertical edge
a of R, we have

�ı < Area.F /�Area.E/ < ı;

where F and E are defined as above.

Proof Fix sufficiently small ı > 0. For each y 2 b , let gy W Œ0; 1�!D be the geodesic
segment from ODgy.0/ to ˇb.y/Dgy.1/. If � > 0 is sufficiently small, then Im.ˇb/

is contained in the ı–neighborhood of O . Thus lengthS2.gy/ < ı for all y 2 b . Define
gW b� Œ0; 1�!D by g.y; t/D gy.t/ for y 2 b and t 2 Œ0; 1�. Then g is smooth almost
everywhere since so is ˇb . Let G D b � Œ0; 1� equipped with the 2–form obtained
by pulling back the spherical Riemannian metric of D via g . In particular, this form
induces the arc length of ˇbW b!D when restricted to b�f1g D b . Then we see that
0 � Area.G/D

R
y2b

1
2

length.gy/ dy . Therefore, if � > 0 is sufficiently small, then
Area.G/ < ı , since length.ˇb/ and length.gy/ for all y 2 b are sufficiently small.

Let �0 be the (geodesic) triangle in D bounded by r0; 
0 , g0 , and �A the triangle
bounded by rA; 
A , gA . Then, if � > 0 is sufficiently small, then g0 and gA are
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sufficiently short so that AreaS2.�0/;AreaS2.�A/ < ı . Thus, it suffices to show that
for sufficiently small � > 0, we have

(3) jArea.F /�Area.E/j< Area.G/CArea.�0/CArea.�A/:

In order to prove Equation (3), we decompose the interval Œ0;A� so that it accordingly
decomposes F , E , G into subsets, and we show similar inequalities for the corre-
sponding subsets. Let X be the set of points x in Œ0;A� such that 
x and rx are
parallel, so that either 
x � rx (Type I) or 
x � rx (Type II) holds. Then accordingly
either 
x D rx [gx or 
x [gx D rx .

The supporting lamination jI j has measure zero in H2 , since it is obtained from the
measured lamination on a closed hyperbolic surface, which has measure zero. On a
subinterval J of Œ0;A� where ˇb is smooth, J \X is a finite set. Thus X has measure
zero in Œ0; 1�. Therefore, letting FX ;EX ;GX be the respective subsets of F;E;G

corresponding to X � Œ0; 1� in I � Œ0; 1�, we have

Area.FX /D Area.EX /D Area.GX /D 0:

The definition of X implies that X is a closed subset of Œ0;A�. Then the complement
of X is the union of at most countably many disjoint intervals Yk .k 2K/. Then the
Yk have open endpoints except at 0 and A. For each k 2 K , let 0 � yk < zk � 1

be the endpoints of Yk . In addition let Fk and Ek be the subsurfaces of F and E ,
respectively, corresponding to Yk�Œ0; 1�. Let Gk be the subsurface of G corresponding
to Œˆ.yk/; ˆ.zk/�� Œ0; 1�.

Then it suffices to show that if Yk does not contain an endpoint of Œ0;A�,

jArea.Fk/�Area.Ek/j � Area.Gk/;

and, if Yk contains an endpoint p of Œ0;A�,

jArea.Fk/�Area.Ek/j � Area.Gk/CArea.�p/:

(i) First we suppose that the interval Yk is an open interval .yk ; zk/. At least one
of the endpoints yk and zk must be of Type I, since ˇb is obtained by bending b .
Therefore the endpoints of Yk are either: (i–i) both of Type I (Figure 6), or (i–ii) of
the different types, Type I and II (Figure 7).

Suppose the case of (i–i). Then r.Fk/ is disjoint from O . Then Ek is naturally the
union of Fk and Gk such that Fk and Gk have disjoint interiors in Ek . In particular
Area.Ei/D Area.Fi/CArea.Gi/.

Suppose the case of (i–ii). Then there is a point t 2 .yk ; zk/ such that gt is “tangent” to
ˇb at ˆ.t/ so that the restrictions of g to Œˆ.yk/; ˆ.t/��Œ0; 1� and Œˆ.t/; ˆ.zk/��Œ0; 1�
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Fk

Gk

Figure 6: .yk ; zk/ with Type I ends

Fk

Gk

gt

Figure 7: .yk ; zk/ with Type I and II ends

O
ˇ ıˆ.yk/

ˇ ıˆ.A/

f .yk/

f .A/

Fk

Ek

Figure 8: .yk ; zk � with Type I at yk , Case I

are immersions of the opposite orientations (Figure 7). Let G0i be the component of
Gi nfˆ.t/g� Œ0; 1� that contains fˆ.yk/g� Œ0; 1� if yk is of Type I and fˆ.zk/g� Œ0; 1�
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if zk is of Type I. Then Ek is the union of Fk and G0
k

. In particular Area.Ek/ <

Area.Fk/CArea.G0
k
/ < Area.Fk/CArea.Gk/.

(ii) Next suppose that exactly one of the endpoints of Yk is closed. Consider the case
of Yk D .yk ; zk � so that zk D A. (The case of Œyk ; zk/ is similar.) First suppose, in
addition, that yk is of Type I. Then if � > 0 is sufficiently small, then either ryC� is
disjoint from all 
t for yk � t < ykC � (Case I, Figure 8) or 
yC� is disjoint from rt

for yk � t < yk C � (Case II, Figure 9).

O

ˇ ıˆ.yk/

ˇ ıˆ.A/

f .yk/

f .A/

Figure 9: .yk ; zk � with Type I at yk , Case II

O

ˇ ıˆ.yk/

ˇ ıˆ.zk/

f .yk/

f .zk/

Figure 10: Type II at yk

In Case I, we naturally have

Ek [�A DGk [Fk ;
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so that Ek and �A have disjoint interiors and Gk and Fk have disjoint interiors. Then
Ek nFk �Gk and Fk nEk ��A . Therefore

jArea.Ek/�Area.Fk/j< Area.Gk/CArea.�A/:

In Case II, we naturally have

Ek D Fk [Gk [�A;

so that Fk ;Gk ; �A have disjoint interiors. Then

0< Area.Ek/�Area.Fk/D Area.Gk/CArea.�A/:

Next suppose instead that yk is of Type II (Figure 10). Then .Ek nFk/t .Fk nEk/

is naturally embedded in Gk t�k . Thus

jArea.Ek/�Area.Fn/j< Area.Gk/CArea.�k/:

Lastly suppose that Yk is the closed interval. Then Yk must be the entire interval
Œ0;A�. Then a similar argument proves Equation (3).

8 Characterization of P� via Thurston coordinates

8.1 Local characterization of P� in GL

Let C Š .�;L/ be a projective structure on S with holonomy �W �1.S/! PSL.2;C/,
and let �W C ! � be the collapsing map. Let L be the canonical lamination on C ,
which descends to L by � . Let C0Š .�;L0/ be the corresponding projective structure
with holonomy � as in Section 1.5, so that C D GrM .C0/, where M is the maximal
weighted multiloop “contained in L” so that M DL�L0 . Similarly let �0W C0! �

be its collapsing map and L0 be the canonical lamination on C0 . Then C and C0

correspond to the same �–equivariant pleated surface H2 ! H3 . Given another
projective structure C 0 Š .� 0;L0/ 2P� , let �0W C 0! � 0 be its collapsing map and L0

be the canonical lamination on C 0 . Consider a shortest closed geodesic loop on � , and
let K > 0 be one-fourth of its length (or any positive number less than one-third of it).

Theorem 8.1 For every � > 0, there is a ı > 0, which depends only on C and � , such
that if C 0 Š .� 0;L0/ satisfies †� .L;L0/ < ı , then there are a traintrack T D fRj g on
S and marking homeomorphisms

�W S ! C; �0W S ! C0; �0W S ! C 0

taking T to admissible traintracks (on C;C0;C
0 ) such that:
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(I) � �.T / carries L on C , and it descends, by � , to an .�;K/–nearly straight
traintrack T on � carrying L.

� �0.T / carries L0 on C0 , and it descends, by �0 , also to T on � (carry-
ing L0 ).

� �0.T / carries L0 on C 0 , and it descends, by �0 , to an .�;K/–nearly straight
traintrack T 0 on � 0 carrying L0 .

By identifying T and its images by the homeomorphisms �; �0; �
0 , we have:

(II) C 0 is obtained by grafting C0 along a weighted multiloop M 0 carried by T , and
moreover M 0 is �–close L0�L0 on T .

(III) We can graft C and C 0 along some weighted multiloops carried by T , respec-
tively, to a common projective structure. Indeed, if there are weighted multiloops
yM and yM 0 carried by T such that yM CM D yM 0CM 0 on T , then

Gr yM .C /D Gr yM 0.C
0/:

Remark 8.2 In (II) and (III), we make the multiloops transversal to the circular
foliations of T ’s on C;C0;C

0 , so that they are admissible (by Lemma 7.2).

In (I), the correspondences between the traintracks on the projective surfaces and
the hyperbolic surfaces are up to small perturbations of the vertical edges (as in
Proposition 7.12).

The traintracks T;T 0 are obtained by Proposition 7.11. Thus we can in addition assume
that there is an �–rough isometry that takes T to T 0 that preserves the marking.

In Theorem B, L0�L0 is replaced by L0�L0 as they coincide as topological measured
laminations.

The following proposition immediately yields Theorem 8.1(I), and in addition it will
be promoted to Theorem 8.1(II) and (II).

Proposition 8.3 For every � > 0, there is a ı > 0 such that, if C 0 Š .� 0;L0/ is a
projective structure with holonomy � and †� .L;L0/ < ı , then there are a traintrack
T D fRj g

n
jD1

on S and marking homeomorphisms

�W S ! C; �0W S ! C0; �0W S ! C 0

taking T to admissible traintracks (on C;C0;C
0 ), such that:

(I) � �.T / descends by � to an .�;K/–nearly straight traintrack on � carrying L.
� �0.T / descends by �0 to the same .�;K/–nearly straight traintrack on �

(which carries L0 ).
� �0.T / descends by �0 to an .�;K/–nearly straight traintrack on � 0 carry-

ing L0 .
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(II) The developing maps of C , C0 , C 0 induce isomorphisms between C n �.T /,
C0 n�0.T /, C 0 n�0.T / as projective surfaces (see Definition 3.2).

Thus we can assume that �; �0; �
0 induce those isomorphisms, and:

(III) (i) For every branch Rj of T and its lift zRj to zS , the corresponding branches
�z0.zRj /, �z.zRj /, �z0.zRj / are supported on a common round cylinder on yC ,
where �zW zS ! zC , �z0W zS ! zC 0 and �z0W

zS ! zC0 are the lifts of � , �0 , �0 .
(ii) By identifying T and its images under � , �0 and �0 , then �0.Rj /� C 0 is

obtained by grafting �0.Rj /� C0 along a multiarc M 0
j that is �–close to

L0�L0 on Rj , and �.Rj /�C is obtained by grafting �0.Rj /�C0 along
the multiarc Mj corresponding exactly to L�L0 on Rj .

Proof Let C 0i Š .�
0
i ;L
0
i/ be a sequence in P� such that †� .L;L0i/! 0. Then it

suffices to show the proposition for C 0i with sufficiently large i . By Theorem 5.2,
� 0i ! � as i !1.

Without loss of generality, we can assume that both C and C0 appear in the sequence
fC 0i g infinitely many times. Since GL.S/ is compact, we can in addition assume that
jL0i j converges to a geodesic lamination �1 in the Hausdorff topology as i !1, by
taking a subsequence if necessary. For every � > 0, by applying Proposition 7.3 to
�; �; �1 and Lemma 6.2, we obtain the proposition. Note that since L0 has no leaves
of weight at least 2� , for every � > 0, if ı > 0 is sufficiently small, the weight of L0

is more than the weight of L0 minus � on each branch of T .

Proof of Theorem 8.1 For � > 0, let ı > 0 be the constant obtained by applying
Proposition 8.3. Then, for every C 0D .f 0; �/2P� with †� .L;L0/<ı , Proposition 8.3
yields a topological traintrack T D fRj g

n
jD1

on S and marking-preserving home-
omorphisms �W S ! C , �0W S ! C0 and �0W S ! C 0 . Thus we have (I) by
Proposition 8.3(I). In particular � and �0 take �.T / and �0.T /, respectively, to
the same .�;K/–nearly straight traintrack T on � carrying both L and (the geodesic
representative of) L0 on � . Recall that L0 has no closed leaf of weight at least 2� .

First we prove (II). We have a natural decomposition of S by the traintrack T :

S D .S n jT j/[ T D .S n jT j/[
� n[

jD1

Rj

�
:

Then, this decomposition of S descends to decompositions of C and C 0 via the
homeomorphisms � and �0 respectively:

C 0 D .C 0 n�0.T //[�0.T /D .C 0 n�0.T //[
�[

j

�0.Rj /

�
;

C0 D .C0 n�0.T //[�0.T /D .C0 n�0.T //[
�[

j

�0.Rj /

�
:
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Then by Proposition 8.3(II), �0 ı ��1 yields an isomorphism from .C0 n �.T // to
.C 0 n�0.T // compatible with the developing maps f and f 0 .

In addition, by Proposition 8.3(III)(i), for each j D 1; 2; : : : ; n the corresponding
branches �0.Rj / and �0.Rj / are supported on a common round cylinder. Since L0

has no closed leaf of weight at least 2� , by Proposition 8.3(III)(ii) we have �0.Rj /D

GrM 0
j
.�0.Rj // for some multiarc M 0

j that is �–close to �0.�0.Rj // n �0.�0.Rj //,
where �0 and �0 are the transversal measures of L0 and L0 respectively. Let �0W C0!

� and �0W C 0! � 0 be the collapsing maps. Then, by Proposition 8.3(I), �0 takes the
traintrack �0.T / on C0 to an .�;K/–nearly straight traintrack on � carrying L0 ,
and �0 takes the traintrack �0.T / on C 0 to an .�;K/–nearly straight traintrack on � 0

carrying L0 .

Since �0.T / carries L0 , the n–tuple f�0.�0.Rj //g
n
jD1

satisfies the switch condi-
tions of the traintrack �0.T / Š T . Similarly, since �0.T / carries L, the n–tuple
f�.�i.Rj //g

n
jD1

satisfies the switch conditions of the traintrack �.T / Š T . Thus
the n–tuple of their differences, f�0.�0 ı�0.Rj //��.�0 ı�.Rj //g

n
jD1

, satisfies the
switch conditions as well. Therefore, the n–tuple of the numbers of the arcs of M 0

j

.j D 1; 2; : : : ; n/ also satisfies the switch conditions. Thus, after isotoping M 0
j on

�.Rj / through admissible multiarcs so that their endpoints match up on the vertical
edges, the union

S
j M 0

j DWM
0 is a multiloop that is carried by the traintrack �.T /.

Note that the isomorphisms �0.Rj / D GrM 0
j
.�0.Rj //; j D 1; : : : ; n, as projective

surfaces remain true under such an isotopy (Lemma 6.2). Since �0.T / carries L and
�0.T / carries L0 , we can regard L0�L as a measured lamination on S carried by T .
Since �0.�0.Rj //��0.�0.Rj //, therefore L0�L is �–close to M 0 on T .

Next we compare the traintracks �0.T /� C0 and �0.T /� C 0 as projective structures
on T (compare with [2]). Let Ri and Rj be branches of T that are adjacent along a
vertical edge e . Then let mi and mj be arcs of M 0

i and M 0
j respectively, that share

an endpoint on e , so that mi [mj is a simple arc on Ri [Rj , which is obtained
by naturally gluing Ri and Rj along e . Since Rj and Ri are supported on a round
cylinder, the projective structure inserted by the grafting of Ri [Rj along mi [mj is
exactly the union of projective structures inserted by the graftings of Ri along mj and
of Rj along mj . Since this holds for all adjacent arcs, we have

�0.T /D
[
j

�0.Rj /D
[
j

GrM 0
j
.�0.Rj //D GrM 0.�0.T //:

Hence
C 0 D .C 0 n�0.T // [ �0.T /

D .C0 n�0.T //[ .GrM 0.�0.T ///D GrM 0.C0/:
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Next we prove (III), that is, Gr yM .C /D Gr yM 0.C
0/. Since C D GrM .C0/, we have

C D .C n�.T // [ �.T /D .C0 n�0.T //[GrM .�0.T //D GrM .C0/

and
C n�.T /D C0 n�0.T /:

The traintrack �0.T /D f�0.Rj /g.Š T / carries L0 . Thus the grafting of C0 along M

naturally decomposes into grafting of all branches:[
j

�.Rj /D �.T /D GrM .�0.T //D
[
j

GrM jRj .�0.Rj //:

In particular, �.Rj /D GrM jRj .�0.Rj //:

Since yM is also carried by �.T / Š T and each branch �.Rj / of �.T / on C is
supported on a round cylinder, yM is admissible on C (Lemma 7.2). Then Gr yM .C / is
well defined, and Gr yM .C /D Gr yM ıGrM .C0/.

Recall that the homeomorphism �W S!C represents the marking of C . Then there is
a marking homeomorphism y�W S!Gr yM .C / so that y� ı��1 induces an isomorphism
from C n�.jT j/ to Gr yM .C /n y�.jT j/ and Gr yMj

�.Rj /D y�.Rj / for all j D 1; : : : ; n,
where yMj D

yM j �.Rj /. Note that .M C yM / jRj is the multiarc on Rj such that the
number of its arcs is the sum of the number of the arcs of M j �0.Rj / and yM j �.Rj /.
Then y�.Rj / is obtained by grafting �0.Rj / along .M C yM / jRj , and thus

Gr yM .C /D
[
j

Gr
.MC yM /jRj

�0.Rj /[ .C0 n�0.T //:

Similarly, since Gr yM 0.C
0/D Gr yM 0 ıGrM 0.C0/, the traintrack T yields a decomposi-

tion of Gr yM 0.C
0/,

Gr yM 0.C
0/D

[
j

Gr
.M 0C yM 0/jRj

�0.Rj /[ .C0 n�0.T //:

Since MC yM DM 0C yM 0 on T , therefore Gr yM .C /D Gr yM 0.C
0/.

Theorem 8.4 For every � > 0 and every compact set X in the moduli space of S ,
there is a ı > 0 such that the assertions of Theorem 8.1 hold true for every projective
structure C Š .�;L/ on S with unmarked � in X .

Proof We observe that for the proof of Theorem 8.1, the assumption †� .L;L0/ < ı
is only used to guarantee that there is an .�;K/–nearly straight traintrack T on �
carrying both L and L0 , where K D K� is one-fourth of the length of the shortest
closed geodesic loop on � . (All traintracks in Theorem 8.1 are constructed from T .)
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Since X is compact, now let K be the infimum of K� over all � 2 T that project
to X . Then it suffices to show that for every � > 0, there is a ı > 0 such that if
C Š .�;L/ is a projective structure on S with holonomy � and with unmarked � in
X and C 0 Š .� 0;L0/ is another projective structure with the same holonomy � with
†� .L;L

0/ < ı , then there is an .�;K/–nearly straight traintrack T on � carrying both
L and L0 . This claim is equivalent to:

Claim 8.5 If there are two sequences, Ci Š .�i ;Li/ and C 0i Š .�
0
i ;L
0
i/, of projec-

tive structures on S with all unmarked �i in X , such that Hol.Ci/ D Hol.C 0i / and
†�i

.L;Li/ < ı for all i , then there is an .�;K/–nearly straight traintrack Ti on �i

carrying both Li and L0i for sufficiently large i .

For each i , without loss of generality, we can change the markings of Ci and C 0i
simultaneously by a single homeomorphism of S . Thus, by the compactness of GL

and X , we can in addition assume that �i converges to � 2 T and that jLi j and
jL0i j converge to � and �0 respectively in GL. Then since †�i

.Li ;L
0
i/ < ı , we have

†� .�; �
0/� ı . Thus if ı > 0 is sufficiently small, for every � > 0 there is an .�;K/–

nearly straight traintrack T on � carrying both geodesic laminations � and �0 . By
the convergence of �i , jLi j, jLi j, for sufficiently large i there is an .�;K/–nearly
straight traintrack Ti on �i that carries both Li and L0i .

8.2 Alternative proof of Ito’s theorem

Suppose that �W �1.S/! PSL.2;R/ is a fuchsian representation. Let � be the marked
hyperbolic structure H2= Im.�/ corresponding to � . Then, as discussed in Section 1,
given arbitrary C;C 02P� , we can express them in Thurston coordinates as C Š .�;M /

and C 0Š .�;M 0/ with unique multiloops M and M 0 . Then Theorem 1.3 also follows
from Theorem 8.4.

Theorem 8.6 C and C 0 can be transformed to a common projective structure by
grafting C along M 0 and C 0 along M ,

GrM 0.C /D GrM .C 0/:

Proof Recall that MLN denotes the set of weighted multiloops. Since � is fuchsian,
P� is canonically identified with MLN by Thurston coordinates (see Theorem 1.2).
Thus, for a different fuchsian representation �, there P� and P� are naturally identified
via MLN . In fact, there is a quasiconformal map ‚D‚�W yC! yC that conjugates �
to � and realizes the identification P� Š P� by postcomposing the developing maps
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of structures in P� with ‚. Then, if M is an admissible multiloop on C 2P� , then
‚ takes M to an admissible loop ‚.M / on ‚.C /. Then we have

‚.GrM .C //D Gr‚.M /.‚.C //:

Thus it suffices to show

Gr‚�.M 0/.‚�.C //D Gr‚�.M /.‚�.C
0//

for some fuchsian representation �.

Let DM be the (simultaneous) Dehn twist of S along all loops of M . Then Dk
M
.�/

denote the k –iterates of Dk
M

on � for k 2 Z>0 . Then †Dk
M
.�/.M;M 0/ ! 0 as

k!1. Note that DM acts trivially on the moduli space, and in particular it preserves
unmarked � . Let �k W�1.S/! PSL.2;R/ be the fuchsian representation realizing
Dk

M
.�/. Then, by Theorem 8.4, if k is sufficiently large, then

Gr‚�k
.M 0/.‚�k

.C //D Gr‚�k
.M /.‚�k

.C 0//:

8.3 Local characterization of P� in PML

Theorem 8.7 Let C Š .�;L/ be a projective structure on S with (arbitrary) holonomy
�W�1.S/! PSL.2;C/. For every � > 0, there is a neighborhood U of the projective
class ŒL� in PML such that, if another projective structure C 0Š .� 0;L0/ with holonomy
� satisfies ŒL0� 2 U , then there are a traintrack T on S and marking homeomorphisms
�W S ! C and �0W S ! C 0 such that, by identifying T and its images under those
homeomorphisms:

� T is an admissible traintrack on both C and C 0 .

� The traintrack T carries L on C , and the collapsing map �W C ! � descends T
to an .�;K/–nearly straight traintrack on � .

� The traintrack T carries L0 on C 0 , and the collapsing map �0W C ! � 0 descends
T to an .�;K/–nearly straight traintrack on � 0 ,

Indeed we have either

(i) GrM .C /D C 0 for a weighted multiloop M on C carried by T that is �–close
to L0�L calculated on T , or

(ii) C D GrM 0.C 0/ for a weighted multiloop M 0 D L�L0 on T .

Remark 8.8 Similarly to Theorem 8.1, to be precise, an �–small perturbation of the
vertical edges is needed, so that the images of traintracks are .�;K/–nearly straight
under the collapsing maps (as in Proposition 7.12).
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Proof If LD∅ or L0 D∅, then C or C 0 is accordingly a hyperbolic structure. In
particular � is fuchsian.

Then, by Theorem 1.2, if LD∅, then (i) holds and if L0 D∅ then (ii) holds. Thus
we can suppose that L;L0 ¤ ∅. Since the holonomy map HolW P! � is a local
homeomorphism, P� is a discrete subset of P. For a neighborhood U of ŒL� in PML,
let P.�;U / be the set of projective structures with holonomy � such that, in Thurston
coordinates, their projective measured laminations are in U . By Theorem 5.2, for
every neighborhood V of � in T, if U is sufficiently small then for C 0 Š .� 0;L0/

in P.�;U /, we have � 0 2 V . Thus if two projective structures in P.�;U / share a
measured lamination in Thurston coordinates, then they must coincide.

For every � > 0, if U is sufficiently small then for every C 0 Š .� 0;L0/ in P.�;U /

with ŒL0� 2 U , then †� .L;L0/ < � . Thus, as in Theorem 8.1, we can decompose C

and C 0 by a traintrack T D fRj gj on S given by Proposition 8.3.

As in the proof of Theorem 8.1, let �WS ! C and �0WS ! C 0 be the marking homeo-
morphisms obtained by Proposition 8.3, so that �.T / and �0.T / are corresponding
admissible traintracks on C and C 0 respectively. Let T be the .�;K/–nearly straight
traintrack on � carrying L and L0 such that �.T / descends by � . Let T 0 be the
.�;K/–nearly straight traintrack on � 0 such that �0.T / descends by �0 .

Then, for every � > 0, if U is sufficiently small then there is a constant c > 0 such
that the weight ratios �0.�0.Rj //=�.�.Rj // are �–close to c . Since P� is a discrete
subset of P, unless C D C 0 , we can in addition assume that either (Case one) c > 1,
or (Case two) 0< c < 1 and the ratios are exactly c for all j .

In Case one, �0.�0.Rj //��.�.Rj // is �–close to a positive multiple of 2� for each
j . Thus, similarly to the proof of Theorem 8.1(II), we can show that C 0 D GrM .C /

and M is �–close to L0�L calculated on T .

In Case two, we have cŒL�D ŒL0� with 0< c < 1. Since the ratio c is independent on
j , we see that L and L0 must be multiloops: otherwise, letting F be a subsurface
of S such that F \L is a minimal irrational lamination, the holonomy of C must
be different from that of C 0 on �1.F /. Then L�L0 must be a weighted multiloop
whose weights are 2� –multiples, since otherwise the holonomy C must be different
from that of C 0 . Therefore, letting M 0 be a multiloop L� L0 on �0.T /, we have
C D GrM 0.C 0/.
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