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Computing bHF by factoring mapping classes

ROBERT LIPSHITZ
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Bordered Heegaard Floer homology is an invariant for 3–manifolds with boundary.
In particular, this invariant associates to a handle decomposition of a surface F a
differential graded algebra, and to an arc-slide between two handle decompositions,
a bimodule over the two algebras. In this paper, we describe these bimodules for
arc-slides explicitly, and then use them to give a combinatorial description of cHF
of a closed 3–manifold, as well as the bordered Floer homology of any 3–manifold
with boundary.

57M27; 53D40

1 Introduction

Heegaard Floer homology is an invariant of 3–manifolds defined using Heegaard
diagrams and holomorphic disks; see the second author and Szabó [11]. This invariant
is the homotopy type of a chain complex over a polynomial algebra in a formal
variable U . The present paper will focus on cHF.Y / (with coefficients in F2 ), which
is the homology of the U D 0 specialization. This variant is simpler to work with,
but it still encodes interesting information about the underlying 3–manifold Y (for
instance, the Thurston norm [10]). Although the definition of cHF involves holomorphic
disks, the work of Sarkar and Wang [13] allows one to calculate cHF explicitly from
a Heegaard diagram for Y satisfying certain properties. (See also the second author,
Stipsicz and Szabó [9].)

Bordered Heegaard Floer homology (see the authors [6]) is an invariant for 3–manifolds
with parameterized boundary. A pairing theorem from [6] allows one to reconstruct the
invariant cHF.Y / of a closed 3–manifold Y which is decomposed along a separating
surface F in terms of the bordered invariants of the pieces.

In this paper we use bordered Floer theory to give another algorithm to computecHF.Y / (with F2 –coefficients). This algorithm is logically independent of [13], and
quite natural (both aesthetically and mathematically; see the authors [7]). It is also

Published: 1 December 2014 DOI: 10.2140/gt.2014.18.2547

http://msp.org
http://www.ams.org/mathscinet/search/mscdoc.html?code=57M27, 53D40
http://dx.doi.org/10.2140/gt.2014.18.2547


2548 Robert Lipshitz, Peter S Ozsváth and Dylan P Thurston

practical for computer implementation; some computer computations are described
in Section 9. A Heegaard decomposition of Y is determined by an automorphism �

of the Heegaard surface, and the complex we describe here is associated to a suitable
factorization of � . To explain this in slightly more detail, we recall some of the basics
of the bordered Heegaard Floer homology package.

We represent oriented surfaces by pointed matched circles, which are essentially handle
decompositions with a little extra structure; see [6] or the review in Section 1.1 below.
To a pointed matched circle Z , bordered Heegaard Floer theory associates a differential
graded algebra A.Z/. A Z –bordered 3–manifold is a 3–manifold Y0 equipped with an
orientation-preserving identification of its boundary @Y0 with the surface associated to
the pointed matched circle Z . To a Z –bordered 3–manifold, bordered Heegaard Floer
theory associates modules over the algebra A.Z/. Specifically, if Y1 is a Z –bordered
3–manifold, there is an associated module bCFA.Y1/, which is a right A1–module
over A.Z/. Similarly, if Y2 is a .�Z/–bordered 3–manifold, we obtain a different
module bCFD.Y2/ which is a left differential module over A.Z/. A key property of
the bordered invariants [6] states that the Heegaard Floer complex cCF.Y / of the closed
3–manifold obtained by gluing Y1 and Y2 along the above identifications is calculated
by the (derived) tensor product of bCFA.Y1/ and bCFD.Y2/; we call results of this sort
“pairing theorems”.

In [5] the authors construct bimodules which can be used to change the boundary
parameterizations. These are special cases of bimodules associated to 3–manifolds
with two boundary components. In that paper, a duality property is also established,
which allows us to formulate all aspects of the theory purely in terms of bCFD . This
has two advantages: bCFD involves fewer (and simpler) holomorphic curves than bCFA
does, and bCFD is always an honest differential module, rather than a more general
A1–module (like bCFA ). This point of view is further pursued by the authors in [8].
Suppose that a closed 3–manifold Y is separated into two pieces Y1 and Y2 along a
separating surface F . It is shown in [8] that cHF.Y / is obtained as the homology of the
chain complex of maps from the bimodule associated to the identity cobordism of F

into bCFD.Y1/˝F2
bCFD.Y2/; this result is restated as Theorem 2.19 below. (It is

also shown in [8] that the Heegaard Floer invariant for Y D Y1 [@ Y2 is identified
via a “Hom pairing theorem” with ExtA.Z/. bCFD.�Y1/; bCFD.Y2//, the homology of
the chain complex of homomorphisms from bCFD.�Y1/ to bCFD.Y2/. We will usually
work with the other formulation in order to avoid orientation reversals.)

A Heegaard decomposition of a closed 3–manifold Y is a decomposition of Y along a
surface into two particular simple pieces: handlebodies. The invariants of handlebodies
with suitable boundary parametrizations are easy to calculate. Thus, the key step to
calculating cHF from a Heegaard splitting is calculating the bimodule associated to a
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surface automorphism  to allow us to match up the two boundary parametrizations.
We approach this problem as follows. Any diffeomorphism  between two surfaces
associated to two (possibly different) pointed matched circles can be factored into
a sequence of elementary pieces, called arc-slides. Then Theorem 2.19 allows us
to compute the bimodule associated to  as a suitable composition of bimodules
associated to arc-slides.

Thus, the primary task of the present paper is to calculate the type-DD bimodule
associated to an arc-slide. These calculations turn out to follow from simple geometric
constraints coming from the Heegaard diagram, combined with algebraic constraints
imposed by the relation @2 D 0.

For most of this paper, we work entirely within the context of “type-D” invariants. This
allows us to avoid much of the algebraic complication of A1–modules which are built
into the bordered theory: the bordered invariants we consider are simply differential
modules over a differential algebra. (In practice, it may be convenient to take homology
to make our complexes smaller; the cost of doing this is to work with A1–modules.
We return to this point in Section 9.)

We now turn to an explicit description of all the ingredients in our calculation of cHF.Y /.

1.1 Algebras for pointed matched circles

As defined in [6], a pointed matched circle Z is an oriented circle Z , equipped
with a basepoint z 2 Z and 4k basepoints a , which we label in order 1; : : : ; 4k

and which are matched in pairs. This matching is encoded in a two-to-one function
M DMZ W 1; : : : ; 4k! 1; : : : ; 2k . We sometimes denote a by Œ4k� and write Œ4k�=M

for the range of the matching M . This matching is further required to satisfy the
following combinatorial property: surgering out the 2k pairs of matched points (thought
of as embedded zero-spheres in Z ) results in a one-manifold which is connected.

A pointed matched circle specifies a surface Fı.Z/ with a single boundary component
by filling in Z with a disk and then attaching 1–handles along the pairs of matched
points in a . Capping off the boundary component with a disk, we obtain a compact,
oriented surface F.Z/.

Given Z , there is an associated differential graded algebra A.Z/, introduced in [6].
We briefly recall the construction here, and describe some more of its properties in
Section 2.2; for more, see [6].

The algebra A.Z/ is generated as an F2 –vector space by strands diagrams � , defined
as follows. First, cut the circle along z so that it is an interval IZ . Strands diagrams
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are collections of nondecreasing, linear paths in Œ0; 1�� IZ , each of which starts and
ends in one of the distinguished points in the matched circle. The strands are required
to satisfy the following properties:

� Horizontal strands come in matching pairs: ie if i ¤ j and M.i/ D M.j /,
then � contains a horizontal strand starting at i if and only if it contains the
corresponding strand at j .

� If there is a nonhorizontal strand in � starting at some point i , then there is no
other strand in � starting at either j with M.j /DM.i/.

� If there is a nonhorizontal strand in � ending at some point i , then there is no
other strand in � ending at either j with M.j /DM.i/.

When we think of a strands diagram as an element of the algebra, we call the corre-
sponding element a basic generator.

Multiplication in this algebra is defined in terms of basic generators. Given two strands
diagrams, their product is gotten by concatenating the diagrams when possible, throwing
out one of any given pair of horizontal strands if necessary, and then homotoping straight
the piecewise linear juxtaposed paths (while fixing endpoints) and declaring the result
to be 0 if this homotopy decreases the total number of crossings. More precisely,
suppose � and � are two strands diagrams. We declare the product to be zero if any of
the following conditions are satisfied:

(1) � contains a nonhorizontal strand whose terminal point is not the initial point of
any strand in � .

(2) � contains a nonhorizontal strand whose initial point is not the terminal point of
any strand in � .

(3) � contains a horizontal strand which has the property that both it and its matching
strand have terminal points which are not initial points of strands in � .

(4) � contains a horizontal strand which has the property that both it and its matching
strand have initial points which are not terminal points of strands in � .

(5) The concatenation � �� of � and � contains two piecewise linear strands which
cross each other twice.

(See Figure 1 for an illustration.) Otherwise, we take the resulting diagram � � � ,
remove any horizontal strands which do not go all the way across, and then pull all
piecewise linear strands straight (fixing the endpoints).
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The differential of a strands diagram is a sum of terms, one for each crossing. The term
corresponding to a crossing c is gotten by forming the upward resolution at c (ie if two
strands meet at c , we replace them by a nearby approximation by two nondecreasing
paths which do not cross at c , in such a manner that the two initial points and two
terminal points are the same). If this resolved diagram has a double-crossing, we set it
equal to zero. Otherwise, once again, the corresponding term is gotten by pulling the
strands straight and dropping any horizontal strand whose mate is no longer present.
We denote the differential on these algebras by d ; differentials on modules will usually
be denoted @.

Figure 1: Vanishing products on A The five cases in which the multiplica-
tion on A vanishes are illustrated. The product on the left vanishes for both
of the first two reasons, the product in the center for both the third and fourth
reasons, and the product on the right for the last reason. Horizontal strands
are drawn dashed, to illustrate that they have weight 1

2
. All pictures are in

A.Z; 0/ , where Z represents a surface of genus 2 .

The product and differential endow A.Z/ with the structure of a differential algebra;
ie d.a � b/D .da/ � bC a � .db/.

A strands diagram � has a total weight, which is gotten by counting each nonhorizontal
strand with weight 1, each horizontal strand with weight 1

2
, and then subtracting

the genus k . Let A.Z; i/ �A.Z/ be the subalgebra generated by weight i strands
diagrams. This, of course, is a differential subalgebra.

Note also that for each subset s of Œ4k�=M , there is a corresponding idempotent I.s/,
consisting of the collection of horizontal strands Œ0; 1��M�1.s/. These are the minimal
idempotents of A.Z/, with respect to the partial order I1 � I2 if I1I2 D I1 .

A strands diagram � also has an underlying one-chain in H1.Z; a/, which we denote
in this paper by supp.�/ and called the support of � . At any position q between two
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consecutive marked points pi and piC1 in Z , the local multiplicity of supp.�/ is the
intersection number of � with Œ0; 1�� q .

A chord is an interval Œi; j � connecting two elements in Œ4k�. A chord � determines
an algebra element a.�/, which is represented by the sum of all strands diagrams in
which the strand from i to j is the only nonhorizontal strand. We denote the set of
chords by C.Z/, or simply C .

1.2 The identity type-DD bimodule

Before introducing the bimodules for arc-slides, we first describe a simpler bimodule
bDD.IZ/ associated, in a suitable sense, to the identity map. Motivation for calculating
this invariant comes from its prominent role in one version of the pairing theorem,
quoted as Theorem 2.19, below.

Definition 1.1 Let s; t � Œ4k�=MZ be subsets with the property that s and t form a
partition of Œ4k�=MZ . Then we say that the corresponding idempotents I.s/ and I.t/

are complementary idempotents.

Our bimodules have the following special form:

Definition 1.2 Let A and B be two dg–algebras. A DD bimodule over A and B is a
dg–bimodule M which, as a bimodule, splits into summands isomorphic to A i˝ jB
for various choices of idempotent i and j (but the differential need not respect this
splitting). (See also Section 2.3.2.)

Definition 1.3 The module bDD.IZ/ is generated by all pairs of complementary idem-
potents. This means that its elements are of the form r i˝i 0s , where r; s 2A.Z/, and i

and i 0 are complementary idempotents. The differential on bDD.IZ/ is determined by
the Leibniz rule and the fact that

@.i ˝ i 0/D
X
�2C

ia.�/˝ a.�/i 0:

(Here and later, the symbol ˝ denotes tensor product over F2 , unless otherwise
specified.)

In particular, the differential on bDD.IZ/ is determined by an element

AD
X
�2C

a.�/˝ a.�/ 2A.Z/˝A.Z/:
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If we let � denote the action of A.Z/˝A.Z/ on itself by multiplication on the outside
then the fact that bDD.IZ/, as defined above, is a chain complex is equivalent to the fact
that dACA�AD 0. (See Proposition 3.4 for an algebraic verification that bDD.IZ/
is, indeed, a chain complex.) The relevance of bDD.IZ/ to bordered Floer homology
arises from the following:

Theorem 1 The bimodule bDD.IZ/ is canonically homotopy equivalent to the type-
DD bimodule of the identity map defined using pseudoholomorphic curves in [5].

More precisely, in the notation of [5],

bDD.IZ/Š .A.Z/˝A.�Z//� 1CFDD.IZ/;

where we identify right actions by A.Z/ with left actions by A.�Z/DA.Z/op .

1.3 DD bimodules for arc-slides

We turn now to bimodules for arc-slides. Before doing this, we recall briefly the notion
of an arc-slide, and introduce some notation.

Let Z be a pointed matched circle, and fix two matched pairs C D fc1; c2g and
B D fb1; b2g. Suppose moreover that b1 and c1 are adjacent, in the sense that there
is an arc � connecting b1 and c1 which does not contain the basepoint z or any
other point pi 2 a . Then we can form a new pointed matched circle Z 0 which agrees
everywhere with Z , except that b1 is replaced by a new distinguished point b0

1
, which

now is adjacent to c2 and b0
1

is positioned so that the orientation on the arc from b1

to c1 is opposite to the orientation of the arc from b0
1

to c2 . In this case, we say that Z 0
and Z differ by an arc-slide m of b1 over C at c1 or, more succinctly, an arc-slide
of b1 over c1 , and write mW Z ! Z 0 . Let � 0 denote the arc connecting c2 and b0

1
.

See Figure 2 for two examples.

Note that if Z and Z 0 differ by an arc-slide, then there is a canonical diffeomorphism
from Fı.Z/ to Fı.Z 0/; see Figure 3. We will denote this diffeomorphism Fı.m/.

Let m be an arc-slide taking the pointed matched circle Z to the pointed matched
circle Z 0 . Our next goal is to describe an A.Z/–A.Z 0/–bimodule associated to m,
which we denote A.Z/bDD .mW Z! Z 0/A.Z 0/ , or just bDD.m/.

To describe the generators of bDD.mW Z! Z 0/ we need two extensions of the notion
of complementary idempotents to the case of arc-slides.
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b1
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b2
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c1

b2

c2 b01

Figure 2: Arc-slides Two examples of arc-slides connecting pointed
matched circles for genus-2 surfaces are shown: in both cases, the foot b1 is
sliding over the matched pair C D fc1; c2g (indicated by the darker dotted
matching) at c1 .

P
Q R

B
C

z

P 0
Q0 R0

B0 C

z

Figure 3: The local case of an arc-slide diffeomorphism On the left, we
have a pair of pants with boundary components labeled P , Q , and R , and
two distinguished curves B and C ; on the right, we have another pair of
pants with boundary components P 0 , Q0 , R0 and distinguished curves B0

and C . The arc-slide diffeomorphism carries B to the dotted curve on the
right, the curve labeled C on the left to the curve labeled C on the right,
and boundary components P , Q and R to P 0 , Q0 and R0 , respectively.
This diffeomorphism can be extended to a diffeomorphism between surfaces
associated to pointed matched circles: in such a surface there are further
handles attached along the four dark intervals; however, our diffeomorphism
carries the four dark intervals on the left to the four dark intervals on the right
and hence extends to a diffeomorphism as stated. (This is only one of several
possible configurations of B and C : they could also be nested or linked.)

Definition 1.4 Let s � Œ4k�=MZ and t � Œ4k�=M 0
Z 0 be subsets with the property

that s and t form a partition of Œ4k�=MZ 0 (where we have suppressed the identification
between the matched pairs Œ4k�=MZ and Œ4k�=MZ 0 ). We say that the corresponding
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idempotents I.s/ and I.t/ in A.Z/ and A.Z 0/ are complementary idempotents. An
idempotent in A.Z/˝A.Z 0/ of the form i ˝ i 0 , where i and i 0 are complementary
idempotents, is also called an idempotent of type X .

In a similar vein, we have the following:

Definition 1.5 Two elementary idempotents i of A.Z/ and i 0 of A.Z 0/ are subcom-
plementary idempotents if i D I.s/ and i 0 D I.t/ where s\ t consists of the matched
pair of the feet of C , while s[ t contains all the matched pairs, except for the pair of
feet of B . An idempotent in A.Z/˝A.Z 0/ of the form i ˝ i 0 , where i and i 0 are
subcomplementary idempotents is also called an idempotent of type Y . Two elementary
idempotents i of A.Z/ and i 0 of A.Z 0/ are said to be near-complementary if they
are either complementary or subcomplementary.

Given a chord � for Z , let a.�/ be the algebra element in A.Z/ associated to � .
Similarly, given a chord � for Z 0 , let a0.�/ be the algebra element in A.Z 0/ associated
to the chord � .

Definition 1.6 The restricted support suppR.a/ of a basic generator a 2A.Z/ is the
image of supp.a/ under the map H1.Z; a/!H1.Z; anb1/ gotten by contracting � to a
point. In other words, the restricted support of a is the collection of local multiplicities
of the associated one-chain at all the regions except � . Similarly, if a 2 A.Z 0/,
then the restricted support suppR.a/ of a is the image of supp.a/ under the map
H1.Z; a

0/!H1.Z; a
0 n b0

1
/ gotten by contracting � 0 to a point.

A short near-chord is a nonzero algebra element of the form .i � a � j /˝ .j 0 � b0 � i 0/
with the following four properties:

(1) The pairs .i ˝ i 0/ and .j ˝ j 0/ are near-complementary idempotents.

(2) suppR.a/D suppR.b
0/.

(3) The support of at least one of a or b0 is nonzero.

(4) The lengths of the (unrestricted) support of a and the (unrestricted) support of
b0 are both no greater than 1.

(In a particular degenerate case, we also allow one more kind of short near-chord; see
Definition 4.6.)

The above definition of short near-chords includes elements of the form .i �a.�/�j /˝j 0 ,
where both .i; j 0/ and .j ; j 0/ are near-complementary idempotents; and also i ˝ .j 0 �
a0.� 0/ � i 0/, where both .i; i 0/ and .i; j 0/ are near-complementary. (Note that an
element a˝ b with supp.a/D � and supp.b/D � 0 does not satisfy Property (1) of
Definition 1.6.)
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Definition 1.7 Let mW Z ! Z 0 be an arc-slide. Let N be any type-DD bimodule
over A.Z/ and A.Z 0/. Suppose N satisfies the following properties:

(AS-1) As an A.Z/–A.Z 0/–bimodule, N has the form

N D
M

i˝i0 near-complementary

A.Z/i ˝ i 0A.Z 0/:

(AS-2) For each generator I D i ˝ i 0 of N the differential of I has the form

(1-1) @.I/D
X

JDj˝j 0

X
k

.i � �k � j /˝ .j 0 � �0k � i 0/;

where the �k and �0
k

are strand diagrams with the same restricted support
(and k ranges over some index set) and J runs through the generators of N .
(For the �k as in (1-1), we will say that the differential on N contains
.i � �k � j /˝ .j 0 � �0k � i 0/.)

(AS-3) N is graded (see Section 2.2) by a �–free grading set S (see Definition 2.8).

(AS-4) All short near-chords appear in the differential; ie given a generator I D
i ˝ i 0 of N , the differential of I contains all short near-chords of the form
.i � � � j /˝ .j 0 � �0 � i 0/.

Then we say that N is an arc-slide bimodule for m.

Let Z and Z0 be pointed matched circles. We can form their connected sum Z #Z0 .
Given any idempotent I.s0/ of A.Z0/, we have a quotient map

qW A.Z #Z0/!A.Z/:

(For more on this, see Section 2.2.3.)

Definition 1.8 We say that an arc-slide bimodule N for mW Z! Z 0 is stable if for
any other Z0 and idempotent in A.Z0/, and either choice of connect sum Z # Z0 ,
there is an arc-slide bimodule M for m0W Z #Z0! Z 0 #Z0 with the property that
N D q�.M /, where q� denotes induction of bimodules, ie q�.M /DA.Z/˝A.Z#Z0/

M ˝A.Z 0#Z0/A.Z 0/.

Remark 1.9 In fact, stability is much weaker than it might appear from the above
definition. From the proof of Proposition 1.10, one can see that N is stable if there
exists some pointed matched circle Z0 of genus greater than one and a single associated
idempotent I in A.Z0/ with weight zero, so that for both choices of connected sum,
there are arc-slide bimodules M and N as in Definition 1.8 with N D q�.M /.
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The following is proved in Section 4.

Proposition 1.10 Let mW Z!Z 0 be an arc-slide. Then, up to isomorphism, there is a
unique stable type-DD arc-slide bimodule for m (as defined in Definitions 1.7 and 1.8).

The proof is constructive: after making some explicit choices, the coefficients in the
differential of the arc-slide bimodule are uniquely determined.

Definition 1.11 Let bDD.mW Z! Z 0/ be the arc-slide bimodule for m.

In [5], it is shown that for any mapping class �W Fı.Z/! Fı.Z 0/ which fixes the
boundary, there is an associated type-DD bimodule 1CFDD.�/. Given an arc-slide
mW Z ! Z 0 , let 1CFDD.Fı.m// denote this construction, applied to the canonical
diffeomorphism Fı.m/W Fı.Z/! Fı.Z 0/ specified by m.

Theorem 2 The bimodule bDD.mW Z! Z 0/ is canonically homotopy equivalent to
the type-DD bimodule 1CFDD.Fı.m// associated in [5] to the arc-slide diffeomor-
phism from Fı.Z/ to Fı.Z 0/.

More precisely, in the notation of [5], if bDD.m/ is an arc-slide bimodule given in
Proposition 1.10, then (up to homotopy) there is a canonical homotopy equivalence

bDD.m/' .A.Z/˝A.�Z 0//� 1CFDD.Fı.m//;

where we identify right actions by A.Z 0/ with left actions by A.�Z 0/DA.Z 0/op .

1.4 Modules associated to a handlebody

We now describe the modules associated to a handlebody. First we consider the case of
a handlebody with a standard framing, and then we show how the arc-slide bimodules
can be used to change the framing.

1.4.1 The 0–framed handlebody We start by fixing some notation. Let Z1 denote
the unique genus-1 pointed matched circle. Z1 consists of an oriented circle Z

equipped with a basepoint z and two pairs fa; a0g and fb; b0g of matched points.
As we travel along Z in the positive direction starting at z we encounter the points
a; b; a0; b0 in that order. Note that the pair fa; a0g specifies a simple closed curve
on F.Z1/, as does the pair fb; b0g.
Let Zg

0
D #g Z1 be the split pointed matched circle describing a surface of genus g ,

which is obtained by taking the connect sum of g copies of Z1 . The circle Zg
0
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a03 a3
a02 a2 a01 a1

b0
3

b3 b0
2

b2 b0
1

b1

z

Figure 4: Split pointed matched circle: the genus-3 case is illustrated.

has 4g marked points, which we label in order a1; b1; a
0
1
; b0

1
; a2; : : : ; b

0
g , as well as a

basepoint z . See Figure 4.

The 0–framed solid torus H1 D .H 1; �1
0
/ is the solid torus with boundary �F.Z1/ in

which fa; a0g bounds a disk; let �1
0

denote the preferred diffeomorphism �F.Z1/!
@H 1 . The 0–framed handlebody of genus g Hg D .H g; �

g
0
/ is a boundary connect

sum of g copies of H1 . Our conventions are illustrated by the bordered Heegaard
diagrams in Figure 5.

�7

�6

�5

�4

�3

�2

�1

˛4

˛3

˛2

˛1

ˇ2

ˇ1

z

Figure 5: Heegaard diagram for the 0–framed genus-two handlebody

We next give a combinatorial model yD.Hg/ for the type-D module bCFD.Hg/ associ-
ated to Hg . Let s D fai ; a

0
iggiD1

. The module yD.Hg/ is generated over the algebra by
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a single idempotent I D I.s/, and equipped with the differential determined by

@.I/D
gX

iD1

a.�i/I;

where �i is the arc in Zg connecting ai and a0i .

A straightforward calculation (see Section 7) shows:

Proposition 1.12 We have that the module yD.Hg/ is homotopy equivalent to the
module bCFD.Hg/D bCFD.H g; �

g
0
/ as defined (via holomorphic curves) in [6].

1.4.2 Handlebodies with arbitrary framings Before turning to handlebodies with
arbitrary framings, we pause for an algebraic interlude. Let M and N be type-
DD bimodules over A and B . Define Mor.M;N /, the chain complex of bimodule
morphisms from M to N , to be the space of bimodule maps from M to N , equipped
with a differential given by

@.f /D f ı @M C @N ıf:
(Under technical assumptions on A and B satisfied by the algebras in bordered Floer
theory, the homology of Mor.M;N / is the Hochschild cohomology HH�.M;N /

of M with N . See [8] for a little further discussion.)

Now, let .H g; �0
g ı  / be a handlebody with arbitrary framing. Here, we have

 W �F .Z/!�F.Zg
0
/ for some genus-g pointed matched circle Z . Fix a factorization

 D 1ı� � �ı n of  into arc-slides. Let  i W �F.Zi/!�F.Zi�1/. Here, Z0DZg
0

and Zn D Z .

As discussed in Section 1.3, associated to each  i is a bimodule A.Zi /
bDD . i/A.Zi�1/ .

Define

(1-2) yD.H g; �0
g ı /DMor

�bDD.IZn�1
/˝ � � �˝bDD.IZ0

/;

bDD. n/˝bDD. n�1/˝ � � �˝bDD. 1/˝ yD.H/
�
;

the chain complex of morphisms of A.Zn�1/˝ � � � ˝A.Z0/–bimodules. This com-
plex retains a left action by A.Z/, from the left action on bDD. n/. (This is illustrated
schematically in Figure 6.)

Theorem 3 The module yD.H g; �0
g ı  / is homotopy equivalent to the module

bCFD.H g; �0
g ı / as defined (via holomorphic curves) in [6].
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IZ0

IZ1

H

Y 1

Y 2

Figure 6: Changing framing by gluing mapping cylinders This is an il-
lustration of (1-2). The pieces labeled Y 1

and Y 2
represent the mapping

cylinders of  1 and  2 (see Section 2.1), and the pieces labeled IZi
represent

copies of F.Zi/� Œ0; 1� . The fact that the I pieces face right indicates they
have been reflected, ie dualized.

A priori, the module yD.H g; �0
g ı / depends not just on  but also the factorization

into arc-slides. Theorem 3 implies that, up to homotopy equivalence, yD.H g; �0
g ı /

is independent of the factorization. In fact, this homotopy equivalence is canonical up
to homotopy, a fact that will be used (and proved) in [7].

1.5 Assembling the pieces: Calculating HF^ from a Heegaard splitting

Let Y be a closed, oriented 3–manifold presented by a Heegaard splitting Y D
H1 [† H2 , where H1 and H2 are handlebodies, with @H1 D �† and @H2 D †.
Thinking of both H1 and H2 as a standard bordered handlebody H0 , we can think of
the gluing map identifying the two boundaries as a map  W F.Zg

0
/!�F.Zg

0
/.

Using  we get a module A.�Zg

0
/
yD .H g; �0

gı /, which is a left module over A.�Zg
0
/.

Using the identification
A.�Zg

0
/DA.Zg

0
/op;

Geometry & Topology, Volume 18 (2014)



Computing cHF by factoring mapping classes 2561

view yD.H g; �0
g ı /A.Zg

0
/ as a right module over A.Zg

0
/. So, A.Zg

0
/
yD .H g; �0

g/˝yD.H g; �0
g ı /A.Zg

0
/ becomes an A.Zg

0
/–bimodule.

Theorem 4 The chain complex cCF.Y /, as defined in [11] via holomorphic curves, is
homotopy equivalent to

Mor
�
A.Zg

0
/
bDD .IZg

0
/A.Zg

0
/;A.Zg

0
/
yD .H g; �0

g/˝ yD.H g; �0
g ı /A.Zg

0
/

�
;

which is the chain complex of bimodule morphisms from bDD.IZg

0
/ to yD.H g; �0

g/˝yD.H g; �0
g ı /.

(Compare to Theorem 2.19 in Section 2.5.)

To keep the exposition simple, we have suppressed relative gradings and spinc –
structures from the introduction. However, this information can be extracted in a
natural way from the tensor products, once the gradings on the constituent modules
have been calculated, ie once we have graded analogues of Theorems 2 and 3. We
return to a graded analogue of Theorem 4 in Section 7.

1.6 More computations: Open books, bordered invariants

Theorem 2 can be combined with slight variants on Proposition 1.12 for other kinds of
computations as well.

As a first example, suppose one is given an open book decomposition of a 3–manifold Y ,
with connected binding. Let F denote the fiber of the open book and  W F ! F

the monodromy. Let x W F [@ �F ! F [@ �F be the result of extending  by the
identity map of �F . Fix a pointed matched circle Z representing F . There is a
particular bordered handlebody, which we call the self-gluing handlebody Hsg , so that
@Hsg D Z [ .�Z/ and

Y D Hsg [ x HsgI
see Definition 9.2. Factoring  into arc-slides gives a formula for cCF.Y /, analogous
to Theorem 4, in terms of the module bCFD.Hsg/ and the bimodules for the arc-slides.
The invariant bCFD.Hsg/ is computed in Theorem 9.3, completing this algorithm for
computing cCF.Y / from an open book decomposition. See Section 9.5 for a (computer-
assisted) example.

As a second example, one can also compute the bordered invariants of arbitrary bor-
dered 3–manifolds Y . The new ingredient here is a computation of the invariants of
elementary cobordisms, Proposition 8.2. (The answer is an amalgam of bCFD.H1/

and 1CFDD.I/.) From there, one decomposes an arbitrary bordered 3–manifold as a
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composition of elementary cobordisms with standard framings and mapping cylinders
of arc-slides, and again uses an analogue of the formula from Theorem 4 to obtain
bCFD.Y /. See Section 8 for more details.

One can obtain bCFA.Y / from bCFD.Y / via the duality theorem [5, Proposition 9.2];
see also Section 9.1. This gives a finite-dimensional but fairly large for model for bCFA .
One can obtain a smaller model by using homological perturbation theory; this is
reviewed, with an example, in Sections 9.2–9.4.

1.7 Organization

In Section 2, we give some of the background on bordered Floer theory needed for
this paper; for further details the reader is referred to [6; 5]. In Section 3, we calculate
the DD bimodule for the identity map, verifying Theorem 1. The proof follows from
inspecting the relevant Heegaard diagram and applying the relations which are forced by
@2 D 0. In Section 4, we calculate the DD bimodules for arc-slides. This uses similar
reasoning to the proof of Theorem 1. In Section 5, we explain the specialization of
these to the genus-one case, for concreteness. In Section 6 we compute gradings on the
arc-slide bimodules (needed for a suitably graded analogue of Theorem 4). Note that
we do not at present have a conceptual description of the bimodules for arbitrary surface
diffeomorphisms (rather, they have to be factored into arc-slides, and the corresponding
bimodules have to be composed); however we do give an intrinsic description of its
corresponding grading set. This is done in Proposition 6.13. In Section 7, we compute
the invariant for handlebodies with the preferred framing �0 , which is quite easy, and
assemble the ingredients to prove the main result, Theorem 4 (as well as a graded
version).

The computations of the arc-slide bimodules also lead quickly to a description of the
bordered Heegaard Floer invariants for arbitrary bordered 3–manifolds. The main
ingredient beyond what we have explained so far is the invariant associated to an
elementary cobordism that adds or removes a handle. This is an easy generalization of
the calculations for handlebodies, and is discussed in Section 8.

The point of view of A1–modules, which we have otherwise avoided in this paper,
allows one to trade generators for complexity of the differential, and is useful in practice.
This is discussed in Section 9, along with some examples.

1.8 Further remarks

Theorem 4 gives a purely combinatorial description of cHF.Y /, with coefficients in
Z=2Z, in terms of a mapping class of a corresponding Heegaard splitting. We point out
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again that this calculation is independent of the methods of [13]. Indeed, the methods
of this paper are based on general properties of bordered invariants, together with
some very crude input coming from the Heegaard diagrams (see especially Theorems 1
and 2). The particular form of the bimodules is then forced by algebraic considerations
(notably @2 D 0).

The DD bimodule for the identity (as described in Theorem 1) was also calculated
in [8, Theorem 14], by different methods. The proof of Theorem 1 is included here
(despite its redundancy with results of [8]), since it is a model for the more complicated
Theorem 2.

In the present paper, we have calculated the cHF variant of Heegaard Floer homology
for closed 3–manifolds. This is also a key component in the combinatorial description
of the invariant for cobordisms, which will be given in a future paper [7].
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2 Preliminaries

In this section we will review most of the background on bordered Floer theory
needed later in the paper. In Section 2.1, we recall the mapping class group (or rather,
groupoid) relevant to our considerations. In Section 2.2, we amplify the remarks in the
introduction regarding the algebras A.Z/ associated to pointed matched circles. In
Section 2.3, we review the basics of the type-D modules associated to 3–manifolds
with one boundary component. We also introduce the notion of the coefficient algebra
of a type-D structure, which is used later in the calculation of arc-slide bimodules.
In Section 2.4, we review the case of type-DD modules for 3–manifolds with two
boundary components, and introduce their coefficient algebras. In Section 2.5, we turn
to the versions of the pairing theorem that will be used in this paper. For more details
on any of these topics, the reader is referred to [5; 6; 8].

This section does not discuss the type-A module associated to a bordered 3–manifold
with one boundary component, nor the type-DA or -AA modules associated to a
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bordered 3–manifold with two boundary components. By [5, Proposition 9.2] (or
any of several results from [8]), these invariants can be recovered from the type-D
and type-DD invariants. We use these results to circumvent explicitly using type-A
modules in most of the paper, though we return to them in Section 9.

2.1 The (strongly-based) mapping class groupoid

As discussed in the introduction, the main work in this paper consists in computing the
bimodules associated to arc-slides. Since arc-slides connect different pointed matched
circles, they correspond to maps between different (though homeomorphic) surfaces.
To put this phenomenon in a more general context, we recall some basic properties of
a certain mapping class groupoid.

Fix an integer k . Let Z D .Z; a;M; z/ be a pointed matched circle on 4k points. We
can associate to Z a surface Fı.Z/ as follows. Let D be a disk with boundary Z .
Attach a 2–dimensional 1–handle to @D along each pair of matched points in a . The
result is a surface Fı.Z/ with one boundary component, and a basepoint z on that
boundary component. Let F.Z/ denote the result of filling the boundary component
of Fı.Z/ with a disk; we call the disk F.Z/nFı.Z/ the preferred disk in F.Z/; the
basepoint z lies on the boundary of the preferred disk.

(The construction of F.Z/ given here agrees with [5; 6], and differs superficially from
the construction in [8].)

Given pointed matched circles Z1 and Z2 , the set of strongly-based mapping classes
from Z1 to Z2 , denoted MCG0.Z;Z2/, is the set of orientation-preserving, iso-
topy class of homeomorphisms �W Fı.Z1/ ! Fı.Z2/ carrying z1 to z2 , where
zi 2 @Fı.Zi/ is the basepoint:

MCG0.Z1;Z2/D
˚
�W Fı.Z1/

Š�! Fı.Z2/ j �.z1/D z2

	
= isotopy:

(The subscript 0 on the mapping class group indicates that maps respect the boundary
and the basepoint.) In the case where Z1DZ2 , this set naturally forms a group, which
we call the strongly-based mapping class group.

More generally, the strongly-based genus-k mapping class groupoid MCG0.k/ is the
category whose objects are pointed matched circles with 4k points and with morphism
set between Z1 and Z2 given by MCG0.Z1;Z2/.

Recall that when Z and Z 0 differ by an arc-slide, there is a canonical strongly-based
diffeomorphism Fı.m/W F.Z/! F.Z 0/, as pictured in Figure 3.
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Any morphism in the mapping class groupoid can be factored as a product of arc-
slides; see, for example, Bene [2, Theorem 5.3]. One proof: Consider Morse func-
tions f on Fı.Z/ and f 0 on Fı.Z 0/ inducing the pointed matched circles. Let
�W Fı.Z/! Fı.Z 0/ be an orientation-preserving diffeomorphism. The Morse func-
tions f and ��.f 0/ D f 0 ı � can be connected by a generic one-parameter family
of Morse functions ft . The finitely many times t for which ft has a flow-line from
between two index-one critical points give the sequence of arc-slides connecting Z
and Z 0 .

For instance, any Dehn twist can be factored as a product of arc-slides. The key point
to doing this in practice is the following:

Lemma 2.1 Let Z D .Z; a;M; z/ be a pointed matched circle and fb; b0g � a a
matched pair in Z . Consider the sequence of arc-slides where one slides each of the
points in a between b and b0 over fb; b0g once, in turn. This product of arc-slides is a
factorization of the Dehn twist around the curve in Fı.Z/ specified by fb; b0g.

(See Figure 7 and compare Andersen, Bene and Penner [1, Lemma 8.3].)

Proof The proof is left to the reader.

In particular, for a genus-1 pointed matched circle, arc-slides are Dehn twists. For an
illustration of the factorization of a more interesting Dehn twist in the genus-2 case,
see Figure 7.

Figure 7: Factoring a Dehn twist into arc-slides On the left, we have a
genus-2 surface specified by a pointed matched circle, and a curve 
 (drawn
in thick green) in it; on the right, we have a sequence of arc-slides whose
composition is a Dehn twist around 
 .

2.1.1 Strongly bordered 3–manifolds and mapping cylinders It will be conve-
nient to think of strongly-based diffeomorphisms in terms of their mapping cylinders.
Given a strongly-based diffeomorphism  W Fı.Z1/ ! Fı.Z2/, we can extend  
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by the identity map on D2 to a diffeomorphism  W F.Z1/! F.Z2/. Consider the
3–manifold Œ0; 1� � F.Z2/. This manifold is equipped with orientation-preserving
identifications

 W �F.Z1/! f0g �F.Z2/� Œ0; 1��F.Z2/;

IW F.Z2/! f1g �F.Z2/� Œ0; 1��F.Z2/:

It is also equipped with a cylinder Œ0; 1�� .F.Z2/ nFı.Z2//, which is essentially the
same data as a framed arc 
 connecting the two boundary components of Œ0; 1��F.Z2/.
We call the data .Œ0; 1��F.Z2/;  ; I; 
 / the strongly bordered 3–manifold associated
to  or the mapping cylinder of  ; compare [5, Construction 5.27]. Let Y denote
the mapping cylinder of  .

Observe that for  12W F.Z1/ ! F.Z2/ and  23W F.Z2/ ! F.Z3/, Y 23ı 12
is

orientation-preserving homeomorphic to Y 12
[F.Z2/ Y 23

.

More generally, a strongly bordered 3–manifold with two boundary components consists
of a 3–manifold Y with two boundary components @LY and @RY , diffeomorphisms
�LW F.ZL/! @LY and �RW F.ZR/! @RY for some pointed matched circles ZL

and ZR , and a framed arc in Y connecting the basepoints z in F.ZL/ and F.ZR/,
and so that the framing points into the preferred disk of F.ZL/ and F.ZR/ at the two
boundary components.

2.2 More on the algebra associated to a pointed matched circle

Fix a pointed matched circle Z , as in Section 1.1, with basepoint z . Let a�Z denote
the set of points which are matched.

Each strands diagram � has an associated one-chain supp.�/, which is an element
of H1.Z n fzg; a/. This is gotten by projecting the strands diagram, thought of as a
one-chain in Œ0; 1�� .Z n fzg/, onto Z . (The one-chain supp.�/ is denoted Œ�� in [6];
we have chosen to change notation here in order to avoid a conflict with the standard
notation for a closed interval.)

Recall that if � is a strands diagram then we call its associated algebra element a basic
generator for the algebra A.Z/; we usually do not distinguish between the strands
diagram and its associated algebra element, writing, for example supp.a/ when a is a
basic generator.

In general, for a set � D f�1; : : : ; �kg of chords on Z with endpoints on a , there is
an algebra element a.�/, in which the moving strands correspond to the �i and we
sum over all valid ways of adding horizontal strands. (If some �i ; �j , i ¤ j , have their
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initial (respectively terminal) endpoints the same or matched, we define a.�/D 0: in
this case there are no valid ways of adding horizontal strands.) We will also abuse
notation slightly, and write a.X / for X a subset of Z with boundary only at points
in a: this means a.�/, where � is the set of connected components of X . (Each
connected component is an interval, of course.)

An element of the algebra is called homogeneous if it can be written as a sum of basic
generators so that each basic generator in the sum:

� Has the same associated one-chain.

� Has the same initial (and hence, in view of the previous condition, terminal)
idempotent, and in particular has the same weight.

� Has the same number of crossings.

2.2.1 The opposite algebra Suppose that Z D .Z; a;M; z/ is a pointed matched
circle. Let �Z denote its reverse, ie the pointed matched circle obtained by reversing
the orientation on Z . There is an obvious orientation-reversing map r W Z!�Z , and
hence an identification between chords for Z and chords for �Z . It is easy to see that
this map r induces an isomorphism A.Z/op Š A.�Z/, where A.Z/op denotes the
opposite algebra to A.Z/.

In particular, left A.�Z/–modules correspond to left A.Z/op –modules, and hence to
right A.Z/–modules.

2.2.2 Gradings The algebra A.Z/ is graded in the following sense. There is a
group G.Z/, equipped with a distinguished central element �, and a function gr from
basic generators of A.Z/ to G.Z/, with the following properties:

� If � and � are basic generators of A.Z/, and � � � ¤ 0, then gr.� � �/ D
gr.�/ � gr.�/.

� If � appears with nonzero multiplicity in d� then gr.�/D � � gr.�/.

In fact, there are two choices of grading group for A.Z/. The smaller one, which
is more natural from the point of view the pairing theorem, is a Heisenberg group
on the first homology of the underlying surface. Gradings in this smaller set depend
on a further universal choice of grading refinement data, as in [5, Section 3.2] (see
also Section 6.1.3), although different choices of refinement data lead to canonically
equivalent module categories. However, we will generally work with the big grading
group G0.Z/ in this paper.
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More precisely, the big grading group G0.Z/ is a Z central extension of H1.Znfzg; a/,
realized explicitly as pairs .j ; ˛/ 2 1

2
Z �H1.Z n fzg; a/ subject to a congruence

condition j � �.˛/ .mod 1/, for the function �W H1.Z n fzg; a/ ! 1
2
Z=Z given

by 1
4

the number of parity changes in the support of a; see [5, Section 3.2]. The
multiplication is given by

.j1; ˛1/ � .j2; ˛2/D .j1C j2Cm.˛2; @˛1/; ˛1C˛2/;

where m.˛;x/ is the local multiplicity of ˛ at x ; m.˛2; @˛1/ is a 1
2
Z–valued extension

of the intersection form on H1.F.Z// � H1.Z n fzg; a/. The distinguished central
element is �D .1; 0/. The G0.Z/–grading of a strands diagram is given by

gr0.a/ WD .�.a/; supp.a//;

where supp.a/ 2H1.Z n fzg; a/ is as defined above, and �.a/ records the number of
crossings plus a correction term:

�.a/ WD inv.a/�m.supp.a/; s/;

where I.s/ is the initial idempotent of a. See [6, Section 3.3] for further details.

Homogeneous algebra elements (as defined earlier) live in a single grading. For a
sum of basic generators with the same left and right idempotents, the converse is true:
homogeneity with respect to the grading (for either grading group) implies homogeneity
as defined above.

Lemma 2.2 If a basic generator a is not an idempotent, then �.a/� �k=2, where k

is the number of intervals in a minimal expression of supp.a/ as a sum of intervals.

Proof This is essentially [5, Lemma 3.6]. The argument there shows that �.a/��k 0=2,
where k 0 is the number of moving strands in a; but if k is as given in the statement,
then k 0 � k .

2.2.3 The quotient map Recall that if Z and Z0 are pointed matched circles then
we can form their connected sum Z #Z0 . Note that there are two natural choices of
where to put the basepoint in Z #Z0 .

Given any idempotent I0 D I.s0/ for Z0 , we have a quotient map

qW A.Z #Z0/!A.Z/

defined as follows. The idempotents for Z # Z0 have the form I.sq t/, where s

(respectively t ) is a subset of the matched pairs in Z (respectively Z0 ). The quotient
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map q is determined by its action on the idempotents:

q.I.sq t//D
�

I.s/ if t D s0;

0 otherwise;

and also the property that q.a/D 0 unless supp.a/� Z � Z #Z0 .

The map q can be promoted to a map

QW A.Z #Z0/˝A.�Z 0 #Z0/!A.Z/˝A.�Z 0/:
The map q is used in the definition of stability for arc-slide bimodules. The notation
is somewhat lacking, since we have not specified how we have taken the connected
sum of Z and Z0 (ie in which of the two possible regions in the connect sum we have
placed the basepoint). This information is not important, however, since stability uses
both possible choices.

2.3 Bordered invariants of 3–manifolds with connected boundary

We recall the basics of the bordered Heegaard Floer invariant bCFD.Y / for a bordered
3–manifold.

2.3.1 Bordered Heegaard diagrams and CFD^

Definition 2.3 A bordered Heegaard diagram, is a quadruple HD .x†; x̨;ˇ; z/ con-
sisting of:

� A compact, oriented surface x† with one boundary component, of some genus g .

� A g–tuple of pairwise-disjoint circles ˇ D fˇ1; : : : ; ˇgg in the interior of †.

� A .gCk/–tuple of pairwise-disjoint curves x̨ in x†, consisting of g�k circles
˛c D .˛c

1
; : : : ; ˛c

g�k/ in the interior of x† and 2k arcs x̨aD .x̨a
1
; : : : ; x̨a

2k
/ in x†

with boundary on @x† (and transverse to @x†).

� A point z in .@x†/ n .˛\ @x†/.

Also, ˇ t x̨ and x† n x̨ and x† nˇ must be connected.

(As in [6], we let † denote the interior of x† and ˛D x̨ \†; and will often blur the
distinction between .x†; x̨;ˇ; z/ and .†;˛;ˇ; z/.)

The boundary of a Heegaard diagram HD .†; x̨;ˇ; z/ is naturally a pointed, matched
circle as follows. The boundary .@†/ inherits its basepoint from z 2 @†, and the points
.x̨ \ @x†/, can be paired off according to which arc they belong.
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A bordered Heegaard diagram specifies an oriented 3–manifold with boundary Y ,
along with an orientation preserving diffeomorphism �W F.Z/! @Y ; ie a Z –bordered
3–manifold.

We briefly recall the construction of the type-D module associated to a bordered
Heegaard diagram H . Let Z be the matched circle appearing on the boundary of H .
The type-D module associated to H is a left module over A.�Z/, where �Z is the
reverse of Z .

Let S.H/ be the set of subsets x � ˛\ˇ with the following properties:

� x contains exactly one element on each ˇ circle.

� x contains exactly one element on each ˛ circle.

� x contains at most one element on each ˛ arc.

Let X.H/ be the F2 –vector space spanned by S.H/. For x 2S.H/, let o.x/� Œ2k�

be the set of ˛–arcs occupied by x . Define ID.x/ to be I.Œ2k� n o.x//; that is, the
idempotent corresponding to the complement of o.x/. We can now define an action of
the subalgebra of idempotents I inside A.�Z/ on X.H/ via

(2-1) I.s/ �x D
�

x I.s/D ID.x/;

0 otherwise,

where s is a k –element subset of Œ2k�. As a module, let bCFD.H/DA.�Z/˝I X.H/.

Fix generators x;y 2S.H/. Two-chains in † which connect x and y in a suitable
sense can be organized into homology classes, denoted �2.x;y/; we say elements
of �2.x;y/ connect x to y . (To justify the terminology “homology class”, note
that the difference between any two elements of �2.x;y/ can be thought of as a
two-dimensional homology class in Y . The notation is justified by its interpretation in
terms of the symmetric product; see [11].) Given a homology class B 2 �2.x;y/ and
asymptotics specified by a vector E� , there is an associated moduli space of holomorphic
curves MB.x;y ; E�/. Counting points in this moduli space gives rise to an algebra
element

(2-2) nB
x;y D

X
fE�jind.B;E�/D1g

#.MB.x;y I E�//a.�E�/ 2A.�ZL/:

The algebra elements nB
x;y can be assembled to define an operator

ı1W X.H/!A.Z/˝X.H/
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by

(2-3) ı1.x/ WD
X

y2S.H/

X
B2�2.x;y/

nB
x;y ˝y :

Let bCFD.H/ denote the space A.�Z/˝X.H/. We endow bCFD.H/ with a differen-
tial @ induced from the above map ı1 , and the differential on the algebra A.�Z/, via
the Leibniz rule

@.a˝x/D .da/˝xC a � ı1.x/:

The differential, together with the obvious left action on A.�Z/, gives bCFD.H/ the
structure of a left differential module over A.�Z/. (The proof involves studying
one-parameter families of holomorphic curves; see [6, Section 6.2].)

The differential on bCFD.H/ has the following key property. Suppose that B2�2.x;y/

gives a nonzero contribution of a˝y to @x . Then, supp.a/ is calculated by the local
multiplicities of B at @x†.

Up to homotopy equivalence, the module bCFD.H/ depends only on the bordered 3–
manifold specified by H . Thus, given a bordered 3–manifold Y we will write bCFD.Y /
to denote the homotopy type of bCFD.H/ for any bordered Heegaard diagram H
representing Y .

2.3.2 Type-D structures The special structure of bCFD.H/ can be formalized in
the following:

Definition 2.4 Let A be a dg–algebra over a ground ring k. A left type-D structure
over A is a left k–module AN together with a degree-0 map ı1W N ! AŒ1�˝N

satisfying the structural equation

(2-4) .�2˝ IN / ı .IA˝ ı1/ ı ı1C .�1˝ IN / ı ı1 D 0:

(Here, �1 and �2 denote the differential and multiplication on A, respectively; the
notation is drawn from the theory of A1–algebras.)

Given a type-D structure as above, we can form the associated module denoted AN

or A�N , whose generators are a˝x with a 2A and x 2N , algebra action by

a � .b˝x/D .a � b/˝x;

and differential given by

@.a˝x/D .da/˝xC a � .ı1x/:
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(Here, ˝ denotes tensor product over k, not F2 . The structural equation for ı1 , (2-4)
is equivalent to the condition that @2 D 0.)

The bordered invariant bCFD.H/ is naturally a type-D structure over A.�Z/.
The notion of a type-D structure has an obvious analogue for bimodules: a type-DD
structure over dg–algebras A and B is just a type-D structure over A˝Bop .

2.3.3 Some particular holomorphic curves We have not explained here precisely
which curves contribute to MB.x;y ; E�/. Rather than reviewing the general case, we
restrict our discussion to the main examples we will need in this paper. (See [6] for
further details.)

Definition 2.5 Suppose that P is a connected component of x†n .˛[ˇ/, and P does
not contain z . Suppose moreover that P is a 2n–gon. Each side of P is one of three
kinds:

(P-1) An arc contained in some ˇi .

(P-2) An arc contained in some ˛i (which might be of the form ˛c
i , ˛a

i ).

(P-3) An arc contained in @†.

Traversing the boundary of P with its induced orientation, one alternates between
meeting sides of type (P-1) and sequences of sides of types (P-2) and (P-3). Suppose
that P has only one side of type (P-3). We call such a component a fundamental
polygon.

The intersection points of arcs of type (P-1) and those of type (P-2), which we call
corners, can be partitioned into two types: those which lie at the initial point of the
arc of type (P-2) (with its induced orientation from @P ), and those which lie at the
terminal point of the arc of type (P-2). Let x0 denote the set of corners of the first
type, and let y0 denote the set of corners of the second type. Let x and y be two
generators with the property that x n .x\y/D x0 and y n .x\y/D y0 . Then, P

determines a homology class B 2 �2.x;y/.

Definition 2.6 In the above situation, we say that the fundamental polygon P connects
x to y in the homology class B , or simply that P connects x to y .

Lemma 2.7 Suppose P is a fundamental polygon that connects x and y in the
homology class B . Let � be the chord in @x† which lies on @P . Then nB

x;y D
I.x/ � a.��/ � I.y/.
Proof This is an easy consequence of the definitions (see [6, Section 6])) and a little
complex analysis (cf Rasmussen [12, Section 9.5]).
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2.3.4 Gradings and the coefficient algebra In addition to the group-valued grading
on the algebra as described in Section 2.2.2, the modules bCFD.H/ are G –set graded
modules. This means that there is a set S 0.H/ with a left G0.�Z/–action and a grading
function gr0W S.H/ ! S 0.H/ satisfying the following compatibility conditions: if
m 2 bCFD.H/ is an S 0.H/–homogeneous element, and a is a G0.�Z/–homogeneous
algebra element with a �m¤ 0, then a �m is S 0.H/–homogeneous and gr0.a �m/D
gr0.a/ � gr0.m/ (where � means the left translation of G0.�Z/ on S 0.H/); and if
m is an S 0.H/–homogeneous element then @m is also S 0.H/–homogeneous and
gr0.@m/D ��1 � gr0.m/.

To be more explicit about these gradings in the case of bCFD.H/ for a Heegaard
diagram H with boundary Z , for any generators x , y and any B 2 �2.x;y/, define

g0.B/ WD .�e.B/� nx.B/� ny.B/; @
@.B// 2G0.Z/I

cf [6, Equation 10.2]. Here @@.B/ is @.B/\ @†, the portion of @B on the boundary
of the Heegaard diagram. To relate this to the grading on the algebra A.�Z/, let
RW G0.Z/!G0.�Z/ be the map induced by the orientation-reversing map r W Z!�Z
via the formula R.k; ˛/D .k; r�.˛//. The map R is a group antihomomorphism. (Note
that if ˛ has positive multiplicities, then r�.˛/ has negative multiplicities. In particular,
gr0.a.��//D .�1

2
;�r�.supp.�/// while R.gr0.a.�///D .�1

2
; r�.supp.�///.)

The function g0.B/ satisfies the crucial property that if E� is any set of asymptotics
compatible with B and a.�E�/¤ 0 then

R.g0.B// gr0.a.�E�//D �� ind.B;E�/I
see [6, Lemma 10.20]. The grading set S 0.H/ is therefore chosen in a suitable way so
that gr0.x/ and gr0.y/ are in the same G0.�Z/–orbit if and only if there is a domain
B 2 �2.x;y/, and if there is such a B , then

(2-5) R.g0.B// gr0.x/D gr0.y/

(see [6, Equation 10.27]); this guarantees that the grading on bCFD.H/ is compatible
with the grading on A.�Z/. Explicitly, after fixing a base generator x0 for each
spinc –structure s we can set

S 0.H; s/DG0.�Z/=hR.g0.P // j P 2 �2.x0;x0/i:
We then let S 0.H/D`s2spinc.H/ S 0.H; s/. See [6, Chapter 10] for more details.

The G0.Z/–sets for the mapping cylinders will have the following convenient property:

Definition 2.8 A G –set S is said to be �–free if for any s 2 S and n 2Z, �n � s¤ s .
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In this paper, we will also use an alternate way of thinking about gradings, which we
define in slightly greater generality than we use in this paper.

Definition 2.9 A based algebra is an algebra over F2 with a distinguished finite set
of basic idempotents, which are primitive, pairwise-orthogonal idempotents whose sum
is the identity.

A based algebra can also be thought of as a dg–category with a finite number of
elements. The algebra A.Z/ is a based algebra with basic idempotents the idempo-
tents I.s/.

Definition 2.10 For a type-D structure AM over a based algebra A, where A is
graded by G and M is graded by a G –set S , the coefficient algebra Coeff.M / of M

is the differential algebra spanned by triples .x; a;y/ with a2A and x;y 2M so that

� aD I � a �J , Ix D x and Jy D y for some basic idempotents I and J , and
� there is a k 2 Z so that �k gr.x/D gr.a/ gr.y/,

modulo the relations that the triples are linear in each factor:

.xCx0; a;y/D .x; a;y/C .x0; a;y/;
.x; aC a0;y/D .x; a;y/C .x; a0;y/;
.x; a;y Cy 0/D .x; a;y/C .x; a;y 0/:

(2-6)

The differential is @.x; a;y/D .x; @a;y/, and the product is given by

.x1; a1;y1/ � .x2; a2;y2/D
�
.x1; a1 � a2;y2/ y1 D x2;

0 otherwise.

Thus each generator of AM gives an idempotent of the coefficient algebra. For
ADA.Z/ and M D A bCFD .H/, this means that there is an idempotent of the coeffi-
cient algebra corresponding to each element of S.H/. The elements of Coeff.AM /

record algebra coefficients whose gradings do not prevent them from appearing in the
differential, as we see in the next lemma.

Lemma 2.11 If AM is a type-D structure over A, where A is graded by G and M

is graded by S , let nD gcdfm 2N j �ms D s for some s 2 Sg (or 0 if S is �–free).
Then the coefficient algebra Coeff.M / has a canonical grading gr.x; a;y/ 2 Z=nZ,
characterized as follows. By definition, there is some k 2 Z such that �k gr.x/ D
gr.a/ gr.y/. Then gr.x; a;y/� k .mod n/.

With this grading, if a �y appears in @x then .x; a;y/ has grading �1.
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(Note that the divisibility of � in its action on S is constant on each G –orbit, since �
is central in G .)

Proof Since, by definition of Coeff.M /, there is a k so that �k gr.x/D gr.a/ gr.y/,
this defines gr.x; a;y/ as an element of the cyclic subgroup of G generated by �, up
to indeterminacy given by the divisibility of � in its action on gr.x/. By assumption, n

divides this divisibility, so we get a well-defined element of Z=nZ, as claimed. It
is elementary to check that this is a grading. The last statement follows from the
assumption that M is a graded differential module: gr.@x/D ��1 gr.x/.

Thus, for a module M graded by a �–free G –set, Coeff.M / is Z–graded.

If AM has at most one generator per idempotent, then we can view Coeff.M / as a
subalgebra of A.

Recall that there are two different gradings on our algebras A.Z/, one by G.Z/ and
one by G0.Z/. These induce the same grading on the coefficient algebra of any type-D
structure over A.Z/:

Lemma 2.12 Let A.Z/M be a G0.Z/–set graded type-D structure over A.Z/. Fix
some collection of grading refinement data „ for Z . Let Coeff.M / denote the
coefficient algebra of M as a G–set graded module and Coeff0.M / the coefficient
algebra of M as a G0–set graded module. Then Coeff.M / D Coeff0.M /, and this
identification respects the gradings on the two sides.

Proof Recall that for a generator x of M with xD i �x for some minimal idempotent i ,
gr.x/D„.i/�gr0.x/; and if a2A.Z/ is such that j �a�iDa for minimal idempotents i

and j then gr.a/D„.j / gr0.a/„.i/�1 . The result follows.

We now compute the grading on the coefficient algebra for a Heegaard diagram more
explicitly. Loosely speaking, it is the Maslov component of the grading on the algebra
plus a correction term.

Lemma 2.13 Suppose .x; a;y/ 2Coeff. bCFD.H//. Then there is a B 2 �2.x;y/ so
that �r�.@

@.B//D supp.a/. Moreover, for any such B ,

gr.x; a;y/D �.a/� e.B/� nx.B/� ny.B/:

(The map r� appears in this lemma because a 2A.Z/ where Z D�@H .)
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Proof By definition of Coeff. bCFD.H//, �k gr0.x/ D gr0.a/ gr0.y/. In particular,
gr0.x/ and gr0.y/ are in the same G0.�Z/ orbit, so there is a domain B connecting
them. By definition of the grading on the coefficient algebra, we have

�gr.x;a;y/ gr0.x/D gr0.a/ gr0.y/D gr0.a/R.g0.B// gr0.x/:

By assumption, the homological components of gr0.a/ and R.g0.B// cancel each
other, and give no correction to the Maslov component of the grading. The Maslov
components sum to the stated total.

Remark 2.14 The coefficient algebra is not invariant under homotopy equivalences of
modules, as can be seen by comparing the coefficient algebra of an acyclic but nonzero
module with that of the zero module (with no generators).

Remark 2.15 One can give a more abstract definition of the coefficient algebra as
follows. Let I denotes the subring of A generated by the (distinguished) orthogonal
idempotents and let M � denote the dual of M over I . Then (2-6) is equivalent to
saying that the coefficient algebra is a subring of the tensor product M �˝I A˝I M . The
multiplication is induced by the obvious pairing M ˝M �! I and the multiplication
on A.

We can identify M �˝I A˝I M with the space MorA.AM ;AM / of type-D structure
morphisms (as in [5, Section 2.2.3]); multiplication corresponds to composition. The
space MorA.AM ;AM / is graded by a Z–set. The coefficient algebra Coeff.M / is
the subring of MorA.AM ;AM / generated by elements whose gradings lie in the same
Z–orbit as the identity map. Note, however, that the differential we have specified on
the coefficient algebra is not induced by the differential on MorA.AM ;AM /.

2.4 Bordered invariants of manifolds with two boundary components

The ideas from Section 2.3 were extended to 3–manifolds with two boundary com-
ponents in [5]. This extension takes the form of bimodules of various types; we
will focus on the type-DD bimodules. The most important case for us is the case of
mapping cylinders of diffeomorphisms, though in Section 8 we will also use elementary
cobordisms.

2.4.1 Arced bordered Heegaard diagrams and CFDD^ As explained in [5], bor-
dered Heegaard Floer homology admits a fairly straightforward generalization to the
case of several boundary components:
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Definition 2.16 An arced bordered Heegaard diagram with two boundary components
(or just arced bordered Heegaard diagram) is a quadruple HD .x†; x̨;ˇ; z/, where:

� x† is a compact surface of some genus g with two boundary components, @L
x†

and @R
x†.

� ˇ is a g–tuple of pairwise-disjoint curves in the interior † of x†.

� x̨ is a collection

x̨ D ˚
x̨

a;L‚ …„ ƒ
x̨a;L

1
; : : : ; x̨a;L

2gL
;

x̨
a;R‚ …„ ƒ

x̨a;R
1
; : : : ; x̨a;R

2gR
;

˛c‚ …„ ƒ
˛c

1; : : : ; ˛
c
g�gL�gR

	
of pairwise disjoint embedded arcs with boundary on @L

x† (the x̨a;L
i ), arcs with

boundary on @R
x† (the x̨a;R

i ), and circles (the ˛c
i ) in the interior † of x†.

� z is a path in x† n .x̨ [ˇ/ between @L
x† and @R

x†.

These are required to satisfy:

� x† n x̨ and x† nˇ are connected.

� x̨ intersects ˇ transversely.

In this case, there are two pointed matched circles,

ZL D .@L
x†; x̨sa;L\ @L

x†; z\ @L
x†/;

ZR D .@R
x†; x̨sa;R \ @R

x†; z\ @R
x†/:

An arced bordered Heegaard diagram specifies a compact, oriented 3–manifold Y with
two boundary components, @Y D @LY q @RY , along with identifications

�LW F.ZL/! @Y; �RW F.ZR/! @Y:

The data also specifies a framed arc connecting the two boundary components of Y , as
explained in [5, Section 5], and hence specifies Y as a strongly bordered 3–manifold.

To an arced bordered Heegaard diagram with two boundary components H we associate
a left A.�ZL/˝A.�ZR/ module 1CFDD.H/, where ZL and ZR are the pointed
matched circles appearing on the boundary of the Heegaard diagram at @L

x† and @R
x†

respectively.

The module 1CFDD.H/ has generating set S.H/ defined exactly as in the one boundary
component case. If x is a generator, let oL.x/ (respectively oR.x/) denote the
set of ˛L –arcs (respectively ˛R –arcs) occupied by x . Let ID;L.x/ (respectively
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ID;R.x/) denote the idempotent in A.�ZL/ (respectively A.�ZR/) corresponding
to the complement of oL.x/ (respectively oR.x/).

Given a sequence E� of chords in ZL q ZR let E�L (respectively E�R ) denote the
subsequence of E� consisting of the chords lying in ZL (respectively ZR ). Modify
(2-2) as

(2-7) nB
x;y D

X
fE�jind.B;E�/D1g

#.MB.x;y I E�//a.� E�L/˝ a.� E�R/ 2A.�ZL/˝A.�ZR/:

Exactly as in (2-2), this determines a map

ı1W X.H/!A.�ZL/˝A.�ZR/˝X.H/;

which can be used to build a differential on the space

1CFDD.H/DA.�ZL/˝I.�ZL/A.�ZR/˝I.�ZR/X.H/:

It is proved in [5, Theorem 10] that the homotopy type of 1CFDD.H/ depends only on
the strongly bordered 3–manifold represented by H . So, if Y is a strongly bordered
3–manifold then we will often write 1CFDD.Y / to denote the module 1CFDD.H/ for
some arced bordered Heegaard diagram H representing Y .

Let Y be a strongly bordered 3–manifold with boundary parameterized by F.�ZL/

and F.ZR/; ie a .�ZL/–ZR –bordered 3–manifold. Using the identification
A.�ZR/ D A.ZR/

op , we can view the A.ZL/˝A.�ZR/–module 1CFDD.Y / as
an A.ZL/–A.ZR/–bimodule. When it is important to indicate in which way we are
viewing 1CFDD.Y /, we will write either A.ZL/;A.�ZR/

1CFDD .Y / (for the bimodule
with two left actions) or A.ZL/

1CFDD .Y /A.ZR/ (for the bimodule with one left and
one right action).

As a special case, we obtain bimodules associated to strongly-based diffeomorphisms:

Definition 2.17 Suppose  W F.�Z1/!F.�Z2/ is a strongly-based diffeomorphism.
Let Y denote the mapping cylinder of  . Then define

A.Z2/
1CFDD . /A.Z1/ D A.Z2/

1CFDD .Y /A.Z1/:

2.4.2 Polygons in diagrams with two boundary components Again, fundamental
polygons (in the sense of Definition 2.5) contribute to the differential. In the present
case, chords on the boundary can be of two types: chords contained in @L

x†, and chords
contained in @R

x†. We assume that, for our polygon, there is at most one edge of each
type, �L and �R . The associated algebra element is aL.��L/˝ aR.��R/ if both �L
and �R are present, a.��L/˝1 or 1˝aR.��R/ if only �L or �R is present, or 1˝1

if neither is.
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For a concrete example, the reader is invited to look ahead to the bordered diagram
displayed in Figure 14. There two generators are indicated: x (which is indicated by
black circles) and y (which is indicated by white ones). There is a shaded octagon
from x to y , which goes out to @x† in two chords, denoted �5 and �3 . This shows
that @x contains a term .�5˝ �3/˝y .

This notion of polygons is still a little too restrictive for our purpose. In some cases,
we will need to consider polygonal regions which are obtained as unions of closures of
components in x† n˛[ˇ . In order for such more general polygons to contribute, we
must have that P is a union of Ri which meet along edges which do not contain any
component of x or y .

2.4.3 Gradings and the coefficient algebra for bimodules As was the case for
modules (Section 2.3.4), the bimodules 1CFDD.H/ are set-graded. Suppose that H
has boundary ZL [ZR . Then there is a set S 0.H/ with commuting left actions of
G0.�ZL/ and G0.�ZR/ (in which the two actions of � agree), and the generators of
1CFDD.H/ have gradings in S 0.H/ which are compatible with the differential and

algebra actions in the natural sense. If we extend R to a map RW G0.ZL/�ZG0.ZR/!
G0.�ZL/�Z G0.�ZR/ (applying the map R from Section 2.3.4 to both factors), (2-5)
remains true. See [5, Section 6.5] for further details.

(In Sections 4 and 6, we will also use the analogous extension of r� from Section 2.3.4
to the disconnected case, gotten by applying r� to each component. In other words,
r�W H1.ZL; aL/�H1.ZR; aR/!H1.�ZL; aL/�H1.�ZR; aR/ is induced by the
orientation-reversing map r W .ZLqZr /!�.ZLqZr /.)

The coefficient algebra of a type-DD structure A.Z/M A.Z 0/ is defined as it is defined
in Definition 2.10: Coeff.M / is generated by triples .x; a1˝ a2;y/, where

� if a1 D I.s1/ �a1 � I.t1/ and a2 D I.s2/ �a2 � I.t2/, then x D I.s1/I.s2/x and
y D I.t1/I.t2/y , and

� there is a k 2 Z so that �k gr0.x/D gr0.a1/ gr0.a2/ gr0.y/,

modulo an analogue of (2-6). The differential is @.x; a1˝a2;y/D .x; @.a1˝a2/;y/,
and the product is

.x1; a1˝ b1;y1/ � .x2; a2˝ b2;y2/D
�
.x1; .a1 � a2/˝ .b1 � b2/;y2/ y1 D x2;

0 otherwise,

just as before.

The rest of the theory carries through, as follows:
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� The idempotents of the coefficient algebra correspond to the generating set of
the type-DD structure M . In particular, if M has at most one generator per
idempotent then we can view Coeff.M / as a subalgebra of A.Z/˝A.Z 0/.

� As in Lemma 2.11, the coefficient algebra is graded by Z=n, where n is the
divisibility of the kernel of the action of ZD h�i on the grading set S of M .
This action is characterized by gr.x; a1˝ a2;y/� k , where

(2-8) �k gr.x/D .gr.a1/� gr.a2// gr.y/:

In particular, if S is �–free then Coeff.M / is Z–graded.

� The following analogue of Lemma 2.13 holds.

Lemma 2.18 Suppose .x; a1 ˝ a2;y/ 2 Coeff. 1CFDD.H//. Then there is a B 2
�2.x;y/ so that �r�.@

@.B//D supp.a1/q supp.a2/. Moreover, for any such B ,

gr.x; a1˝ a2;y/D �.a1/C �.a2/� e.B/� nx.B/� ny.B/:

2.5 A pairing theorem

In this paper, we will employ a particular version of the pairing theorem for recon-
structing Heegaard Floer homology from the bordered invariants. Before stating
it, suppose that .Y1; �1/ and .Y2; �2/ are bordered 3–manifolds with boundaries
parameterized by F.Z/ and F.�Z/; ie we have homeomorphisms �1W F.�Z/! @Y1

and �2W F.Z/! @Y2 . In this case, the bordered invariant bCFD.Y1/ is a left mod-
ule over A.Z/, while the bordered invariant for bCFD.Y2/ is a left module over
A.�Z/ŠA.Z/op and hence can be viewed as a right module over A.Z/. In particular,
bCFD.Y1/˝ bCFD.Y2/ can be viewed as an A.Z/–A.Z/ bimodule.

Theorem 2.19 Let .Y1; �1/ and .Y2; �2/ be bordered 3–manifolds with parameteri-
zations �1W �F.Z/! @Y1 and �2W F.Z/! @Y2 , and let

Y D Y1 @Y1
[@Y2

Y2:

Then the chain complex cCF.Y / calculating cHF.Y / with coefficients in Z=2Z is
homotopy equivalent to

Mor
�
A.Z/ 1CFDD .IZ/A.Z/;A.Z/ bCFD .Y1/˝ bCFD.Y2/A.Z/

�
;

that is, the chain complex of A.Z/–bimodule maps from A.Z/ 1CFDD .IZ/A.Z/ to
A.Z/ bCFD .Y1/˝ bCFD.Y2/A.Z/ .
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Proof This is a special case of [8, Corollary 7], where one boundary component of Y1

and Y2 is empty. (Note that the boundary Dehn twist appearing in [8, Corollary 7] acts
trivially on the invariant of a 3–manifold with a single boundary component.)

There is an analogue when Y2 is a 3–manifold with two boundary components:

Theorem 2.20 Let .Y1; �1W �F.Z1/ ! Y1/ be a bordered 3–manifold with one
boundary component and let .Y2; �2W F.Z1/! @LY2; �3W �F.Z2/! @RY2/ be a
strongly bordered 3–manifold with two boundary components. Let

Y D Y1 @Y1
[@LY2

Y2;

a bordered 3–manifold with boundary parameterized by �3W F.Z2/ ! @Y . Then
bCFD.Y; �3/ is homotopy equivalent, as a differential A.Z2/–module, to

Mor
�
A.Z1/

1CFDD .IZ1
/A.Z1/;A.Z1/

bCFD .Y1/˝A.Z2/
1CFDD .Y2/A.Z1/

�
;

which is the chain complex of A.Z/–bimodule maps from A.Z1/
1CFDD .IZ1

/A.Z1/ to
A.Z1/

bCFD .Y1/˝A.Z2/
1CFDD .Y2/A.Z1/ .

Proof Again, this is a special case of [8, Corollary 7].

In particular, for mapping classes we have:

Corollary 2.21 Let .Y1; �1W �F.Z1/ ! Y1/ be a bordered 3–manifold with one
boundary component and  W �Fı.Z2/!�Fı.Z1/ be a strongly-based diffeomor-
phism. Then bCFD.Y; �1 ı / is homotopy equivalent, as a differential A.Z2/–module,
to

Mor
�
A.Z1/

1CFDD .IZ1
/A.Z1/;A.Z1/

bCFD .Y1/˝A.Z2/
1CFDD . /A.Z1/

�
:

Remark 2.22 The obvious analogue of Theorem 2.20 when both Y1 and Y2 are
strongly bordered 3–manifolds with two boundary components is false. Rather,
the chain complex of bimodule morphisms picks up an extra boundary Dehn twist;
see [8, Corollary 7] for more details.

The isomorphisms in Theorems 2.19 and 2.20 are graded isomorphisms in the following
sense. In Theorem 2.19, bCFD.Y1/ (respectively bCFD.Y2/) is graded by a set S1

(respectively S2 ) with a left (respectively right) action of G.Z/, the (small) grading
group associated to Z . The space of bimodule homomorphisms is then graded by the
set

S2 �G G �G S1 D S2 �G S1 D S2 �S1=Œ.xg;y/� .x;gy/�:
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The center Z of G acts on S2 �G S1 . As a Z–set, S2 �G S1 decomposes into orbits

S2 �G S1 D
a

i

Z=ni :

Each orbit corresponds to a spinc –structure on Y D Y1 @Y1
[@Y2

Y2 . If Z=ni corre-
sponds to the spinc –structure s then ni D div.c1.s//, and the relative Z=ni –grading
from S2 �G S1 corresponds to the relative Z= div.c1.s//–grading in Heegaard Floer
homology.

The story for Theorem 2.20 is the same, except that S1 �G S2 retains a left action
by G.Z2/; and the isomorphism of Theorem 2.20 covers an isomorphism of G.Z2/–
sets (in all orbits where the modules are nontrivial).

See [5, Section 7.1.1] for further discussion in a closely related context.

3 The type-DD bimodule for the identity map

Recall that Theorem 1 provides a model for the type-DD bimodule for the identity
map. The aim of the present section is to prove that theorem. First we set up some
notation.

In the standard Heegaard diagram for the identity map (Figure 13), the generators are in
one-to-one correspondence with pairs of complementary idempotents, and each domain
has the same multiplicities on the left and right of the diagram. It follows that the
type-DD bimodule for the identity diagram has a special form. To make this precise,
think of 1CFDD.IZ/ as a left-left bimodule (compare Section 2.2.1). Then 1CFDD.IZ/
is induced from a module over a preferred subalgebra of A.Z/˝A.�Z/:

Definition 3.1 The diagonal subalgebra of A.Z/˝A.�Z/ is the algebra generated
by elements of the form .j � a � i/˝ .jo � b � io/, where:

� The support of a is identified with the corresponding one for b ; ie in the notation
of Section 2.2, r�.supp.a//D� supp.b/.

� The elements i 2A.Z/ and io 2A.�Z/ are complementary idempotents.
� The elements j 2A.Z/ and jo 2A.�Z/ are complementary idempotents.

Note that in view of the first condition above, the second two conditions are redundant
with one another.

Some definitions for A.Z/ extend in obvious ways to the diagonal subalgebra; for
instance, a basic generator of the diagonal subalgebra is an element a˝ a0 of the
diagonal subalgebra so that a and a0 are basic generators of A.Z/ and A.�Z/.
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We next rephrase the module bDD.I/ from the introduction as a left-left module.
Letting C denote the set of connected chords for Z , we have a map

zaW C!A.Z/˝A.�Z/
(where here ˝ is taken over F2 ) defined by

za.�/D a.�/˝ ao.�/;

where here a.�/ denotes the algebra element in A.Z/ associated to � , and ao.�/

denotes the algebra element in A.�Z/ specified by the chord r.�/. Nonzero elements
of the form I �za.�/�J , where � is a chord and each of I and J is a pair of complementary
idempotents (Definition 1.1) in A.Z/˝A.�Z/, are called chord-like. (The orientation-
reversing map r is discussed in Section 2.2.1.)

Fix a chord diagram Z , and consider the left-left A.Z/–A.�Z/–bimodule bDD.IZ/
defined in Definition 1.3. In our present notation, the element A 2 A.Z/˝A.�Z/
which determines the differential can be written as

AD
X
�2C

za.�/:

More explicitly, write a typical element of bDD.IZ/ as c � I , where c is an element
of A.Z/˝A.�Z/, and I D i ˝ io is a pair of complementary idempotents. The
differential on bDD.IZ/ is given by

@.c � I/D .dc/ � I C
X
�2C

c � za.�/ � I:

Lemma 3.2 Let � and � be chords, and I D .i; io/ and J D .j ; jo/ be pairs of
complementary idempotents. If � and � share an endpoint and J � za.�/ � za.�/ � I
is nonzero, then there is a unique nontrivial factorization of J � za.�/ � za.�/ � I into
homogeneous elements with nontrivial support in the diagonal subalgebra. Moreover,
J � za.�/ � za.�/ � I appears in the differential @.J � za.� [ �/ � I/.

Proof Let a be a basic generator of A.Z/ (ie one represented by a strands diagram).
We say that a has a break at p if p is the initial point of some strand in a and also the
terminal point of some strand in a. Similarly, let x˝x0 be an element of the diagonal
subalgebra, where x and x0 are basic generators. We say that x˝x0 has a break at p

if either x has a break at p or x0 has a break at r.p/.

Let zxD x˝x0 and zyD y˝y0 be a pair of basic generators in the diagonal subalgebra,
with nonzero product. Suppose that there is some position p in the boundary of the
support of both x and y . We claim then that zx � zy has a break at p . There are two

Geometry & Topology, Volume 18 (2014)



2584 Robert Lipshitz, Peter S Ozsváth and Dylan P Thurston

cases: either p is an initial endpoint of the support of x , or it is a terminal endpoint of
the support of x . If p is an initial endpoint in the support of x then it must also be
a terminal endpoint of the support of y ; thus, x �y has a break at p . Symmetrically,
if p is a terminal endpoint of the support of x , then it must be an initial endpoint in
the support of x0 , and hence x0 �y0 has a break at r.p/.

p

�

� ˝

Figure 8: Break in product The algebra element za.�/ is contained in the
two shaded boxes; the algebra element za.�/ is contained in the two unshaded
boxes. The chords � and � share a boundary point p . The product za.�/ � za.�/
is gotten from the illustrated juxtaposition, and has a break at p . Note that
the juxtaposition appears in dza.� [ �/ .

Suppose now that � and � are chords which share an endpoint. Then, tDJ �za.�/�za.�/�I
has a unique break. Now, consider a factorization of t into zx � zy in the diagonal
subalgebra. As in the previous paragraph, t must have a break at any point q where
the support of zx and zy meet; since the product has a unique break, there must be a
single such point q , and so q agrees with p . From this, it is straightforward to see
that the factorization coincides with the initial one, ie zx D J � za.�/ and zy D za.�/ � I .

To see that J �za.�/ �za.�/ �I appears in the differential of J �za.�[�/ �I , suppose without
loss of generality that the terminal point p of � coincides with the initial point of �,
so that j � a.�/ � a.�/ � i has a break. In this case, a.�/ � a.�/ appears in the differential
da.� [ �/, and za.�/ � za.�/ appears in dza.� [ �/.

Lemma 3.3 Let I D .i; io/ and J D .j ; jo/ be pairs of complementary idempotents
and � , � be chords. If � and � do not share an endpoint then

J � za.�/ � za.�/ � I D J � za.�/ � za.�/ � I:

Proof There are three cases on the endpoints of � which are handled differently: the
boundaries can be linked, an endpoint of � can be matched with an endpoint of �, and
the case where neither of the above two phenomena occur.

Geometry & Topology, Volume 18 (2014)



Computing cHF by factoring mapping classes 2585

˝ D 0D ˝

Figure 9: Boundaries of � and � are linked We have illustrated here chords
� and � whose boundaries are linked. We have za.�/ � za.�/D 0D za.�/ � za.�/ ,
since one of the two sides always has a double-crossing in it.

In the first case, where the boundaries of � and � are linked (ie exactly one of the
endpoints of � is contained in the interior of �), we claim that za.�/ � za.�/D 0. To see
this, write x D i � a.�/, x0 D io � ao.�/, y D j � a.�/ yo D jo � a.�/. Observe that all
of these are basic generators. Next, note that exactly one of the juxtapositions x �y

or xo �yo contains a double-crossing. Thus, za.�/ � za.�/D 0. By the same reasoning,
za.�/ � za.�/D 0.

Consider next the second case, where some endpoint of � is matched with some
endpoint of �. If the initial boundary of � is matched with the initial point of � then
a.�/ � a.�/ D a.�/ � a.�/ D 0, so once again both terms vanish. The same reasoning
applies if the terminal points are matched. Finally, suppose that the terminal point p

of � is matched with the initial point p0 of �. Thus, a.�/ � a.�/D 0. However, it is
not guaranteed that a.�/ � a.�/ D 0. But for j � a.�/ � a.�/ � i to be nonzero, both i

and j must contain the matched pair fp;p0g, and hence neither io nor jo contains the
matched pair fp;p0g. It follows that jo �ao.�/ �ao.�/ � ioD 0, and hence za.�/ � za.�/D 0.

In the third case, where none of the endpoints of � are matched to endpoints of �, and
their boundaries are unlinked, we have that a.�/ �a.�/D a.�/ �a.�/ and ao.�/ �ao.�/D
ao.�/ � ao.�/, so the stated equality holds.

It follows from the identification of bDD.IZ/ with 1CFDD.IZ/ that @2D0 on bDD.IZ/.
Although it is not strictly necessary for this paper, it is not hard to give a combinatorial
proof of this fact:

Proposition 3.4 The endomorphism @ on bDD.IZ/ is a differential, ie @2 D 0.
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Proof Let I D .i; io/. The J D .j ; jo/ coefficient of @2I is given byX
�1;�22C

.j �a.�2/ �a.�1/ �i/˝.jo �ao.�2/ �ao.�1/ �io/Cd
X
�2C

.j �a.�/ �i/˝.jo �ao.�/ �io/:

By Lemma 3.3, many of the terms in the first sum cancel in pairs (and some are
individually zero), leaving only those terms where the �1 and �2 are two chords which
share an endpoint. Indeed, according to Lemma 3.2 all such terms are left over in
the sum. The last statement in Lemma 3.2 implies that all of these terms occur in the
second sum; moreover, that these terms exactly cancel with the second sum.

We investigate some of the algebraic properties of the diagonal subalgebras. These
will be useful when considering gradings. It is not true that any homogeneous element
in A.Z/ can be factored as a product of chord-like elements. The corresponding fact
is, however, true for the diagonal subalgebra:

Lemma 3.5 Any homogeneous element of the diagonal subalgebra can be factored as
a product of chord-like elements.

Proof Fix a basic element of the diagonal subalgebra �˝ � 0 with nontrivial support.
It suffices to factor off a chord-like element; ie exhibit a factorization �˝� 0D .�˝�0/ �
.�˝�0/, where �˝�0 is also in the diagonal subalgebra and �˝�0 is chord-like. (Since
this expresses �˝ � 0 as a product of an element which has strictly smaller support with
a chord-like element, induction on the total support then gives the factorization claimed
in the lemma.)

To factor off the chord-like element, we proceed as follows. Let s be a moving strand
in � and t be a moving strand in � 0 . For the strand s , the initial point s� and the
terminal point sC are points in Z with s� < sC ; thinking of the initial and terminal
points of t (t� and tC respectively) as points in Z , as well, we have that tC < t� .
Now, consider pairs of such strands .s; t/ with the property that tC < sC ; and choose
among these a pair of strands for which the distance sC� tC is minimized. We call
such a strand pair .s; t/ minimal.

For a minimal strand pair .s; t/, we claim that s� � tC < sC � t� . This follows from
the condition on the support of elements of the diagonal subalgebra. Specifically, if the
stated inequalities do not hold, then either t�< sC or tC< s� . The case where t�< sC

can be divided into two subcases, depending on whether or not the support of � 0 jumps
at t� , ie @ supp.� 0/ has a nonzero coefficient at t� . (Recall that supp.�/D supp.� 0/.)
If the support of � 0 jumps at t� , there is a different strand u in � ending at t� . But
in this case .u; t/ satisfies tC < uC < sC , contradicting minimality of .s; t/. If the
support of � 0 does not jump at t� , there must be a different strand v in � 0 which ends

Geometry & Topology, Volume 18 (2014)



Computing cHF by factoring mapping classes 2587

in t� . But in this case .s; v/ satisfies tC < vC < sC , again contradicting minimality
of .s; t/. The case where tC < s� is excluded similarly.

For a minimal strand pair .s; t/, let � be the algebra element in A.Z/ associated to a
single moving strand from tC to sC , and whose terminal idempotent coincides with
that for � . Since tC appears in the terminal idempotent of � 0 , it does not appear in
the terminal idempotent of � , and hence we can consider the algebra element � which
consists of all the moving strands in � , except that the strand s is terminated at tC

instead of at s� . Now, � � � D � , unless � � � D 0 because of the introduction of a
double-crossing. But � �� cannot introduce a double-crossing, for that would mean that
there is some strand u in � with tC < uC < sC , contradicting the minimality of the
strand pair .s; t/. Similarly, we can factor � 0 D �0 � �0 , where �0 is the algebra element
consisting of a single moving strand from sC to tC and whose terminal idempotent
coincides with that for � 0 . So, �˝ �0 is the desired chord-like element.

The above proof in fact gives an algorithm for factoring any given element of the
diagonal subalgebra as a product of chord-like elements. For an illustration of this
algorithm, see Figure 10.

1

2

3

4

Figure 10: Factoring into chord-like elements We start with the element
consisting of two strands, one from 1 to 3 and another from 2 to 4 on the Z
side, and a similar element on the Z 0 side, as illustrated on the left. We then
apply successively the algorithm from the proof of Lemma 3.5, to factor off
chord-like elements. At each stage, a minimal strand pair is illustrated with
darker strands.

Definition 3.6 A chord � is said to be a special length-three chord if:

� � has length three.
� The terminal point p of � is matched with some other point p0 in the interior

of � .
� The initial point q of � is matched with another point q0 in the interior of � .

See Figure 11 for an illustration.
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˝ ˝

Figure 11: Length-three chords On the left, we have a special length-three
chord: this chord is a cycle. On the right, we have a length-three chord which
is not special: this chord is not a cycle.

Lemma 3.7 If � is a chord which is not length-one or special length-three, and
Iza.�/J ¤ 0, then d.Iza.�/J /¤ 0.

Proof By hypothesis, there must be some position p in the interior of support of �
which is not matched with either an initial or terminal point of � . The initial idempotent
I D i ˝ io must contain this position either in i or in io (since i and io are comple-
mentary idempotents). Thus the differential of either a.�/ or ao.�/ must contain a
term corresponding to the resolution at p .

Not every pointed matched circle has special length-three chords. For instance, there are
none in the antipodally matched circle for a surface of genus k > 1. (The antipodally
matched circle is the one where the matched pairs of points are antipodal on the circle.)
On the other hand, for the surface of genus k D 1, there is a unique pointed matched
circle, and it does have a special length-three chord, so the split pointed matched circle
with any genus has special length-three chords.

Proposition 3.8 Let M be any type-DD bimodule over A.Z/˝A.�Z/, where Z
is any pointed matched circle with genus greater than one. Suppose M satisfies the
following properties:

(1) Generators of M are in one-to-one correspondence with pairs I D .i; io/ of
complementary idempotents, in such a manner that if x.I/ is the generator
corresponding to I D .i; io/, then I �x.I/D x.I/.
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(2) The coefficients in the differential of M all lie in the diagonal subalgebra of
A.Z/˝A.�Z/; ie writing

@x.I/D
X

J

a.I;J / �x.J /;

where a.I;J / 2 A.Z/˝A.�Z/, then all of the a.I;J / lie in the diagonal
subalgebra of A.Z/˝A.�Z/.

(3) M is graded by a �–free G –set S .

(4) The differential of x.I/ contain all nonzero elements of the form I �za.�/�J �x.J /
where � is any length-one chord.

Then, M is isomorphic to the bimodule bDD.IZ/.

Proof First, we prove by induction on the length of the support of � 2 C that all terms
of the form a.�/˝ ao.�/ appear in the coefficient of the differential.

Assume for simplicity that our diagram does not have any special length-three chords;
we return to the general case later. Our goal is to argue that, if � is a chord of length
n > 1, then za.�/ appears in the differential. We proceed by induction on the length
of the support of � . Consider the part of the coefficient of @2x.I/ which is spanned
by algebra elements whose supports coincides with the support of � . By the inductive
hypothesis, the x.J / D x.j ; jo/ coefficient of @2x.I/ with total support � has the
form � X

f�1;�22Cj�1[�2D�g

I � za.�2/ � za.�1/ �J
�
C
�X

I � zx � zy �J
�
C d.I � zz �J /;

where zz is the x.J / component of @x.I/ with support equal to � , zx and zy are other
basic elements in the diagonal algebra where at least one of zx or zy has at least one
break (and supp.zx/C supp.zy/D supp.�/).

According to Lemma 3.2, terms appearing in the first sum cannot cancel with other
terms appearing in the first sum or with terms appearing in the second sum; thus, they
must cancel with terms in the third. Moreover, as in the proof of Proposition 3.4, every
term in d.Iza.�/J / occurs in the first sum; in particular, since d.Iza.�/J / is nontrivial
by Lemma 3.7, the first sum is nontrivial. This forces d.I �zz �J / to contain the terms in
d.I � za.�/ �J / with nonzero multiplicity. It follows that I � zz �J must contain I �a.�/ �J
with nonzero multiplicity: as in the proof of Lemma 3.2, the nonzero terms in the first
sum have three nonhorizontal strands in them (two on one side and one on the other),
so if they appear in the differential of a homogeneous element, then that element must
have exactly two moving strands in it, ie it must be of the form I � za.�/ �J .

Geometry & Topology, Volume 18 (2014)



2590 Robert Lipshitz, Peter S Ozsváth and Dylan P Thurston

Having verified that the differential contains
P
�2C za.�/, we must verify that it con-

tains no other terms. This follows from grading reasons. Having established that if
I � za.�/ �J ¤ 0 then I � za.�/ �x.J / appears in @x.I/, we can conclude that

(3-1) ��1 gr0.x.I//D gr0.I � za.�/ �J / � gr0.x.J //

for any chord � . Let a be any basic generator of the diagonal subalgebra, and suppose
that ax.J / occurs in @x.I/. Then, in particular, gr0.a/ gr0.x.J // D ��1 gr0.x.I//.
According to Lemma 3.5, there is a sequence of chords f�igniD1

with the property that
aD I �Qn

iD1 za.�i/ �J . By (3-1),

��n � gr0.x.I//D gr0.a/ � gr0.x.J //I
it follows that n D 1 (thanks in part to Proposition 3.8), and hence a had to be a
chord-like element.
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A
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˝ C ˝

Figure 12: Special length-three chords The matching is indicated by the
letters on the rows. The algebra element in the white box represents the
algebra element associated to a special length-three chord; we multiply it by
the gray-shaded length-one chord, to get a term which evidently appears in
the differential of the algebra element associated to the length-four chord. The
other term is illustrated to the right (in the two hatched boxes). It decomposes
as a product of length-three and length-one chords, but now the length-three
chord is not special.

This completes the proof of the proposition for pointed matched circles without special
length-three chords. When there are special length-three chords � , we must show za.�/
also appears in the differential. This is seen by considering a length-four chord � which
contains the given special length-three chord � . Such a chord can be found since the
genus k is bigger than 1. Now we have that

dza.�/D za.�1/ � za.�3/Cza.� 03/ � za.� 01/;
where �i and � 0i have length i , and exactly one of �3 or � 0

3
� , while the other of �3

or � 0
3

is not special. Suppose for concreteness that � D �3 . Our inductive hypothesis
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ensures that za.� 0
3
/ appears in the differential, and hence the term za.� 0

3
/ � za.� 0

1
/, appears

in @2 , and must cancel against something. According to Lemma 3.2, the only term
it can cancel is dza.�/. Hence, we have established that za.�/ appears with nonzero
multiplicity in @. Thus, since dza.�/ appears in @2 , we see that za.�/ � za.�3/ appears
in @2 . According to Lemma 3.2, the only way this can cancel is if za.�3/ — the algebra
element associated to our special length-three chord — also appears with nonzero
multiplicity in the differential. Repeating this argument for each special length-three
chord, we conclude that all length-three chords appear in the differential. Now, we can
proceed with the same induction as before.

Proof of Theorem 1 Consider the standard genus-2k Heegaard diagram for the
identity map of S , as pictured in Figure 13. We verify that 1CFDD of this Heegaard
diagram satisfies the hypotheses of Proposition 3.8.

�7

�6

�5

�4

�3

�2

�1

z

�1

�2

�3

�4

�5

�6

�7

Figure 13: Heegaard diagram for the identity map This is a Heegaard
diagram for the identity cobordism of the genus-two diagram with antipodal
matching, as indicated by the arcs to the left of the diagram. To the left and
the right of the diagram, we have also indicated a pair of complementary
idempotents, along with its unique extension into the diagram as a generator
for the complex.

The generators S.H/ of the A.�Z/˚A.Z/–module 1CFDD.H/ are in one-to-one
correspondence with pairs of complementary idempotents, as follows. There are no
˛–circles, and each ˇi meets exactly two ˛–arcs, ˛L

i and ˛R
i , where we label the

˛–curves so that if ˛L
i is the ˛–arc which meets @LH in fpi ; qig for ZL then ˛R

i
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is the ˛–arc which meets @RH in fr.pi/; r.qi/g. The map x 7! ID;L.x/� ID;R.x/

sets up the one-to-one correspondence.

Next, we claim that the coefficients of the boundary operator

ı1W X ! .A.Z/˚A.�Z//˝X

take values in the diagonal subalgebra. We have already checked this on the level of
idempotents. To see that coefficients lie in the diagonal subalgebra, notice that if qL

i is
a position between two consecutive places pi and piC1 on ZL , and qR

i is a position
between the corresponding places r.pi/ and r.piC1/ on ZRD�ZL , then qL

i and qR
i

can be connected by an arc in x† which does not cross any of the ˛– or ˇ–circles.
Thus, if B 2 �2.x;y/ is any homotopy class then the local multiplicity of B at qL

i

coincides with the local multiplicity of B at qR
i . It follows that the coefficients for

1CFDD.IZ/ lie in the diagonal subalgebra.

A periodic domain in H is uniquely determined by its local multiplicities at the boundary
of the Heegaard diagram. From this, and the definition of the grading set for bimodules,
it follows that the grading set for the identity bimodule is �–free.

If � is a length-one chord, the domains contributing to the J � za.�/ � I component
of @I are all octagons; see Figure 14. These have holomorphic representatives for any
conformal structure, cf Lemma 2.7.

�7

�6

�5

�4

�3

�2

�1

z

�1

�2

�3

�4

�5

�6

�7

Figure 14: A differential Here is another picture of the Heegaard diagram
for the identity cobordism on the antipodally matched circle with genus two.
The shaded rectangle region represents a term in the differential of the black
idempotent, which has the form �5˝ �3 times the white idempotent.
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If the genus k is bigger than 1 then we have verified that M D 1CFDD.IZ/ satis-
fies all the hypotheses of Proposition 3.8. So, that proposition implies 1CFDD.IZ/ is
isomorphic to bDD.IZ/, as desired.

The case that the genus k D 1 is established as follows. Embed the given genus-1
diagram for Z inside a genus-two diagram for Z #Z0 (where here Z0 is another genus-
one diagram). This is shown in Figure 15. The diagram defines a type-D structure over
A.Z#Z0/˝A.�Z#Z0/. Setting all the algebra elements with nontrivial support in Z0

to zero, and restricting to elements with some fixed idempotent I.s0/ in Z0 and its
complementary idempotent in �Z0 , we obtain an induced module over A.Z/˝A.�Z/.
(In the figure, this corresponds to setting �4D �5D �6D �7D �4D �5D �6D �7D 0

and restricting to generators whose coordinates in the portion corresponding to Z0

and �Z0 are at the displayed black dots.) The holomorphic curve counts in this
portion of the diagram correspond exactly to holomorphic curve counts for the smaller
genus-one diagram gotten by excising the portion corresponding to A.Z0/˝A.�Z0/.
(Algebraically, this corresponds to the statement that the type-DD identity bimodule for
the genus-one diagram coincides with the induced module Q�bDD.IZ#Z0

/; compare
Definition 1.8.) Thus, the genus-1 case follows from the genus-2 case.

�7

�6

�5

�4

�3

�2

�1

z

A

B
�1

�2

�3

�4

�5

�6

�7

Figure 15: Split genus-two diagram A genus-one diagram involving �i for
i D 1; : : : ; 3 and �j j D 5; : : : ; 7 is stabilized by adding another genus-one
diagram and, for example, the fixed generator.

The fact that the homotopy equivalences bDD.IZ/ ' 1CFDD.IZ/ are canonical, ie
unique up to homotopy, follows from [5, Corollary 8.1 and Lemma 8.15].
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Remark 3.9 The grading set for the identity DD bimodule can be explicitly determined
from the Heegaard diagram, and is given as follows. Recall from Section 2.3.4 that the
map

RW G0.�Z/!G0.Z/op

defined by R.k; ˛/D .k; r�.˛// is a group isomorphism. Using this, the grading set
for 1CFDD.I/ is G0.Z/ with the structure of a left G0.Z/�Z G0.�Z/–set given by
the rule

.g1 �Z g2/� h WD g1 � h �R.g2/

(where the operation � on the right-hand side refers to multiplication in G0.Z/); for
the proof, see [5, Lemma 8.13].

It follows that, in the language of Sections 2.3.4 and 2.4.3, the diagonal subalgebra
is the coefficient algebra of 1CFDD.I/.

4 Bimodules for arc-slides

Recall that Theorem 2 provides a model for the type-DD bimodule for an arc-slide.
The aim of the present section is to prove that theorem. As discussed in Section 4.6,
the proof proceeds in two steps:

(1) Proving that the type-DD module associated to the standard Heegaard diagram
for an arc-slide (Definition 4.4) is a stable arc-slide bimodule (Definitions 1.7
and 1.8). This is proved in Section 4.2. The proof relies only on coarse properties
of the Heegaard diagram (identification of generators, combinatorics of domains,
and the existence of a few of the in principle many holomorphic curves which
need to be computed).

(2) Proving the uniqueness theorem for arc-slide bimodules (Proposition 1.10).
There are two combinatorially different cases of arc-slides: under-slides and
over-slides (see Definition 4.2). The argument is easier in the first case, where
uniqueness is true in a slightly stronger form. In both cases, however, the proof
is broken down as follows:

(a) The gradings on the modules restrict what terms can occur in the differential.
The terms that are in correct gradings to occur are called near-chords (for
under-slides or over-slides, see Definitions 4.15 and 4.25, respectively).
The key properties of gradings required for this argument are collected in
Section 4.3, and the restrictions are obtained in Lemmas 4.17 and 4.32
(Sections 4.4 and 4.5). We use a comparison with gradings in the standard
Heegaard diagram from Section 4.2.
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(b) In the case of under-slides the equation @2D 0 and the hypothesis that short
near-chords appear in the differential implies that all near-chords appear;
this is discussed in Section 4.4.

(c) In the case of over-slides there is some indeterminacy in which near-chords
appear. Near-chords which may or may not appear are called indeterminate
(Definition 4.26); which indeterminate near-chords appear is determined by
a so-called basic choice (Definition 4.27). This is discussed in Section 4.5.

Before turning to these proofs, we introduce a little more notation, in Section 4.1.

4.1 More arc-slide notation and terminology

Let m be an arc-slide taking a pointed matched circle Z to another pointed matched
circle Z 0 . Here, as in the introduction, Z 0 is obtained from Z by sliding one of the
feet b1 of an arc B over another arc C ; see Figure 2. The foot b1 is connected to one
of the feet c1 of C by an arc � in Z ; in Z 0 , b1 is replaced by the new foot b0

1
of B0 ,

which is connected by an arc � 0 to the foot c2 of C in Z 0 .

Convention 4.1 We focus on the case that c1 is above c2 in the Z matching, with
respect to the orientation of Z ; the case that c1 is below c2 is symmetric. With respect
to a Heegaard diagram H for m, @HD�ZqZ 0 , so if we draw H in the plane with
handles attached, with Z on the left and Z 0 on the right, then c1 is above c2 in the
plane as well; see Figure 16.

When the matching does not satisfy the assumption from Convention 4.1, we will
switch the roles of Z and Z 0 ; see for example the remarks at the end of Definition 4.15;
see also Remark 4.19.

Definition 4.2 An arc-slide is called an over-slide if b1 is contained in the same
component of Z n fc1; c2g as z . (Note that this condition is symmetric in the roles
of Z and Z 0 .) Otherwise it is called an under-slide.

The arc-slide on the left in Figure 2 is an under-slide, while the one on the right is an
over-slide.

We find it convenient to think of arc-slide bimodules as left-left A.Z/–A.�Z 0/–
bimodules (analogously to what was done in Section 3) rather than left-right A.Z/–
A.Z 0/–bimodules (the point of view taken in the introduction). Correspondingly, we
can reformulate Property (AS-2) for arc-slide bimodules in terms of a subalgebra of
A.Z/˝A.�Z 0/:
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Definition 4.3 The near-diagonal subalgebra of A.Z/ ˝ A.�Z 0/ is the algebra
generated by pairs of algebra elements of the form .j � a � i/˝ .j 0 � a0 � i 0/, where
each of .j ; j 0/ and .i; i 0/ is a pair of near-complementary idempotents, and also
suppR.a/D suppR.a

0/.

With this definition, property (AS-2) of Definition 1.7 can be reformulated as stating
that the A.Z/˝A.�Z 0/–module N is induced from a module over the near-diagonal
subalgebra.

Some definitions for A.Z/ extend in obvious ways to the near-diagonal subalgebra; for
instance, a basic generator of the near-diagonal subalgebra is an element a˝ a0 of the
near-diagonal subalgebra so that a and a0 are basic generators of A.Z/ and A.�Z/.

The restrictions placed by @2 D 0 are strongest when we restrict attention to the
part of A.Z/ with the property that both the idempotents and the complementary
idempotents have at least two occupied positions; this is the portion with weight
�gC1< i < g�1. Since we are working with stable bimodules (in Propositions 4.16
and 4.30), we can always stabilize (in the sense of Definition 1.8) so that we are working
in this portion of the algebra. This will be the main way that we use stability (see for
example the proofs of Lemmas 4.22 and 4.35; we possibly stabilize more in the proof
of Lemma 4.28).

4.2 Heegaard diagrams for arc-slides

It is convenient to represent arc-slides by graphs embedded in an annulus, as follows.
Thinking of Z and Z 0 as two different markings on the same circle Z , consider the
annulus Œ0; 1��Z . This annulus has marked points on its boundary corresponding to the
positions in Z (in 0�Z ) and Z 0 (in 1�Z ), and a special horizontal arc corresponding
to the basepoint z 2 Z . Each position p 2 Z , other than b1 , determines a horizontal
segment Œ0; 1��fpg, connecting p to its corresponding point p0 2Z 0 . These horizontal
segments, except for the two horizontal segments corresponding to c1 and c2 , are
edges for the graph. The horizontal segments for c1 and c2 are both subdivided, by
points p1 and p2 respectively, and we draw two additional edges, one connecting p1

to f0g � b1 , and another connecting p2 to f1g � b0
1

. The pictures in Figure 2 can be
thought of as illustrations of these graphs (where the annuli have been cut along the
horizontal arcs corresponding to the basepoint z ).

The graph for an arc-slide can be turned into a Heegaard diagram H.m/, as follows.
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Definition 4.4 Let mW Z! Z 0 be an arc-slide. The standard Heegaard diagram for
the arc-slide H.m/ is the Heegaard diagram obtained as follows. Start from the graph
associated to m, as defined above. Attach a one-handle with feet at the two trivalent
points of the graph, in effect surgering out the two disks containing trivalent points, and
replacing them with an annulus equipped with three arcs running along it. These three
arcs naturally extend to an arc connecting c1 and c2 , an arc connecting c0

1
and c0

2
, and

an arc connecting b1 and b0
1

. Add a one-handle for each matched pair fp; qg in Z
other than fc1; c2g and fb1; b2g with feet at the midpoints of the edges corresponding
to p and q . The edges corresponding to p and q are surgered to get a pair of arcs, one
connecting p to q and the other connecting p0 to q0 . Performing one more such handle
addition, one of whose feet is on the edge corresponding to b2 and the other at the
edge connecting b1 to b0

1
, we obtain the desired Heegaard surface. The surgered arcs

are the ˛–arcs, and ˇ–circles are chosen to be meridians of the attached one-handles.

Figure 16 illustrates the result of this procedure.

a1

c1

b1

d1

a2

c2

b2

d2

�C

�

��

� 0C

� 0

� 0�

a1

c1

d1

a2

b01

c2

b2

d2

a1

b1

c1

d1

a2

b2

c2

d2

�C

�

��

� 0C

� 0

� 0�

a1

c1

d1

a2

b2

c2

b0
1

d2

Figure 16: Heegaard diagram for an arc-slide Heegaard diagrams for the
arc-slides from Figure 2. The one on the left represents an under-slide, and the
one on the right is an over-slide. Both satisfy Convention 4.1. In both cases,
the basepoint z in the pointed matched circle separates d2 and a1 , and the
picture is obtained by cutting the Heegaard diagram along the corresponding
arc z .

Recall that if mW Z �! Z 0 , then there is an associated strongly-based mapping class
Fı.m/W Fı.Z/!Fı.Z 0/. In [5, Definition 5.35] we constructed a bordered Heegaard
diagram from each strongly-based diffeomorphism. The diagram H.m/ is the Heegaard
diagram associated to the diffeomorphism Fı.m/.
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For an arc-slide mW Z!Z 0 , the chord � in Z lies on the boundary of a unique region
(component of † n .˛[ˇ/) in H.m/; abusing notation, we will denote this region � ,
as well. Similarly, the chord � 0 in Z 0 lies on the boundary of a region � 0 in H.m/.
Name the regions just above and below � by �C and �� , and the regions just above
and below � 0 by � 0C and � 0� . All other regions look the same, and are strips across the
diagram. (For this notation, we are implicitly using the hypothesis from Convention 4.1;
for the other case, compare Figure 17.)

a1

c1

d1

a2

b1

c2

b2

d2

� 0C

� 0

� 0�

�C

�

��

a1

c1

b0
1

d1

a2

c2

b2

d2

a1

c1

d1

a2

b2

c2

b1

d2

� 0C

� 0

� 0�

�C

�

��

a1

b0
1

c1

d1

a2

b2

c2

d2

Figure 17: Heegaard diagram for an arc-slide which does not satisfy
Convention 4.1 This is a reflection of Figure 16.

Definition 4.5 We call an arc-slide degenerate if there is only one position between c1

and c2 . (In the under-slide case which satisfies Convention 4.1, this is equivalent to
�� D � 0C .) See Figure 18.

For degenerate under-slides we need to allow one more kind of short near-chord. We
recall the definition of short near-chords (Definition 1.6), extended to include this case:

Definition 4.6 A short near-chord is a nonzero algebra element of the form .i �a �j /˝
.j 0 � b0 � i 0/ with the following four properties:

(1) The pairs .i ˝ i 0/ and .j ˝ j 0/ are near-complementary idempotents.

(2) suppR.a/D suppR.b/.

(3) The support of at least one of a or b is nonzero.

(4) The lengths of the (unrestricted) support of a and the (unrestricted) support of b

are both no greater than 1.
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Figure 18: Degenerate arc-slides and very special length-3 chords On
the left, we have a degenerate under-slide (Definition 4.5); in the center, a
degenerate over-slide (Definition 4.5); on the right, an under-slide containing
a very special length-three chord (proof of Lemma 4.20).

In the degenerate case of under-slides with ��D � 0C , we also call elements of the form
.i � a.�� [ �/ � j /˝ .j 0 � a0o.��/ � i 0/ and .i � a.��/ � j /˝ .j 0 � a0o.� 0 [ ��/ � i 0/ short
near-chords. Similarly, if �C D � 0� , then we call .i � a.� [ �C/ � j /˝ .j 0 � a0o.�C/ � i 0/
and .i � a.�C/ � j /˝ .j 0 � a0o.�C[ � 0/ � i 0/ a short near-chord.

Proposition 4.7 If mW Z ! Z 0 is an arc-slide and H D H.m/ is its associated
standard Heegaard diagram (in the sense of Definition 4.4), then the type-DD bimodule
1CFDD.H/ is a stable arc-slide bimodule (in the sense of Definitions 1.7 and 1.8).

Proof The generators correspond to near-complementary idempotents, as can be seen
by adapting the corresponding fact for the identity type-DD bimodule (see the proof
of Theorem 1). Generators of type Y occur because now there is a ˇ–circle which
intersects three (rather than two) ˛–arcs: two of those intersection points were of
the type already encountered in the type-DD identity bimodule; the third, however,
represents an intersection point of the ˛–arc for the B –matched pair with the ˇ–circle
for the C and C 0 matched pair. See Figure 19.

Since every region touches the boundary, the multiplicities at the boundary together
with a choice of initial generator x determine a domain Q 2 �2.x;y/. Furthermore,
local multiplicities at the boundary are possible if and only if the restricted supports
agree on the two sides. (Compare the proof of Theorem 1.) Thus the coefficients of
the differential on 1CFDD.H.m// lie in the near-diagonal subalgebra. Moreover, for
each basic generator I � a �J of the near-diagonal subalgebra there is a unique domain
B 2 �2.x.I/;x.J // which could contribute ax.J / to @x.I/.

In particular, as in the proof of Theorem 1, the grading set of 1CFDD.H/ is �–free, as
periodic domains are determined by their local multiplicities near the boundary.

In the nondegenerate case, the differential on 1CFDD.H/ contains all short near-
chords (Definition (AS-4)), as they are represented by polygons (compare Lemma 2.7).
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Figure 19: Generators for arc-slide bimodule At the left is a generator of
type X (indeed, XC , for the notation used in the proof of Proposition 4.14);
at the right is a generator of type Y .

In the degenerate case, the domains corresponding to the additional near-chords
.i �a.��[�/ �j /˝ .j 0 �a0o.��/ � i 0/ and .i �a.��/ �j /˝ .j 0 �a0o.� 0[��/ � i 0/ are annuli.
The combinatorics of these annuli (one 270ı corner, at which the ˛– and ˇ–curves go
out to the other boundary component) are such that they always have algebraically one
holomorphic representative; see, for instance, [12, Lemma 9.10] or the �3 case of the
proof of [5, Proposition 10.6].

Thus, we have verified that 1CFDD.H/ is an arc-slide bimodule in the sense of
Definition 1.7. To see it is stable in the sense of Definition 1.8, embed the Heegaard
diagram H for mW Z ! Z 0 in the Heegaard diagram H# for the Z0 –stabilized arc-
slide m# . Setting to zero algebra elements whose support intersects Z0 , and restricting
the generator in the new region, we obtain a module representing Q�. 1CFDD.m#//.
If we choose almost-complex structures for H and H# compatibly then the holomor-
phic curve counts involved in Q�. 1CFDD.m#// coincide with the curve counts for
1CFDD.H/.

Remark 4.8 The grading sets for 1CFDD.H/ are determined explicitly in Section 6.

4.3 Gradings on the near-diagonal subalgebra

The near-diagonal subalgebra has a Z–grading, which can be used to exclude the
appearance of many of its elements from the differential in an arc-slide bimodule. This
comes from thinking of it as a coefficient algebra: we will see (Lemma 4.12 below) that
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for any arc-slide bimodule N (including a standard one, 1CFDD.H.m//), Coeff.N /

contains the near-diagonal subalgebra, which is therefore Z–graded. Furthermore, we
will see (Proposition 4.13) that this Z–grading is independent of the choice of N .
Thus we can compute the Z–grading on the near-diagonal subalgebra by looking at
the grading set Sstd for 1CFDD.H.m//; we do this explicitly in Proposition 4.14.

By Lemma 2.12, we are free here to choose the grading group to be G.Z/ or G0.Z/.
For definiteness, we work with the latter, ie A.Z/ is thought of as graded by G0.Z/,
and the grading set of our module N is a G0.Z/–set. We will be working with
both the grading set S 0std for 1CFDD.H.m//, and the grading set S 0

N
for an arbitrary

arc-slide bimodule N . Denote the gradings with values in S 0std and S 0
N

by gr0std
and gr0

N
, respectively. Also note that we can naturally identify the generators of N

and the generators for 1CFDD.H.m//, since both are identified with idempotents for
the near-diagonal subalgebra.

Definition 4.9 For a pair of basic idempotents I , J in a based algebra A (as in
Definition 2.9), a chain of algebra elements K connecting I and J is a sequence
.a1; �1/; .a2; �2/; : : : ; .an; �n/ of pairs of algebra elements ai and signs �i 2 f�1;C1g
so that there is a sequence of basic idempotents

I D I0; I1; : : : ; In�1; In D J

with

ai D
�

Ii�1 � ai � Ii if �i DC1;

Ii � ai � Ii�1 if �i D�1;

for each i . (Note that the Ii can be recovered from the ai .)

The inverse of K is

K�1 D �.an;��n/; : : : ; .a1;��1/
�
;

which is a chain connecting J to I .

If A is graded, the grading of K is

gr0.K/D
nY

iD1

.� gr0.ai//
�i :

Similarly, if A is A.Z/ or the near-diagonal subalgebra, the support of K is

supp.K/D
nX

iD1

�i supp.ai/:
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We say that an idempotent I D .i ˝ i 0/ for the near-diagonal subalgebra has extremal
weight if the weight of i is ˙k (and hence the weight of i 0 is �k ). Note that there
are exactly two idempotents of extremal weight. For definiteness, we will say that the
weight of I D .i ˝ i 0/ is the weight of i .

Lemma 4.10 For any two idempotents I and J for the near-diagonal subalgebra, with
the same nonextremal weight, there is a chain K of short near-chords connecting I

and J . Furthermore, if x and y are the corresponding generators for H.m/ and
Q 2 �2.x;y/, we can choose the chain K so that

supp.K/D�r�.@
@.Q//:

(Recall that @HD�ZqZ 0 , while the near-diagonal subalgebra lives inside A.Z/˝
A.�Z 0/. This is the reason for the presence of the map r� from Section 2.4.3.)

Proof For definiteness, we will discuss the case of under-slides; the case of over-slides
is similar. Let d1 be the point in a just below b1 and d2 the point matched with d1 .
(For a degenerate arc-slide, d1 D c2 .)

For the first part, connect any pair of idempotents by a chain of short near-chords
by swapping adjacent pairs. More precisely, we may assume that I and J are both
idempotents of type X , by choosing a1 and/or an to be the short near-chord � ˝ 1 if
necessary (and �1 D 1 and/or �n D�1). Define a multigraph1 � as follows:

� � has one vertex Ai for each matched pair in Z (or equivalently Z 0/.
� � has an edge connecting Ai and Aj each time a foot of Ai is adjacent to a

foot of Aj in a n fb1g. In particular, the point d1 is adjacent to c1 , and b1 is
not viewed as adjacent to anything.
Let .x1;y1/ denote the edge connecting the matched pair fx1;x2g to the matched
pair fy1;y2g coming from the fact that x1 is adjacent to y1 .

� Add one more edge from the matched pair fd1; d2g to the matched pair fb1; b2g.
Call this edge .d1; b1/.

See Figure 20.

The type-X idempotents of weight n correspond to subsets S of the vertices of � with
jS j D nC k . Most of the edges in � correspond to short near-chords in an obvious
way: except for the edges .d1; c1/ and .d1; b1/ the edges in � come from length-1
intervals in .Z; a/. We will see that the edge .d1; b1/ corresponds to the pair of short

1A multigraph is a graph which may have multiple edges connecting the same pair of vertices.
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c1

b1

c2 D d1

b2

fb1; b2g
Œb2; d1�

.d1; b1/

.d1; c1/

fc1; c2g

Œb2; d1� .d1; b1/ .d1; c1/

.d1; b1/ .d1; c1/

.a/ .b/ .c/

.d/

�

Figure 20: The adjacency graph for an arc-slide (a) A genus-one arc-slide;
(b) the corresponding graph; (c) the domains corresponding to the edges in
the graph; the darkly-shaded region is covered with multiplicity 2; (d) the
domains corresponding to .d1; b1/ and .d1; c1/ in the nondegenerate case.

near-chords .��˝ ��; 1˝ � 0/ and the edge .d1; c1/ corresponds to the pair of short
chords .��˝ ��; � ˝ 1/ (in the nondegenerate case).

Consider the symmetric group G on the vertices of � . Since type-X idempotents
correspond to subsets of the vertices of � , the group G acts transitively on the set of
type-X idempotents. Since � is connected, G is generated by those transpositions that
interchange vertices connected by an edge. Let 
 be an edge of � , connecting some Ai

to some Aj , and �
 2G the corresponding transposition. Let I be a indecomposable
idempotent.

� If 
 62 f.d1; b1/; .d1; c1/g and exactly one of Ai or Aj is occupied in I then
the action of �
 on I can be achieved by multiplying by the corresponding short
near-chord a.�/˝ a0o.�/ (with �i D˙1).

� If 
 D .d1; b1/ (so fAi ;Aj gDffd1; d2g; fb1; b2gg) and exactly one of Ai or Aj

is occupied in I then the action of �
 on I can be achieved by multiplying by
either .��˝��;˙1/; .1˝� 0;˙1/ or .1˝� 0;˙1/; .��˝��;˙1/ (depending
on the occupancy of fc1; c2g in I ). (For a degenerate arc-slide, �� ˝ �� is
replaced by .��[ �/˝ �� .)
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� If 
 D .d1; c1/ (so fAi ;Aj gD ffd1; d2g; fc1; c2gg) and exactly one of Ai or Aj

is occupied in I then the action of �
 on I can be achieved by multiplying by
either .��˝ ��;˙1/; .� ˝ 1;˙1/ or .� ˝ 1;˙1/; .��˝ ��;˙1/, depending
on the occupancy of fb1; b2g in I . (For a degenerate arc-slide, �� ˝ �� is
replaced by ��˝ .� 0[ ��/.)

� If neither A1 nor A2 is occupied in I then the action of 
 on I is trivial.

� If both A1 and A2 are occupied in I then the action of 
 on I is trivial.

Any two .n C k/–element sets of vertices of � are related by an element of the
symmetric group, so the first part of the claim follows.

For the second part, it is enough to see that we can obtain the boundary of any periodic
domain as the support of a chain. Then, since we can connect I and J by some
chain K0 , to get a chain representing any other domain connecting I and J we merely
concatenate a chain representing the appropriate periodic domain. Moreover:

� We may work with any convenient starting and ending idempotent: given a peri-
odic domain Q, a chain K1 connecting I0 to I0 with supp.K/D�r�.@

@Q/, and
another idempotent J , choose a chain L connecting I0 to J . Then L�1K1L

is a chain connecting J to J with �r�.@
@Q/D supp.L�1K1L/D supp.K1/.

� Given a basis fQig for the space of periodic domains, it suffices to find a chain
representing each basis element.

We will now show how cycles in the graph � give periodic domains. Pick a basis
of H1.�/ consisting of simple cycles (edge loops with no repeated edges). For each
such basis element, we can find a chain of short near-chords as follows. Start in a type-X
idempotent where there is at least one occupied and at least one unoccupied vertex in
the cycle. (This is possible since we are not in the extremal weight and the cycles in �
have at least 2 vertices.) Then swap any consecutive (occupied, unoccupied) vertex
pair where the unoccupied vertex is clockwise from the occupied one. Repeat until
each occupied vertex has moved clockwise to the next occupied slot, or equivalently
until we have swapped once on each edge. This sequence of swappings gives a periodic
domain. The 2k independent cycles give a basis for the space of periodic domains.

Lemma 4.11 For any arc-slide bimodule N for m, near-complementary idempo-
tents I and J , and chain K of short near-chords connecting I and J ,

gr0N .I/D gr0.K/ gr0N .J /:
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Proof If ai is a short near-chord with Ii � ai � IiC1 D ai then aiIiC1 appears in @Ii

in N (by hypothesis of an arc-slide bimodule) and so

gr0N .Ii/D � gr0.ai/ gr0N .IiC1/:

Similarly, if IiC1 � ai � Ii D ai then aixi appears in @IiC1 and

gr0N .Ii/D .� gr0.ai//
�1 gr0N .IiC1/:

The result follows by induction.

Note that Lemma 4.11 applies to any arc-slide bimodule. In particular, 1CFDD.H.m//
is an arc-slide bimodule, and so it applies there.

Lemma 4.12 For any arc-slide bimodule N , the near-diagonal subalgebra is contained
in Coeff.N /.

In principle, Coeff.N / could be larger than the near-diagonal subalgebra, but by
Definition 1.7, we are guaranteed that any elements not in the near-diagonal subalgebra
do not appear in the differential.

Proof Let a be an element of the near-diagonal subalgebra, with initial idempotent I

and final idempotent J . Then, as each region in H.m/ touches the boundary, there is
a unique domain Q connecting the generators x.I/, x.J / of H.m/ corresponding
to I , J so that supp.a/D�r�.@

@Q/. Let K be a chain of algebra elements connect-
ing x.I/ to x.J / with support supp.K/D�r�.@

@Q/, whose existence is guaranteed
by Lemma 4.10. Then

supp.a/D�r�.@
@Q/D supp.K/;

gr0.a/D �m gr0.K/;

for some integer m. Thus by Lemma 4.11,

gr0N .x.I//D gr0.K/ gr0N .x.J //D ��m gr0.a/ gr0N .x.J //;

which says that .x.I/; a;x.J // 2 Coeff.N /, as desired.

Proposition 4.13 Let N be an arc-slide bimodule for m in the sense of Definition 1.7.
Then there is a G0–set map f W S 0std.m/! S 0

N
so that for each generator x.I/ for N ,

f .gr0std.xstd.I///D gr0N .x.I//;

where xstd.I/ is the corresponding generator for 1CFDD.H.m// with idempotent I .
Furthermore, the Z–gradings on the near-diagonal subalgebra from the two bimodules
agree.
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Proof Pick a base generator x0 . We first compare the stabilizer Stabstd.x0/ of
gr0std.x0/ in S 0std.m/ and the stabilizer StabN .x0/ of gr0

N
.x0/ in S 0

N
. For any Q 2

�2.x0;x0/, there is a chain K of short near-chords with �r�.@
@Q/ D supp.K/ by

Lemma 4.10, and so by Lemma 4.11,

gr0.x0/D gr0.K/ gr0.x0/;

where gr0.x0/ denotes either gr0std.x0/ or gr0
N
.x0/. Thus gr0.K/ is in both Stabstd.x0/

and StabN .x0/. From H.m/ we see that gr0.K/ gr0.x0/ must be R.g0.Q//: the
homological components of R.g0.Q// and of gr0.K/ agree, and since the grading set
on H.m/ is �–free, there can be at most one such element in Stabstd.x0/.

By hypothesis, Stabstd.x0/ is generated by elements of the form R.g0.Q//, and so we
have Stabstd.x0/ � StabN .x0/. We can therefore define the map f W S 0std.m/! S 0

N

in a canonical way.

Now, for any other generator x , connect x to x0 by a chain K of short near-chords.
Then

f .gr0std.x//D f .gr0.K/ gr0std.x0//D gr0.K/f .gr0std.x0//(4-1)

D gr0.K/ gr0N .x0/D gr0N .x/;

as desired. We used Lemma 4.11 twice (once in each grading set), as well as the fact
that f is a G0.H/–set map.

Now consider any element of the near-diagonal subalgebra, which we can think of as a
triple .x; a;y/ in the coefficient algebra of either 1CFDD.H.m// or N . We have

�grstd.x;a;y/ gr0std.x/D gr0.a/ gr0std.y/;

�grstd.x;a;y/f .gr0std.x//D gr0.a/f .gr0std.y//;

�grstd.x;a;y/ gr0N .x/D gr0.a/ gr0N .y/;

by (in order) the definition of gr0std on Coeff. 1CFDD.H.m/// (Lemma 2.11), the fact
that f is a G0.H/–set map, and (4-1). Since by assumption S 0

N
is �–free, the last

equation implies that grN .x; a;y/D grstd.x; a;y/.

Recall from Definition 1.5 that the near-complementary idempotents are either the
analogues of complementary idempotents, called type X , or are subcomplementary
idempotents, called type Y . Idempotents of type X are further divided into idempotents
where there are horizontal strands at C in Z , which we call type CX , and idempotents
where there are horizontal strands at C in Z 0 , which we call type XC .
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Recall that � , � 0 , �C , �� , � 0C and � 0� denote regions in the standard Heegaard diagram
H.m/ for m; see Section 4.2. For a region R in H.m/, nR is the multiplicity with
which R appears in a domain compatible with a. Since every region of H.m/ touches
the boundary, this is actually a function of supp.a/. These multiplicities of a are well de-
fined only if a is in the near-diagonal subalgebra, not for general a in A.Z/˝A.�Z 0/:
if a is not in the near-diagonal subalgebra then there is no domain Q compatible with a.

Proposition 4.14 Consider an arc-slide satisfying Convention 4.1. In the Z–grading
on the near-diagonal subalgebra for an arc-slide of b1 over c1 , the grading of a basic
generator a with initial idempotent I and final idempotent J is

(4-2) �.a/C c.I; supp.a//C c.J; supp.a//;

where c.I; supp.a// is a correction term given by

(4-3) c.I; supp.a//D

8̂<̂
:

1
4
.n� 0
C
� n� 0/ I of type CX ;

1
4
.�n� C n��/ I of type XC ;

1
4
.n�C � n� � n� 0 C n� 0�/ I of type Y ;

for an under-slide and by

(4-4) c.I; supp.a//D

8̂<̂
:

1
4
.�n� 0 C n� 0�/ I of type CX ;

1
4
.n�C � n� / I of type XC ;

1
4
.�n� C n�� C n� 0

C
� n� 0/ I of type Y ;

for an over-slide.

(In the degenerate case for under-slides in which we have �� D � 0C , the formulas in
Proposition 4.14 hold without change.)

Proof By Proposition 4.13, we can compute the grading either in the coefficient algebra
of the bimodule N or from the Heegaard diagram H.m/. Inside H.m/, we can apply
Lemma 2.18, as follows. The ˛– and ˇ–curves divide the Heegaard surface † into
regions. Most of these regions R, other than the six regions neighboring � or � 0 ,
are strips across the diagram; these are all octagons, so have e.R/ D �1, and have
nx.R/D ny.R/D 1

2
, for a total contribution of 0. To analyze the six special regions

more conveniently, divide the correction into two pieces, associated to the initial and
final generators: for Q 2 �2.x;y/ with @@QD supp.a/,

gr.x; a;y/D �.a/C ��1
2
e.Q/� nx.Q/

�C ��1
2
e.Q/� ny.Q/

�
:

Then, for instance, if b1 is below c1 , �C is an octagon, and we find

�1
2
e.�C/� nI .�C/D 1

2
C
��1

2
I of type X ;

�1
4

I of type Y .
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This gives the contribution of n�C to c.I; supp.a// in this case. The other contributions
are similar.

4.4 Under-slides

We explicitly describe the differential for the arc-slide bimodule for under-slides in
Proposition 4.16. We first define near-chords in this case.

Definition 4.15 A (nonzero) basic algebra element x in the near-diagonal subalgebra
for an under-slide satisfying Convention 4.1 is called a near-chord if it satisfies any of
the following conditions:

(U-1) It has the form xD I �.a.�/˝a0o.�// �J , where I and J are near-complemen-
tary idempotents and � is some chord in Z neither of whose endpoints is b1

(so that it can be interpreted, as it is in the above expression, as a chord also
in Z 0 ); furthermore, � is required to be different from the chord Œc2; c1�.

(U-2) It has the form x D I � .a.�/˝ 1/ �J or I � .1˝ a0o.�
0// �J , where I and J

are near-complementary idempotents.

(U-3) There is a chord � for Z so that the interior of � is disjoint from � and the
support of �[� is connected, and x has the form xDI �.a.�[�/˝a0o.�//�J ;
or there is a chord � for Z 0 so that the interior of � is disjoint from � 0 , and the
support of �[� 0 is connected, and x has the form xDI �.a.�/˝a0o.�[� 0//�J .

(U-4) It has the form xD I � .a.� n�/˝a0o.�// �J where � � � ; or xD I � .a.�/˝
a0o.� n � 0// �J where � 0 � � . (The element x can have two or three moving
strands.)

(U-5) It has the form x D I � .a.� [ �/˝ a0o.� [ �// �J , where:

� � and � are chords.
� Neither b1 nor b2 appears in the boundary of � .
� c1 appears in the boundary of � and c2 appears in the boundary of �

with the opposite orientation.
� The points b1 and b0

1
do not appear in the support of � (or, conse-

quently, �).

(U-6) It has the form x D I � .a.� [ �/˝ a0o.� n � 0// �J , where � is a chord other
than Œc1; c2� such that � 0� � but � 0 is not contained in the interior of � (so �
has c2 as one endpoint); or x D I � .a.� n �/˝ a0o.� [ � 0// �J , where � is a
chord such that � � � but � is not contained in the interior of � (so � has c1

as an endpoint). (There are two subcases: either all local multiplicities are 0

or 1, or there is some local multiplicity of two, which occurs when � or � 0

is contained in � .)
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Near-chords for under-slides are illustrated in Figure 21. In this subsection we will
almost always call these elements simply “near-chords.” (The reader is forewarned
that there is a different set of near-chords for over-slides, Definition 4.25, used in
Section 4.5.)

When Convention 4.1 does not hold, in the definition of “near-chords”, we switch the
roles of the two tensor factors.

Note that near-chords of type (U-2) are short, so they appear in the differential of any
arc-slide bimodule, by hypothesis.

.U-1/ .U-2/ .U-3/

.U-4/ .U-4/

.U-5/

.U-6/ .U-6/

Figure 21: Near-chords for under-slides We have illustrated here examples
of all the types of near-chords for under-slides, Definition 4.15. (Note that
there are two near-chords of type (U-4) and of type (U-6) since there are two
distinct subtypes of these.)

The aim of the present subsection is to verify the following, which is a special case of
Proposition 1.10:

Proposition 4.16 If N is a stable arc-slide bimodule for an under-slide then the
differential on N contains precisely the near-chords.
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We return to the proof at the end of the subsection, after some preliminary results. We
first establish that the near-chords listed above are all the elements of the near-diagonal
subalgebra of grading �1.

Lemma 4.17 In the near-diagonal subalgebra of an under-slide mW Z!Z 0 , there are
no elements of positive grading; the elements of grading 0 are the idempotents; and the
basic elements of grading �1 are the near-chords for under-slides.

Proof Assume that the arc-slide satisfies Convention 4.1. Let a D aL ˝ aR be a
basic generator of the near-diagonal subalgebra of grading greater than or equal to �1.
Then a uniquely determines a pair of generators x;y 2S.H.m// and a nonnegative
domain Q 2 �2.x;y/ in H.m/, with supp.a/ D @@Q. By Proposition 4.14, the
grading of a is determined by Q, via formula (4-2). We will proceed by cases on the
types of x and y (whether they are of type CX , XC , or Y ) and the multiplicities
of Q in the 6 regions �C , � , �� , � 0C , � 0 , and � 0� .

Recall from Lemma 2.2 that for any a0 2A.Z/, we have

�.a0/� �m=2;

where m is the minimal number of intervals needed to get the multiplicities in supp.a0/.
Thus for an element a of the near-diagonal subalgebra,

�.a/� �.mLCmR/=2;

where mL and mR are the number of intervals needed to cover supp.aL/ and supp.aR/,
respectively. Note that mL DmR unless n� .a/ or n� 0.a/ is nonzero.

If all six multiplicities n�C ; : : : ; n� 0� are 0 then Q consists of a union of horizontal
strips. Since the correction term is zero in this case, Q can have at most one connected
set of horizontal strips, as in type (U-1), or no strips at all, in which case a is an idempo-
tent. In the case analysis that follows we will assume that not all multiplicities are zero.

In general, there are other constraints on these multiplicities:

� The multiplicity difference across any ˛–arc is at most 1.
� The multiplicity differences are constrained by the idempotents

n�C � n� C n� 0
C
� n� 0� D�1, 0 or C1;(4-5)

n�C � n�� C n� 0 � n� 0� D�1, 0 or C1;(4-6)

where the right-hand side is determined by what happens to the occupancy of the
C idempotent on the left in (4-5) and on the right in (4-6). This will be spelled
out case by case below.
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There are also some more constraints that depend more closely on the idempotents. For
instance, if C is not occupied on the left in either the starting or ending idempotents,
then n�C D n� and n� 0

C
D n� 0� , as no strand can start or end at the endpoints of C .

CX ! CX In this case we have

n�C � n� C n� 0
C
� n� 0� D 0;

n�C � n�� D n� 0 � n� 0� D 0:

(The second set of equations come from the fact that the pair C is not occupied on
the right in either the initial or final idempotent, so there can be no strand starting or
ending there.) According to Proposition 4.14, the correction to the grading is given
by c.I; supp.a//C c.J; supp.a//D 1

2
.n� 0
C
� n� 0/.

The linear equations tell us that the multiplicities are of the following forms:

Corr n�C n� n�� n� 0
C

n� 0 n� 0�

�=2 m mC � m l C � l l

Here � 2 f�1; 0; 1g (as the difference in multiplicities is at most one), and the correction
to the grading is �=2, as indicated.

If � D �1, we would need to have �.a/D �1
2

, which is not possible with the given
multiplicities.

If � D 0, we have complete horizontal strips, giving a near-chord of type (U-1) or an
idempotent (if there are no strips at all).

If � DC1, the left side of Q will need at least two intervals to cover it, leaving only
one interval for the right. This implies that l D 0 and m 2 f0; 1g. In both cases, this
gives a near-chord of type (U-6).

In summary, the possibilities are:

Type Corr Grading n�C n� n�� n� 0
C

n� 0 n� 0�

(U-1) 0 �1 1 1 1 0 0 0

(U-1) 0 �1 0 0 0 1 1 1

(U-1) 0 �1 1 1 1 1 1 1

(U-6) C1
2

�1 0 1 0 1 0 0

(U-6) C1
2

�1 1 2 1 1 0 0

CX !XC In this case we have

n�C � n� C n� 0
C
� n� 0� D 1;

n�C � n�� C n� 0 � n� 0� D 1:
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The correction to the grading is given by

c.I; supp.a//C c.J; supp.a//D 1
4
.�n� C n�� C n� 0

C
� n� 0/D 0:

The linear equations tell us that the multiplicities are given by

Corr n�C n� n�� n� 0
C

n� 0 n� 0�

0 m mC �� 1 mC ı� 1 l C � l C ı l

where �; ı 2 f0; 1g.
The only solutions to these equations which yield a connected domain on both sides
are the following:

Type Corr Grading n�C n� n�� n� 0
C

n� 0 n� 0�

(U-1) 0 �1 1 0 0 0 0 0

(U-1) 0 �1 1 1 1 1 1 0

(U-1) 0 �1 0 0 0 1 1 0

CX ! Y In this case we have

n�C � n� C n� 0
C
� n� 0� D 0;

n�C � n�� C n� 0 � n� 0� D 1:

The correction to the grading is given by

c.I; supp.a//C c.J; supp.a//D 1
4
.n�C �n� Cn� 0

C
�2n� 0Cn� 0�/D 1

2
.�n� 0Cn� 0�/:

The linear equations tell us that the multiplicities are

Corr n�C n� n�� n� 0
C

n� 0 n� 0�

�ı=2 m mC � mC ı� 1 l C � l C ı l

with ı 2 f0; 1g and � 2 f�1; 0; 1g.
The solutions to these equations which can have grading greater than or equal to �1 are:

Type Corr Grading n�C n� n�� n� 0
C

n� 0 n� 0�

(U-2) �1
2

�1 0 0 0 0 1 0

(U-3) 0 �1 1 1 0 0 0 0

XC ! CX This is related to the case CX ! XC by rotating the diagram 180ı .
Again, the solutions are all of type (U-1).

XC !XC This is related to the case CX ! CX by rotating the diagram 180ı . The
solutions are idempotents or near-chords of type (U-1) or (U-6).
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XC ! Y This is related to the case CX ! Y by rotating the diagram 180ı . The
solutions are of type (U-2) or (U-3).

Y ! CX In this case we have

n�C � n� C n� 0
C
� n� 0� D 0;

n�C � n�� C n� 0 � n� 0� D�1:

The correction to the grading is given by

c.I; supp.a//C c.J; supp.a//D 1
4
.n�C �n� Cn� 0

C
�2n� 0Cn� 0�/D 1

2
.�n� 0Cn� 0�/:

The linear equations tell us that the multiplicities are

Corr n�C n� n�� n� 0
C

n� 0 n� 0�

�ı=2 m mC � mC ıC 1 l C � l C ı l

with ı 2 f�1; 0g and � 2 f�1; 0; 1g.
The solutions which can have grading greater than or equal to �1 are:

Type Corr Grading n�C n� n�� n� 0
C

n� 0 n� 0�

(U-4) 0 �1 0 1 1 1 0 0

(U-4) 0 �1 0 0 1 0 0 0

(U-4) 0 �1 0 0 1 1 1 1

(U-4) 1
2

�1 0 0 0 1 0 1

(U-4) 1
2

�1 1 1 1 1 0 1

Y !XC This is related to the case Y ! CX by rotating the diagram 180ı . The
solutions are of type (U-1) and (U-4).

Y ! Y In this case we have

n�C � n� C n� 0
C
� n� 0� D 0;

n�C � n�� C n� 0 � n� 0� D 0;

n� � n�� D n� 0
C
� n� 0 D 0:

(The last equations come from the fact that the B strand is not occupied in either the
initial or final idempotent on either the left or right.) The correction to the grading is
given by

c.I; supp.a//C c.J; supp.a//D 1
2
.n�C � n� � n� 0 C n� 0�/D n�C � n� :
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The linear equations tell us that the multiplicities are

Corr n�C n� n�� n� 0
C

n� 0 n� 0�

�� m mC � mC � l C � l C � l

with � 2 f�1; 0; 1g.
The solutions which can have grading greater than or equal to �1 are:

Type Corr Grading n�C n� n�� n� 0
C

n� 0 n� 0�

(U-1) 0 �1 1 1 1 0 0 0

(U-1) 0 �1 0 0 0 1 1 1

(U-1) 0 �1 1 1 1 1 1 1

(U-5) 1 �1 1 0 0 0 0 1

We have shown that only the idempotents have degree 0 and that the elements of
degree �1 are all near-chords. Checking through the various cases of near-chords
verifies that they all appear in one of the cases above. This completes the proof of
Lemma 4.17, under the hypotheses of Convention 4.1.

When Convention 4.1 does not hold, the above discussion nonetheless applies, by
reflecting the Heegaard diagram vertically. For example, the analogues of the formulas
from Proposition 4.14 (Equations (4-3) and (4-4)) hold, where we relabel regions after
reflection, as indicated in Figure 17. For the new formulas, we swap the roles of �C , �� ,
and � with � 0C , � 0� , and � 0 , respectively; so, for instance, the new correction formula
for underslides (replacing (4-3)) reads

(4-7) c.I; supp.a//D

8̂<̂
:

1
4
.n�C � n� / I of type CX ;

1
4
.�n� 0 C n� 0�/ I of type XC ;

1
4
.n� 0
C
� n� 0 � n� C n��/ I of type Y .

With this understood, the above case analysis holds as stated, in the case where
Convention 4.1 is not met.

Remark 4.18 Instead of considering the grading on the near-diagonal subalgebra, we
could instead prove an analogue of Lemma 3.5: every element of the near-diagonal
subalgebra can be factored into near-chords.

Remark 4.19 In the proofs of the following sequence of lemmas, we will implicitly
assume Convention 4.1. This is not essential for the statements, and the proofs adapt
easily to the other case (sometimes at the cost of switching the orders of products, and
replacing “initial idempotents” by “terminal idempotents”).
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We break Proposition 4.16 into a series of lemmas. We focus first on the nondegenerate
case (in which there are at least two positions between c1 and c2 ; see Definition 4.5),
and return to the degenerate case in Lemma 4.24.

Lemma 4.20 Let N be a stable arc-slide bimodule for a nondegenerate under-slide.
Then the differential in N contains all near-chords of type (U-1).

Proof Consider the intervals connecting b2 (which is matched with b1 ) to the base-
point z . There are two such intervals; we call the one which does not contain b1 the
outside region. We say that a pointed matched circle Z is big enough for the arc-slide
if the number of matched pairs in the outside region exceeds the number of positions
in the complement of the outside region. By stabilizing, it suffices to consider the case
of pointed matched circles which are big enough for the arc-slide.

A very special length-three chord is a special length-three chord (Definition 3.6)
contained between c1 and c2 , which is adjacent to b1 in Z and to b0

1
in Z 0 . (See

Figure 18.) Very special length-three chords, when they exist, need special attention.

Claim 1 Suppose x is a near-chord of type (U-1) which is not a very special length-
three chord, and suppose moreover that neither b1 nor b0

1
is contained in the interior of

(the support of) x . Then x appears in the differential.

Claim 1 follows from the same argument used to prove Proposition 3.8, by induction
on the length of the support. Note that each special length-three chord which is not very
special is adjacent to a length-one chord which appears in the differential by hypothesis.
Thus, these chords all appear in the differential, by the same principle which established
the existence of special length-three chords in the DD identity bimodule (see the end
of the proof of Proposition 3.8).

Consider now a near-chord x D I � .a.�/˝ a0o.�
0// �J of type (U-1) whose restricted

support has length one. This near-chord appears in the differential by hypothesis except
in the special cases when � contains either b1 or b0

1
in its interior.

In the case that � contains b1 or b0
1

in its interior there are two subcases, according
to whether or not dx D 0. If dx ¤ 0 it is straightforward to see that dx factors as a
product y � z of two short near-chords, and hence dx appears in the expression for @2 .
(See the first row of Figure 22.) This product has no alternative factorization, and
hence x must appear in the differential.

By induction on the length of the support (again, see the proof of Proposition 3.8), we
can conclude the following.
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Figure 22: Existence of near-chords of type (U-1) with length-1 restricted support

Claim 2 Suppose x is any near-chord of type (U-1) with the following properties:

� The support of x contains exactly one of b1 or b0
1

.

� The position at b1 or b0
1

(whichever is contained in the support of x ) is occupied
in both the initial and terminal idempotents for x (on the Z or the Z 0 side,
respectively).

Then x appears in the differential.

(Note that any near-chord satisfying the criteria of Claim 2 has dx ¤ 0.)

Next we consider near-chords x of type (U-1) whose restricted support has length 1

and with dx D 0. We consider two subcases: either b2 lies below b1 or above it. For
the time being, we make the following:

Assumption 1 Suppose that b2 lies below b1 .

Let e denote the position immediately below b2 . Clearly, e¤ c2 (otherwise Z 0 would
not be a valid pointed matched circle); by Assumption 1, e¤ c1 . In addition, e cannot
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be matched with the position directly below b1 (since otherwise Z would not be a
valid pointed matched circle).

Claim 3 Under Assumption 1, if x is a type (U-1) near-chord whose restricted support
has length 1, b1 is in the support of x , and e is contained in the left (hence also the
right) idempotent of x on the Z side, then x appears in the differential.

There is a short near-chord y with support Œe; b2� and x � y ¤ 0. Now, there are
type (U-1) near-chords x0 and y0 with x � y D y0 � x0 with supp.x/ D supp.x0/,
supp.y/D supp.y0/ and dx0 ¤ 0. (See the second row in Figure 22.) In fact, this is
the only other way to factor x �y in the near-diagonal subalgebra. We already showed
that x0 occurs in the differential, and y0 occurs in the differential by hypothesis; it
follows that x occurs in the differential as well. Thus, we have established Claim 3.

We now generalize Claim 3.

Claim 4 Under Assumption 1, if x is a type (U-1) near-chord whose restricted support
has length 1 and b1 is contained in the support of x , then x appears in the differential.

If e does not appear in the left idempotent of x on the Z side, since our pointed matched
circle is big enough, we can find some near-chord w of type (U-1) supported entirely
in the outside region, terminating at e , and so that x �w ¤ 0. Again, the product x �w
does not appear in the differential of any algebra element, and it has a unique alternative
factorization as w0 �x0 , with supp.w/D supp.w0/ and supp.x/D supp.x0/. In Claim 3,
we established that x0 appears in the differential (since e is in the left idempotent
of x0 on the Z side). So, to show that x appears in the differential, it suffices to show
that w0 appears in the differential. Note that b1 is not contained in the support of w .
If b0

1
is also not in the support of w , then w0 appears in the differential by Claim 1;

if b0
1

is contained in the support of w , then, since dx was assumed to vanish, b1 is
not contained in the left idempotent of x (and hence of w0 ) on the Z side, so b0

1
is

contained in the left idempotent of w0 on the Z 0 side; and hence w0 appears in the
differential by Claim 2. We conclude that x appears in the differential, proving Claim 4.
(See the third line of Figure 22.)

Next we consider the case when Assumption 1 does not hold, ie:

Assumption 1 0 Suppose that b2 lies above b1 .

Let f denote the position immediately above b2 . The same argument used to establish
Claim 3 (with some products reversed) shows the following:

Claim 3 0 Under Assumption 1 0 , if x is a type (U-1) near-chord whose restricted
support has length 1, b1 is in the support of x , and f is contained in the left idempotent
of x on the Z side, then x appears in the differential.
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Using this, the argument used to deduce Claim 4 can be modified to give the following:

Claim 4 0 Under Assumption 1 0 , if x is a type (U-1) near-chord whose restricted
support has length 1 and b1 is contained in the support of x , then x appears in the
differential.

Claim 5 If x is any type (U-1) near-chord whose restricted support has length 1, then
x appears in the differential of N .

The only cases of Claim 5 not covered by hypothesis are those where b1 or b0
1

are
contained in the interior of x ; but in this case Claim 4 or Claim 4 0 applies (perhaps
after reversing the roles of Z and Z 0 ).

Claim 6 If x is a near-chord of type (U-1) which is not a special length 3 chord,
then x appears in the differential.

If the restricted support of x has length 1, this is covered by Claim 5. Otherwise, we
claim that dx contains terms of the form y � t with the following properties:

� Each of y and t is of type (U-1).

� The product y � t has no alternative factorization.

� The product y � t does not appear in the differential of any other basic generator
of the near-diagonal subalgebra.

To ensure that the factorization is into two near-chords of type (U-1), we break at
a position in x other than b1 , b2 , c1 and c2 , which in turn can be done since we
assumed the arc-slide is nondegenerate. Therefore an induction on the length of the
restricted support establishes Claim 6.

Finally, since any special length-three chord x is adjacent to a near-chord of type (U-1)
with length-one restricted support, which in turn appears in the differential according
to Claim 5 established above (even in the case of a very special length-three chord), the
argument from Proposition 3.8 ensures the existence of x in the differential, as well.

By hypothesis, the differential on N contains all near-chords of type (U-2).

Lemma 4.21 Let N be a stable arc-slide bimodule for a nondegenerate under-slide.
Then the differential on N contains all near-chords of types (U-3) and (U-6).

Proof Let x be a near-chord of type (U-3). As illustrated in the first line in Figure 23,
we can find near-chords y and z so that

� y is of type (U-1),
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� z is of type (U-2),

� y �z has no alternative factorizations as a product of two homogeneous elements
in the near-diagonal subalgebra, with nontrivial support, and

� y � z appears in dx (and not in dw for any basic generator w ¤ x ).

It follows that x must appear in the differential, so that @2 D 0.

Next, let x be a near-chord of type (U-6). There are near-chords y1;y2 of type (U-2)
and a near-chord z of type (U-1) with the property that z � y1 D x � y2 has exactly
these two factorizations (with nontrivial support in the near-diagonal subalgebra), and
z �y1 does not appear in the differential of any other algebra element. Since z and y1

appear in the differential (according to Lemma 4.20; and the fact that all near-chords of
type (U-2) are short), it follows that x must, as well. This is illustrated in the second
line of Figure 23.

Lemma 4.22 Let N be a stable arc-slide bimodule for a nondegenerate under-slide.
Then the differential on N contains all near-chords of type (U-4).

Proof We will show that all near-chords of type (U-4) appear in the differential of
any idempotent which has at least two occupied positions on both the Z and the Z 0
sides. This assumption on the idempotent can be made freely, in view of the stability
hypothesis for N .

There are two types of near-chords of type (U-4): those for which the support has three
moving strands, and those for which it has only two. In other words, after rotating 180ı

if necessary, near-chords of type (U-4) have the form I � .a.� n�/˝ao.�// �J . For the
first type, � is a subset of the interior of � ; for the second type, � is a subset of � , but
one of its boundary points is on the boundary of � .

We handle first the case where the near-chord x contains three strands. In this case,
we can find a near-chord z of type (U-1) and a near-chord y of type (U-2) with the
properties that dz contains y �x , as in the third line in Figure 23. We claim that y �x
has no alternative factorizations as a product of two near-chords with nontrivial support.
More specifically, y �x has three moving strands, like x . The only other products of
basic elements of the near-diagonal subalgebra with the same support as y �x and three
moving strands are products y0 � x0 where y0 has type (U-3) and x0 has type (U-4).
However, a closer look at the idempotents shows that y � x does not equal y0 � x0 .
Specifically, suppose with out loss of generality that two of the moving strands of x are
on the Z –side. Then, the final idempotent of y �x contains C on the Z 0 side (x is of
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Figure 23: Existence of near-chords of type (U-3) and (U-6), and certain
near-chords of type (U-4) In the left column, we illustrate terms we already
know contribute to @2 . On the right, we have the only possible alternative
terms which could cancel (some) terms on the left. Recall that we draw a � b
with a on the outside and b on the inside; compare Figure 8. Here and later,
some of the horizontal lines in the algebra elements have been suppressed.

type Y !XC ), whereas the final idempotent of y0 �x0 contains C on the Z side (x0

is of type Y ! CX ).

It follows that @2 D 0 forces x to appear in the differential.

With one exception, the same argument also applies to near-chords x of type (U-4) with
only two moving strands, as illustrated in the fourth line in Figure 23. The exception is
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yx xy y0x0 y0x0

D 6D D

Figure 24: Not an alternative factorization One of the cases in Figure 23
(third line, right hand column) might appear to have an alternate factorization;
however, a more careful look at idempotents (as indicated) shows that this
alternative factorization does not exist.

when the restricted support of � is Œc2; c1��Œc2; c1�. In this case, there is no near-chord z

of type (U-1) as required for the argument above, and we use a different argument.

yz zy x x

@

@

z z xy yx

@

z z yx xy

Figure 25: Existence of remaining near-chords of type (U-4) We continue
with the conventions from Figure 23. This establishes the remaining cases of
near-chords of type (U-4) which have not already been covered in Figure 23.
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There are three subcases of type (U-4) with restricted support Œc2; c1��Œc2; c1�, according
to the placement of the initial idempotent. Specifically, if we rotate so that the support of
the near-chord is Œc2; c1�� Œb01; c1�, then the three (not necessarily distinct) subcases are:

(1) The initial idempotent on the Z 0 side contains a position in the open interval
.c2; c1/.

(2) The initial idempotent on the Z 0 side contains a position strictly above c1 .

(3) The initial idempotent on the Z 0 side contains a position strictly below c2 .

The three cases are illustrated in Figure 25. In the above verification, we are using the
hypothesis on our idempotent that in both Z and Z 0 there are at least two unoccupied
positions.

In the first of these cases, we can find near-chords y and z with the following properties:

� y is of type (U-4), but of the type which we have already verified appear in the
differential.

� z is of type (U-6) (and hence appears in the differential, by Lemma 4.21).

� The product y � z has no alternative factorizations into homogeneous elements
in the near-diagonal subalgebra.

� The term y � z appears in the differential dx of our near-chord x (and y � z
does not appear in dx0 for any other homogeneous element of the near-diagonal
subalgebra).

It follows from the above properties that x appears in the differential.

In the second case, we find a near-chord y of type (U-1) for which x � y has no
alternative factorization, but x �y appears in the differential of another near-chord z

of type (U-4), which we have already verified occurs in the differential, and x �y does
not appear in the differential of any other basic algebra element.

In the third case, we find a near-chord y of type (U-3) for which y �x has no alternative
factorization, and y �x appears in dz for a near-chord z of type (U-1) which we have
already verified occurs in the differential, and y �x does not appear in the differential
of any other basic algebra element.

Lemma 4.23 Let N be a stable arc-slide bimodule for a nondegenerate under-slide.
Then, the differential in N contains all near-chords of type (U-5).
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Figure 26: Proof of Lemma 4.23 Verifying the fact that near-chords of
type (U-5) occur in the differential

Proof This follows from the observation that a near-chord of type (U-2) times one of
type (U-5) has a unique alternative factorization as a near-chord of type (U-1) times
a near-chord of type (U-3) (and it does not appear in the differential of any algebra
element); together with Lemmas 4.20 and 4.21. (See Figure 26.)

We return now to the degenerate case.

Lemma 4.24 Let N be a stable arc-slide bimodule for a degenerate under-slide. Then
the differential on N contains all near-chords.

Proof We prove this in a sequence of claims:

Claim 1 The differential contains all near-chords of type (U-1) which are supported
outside Œc1; c2�.

This follows from a straightforward induction on the length of the support, as in
Proposition 3.8.

Claim 2 The differential contains all near-chords of type (U-3).

Apply the argument from Lemma 4.21 and Claim 1.

Claim 3 The differential contains all near-chords x of type (U-1) with support Œe; c2�

such that b1 is contained in the idempotent of x on the Z side, for any e above c1 .

In this case, (a term in) dx factors as dxDy �z , where y is of type (U-3), while z is the
short near-chord added in the degenerate case (see Definition 4.6); see Figure 27. Thus,
we know that y and z appear in the differential. Again, since there is no alternative
factorization of this element, we conclude that x , too, must appear in the differential.

Claim 4 The differential contains all near-chords x of type (U-1) with support Œe; c2�

for any e above c1 .
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Figure 27: Existence of type (U-1) chords in the degenerate case On the top
line, we have Claim 3 of the proof of Lemma 4.24; on the bottom line, we
have Claim 4 of the proof of Lemma 4.24.

It remains to consider the case where b1 is not in the initial idempotent x . After
stabilizing, it suffices to consider the case that the diagram is big enough, in the sense
described in the proof of Lemma 4.20. Assume that b2 is below c2 ; the case that b2 is
above c1 is similar. In this case, there is some chord y of type (U-1) in the outside
region (in the sense of the proof of Lemma 4.20) which terminates at b2 , so that
x � y does not vanish. Now, there is a unique alternative factorization x � y D y0 � x0 ,
where supp.x/ D supp.x0/ and supp.y/ D supp.y0/. The existence of x0 and y0 in
the differential are ensured by Claims 3 and 1, respectively. The product x � y does
not appear in the differential of any algebra element, and hence x must appear in the
differential. (Again, see Figure 27.)

Claim 5 The differential contains all near-chords x of type (U-1) with support Œc1; e�

for any e below c2 .

The proof of Claim 4 applies mutatis mutandis.

Claim 6 The differential contains all near-chords x of type (U-1).

It remains to consider cases where Œc1; c2� is contained in the interior of the support.
For such a near-chord x , the differential has a term with a unique factorization as y � z ,
where y z exist because of Claims 4 and 5.

Having established the existence of all near-chords of type (U-1), we can apply the
proofs of Lemmas 4.21, 4.22 and 4.23 to establish the existence of the remaining
near-chords.
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Proof of Proposition 4.16 Lemmas 2.11 and 4.17 imply that the near-chords are the
only elements in the near-diagonal subalgebra whose gradings are compatible with
appearing in the differential. On the other hand, by Lemmas 4.20, 4.21, 4.22, 4.23
(all in the nondegenerate case) and 4.24 (in the degenerate case), we know that each
near-chord appears in the differential.

4.5 Over-slides

We now turn to bimodules for over-slides. The appropriate notion of near-chords in this
case is given in Definition 4.25. The first 6 types correspond to the types of near-chords
for under-slides (except that one of the kinds of (U-6) near-chords has no analogue
for over-slides). There are two kinds of near-chords for over-slides which have no
under-slide analogues, types (O-7) and (O-8).

Definition 4.25 A (nonzero) basic algebra element x in the near-diagonal subalgebra
for an over-slide satisfying Convention 4.1 is called a near-chord (for the over-slide) if
it satisfies any of the following eight conditions:

(O-1) It has the form xD I � .a.�/˝a0o.�// �J , where � is some chord in Z neither
of whose endpoints is b1 (so that it can be interpreted, as it is in the above
expression, as a chord in Z 0 ); furthermore, � is required to be different from
the chord Œc2; c1�.

(O-2) It has the form x D I � .a.�/˝ 1/ �J or I � .1˝ a0o.�
0// �J , where I and J

are near-complementary idempotents.

(O-3) There is a chord � with the property that the interior of � is disjoint from �

and the support of � [ � is connected, and x D I � .a.� [ �/˝ a0o.�// � J ;
or the interior of r.�/ is disjoint from � 0 and r.�/[ � 0 is connected, and
x D I � .a.�/˝ a0o.r.�/[ � 0// �J .

(O-4) It has the form x D I � .a.� n�/˝a0o.�// �J where � � � or x D I � .a.�/˝
a0o.� n � 0// �J where � 0 � � . (Note that � n � or � n � 0 can be disconnected
in this case).

(O-5) x D I � .a.� [ �/˝ a0o.r.�/[ r.�/// �J , where here:

� � and � are disjoint chords, or one is contained in the other.
� neither b1 nor b2 appear in the boundary of � .
� c1 appears in the boundary of � .
� c2 appears in the boundary of � with the opposite orientation.
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(O-6) The nonzero element x has the form x D I � .a.� [ �/˝ a0o.� n � 0// � J
where � 0 � � but � 0 is not contained in the interior of � , and � \ � D∅; or
x D I � .a.� n�/˝a0o.� [� 0// �J , where the � � � but � is not contained in
the interior of � , and � \ � 0 D∅.

(O-7) x has support Œc2; c1�� Œc2; c1� and exactly three moving strands.

(O-8) x factors as a product of I � .a.Œc2; c1�/˝ a0o.Œc2; c1�// � I and I � .a.�/˝
ao.�// � J , where � is disjoint from Œc2; c1� or � is properly contained in-
side Œc2; c1�.

Near-chords for over-slides (satisfying Convention 4.1) are illustrated in Figure 28.

When Convention 4.1 does not hold for the over-slide, as before we switch the roles of
the two tensor factors in the definition of near-chords.

The calculation of the arc-slide bimodule for an over-slide is not quite as straightforward
as for under-slides: we cannot say that all near-chords appear in the differential, and
indeed the bimodule is determined uniquely only up to isomorphism. The near-chords
which might or might not appear in the differential for a given arc-slide bimodule are
the following:

Definition 4.26 A near-chord for an over-slide is called indeterminate if it is of one
of the following types:

� It is a near-chord of type (O-3), and its restricted support is Œc2; c1�.

� It is a near-chord of type (O-4), and the boundary of its restricted support
contains c1 or c2 , and the restricted support contains the interval Œc2; c1�.

� It is a near-chord of type (O-7).

� It is a near-chord of type (O-8).

These cases are illustrated in Figure 29.

A given indeterminate near-chord might or might not appear in the differential of an
arc-slide bimodule N . Exactly which ones appear are governed by the following:

Definition 4.27 For arc-slides satisfying Convention 4.1, a basic choice is a collec-
tion B of indeterminate near-chords of type (O-3), satisfying the following condition:
if x and x0 are two distinct indeterminate near-chords of type (O-3) with the same
initial idempotent (ie there is some I with I �x D x and I �x0 D x0 ), then exactly one
of x or x0 is in B .
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For arc-slides not satisfying Convention 4.1, a basic choice is analogous, but with
the terminal idempotent now playing the crucial role; ie if x and x0 are two distinct
indeterminate near-chords of type (O-3) with the same terminal idempotent (ie there is
some I with x D x � I and x0 D x0 � I ), then exactly one of x or x0 is in B .

.O-1/ .O-2/ .O-3/

.O-4/ .O-4/

.O-5/ .O-5/ .O-6/

.O-7/ .O-8/ .O-8/

Figure 28: Near-chords for over-slides We have illustrated here examples
of all the types of near-chords for over-slides appearing in Definition 4.25.
(Note that there are two illustrations for type (O-4) and type (O-8).)

.O�3/ .O�4/ .O�7/ .O�8/ .O�8/

Figure 29: Indeterminate near-chords Examples of the different kinds of
indeterminate near-chords
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Lemma 4.28 If N is a stable arc-slide bimodule, then the set of indeterminate near-
chords of type (O-3) which are contained in the differential on N forms a basic choice,
in the sense of Definition 4.27.

We defer the proof of Lemma 4.28 until page 2639.

Definition 4.29 Let N be a stable arc-slide bimodule. If B denotes the basic choice
of indeterminate near-chords which appear as coefficients in the boundary operator
for N then we say that N is compatible with the basic choice B ; we also say that B
is the basic choice of N .

Proposition 4.30 If N is a stable arc-slide bimodule which is compatible with a basic
choice B then only near-chords can appear in the differential on N , and precisely
which ones do appear are uniquely determined by the basic choice B . If N1 and N2

are two arc-slide bimodules which are compatible with basic choices B1 and B2 then
there is an isomorphism between N1 and N2 .

Before proving Proposition 4.30 we establish some preliminary results.

As in the case of under-slides, we study the elements of the near-diagonal subalgebra of
grading greater than or equal to �1. This time, there are some elements of grading 0,
which are responsible for the indeterminacy. We give them a name:

Definition 4.31 A basic generator of the near-diagonal subalgebra with support
Œc2; c1�� Œc2; c1� and exactly two moving strands (one in Z and one in Z 0 ) is called a
dischord.

Lemma 4.32 In the near-diagonal subalgebra of an over-slide mW Z! Z 0 , there are
no elements of positive grading; the basic elements of grading 0 are the idempotents
and the dischords (Definition 4.31); and the basic elements of grading �1 are the
near-chords for over-slides.

Proof The proof is similar to the under-slide case (Lemma 4.17). Again, we assume
Convention 4.1, reducing to this case via reflection if it is needed. As there, let a be a
basic generator in the near-diagonal subalgebra of grading greater than or equal to �1,
and let Q be the corresponding domain in the standard Heegaard diagram H.m/ for m.
If all six multiplicities n�C ; : : : ; n� 0� are 0 then Q consists of a union of horizontal
strips, and a is of type (O-1) or an idempotent.

In general, the constraints are:
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� The multiplicity difference along any line is at most 1.

� The multiplicity differences from the idempotents are

n� � n�� C n� 0
C
� n� 0� D�1, 0 or C1;(4-8)

n�C � n�� C n� 0
C
� n� 0 D�1, 0 or C1;(4-9)

where the right-hand side is determined by what happens to the occupancy of
the C idempotent on the left in (4-8) and on the right in (4-9).

CX ! CX In this case we have

n� � n�� C n� 0
C
� n� 0� D 0;

n�C � n�� D n� 0
C
� n� 0 D 0:

(The second set of equations come from the fact that the strand C is not occupied on
the right in either the initial or final idempotent, so there can be no strand starting or
ending there.) According to Proposition 4.14, the correction to the grading is given by
c.I; supp.a//C c.J; supp.a//D 1

2
.�n� 0 C n� 0�/.

The linear equations tell us that the multiplicities are of the following forms:

Corr n�C n� n�� n� 0
C

n� 0 n� 0�

�=2 m mC � m l l l C �
Here, � 2 f�1; 0; 1g (as the difference in multiplicities is at most one).

If � D �1, we would need to have M.gr0.a//D �1
2

, which is not possible with the
given multiplicities.

If � D 0, we have complete horizontal strips, giving near-chords of type (O-1) or, in
the case of no strips at all, an idempotent.

If � DC1, the left side of Q will need at least two intervals to cover it, leaving only
one interval for the right. This implies that m D l D 0, which gives a domain of
type (O-6).

In summary, the possibilities are:

Type Corr Grading n�C n� n�� n� 0
C

n� 0 n� 0�

(O-1) 0 �1 1 1 1 0 0 0

(O-1) 0 �1 0 0 0 1 1 1

(O-1) 0 �1 1 1 1 1 1 1

(O-6) C1
2

�1 0 1 0 0 0 1
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CX !XC In this case we have

n� � n�� C n� 0
C
� n� 0� D 1;

n�C � n�� C n� 0
C
� n� 0 D 1:

The correction to the grading is given by

c.I; supp.a//C c.J; supp.a//D 1
4
.n�C � n� � n� 0 C n� 0�/D 0:

The linear equations tell us that the multiplicities are given by

Corr n�C n� n�� n� 0
C

n� 0 n� 0�

0 mC ı mC � m l l C ı� 1 l C �� 1

where �; ı 2 f0; 1g.

The only solutions to these equations which yield a connected domain on both sides
(as required by the gradings) are the following:

Type Corr Grading n�C n� n�� n� 0
C

n� 0 n� 0�

(O-1) 0 �1 1 1 0 0 0 0

(O-1) 0 �1 1 1 1 1 0 0

(O-1) 0 �1 0 0 0 1 0 0

CX ! Y In this case we have

n� � n�� C n� 0
C
� n� 0� D 0;

n�C � n�� C n� 0
C
� n� 0 D 1:

The correction to the grading is given by

c.I; supp.a//C c.J; supp.a//D 1
4
.�n� Cn��Cn� 0

C
�2n� 0Cn� 0�/D 1

2
.n� 0
C
�n� 0/:

The linear equations tell us that the multiplicities are

Corr n�C n� n�� n� 0
C

n� 0 n� 0�

.1� ı/=2 mC ı mC � m l l C ı� 1 l C �
with ı 2 f0; 1g and � 2 f�1; 0; 1g.
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The solutions to these equations that can have grading greater than or equal to �1 are:

Type Corr Grading n�C n� n�� n� 0
C

n� 0 n� 0�

(O-4) 0 �1 1 0 0 0 0 0

(O-4) 1
2

�1 0 0 0 1 0 1

(O-4) 1
2

�1 1 1 1 1 0 1

(O-4) 1
2

�1 1 0 1 1 0 0

(The last case is an indeterminate near-chord.)

XC ! CX This is related to the case CX ! XC by rotating the diagram 180ı .
Again, the solutions are all of type (O-1).

XC !XC This is related to the case CX ! CX by rotating the diagram 180ı . The
solutions are idempotents and near-chords of types (O-1) and (O-6).

XC ! Y This is related to the case CX ! Y by rotating the diagram 180ı . The
solutions are of types (O-1) and (O-4).

Y ! CX In this case we have

n� � n�� C n� 0
C
� n� 0� D 0;

n�C � n�� C n� 0
C
� n� 0 D�1:

The correction to the grading is given by

c.I; supp.a//C c.J; supp.a//D 1
4
.�n� Cn��Cn� 0

C
�2n� 0Cn� 0�/D 1

2
.n� 0
C
�n� 0/:

The linear equations tell us that the multiplicities are

Corr n�C n� n�� n� 0
C

n� 0 n� 0�

�ı=2 mC ı� 1 mC � m l l C ı l C �
with ı 2 f0; 1g and � 2 f�1; 0; 1g.
The solutions which can have grading greater than or equal to �1 are

Type Corr Grading n�C n� n�� n� 0
C

n� 0 n� 0�

(O-2) �1
2

�1 0 0 0 0 1 0

(O-3) 0 �1 0 1 1 0 0 0

(O-3) 0 �1 0 1 1 1 1 1

(O-3) 0 �1 0 0 1 1 1 0

(The last case is an indeterminate near-chord.)
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Y !XC This is related to the case Y ! CX by rotating the diagram 180ı . The
solutions are of types (O-2) and (O-3).

Y ! Y In this case we have

n� � n�� C n� 0
C
� n� 0� D 0;

n�C � n�� C n� 0
C
� n� 0 D 0;

n�C � n� D n� 0 � n� 0� D 0:

(As in the under-slide case, the last equations come from the fact that the B strand
is not occupied in either idempotent on either side.) The correction to the grading is
given by

c.I; supp.a//C c.J; supp.a//D 1
2
.�n� C n�� C n� 0

C
� n� 0/D�n� C n�� :

The linear equations tell us that the multiplicities are

Corr n�C n� n�� n� 0
C

n� 0 n� 0�

�� mC � mC � m l l C � l C �
with � 2 f�1; 0; 1g.
The solutions which can have grading greater than or equal to �1 are:

Type Corr Grading n�C n� n�� n� 0
C

n� 0 n� 0�

(O-1) 0 �1 1 1 1 0 0 0

(O-1) 0 �1 0 0 0 1 1 1

(O-1) 0 �1 1 1 1 1 1 1

Dischord �1 0 0 0 1 1 0 0

(O-5), (O-7), (O-8) �1 �1 0 0 1 1 0 0

(O-5) �1 �1 1 1 2 1 0 0

(O-5) �1 �1 0 0 1 2 1 1

Here there is a grading 0 solution, the dischord (with support Œc2; c1�� Œc2; c1�), which
can be modified without changing the multiplicities near � or � 0 in a variety of ways:
introducing a break in the support (type (O-5)), introducing a break in the chord on
one side without changing the support (type (O-7)), or adding a new chord somewhere
else, either overlapping with the existing support or not (type (O-8)).

This is the end of the case analysis. It is straightforward (if somewhat tedious) to verify
that every near-chord for over-slides appears in the list of grading �1 elements. The
idempotents and dischords were exactly the grading 0 elements which occurred in the
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case analysis, and no positive grading elements occurred in the case analysis. This
concludes the proof.

Lemma 4.33 If N is an arc-slide bimodule then the only algebra elements which
appear in the differential are near-chords.

Proof This is an immediate consequence of the definition of the grading on the
coefficient algebra and Lemma 4.32.

Lemma 4.34 Let N be a stable arc-slide bimodule for an over-slide. Then the
differential on N contains all near-chords of type (O-1).

Proof The proof follows along the lines of Lemma 4.20.

We define the outside region and big enough as in the proof of that lemma; and by
stability, we restrict attention to the case where the pointed matched circle is big enough.
By stabilizing, we can further assume that any special length-three chord which is
adjacent to one of b1 or b0

1
is not adjacent to the basepoint.

Now the arguments proving Lemma 4.20 give the following sequence of claims:

Claim 1 If x is a near-chord of type (O-1) and the support of x is disjoint from b1

and b0
1

then x appears in the differential.

The case of special length-three chords are handled as they were in the proof of
Proposition 3.8. (There is no analogue of very special length-three chords in the
over-slide case.)

Claim 2 Suppose x is any near-chord of type (O-1) with the following properties:

� The support of x contains exactly one of b1 or b0
1

.
� The position at b1 or b0

1
(whichever is contained in the support of x ) is occupied

in both the initial and terminal idempotents for x (on the Z or the Z 0 side,
respectively).

Then x appears in the differential.

Claim 3 If x is a type (O-1) chord with restricted support of length 1, then x appears
in the differential.

This is the analogue of Claim 5 from the proof of Lemma 4.20, and its proof is similar
(eg establishing first the case where dx ¤ 0).

We turn next to the inductive proof that longer near-chords of type (O-1) appear. We
call a near-chord x of type (O-1) simplifiable if dx contains terms of the form y � t
with the following properties:
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� Each of y and t is of type (O-1).

� The product y � t has no alternative factorization.

� The product y � t does not appear in the differential of any other basic generator
of the near-diagonal subalgebra.

The proof has one extra complication for degenerate over-slides (Definition 4.5), so we
separate out that case.

Nondegenerate case In this case, all near-chords of type (O-1) either have restricted
support of length-one (so they appear in the differential by Claim 3); they are special
length-three chords (which can be shown to appear as they were in the proof of
Proposition 3.8); or they are simplifiable, in which case we can apply induction on the
length of the restricted support of the near-chord, to conclude that all near-chords of
type (O-1) appear in the differential.

Degenerate case There are two subcases, depending on whether the unique position
between c1 and c2 is b2 .

Subcase: b2 lies between c1 and c2 In this case, there is one more distinguished
type of near chords: chords x of type (O-1) such that:

� x has length 5 on both Z and Z 0 .
� x contains all of c1 , c2 , and b2 in the interior of its support (and hence has

restricted length three).

� The initial idempotent of x has type Y (and hence so does the terminal idempo-
tent of x ).

We call such a near-chord extra special. Under the present assumptions, there are
three kinds of nonsimplifiable chords of type (O-1): those which have length-one
restricted support (which appear in the differential by Claim 3), those which are special
length-three chords (which appear in the differential by the usual arguments), and those
which are extra special. (Chords like extra special ones but with idempotent of type X

do not need a special argument, but see the first line of Figure 30.)

We must argue that every extra-special near-chord x appears in the differential. Note
that there is a chord y of type (O-2) with x � y ¤ 0. Now, x � y has a unique
alternate factorization, which has the form x �yD y0 �x0 (with supp.x/D supp.x0/ and
supp.y/D supp.y0/, so that x0 is of type (O-1) and y0 of type (O-2)). Moreover, the
term in dx0 corresponding to the crossing at b2 factors as a product of two (not extra
special) near-chords of type (O-1), so x0 appears in the differential. The near-chord y0
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x0 x0

b2

xy yx

D

y0x0 x0y0

e1

e2

x x

@ � @�!
e1

e2

Figure 30: Existence of extra-special chords x The chord in the top line
is not extra-special: the idempotent has type X . The second and third lines
demonstrate the existence of extra-special chords in the cases that the position
between c1 and c2 is or is not b2 , respectively.

appears in the differential by hypothesis. Moreover, x � y does not appear in the
differential of any other algebra element, so it follows that x appears in the differential.
See the second line of Figure 30.

Now induction on the length of the restricted support establishes the proposition in this
case.

Subcase: Some e2 ¤ b2 lies between c1 and c2 If the position e1 matched with e2

is adjacent to neither b1 nor b0
1

then the same argument as in the nondegenerate case
applies. Special attention is needed when the position e1 matched with e2 is adjacent
to either b1 or b0

1
. Assume for definiteness that e1 is above and adjacent to b1 ; the

other cases are similar. In this case, a near chord x of type (O-1) is called extra special
if its support is Œe1; c2�. For an extra special near chord x , dx D 0.

Under the current assumptions, any near-chord x of type (O-1) either has restricted
support of length one (in which case x appears in the differential by Claim 3), is a
special length-three chord (in which case x appears in the differential by the argument
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from Proposition 3.8), is an extra-special chord, or is simplifiable. Extra special chords
appear in the differential by the same argument used for special length-three chords.
(See the last line in Figure 30.) So, again, induction on the length of the restricted
support establishes the proposition.

By hypothesis, the differential on N contains all near-chords of type (O-2).

Lemma 4.35 Let N be a stable arc-slide bimodule for an over-slide. Then the
differential on N contains all nonindeterminate near-chords of types (O-3) and (O-4).

Proof We describe the proof; but indeed, most of it is encapsulated in Figure 31, and it
runs parallel to the proof of the corresponding fact in the under-slide case (Lemma 4.22).

xy yx

@

z z

xy yx

@

z z

yz zy

@

x x

Figure 31: The three cases of Lemma 4.35

For any near-chord x of type (O-4), we can find a near-chord y of type (O-2) with
the property that x �y appears in the differential of a near-chord z of type (O-1), as in
the top two rows of Figure 31. This product x �y has no alternative factorization as a
product of two near-chords with nontrivial support. (This is where we use that x is not
indeterminate.) More specifically, the case where x has only two moving chords is
obvious. In the case where x has three moving chords, x �y has three moving chords as
well. There is exactly one other factorization of x �y , into a near-chord x0 of type (O-4)
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and another y0 of type (O-3) whose product x0 �y0 has the same three moving chords
as x �y . (See Figure 32.) However, a closer look at the idempotents shows that x �y
does not equal x0 �y0 . Specifically, suppose, without loss of generality, that two of the
moving strands of x are on the Z –side. Then, since x is not indeterminate, the initial
idempotent of x contains C on the Z 0–side (x has type XC ! Y ). On the other hand,
the initial idempotent of x0 contains C on the Z side (x0 has type CX ! Y ). (Again,
see Figure 32.)

Since, by Lemma 4.34, z appears in the differential, we conclude that x must, as well.

xy yx x0y0 y0x0

D 6D D

Figure 32: Not an alternative factorization One of the cases in Figure 31
might appear to have an alternate factorization; however, a more careful look
at idempotents (as indicated) shows that this alternative factorization does not
exist.

To prove the other half of the lemma, consider a near-chord x of type (O-3) which is
not indeterminate. Then, the differential of x contains an element which factors as y �z ,
where y is of type (O-2) and z is of type (O-1), as in the third line of Figure 31. (This
is where we use the fact that x is not indeterminate.) That factorization is unique in
the near-diagonal subalgebra, and y � z does not appear in the differential of any other
algebra element. According to Lemma 4.34, y � z appears in @2 , so x must appear
in @.

Lemma 4.36 Let N be a stable arc-slide bimodule for an over-slide. Then the
differential on N contains all near-chords of types (O-5) and (O-6).

Proof The proof is illustrated in Figure 33.

Let x be a near-chord of type (O-5). Postmultiply x by a near-chord y of type (O-2).
The resulting algebra element x � y does not appear in the differential of any other
algebra element. Moreover, x �y has a unique alternative factorization as a product of
two elements of the near-diagonal subalgebra, x0 �y0 , where x0 has type (O-3), y0 has
type (O-1), and the boundary of y0 meets C . (In the case where the chords � and �
are neither disjoint nor nested, this alternative factorization does not make sense. In
fact, if x is analogous to a type (O-5) near-chord, except that the chords � and � are
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�

�

xy yx x0y0 y0x0

yx xy x0y0 y0x0

Figure 33: Proof of Lemma 4.36 The top line is for near-chords of type
(O-5). The bottom line is for near-chords of type (O-6).

neither disjoint nor nested, then x already admits a factorization into near-chords.)
This is illustrated in the first row of Figure 33.

If x is of type (O-6), we premultiply x by a near-chord y of type (O-2). The resulting
algebra element y �x has an alternative factorization as x0 �y0 where y0 is of type (O-2)
and x0 is of type (O-1). See the second row of Figure 33.

Next, we turn our attention to the indeterminate near-chords.

Lemma 4.37 Let N be a stable arc-slide bimodule for an over-slide. Which indeter-
minate near-chords of type (O-4) appear in the differential is uniquely determined by
which indeterminate near-chords of type (O-3) appear.

Proof Let x be an indeterminate near-chord of type (O-4). We can find a near-chord y

of type (O-2) with the property that x �y appears in the differential of a near-chord z

of type (O-1). The term x �y has a unique alternative factorization as x0 �y0 , where x0

is of type (O-4) (but x0 is not indeterminate), and y0 is an indeterminate near-chord
of type (O-3). Since dz appears in @2 , it follows that the term y0 appears in the
differential if and only if x does not. See Figure 34 for an illustration.

Lemma 4.37, or rather its proof, can be used to establish Lemma 4.28. To this end, note
that an indeterminate near-chord of type (O-3) has the form [ � .� ˝ 1/ or [ � .1˝ � 0/,
where [ is a dischord (in the sense of Definition 4.31).
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xy yx x0y0 y0x0 z z

@

Figure 34: The three types of terms in Lemma 4.37

Proof of Lemma 4.28 Our aim is to show the following: for each dischord [, the
indeterminate near-chord y D [ � .�˝1/ appears in the differential of a stable arc-slide
bimodule if and only if y0D [ � .1˝� 0/ does not. (Again, we are using Convention 4.1,
bearing in mind Remark 4.19.)

After stabilizing, we work in a portion of the algebra where the number of occupied
strands exceeds the number of positions between c1 and c2 . We also stabilize so that
there is some position above b1 .

Consider first the case where the initial idempotent I of y (ie the basic idempotent I

so that I �yD y ) contains some occupied position in Z which is above b1 . In this case,
the proof of Lemma 4.37 gives an indeterminate near-chord x of type (O-4) which
appears in the differential precisely if y does not. (The initial idempotent of y differs
from the initial idempotent of x in only one position.) Now, x � .1˝ � 0/ does not
appear in the differential of any element, and it has a unique alternative factorization as
x0 � y0 , where x0 is a (not indeterminate) near-chord of type (O-4) which appears in
the differential, by Lemma 4.35. It follows that y0 appears in the differential if and
only if x does, which in turn appears in the differential if and only if y does not. See
Figure 35 for an illustration.

Suppose instead that in I there is no occupied position above b1 . By our hypothesis on
the total number of occupied positions, this forces there to be some occupied position d1

below c2 . Thus, we can find a near-chord x of type (O-1) (connecting d1 to some
position above b1 ) so that:

� y � x is nonzero, and has a unique alternate factorization as x2 � y2 , where x

and x2 have the same support, and y and y2 have the same support.

� y0 �x is nonzero, and has a unique alternate factorization as x2 �y02 .

� y � x and y0 � x do not appear in the differential of any other basic algebra
element.
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x1 � 0x x0y0 y0x0

Figure 35: Proof of Lemma 4.28 The existence of the term on the left in @2

is determined by the appearance in the differential of a corresponding near-
chord y of type (O-3) according to Lemma 4.37; the second factorization
.x0 �y0/ is determined by the existence of a different near-chord y0 which is
of type (O-3).

� The initial idempotent of y2 (which is the same as the initial idempotent of y0
2

)
contains some occupied position in Z which is above b1 .

In particular, the pair y2 , y0
2

fit into the case of the lemma that we already established,
so y2 is contained in the differential if and only if y0

2
is not. By @2 D 0 we see that y

is contained in the differential if and only if y2 is, and y0 is contained in the differential
if and only if y0

2
is. It follows that y is contained in the differential if and only if y0 is

not, as claimed.

Using the terminology of Definition 4.29, Lemma 4.37 says that for a stable arc-slide
bimodule, its basic choice B uniquely specifies which indeterminate near-chords of
type (O-4) appear in the differential. In the same vein, we have:

Lemma 4.38 If N is a stable arc-slide bimodule then its basic choice B uniquely
specifies which indeterminate near-chords of type (O-7) appear in the differential on N .

Proof We consider terms in @2 which have support, say, Œc2; b1� � Œc2; c1�. Let ˛
denote the sum of all terms of type (O-7) which appear in the differential. The terms
in @2 coming from near-chords are of the following types:

� Terms of type (O-3) times terms of type (O-1).

� Terms of type (O-7) times terms of type (O-2).

� Differentials of indeterminate near-chords of type (O-3).

See Figure 36 for an illustration. Since any near-chord of type (O-7) has nontrivial
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@

Figure 36: The three types of terms in Lemma 4.38 On the left, we have
a type (O-3) near-chord; in the center, we have the product of a type (O-3)
near-chord and a type (O-1) near-chord; on the right, we have the product of
a type (O-7) near-chord and a type (O-2) near-chord.

product with any near chord of type (O-2), it follows at once that the set of elements of
type (O-7) are determined by the terms of type (O-3) which appear in the differential;
and this latter is the basic choice.

Lemma 4.39 If N is a stable arc-slide bimodule then its basic choice B uniquely
specifies which near-chords of type (O-8) appear in the differential on N .

Proof Suppose x is a near-chord of type (O-8). We can find a near-chord y of
type (O-2) so that x �y has exactly two alternate factorizations: x �y D w � z D z0 �w0 ,
where w and w0 are indeterminate of type (O-3) and z and z0 are of type (O-1).
Moreover, x �y does not appear in the differential of any other algebra element. From
this (and Lemma 4.34), we see that x appears in the differential if exactly one of w
or w0 appears in the differential. See Figure 37 for an illustration.

z0w0 w0z0 wz zw xy yx

Figure 37: The three types of terms in Lemma 4.39 On the left, we have
z0 �w0 ; in the center, we have w � z ; on the right, we have x �y .

Lemma 4.40 Let x be a near-chord and y be a dischord. If x �y is nonzero then x �y
is a near-chord as well, and similarly for y �x .
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Proof This is a simple case analysis on the type of x .

If x has type (O-1) and x �y ¤ 0 then x �y has type (O-8). If x has type (O-2) and
x �y ¤ 0 then x �y has type (O-3). If x has type (O-4) and y �x ¤ 0 then y �x has
type (O-3). All other cases vanish.

(Alternately, the result follows from noting that the grading of x �y in the near-diagonal
subalgebra must be �1, and so by Lemma 4.32 x �y must be a near-chord.)

Proof of Proposition 4.30 Let N be a stable arc-slide bimodule and let B be its
associated basic choice (whose existence is guaranteed by Lemma 4.28). By hy-
pothesis, near-chords of type (O-2) exist in the differential; combining this with
Lemmas 4.34, 4.35 and 4.36, we conclude that all the near-chords which are not
indeterminate appear in the differential. According to Lemmas 4.37, 4.38 and 4.39, the
basic choice B uniquely determines all the indeterminate near-chords which contribute
to the differential. According to Lemma 4.33 no other terms can contribute to the
differential. In sum, the basic choice B uniquely determines N .

Next, let N be compatible with a basic choice B , and let B0 be a different basic choice.
Then we can find a sum of dischords Q with the property that

(4-10) BCB0 DQ � .a.�/˝ 1C 1˝ a.� 0//;

where in the above equation we do not distinguish between a basic choice B and its
associated algebra element X

b2B

b:

We use Q to construct a new bimodule N 0 , with the same generators as N and
differential given by

(4-11) @0N D .IC �Q/ ı @N ı .IC �Q/:
Here, I denotes the identity map N ! N while �Q denotes the map induced by
a �x.I/ 7! a �Q �x.I/ (where x.I/ is the generator of N corresponding to the near-
complementary idempotent I ). Since .IC �Q/2 D I (as Q2 D 0), it follows that @0

N

is a differential. Note that N 0 is also an arc-slide bimodule: Properties (AS-1) and
(AS-2) are clear; Property (AS-3) follows from the fact that the elements appearing
in @0

N
are elements of the near-diagonal subalgebra with grading �1 (see Lemma 4.40);

Property (AS-4) continues to hold since the operation of replacing @N by @0
N

does not
affect the short chords which appear in the differential. Similarly, N 0 is also stable.
Now, if N is compatible with B then, according to (4-10), N 0 is compatible with B0 .
Moreover, the map f W N !N 0 induced by

.IC �Q/W N !N 0
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is an isomorphism of chain complexes.

4.6 Arc-slide bimodules

We put together the results (Propositions 4.16 and 4.30) from the previous sections to
deduce Theorem 2. First, we have the following:

Proof of Proposition 1.10 For under-slides, this is Proposition 4.16.

For over-slides, this is Proposition 4.30. (Recall that the exact form of the differential
is then determined by the basic choice, but by Proposition 4.30, all of these choices
give isomorphic bimodules.) The result follows.

And next:

Proof of Theorem 2 This is immediate from the fact that 1CFDD.H.m// is a stable
arc-slide bimodule (Proposition 4.7) and the fact that all such bimodules are isomorphic
(Proposition 1.10). Moreover, it follows from [5, Corollary 8.1 and Lemma 8.15] that
the homotopy equivalence bDD.m/Š .A.Z/˝A.�Z 0//� 1CFDD.Fı.m// is unique
up to homotopy.

Remark 4.41 It is worth noting that the above proof in fact performs all the holomor-
phic curve counts for 1CFDD.H.m// when m is an under-slide. This is not the case
for over-slides. For instance, disconnected domains never contribute to a differential in
1CFDD.H.m//. This can be used to give a criterion which ensures that certain near-

chords of type (O-8) do not contribute to the differential on 1CFDD.H.m// (although
one can arrange that they do for other stable arc-slide bimodules). However, this point
is irrelevant for our purposes: we are interested in 1CFDD.H.m// only up to homotopy
equivalence.

5 The genus-one case

In this section, we illustrate the computations of the arc-slide bimodules by spelling out
the answers explicitly in the genus-one case. We will focus on the part of the algebra
with weight zero (ie one moving strand), as A.T 2;�1/D F2 and A.T 2; 1/' F2 , and
so the bimodules over these algebras are not very interesting (free of rank 1 with trivial
differential, when viewed as bimodules modules over F2 ).

The (unique) pointed matched circle for the torus has 4 matched points, 1; 2; 3; 4,
with 1 matched to 3 and 2 matched to 4. Let �0 denote the idempotent in A.T 2; 0/
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corresponding to f1; 3g and �1 the idempotent corresponding to f2; 4g. Let �i denote
the (short) chord from i to i C 1, so

�0�1�1 D �1; �1�2�0 D �2; �0�3�1 D �3:

Let
�12 D �1�2; �23 D �2�3; �123 D �1�2�3:

Of course, we are considering two copies of A.T 2/. In the second copy, we will denote
the idempotents corresponding to �0 and �1 by j0 and j1 , and the chord corresponding
to �i by �i .

With this notation in hand, consider the DD identity module, which was already com-
puted in this case in [5, Proposition 10.1]. The module 1CFDD.I/ has two generators,
p D .�0˝ j0/ and q D .�1˝ j1/, and differential

@p D .�1�3C �3�1C �123�123/˝ q; @q D .�2�2/˝p:

This is in obvious agreement with Theorem 1. Note that the term �123�123 comes
from a special length-three chord, and is not forced by @2 D 0.

Next we turn to the arc-slide bimodules. The genus-1 mapping class group is generated
by Dehn twists �m , �l around two curves m, l in T 2 . We can view �m and �l as
underslides; see Figure 38. We give the answers, and then explain the terms.

p q

r D r

p q

p q

s

D
s

p q

Figure 38: Generators of the genus-one mapping class group This figure
may be compared with [5, Figure 25].

The module 1CFDD.�m/ has three generators, pD �0˝j0 , qD �1˝j1 and r D �1˝j0 .
The differential is given by

@.p/D � (U-1)
�1�3 C

(U-1)
�123�123

�˝ qC � .U-4/
�3�12

�˝ r;

@.q/D � .U-4/
�23�2

�˝ r;

@.r/D �.U-2/
�2

�˝pC �.U-2/
�1

�˝ q:

The type of the near-chord corresponding to each term is indicated above it. There are
no contributions from chords of types (U-3), (U-5) or (U-6).
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The terms �1�3 , �2 and �1 are short near-chords, and so appear by hypothesis / directly
counting holomorphic curves. The remaining terms are not forced by @2 D 0 in this
diagram, but instead follow from the fact that our bimodule is stable, together with
@2 D 0 on a bigger diagram.

Similarly, the module 1CFDD.�l/ has three generators, p D �0˝ j0 , q D �1˝ j1 and
s D �0˝ j1 . The differential is given by

@.p/D � (U-1)
�3�1 C

(U-1)
�123�123

�˝ qC � (U-4)
�12�3

�˝ s;

@.q/D � (U-4)
�2�23

�˝ s;

@.s/D � (U-2)
�2

�
pC � (U-2)

�1

�˝ q:

(The modules 1CFDA.�m/ and 1CFDA.�l/ were computed directly in [5, Section 10.2].
Tensoring these modules with 1CFDD.I/ gives another computation of 1CFDD.�m/

and 1CFDD.�l/.)

p

r s

q

s r

Figure 39: Genus-one overslides

There are also two overslides in genus 1; they are shown in Figure 39. The bimod-
ule 1CFDD associated to the overslide on the left of Figure 39 has three generators,
p D �0˝ j0 , r D �1˝ j0 and s D �0˝ j1 , and differential given by

@.p/D � (O-2)
�3 C

(O-3)
�123�12

�˝ r C � (O-2)
�3 C

(O-3)
�12�123

�˝ s;

@.r/D � (O-1)
�2�1

�˝ s;

@.s/D � (O-1)
�1�2

�˝ r;

with the understanding that exactly one of the terms labeled (O-3) occurs.

The (O-1) and (O-2) terms are short near-chords, and so occur by hypothesis / direct
computation. Both (O-3) terms are indeterminate; the fact that exactly one of them
occurs is part of the definition of a basic choice (Definition 4.27). (In terms of holo-
morphic curves, the (O-3) near-chords do not follow from @2 D 0 in this diagram, but
do follow from @2 D 0 after stabilizing; see the proof of Lemma 4.28.)
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We can switch between basic choices by making the change of variables p0 D .1C
�12�12/˝p (compare (4-11)).

For completeness, the bimodule corresponding to the overslide on the right has genera-
tors q D �1˝ j1 , r D �1˝ j0 and s D �0˝ j1 , and differential given by

@.q/D 0;

@.r/D � (O-1)
�2�3

�˝ sC � (O-2)
�1 C

(O-3)
�23�123

�˝ q;

@.s/D � (O-1)
�3�2

�˝ r C � (O-2)
�1 C

(O-3)
�123�23

�˝ q;

again with the understanding that exactly one of the terms labeled (O-3) contributes.
(Which one contributes is determined by the basic choice; bear in mind that this diagram
is mirror to Convention 4.1.)

6 Gradings on bimodules for arc-slides and mapping classes

In this section, we discuss further the gradings on the type-DD modules associated to
arc-slides. The main goal is to compute explicitly the gradings on 1CFDD.Fı.m//, the
bimodule associated to an arc-slide m; this is done in Section 6.1. As we explain in
Section 7, this allows one to compute both the (relative) Maslov gradings on cHF.Y /
and the decomposition of cHF.Y / into spinc –structures. Section 6.2 is a brief digression
to compute the grading sets for general surface homeomorphisms; Section 6.2 is not
needed for the rest of the paper, but answers a question which arises naturally.

6.1 Gradings on arc-slide bimodules

In Section 6.1.1, we finish computing the gradings of periodic domains for the standard
Heegaard diagrams for arc-slides; this was begun in Section 4.3. In Section 6.1.2, we
give the grading set for 1CFDD.Fı.m// (ie the range of the grading function), with
respect to both the big and small grading groups. In Section 6.1.3 we compute the
gradings of generators of 1CFDD.Fı.m//, ie the grading function itself.

In this section, we will work with the bimodules 1CFDD.Fı.m// associated to a
Heegaard diagram, rather than a general arc-slide bimodule bDD.m/. No generality is
lost, according to the following:

Proposition 6.1 Suppose that bDD.mW Z ! Z 0/ is a stable arc-slide bimodule, and
that the actions of G0.Z/ and G0.�Z 0/ on the grading set for bDD.m/ are free and
transitive. Then the homotopy equivalence bDD.m/' 1CFDD.m/ is a G0–set graded
homotopy equivalence.

Proof This follows from Proposition 4.13.
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6.1.1 Gradings of periodic domains Consider the standard Heegaard diagram H.m/
associated to an arc-slide mW Z! Z 0 . Label the matched pairs in Z by B1; : : : ;B2k ,
with B2k D B (in the notation of Section 4).

There are various combinatorial cases for the arc-slide m. For the remainder of
Section 6.1, we will assume that c1 is above c2 in Z , as in Section 4; the other case
is obtained by reflecting the diagrams horizontally, or equivalently by replacing m

by m�1 . Then we have the following cases:

� Under-slides: b1 is between c1 and c2 . This case is further divided as follows:

(U.I) c1 is between b1 and b2 .
(U.II) b2 is between c1 and c2 .

(U.III) c2 is between b1 and b2 .

� Over-slides: b1 is above c1 . This case is further divided as follows:

(O.I) b2 is above c1 .
(O.II) b2 is between c1 and c2 (so c1 is between b1 and b2 ).

(O.III) c1 and c2 are both between b1 and b2 .

These cases are illustrated in Figure 40.

We can find a basis for the space of periodic domains on H.m/, �2.x;x/ (for any
generator x ), given by elements P1; : : : ;P2k with the following properties. For i <2k ,
@Pi \Z is the interval between the two points in Bi , and @Pi \Z 0 is the interval
between the two points in B0i . The domain P2k is such that:

(U.I) @P2k \ Z consists of Œb1; b2�, while @P2k \ Z 0 consists of r.Œc1; b2�/ �
r.Œc2; b

0
1
�/. (The region � 0 is covered with multiplicity �1.)

(U.II) @P2k \ Z consists of Œb2; b1�, while @P2k \ Z 0 consists of r.Œb2; c1�/C
r.Œc2; b

0
1
�/.

(U.III) @P2k \ Z consists of Œb2; b1�, while @P2k \ Z 0 consists of r.Œb2; c1�/C
r.Œc2; b

0
1
�/. (The region � 0 is covered with multiplicity two.)

(O.I) @P2k \ Z consists of Œb1; b2�, while @P2k \ Z 0 consists of r.Œb0
1
; c2�/C

r.Œc1; b2�/.

(O.II) @P2k \ Z consists of Œb2; b1�, while @P2k \ Z 0 consists of r.Œb2; c1�/ �
r.Œb0

1
; c2�/. (The region � 0 is covered with multiplicity �1.)

(O.III) @P2k \Z consists of Œb2; b1�, while @P2k \Z 0 consists of r.Œb2; b
0
1
�/C

r.Œc2; c1�/.

See Figure 40 for an illustration.
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b2 b2

c1 c1

b1

b0
1

c2 c2

CX

Y
XC

c1 c1

b1

b2 b2

b0
1

c2 c2

Y
XC

CX

c1 c1

b1

b0
1

c2 c2

b2 b2

YXC

CX

b2 b2

b1

c1 c1

c2 c2

b0
1

Y

XC CX

b1

c1 c1

b2
b2

c2 c2

b0
1

Y

XC CX

b1

c1 c1

c2 c2

b0
1

b2 b2

Y

XC CX

U.I U.II U.III

O.I O.II O.III

Figure 40: Combinatorial cases of arc-slides The domain P2k is shaded in
each diagram. Light gray shading indicates multiplicity 1 , dark gray shading
indicates multiplicity 2 , and red, checkered shading indicates multiplicity �1 .

As discussed in Section 2.3.4, for each generator x and each Pi 2 �2.x;x/ there is
an element

g0.Pi/D .�e.Pi/� 2nx.Pi/; @
@Pi/ 2G0.Z/�Z G0.�Z 0/:

We compute these elements g0.Pi/:

Lemma 6.2 For the domain Pi 2�2.x.I/;x.I// with corresponding matched pair Bi ,
the Maslov component of g0.Pi/ is:

� 0 if Bi ¤ B;C .
� 0 if Bi D C and I has type CX or XC .
� 1 if Bi D C , m is an over-slide, and I has type Y .
� �1 if Bi D C , m is an under-slide, and I has type Y .
� Given by the tables below for P2k :
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I has type XC

Handleslide Maslov
type component

U.I �1
2

U.II 1
2

U.III 1
2

O.I 1
2

O.II �1
2

O.III �1
2

I has type CX

Handleslide Maslov
type component

U.I 1
2

U.II �1
2

U.III �1
2

O.I �1
2

O.II 1
2

O.III 1
2

I has type Y

Handleslide Maslov
type component

U.I 1
2

U.II �1
2

U.III �1
2

O.I �1
2

O.II 1
2

O.III 1
2

Proof This follows by inspecting the periodic domains in Figure 40 and applying the
calculations from Proposition 4.14: in the notation from that proposition, the Maslov
component of g0.Pi/ is 2c.I.x/; supp.a//.

6.1.2 The grading set and refined grading set Following [5, Section 6.5], as a G0–
set graded module, the module 1CFDD.H.m// is graded by

G0.Z/�Z G0.�Z 0/=hR.g0.Pi//i;
where hg0.Pi/i denotes the subgroup of G0.�Z/�Z G0.Z 0/ generated the gradings
of the periodic domains, and R is the orientation-reversal map from Sections 2.3.4
and 2.4.3. The Maslov components of these gradings are computed in Lemma 6.2; the
homology class component of R.g0.Pi// is simply r�.@

@Pi/.

In the notation of Section 6.1.1, since Pi is a periodic domain, R.g0.Pi// lies in the
smaller grading group G.Z/�Z G.�Z 0/ [5, Lemma 6.29]. As a G–set graded mod-
ule, the module 1CFDD.H.m// is graded by

S DG.Z/�Z G.�Z 0/=hR.g0.Pi//i:
Let H D hR.g0.Pi//i. The subgroup H is a complement to G.Z/ (respectively
G.�Z 0/), in the sense that G.Z/ (respectively G.�Z 0/) intersects each coset of H

exactly once. So, each of G.Z/ and G.�Z 0/ act freely and transitively on S , ie S is
a principal left-right G.Z/–G.Z 0/–set. (Here we interpret the left action of G.�Z 0/
as a right action of G.Z 0/.) We spend the next few paragraphs reinterpreting S as a
map.

Definition 6.3 Let G1 and G2 be isomorphic groups. Let Isom.G1;G2/ denote the
set of isomorphisms from G1 to G2 . Then G1 acts on Isom.G1;G2/ as follows: For
� 2 Isom.G1;G2/ and g 2G1 define

.g ��/.h/D �.g�1hg/:
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Let Out.G1;G2/ D G1n Isom.G1;G2/. An element of Out.G1;G2/ is an outer iso-
morphism from G1 to G2 .

In Definition 6.3, one could alternatively take the quotient G2n Isom.G1;G2/, with the
action given by .g0 ��/.h/D g0�.h/.g0/�1 . This gives the same equivalence relation
on Isom.G1;G2/.

Composition of maps induces a map Out.G1;G2/�Out.G2;G3/!Out.G1;G3/. The
following lemma is straightforward:

Lemma 6.4 For any (isomorphic) groups G1 and G2 , there is a canonical bijection
between isomorphism classes of principal left-right G1 –G2 –sets S and outer iso-
morphisms Out.G1;G2/. Given a left-right G1 –G2 –set S , let �S 2 Out.G1;G2/

denote its corresponding outer isomorphism under this canonical bijection. If S is a
left-right principal G1 –G2 –set, and T is a left-right principal G2 –G3 –set, we can
form the orbit space S �G2

T . This is a left-right principal G1 –G3 –set. Moreover,
�S�G2

T D �T ı�S .

Proof For a given principal left-right G1 –G2 –set S , pick any x 2 S and define
�S by

g �x D x ��S .g/:

(This defines �S uniquely up to conjugation because the actions of both G1 and G2

on S are simply transitive.) The map �S is a homomorphism:

x ��S .gh/D .gh/ �x D .g �x/ ��S .h/D .x ��S .g// ��S .h/D x ��S .g/�S .h/:

The map �S is also clearly bijective.

If we choose a different element x0 2 S to define �S , the isomorphism changes by
an inner automorphism, as follows. Let �0

S
be the automorphism defined with respect

to x0 . Choose g0
0

so that x0 D g0x . Then

x0 ��0S .g/D g �x0D g �g0xD x ��S .gg0/D .g0/
�1x0�S .gg0/D x0�S ..g0/

�1gg0/:

Thus the element �S 2 Out.G1;G2/ is well defined.

We claim the assignment S 7! �S gives a bijection between the set of isomorphism
classes of left-right transitive G1 –G2 –sets and the set Out.G1;G2/. To invert this
bijection, suppose that �W G1!G2 is a group isomorphism and consider the associated
principal G1 –G2 –set S� defined to be the quotient of G1 �G2 by the equivalence
relation .g1 �g;g2/� .g1; �.g/ �g2/ where g 2G1 . This quotient clearly retains its
left-right G1 –G2 –set structure. We leave it as an exercise for the reader to verify the
following facts:
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� The quotient space S� defined above is indeed a transitive G1 –G2 –set.
� Given two isomorphisms � and �0 from G1 to G2 representing the same

outer isomorphism, there is a canonical isomorphism of left-right G1 –G2 –sets
S� Š S�0 .

� Given any transitive G1 –G2 –set S , there is a canonical isomorphism S�S
Š S .

� Given an isomorphism �W G1!G2 , �S� D � , as elements of Out.G1;G2/.

Finally, let S12 be a principal G1 –G2 –set and S23 a principal G2 –G3 –set, with
corresponding automorphisms �12 and �23 , defined with respect to x12 2 S12 and
x23 2 S23 . Then

.x12 �x23/ ��S12�G2
S23
.g/D g � .x12 �x23/D .x12 ��12.g//�x23

D x12 � .�12.g/ �x23/

D .x12 �x23/ ��23.�12.g//:

This verifies the last part of the claim.

Our next goal is to describe explicitly the map �D�SD�mW G.Z/!G.Z 0/ associated
to the grading set for the arc-slide m. For each matched pair Bi in Z there is an
associated homology class h.Bi/ 2 H1.F.Z//, namely the sum of the core of the
handle attached to the pair Bi �Z and the segment in Z between the points in Bi . We
orient h.Bi/ so that the induced orientation of h.Bi/\Z agrees with the orientation
of Z . The group G.Z/ is generated by the element � and the 2k elements


 .Bi/D .�1
2
I h.Bi//;

where we write elements of G.Z/ as pairs .mI h/ where m 2 1
2
Z and h 2H1.F.Z//

subject to a congruency condition (compare Section 2.2.2 and [5, Section 3.1]); in this
notation, � D .1I 0/. Recall that for Bi ¤ B (ie i ¤ 2k ), there is a corresponding
matched pair Bi in Z 0 , while B corresponds to a matched pair B0 . We use h0.Bi/

(respectively 
 0.Bi/) to denote the homology class in F.Z 0/ (respectively group
element in G.Z 0/) associated to the matched pair Bi .

Lemma 6.5 The map � is given (up to inner isomorphism) by �.�/D �, �.
 .Bi//D

 0.Bi/ if Bi ¤ B , and

�.
 .B//D

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

��1
 0.B0/
 0.C /�1 D .0I h0.B0/� h0.C // in case (U.I);
��1
 0.B0/�1
 0.C /D .�1I �h0.B0/C h0.C // in case (U.II);
��1
 0.B0/
 0.C /D .�1I h0.B0/C h0.C // in case (U.III);
��1
 0.B0/
 0.C /�1 D .�1I h0.B0/� h0.C // in case (O.I);
�C1
 0.B0/�1
 0.C /D .0I �h0.B0/C h0.C // in case (O.II);
�C1
 0.B0/
 0.C /D .0I h0.B0/C h0.C // in case (O.III):
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Proof Choose a base idempotent of type CX . By Lemma 6.2, the grading set for H.m/
is given by G.Z/ �Z G.�Z 0/=H where H is generated by .0I h.Bi/;�h.B0i// for
i ¤ 2k , and one additional element:

Handleslide type g.P2k/

U.I
��1

2
I h.B/;�h0.B0/C h0.C 0/

�
U.II

�
1
2
I h.B/; h.B0/� h0.C 0/

�
U.III

�
1
2
I h.B/;�h.B0/� h.C 0/

�
O.I

�
1
2
I h.B/;�h0.B0/C h0.C 0/

�
O.II

��1
2
I h.B/; h0.B0/� h0.C 0/

�
O.III

��1
2
I h.B/;�h0.B0/� h0.C 0/

�
(Note that we have reversed all of the signs from Lemma 6.2; the domains shown
there have boundary �h.B/ in H1.F.Z//.) By Lemma 6.4, this data is reinterpreted
as a map. Using .0I 0; 0/ 2 G.Z/ �Z G.�Z 0/=H as the element x in the proof of
Lemma 6.4, for the case (U.II), say, we have

.1
2
I h.B// � .0I 0; 0/ � .0I h0.B0/� h0.C //D .0I 0; 0/;

.�1
2
I h.B// � .0I 0; 0/D .0I 0; 0/ � .�1I �h0.B0/C h0.C //;

which corresponds to the statement that �..�1
2
I h.B///D .�1I �h0.B0/Ch0.C //.

6.1.3 Gradings of generators and algebra elements Now that we understand the
grading sets for an arc-slide mW Z!Z 0 , the next task is to understand the gradings of
generators of 1CFDD.H.m// and of algebra elements of A.Z/ and A.Z 0/.

Fix a base idempotent I0 in the near-diagonal subalgebra of A.Z; i/˝A.�Z 0;�i/.
We choose I0 to have type X . Recall that any such idempotent corresponds to a unique
generator x0 D x.I0/ 2S.H.m//. Choose for each other idempotent J an element
QJ 2 �2.x0;x.J //. The unrefined (G0–set) grading of generators is given by

gr0.x.J //DR.g0.QJ // � hR.g0.Pi//i
D .�e.QJ /�nx.I /.QJ /�nx.J /.QJ /I r�@@LQJ ; r�@

@R QJ /�hR.g0.Pi//i;

where @@LQJ and @@R QJ denote the intersections of QJ with the left and right
boundaries of H.m/, and we view G0.Z/�Z G0.Z/ as a subset of 1

2
Z�H1.Z; a/�

H1.Z
0; a0/. These cosets are independent of the choices of the QJ .
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For definiteness, for idempotents J of type X , take QJ to be a union of horizontal
strips in the graph for the arc-slide (Figure 3), so that

R.g0.QJ //D .0I r�@@LQJ ; r�@
@R QJ /;

gr0.x.J //D .0I r�@@LQJ ; r�@
@R QJ / � hR.g0.Pi//i:

For an idempotent J of type Y , there is an associated idempotent JX of type XC

obtained by replacing the C in the left of J by a B . Then QJX
� �� is a domain

connecting I0 to J , where � is ˙1, depending on the geometry of the arc-slide: �
is C1 if b1 is below c1 , and �1 if b1 is above c1 . We will choose QJ to be QJX

��� .
We then have

R.g0.QJ //DR.g0.�//�R.g0.QJX
//D .��=2I �r�Œ� �C r�@

@LQJ ; r�@
@R QJ /;

gr0.x.J //DR.g0.QJ // � hR.g0.Pi//i:
Next we turn to the refined gradings. To specify grading refinement data for A.Z/
and A.�Z 0/ (as in [5, Section 3.2.1]), recall that for each idempotent J of type X there
are corresponding idempotents jL and jR of A.Z/ and A.�Z 0/, respectively, and
that every idempotent of A.Z/ (respectively A.�Z 0/) arises as jL (respectively jR )
for a unique idempotent J of type X .

We will use the QJ 2 �2.x.I0/;x.J // for idempotents J of type X to define grading
refinement data. Specifically, define grading refinement data „ for A.Z/ and A.�Z 0/
by setting, for idempotents J of type X ,

„.jL/D .�.@@LQJ /I �r�@
@LQJ /;

„.jR/D .�.@@R QJ /I �r�@
@R QJ /;

where �W H1.Z; a/! 1
2
Z is as in Section 2.2.2. (The minus signs arise because we are

giving grading refinement data on A.Z/, not on A.@LH.m//DA.�Z/DA.Z/op ,
and similarly for A.�Z 0/.)
With respect to this choice, if J is an idempotent of type X then

gr.x.J //D„.jL/ �„.jR/ � gr0.x.J //D .0I 0/ � hR.g0.Pi//iI
compare [6, Section 10.5; 5, Section 6.5].

For idempotents J of type Y , we again use QJX
��� 2�2.I0;J / to define the grading

refinement data. Then

gr.x.J //D„.J /R.g0.�//�„.JX /
�1 � hR.g0.Pi//i:
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We can furthermore choose the domains QJ for all J of type X to have equal
multiplicities at � , �C and �� . (This can be achieved by adding or subtracting the
periodic domain corresponding to C .) Then „.jR/, „..JX /R/, „.jL/ and „..JX /L/

all commute with R.g0.�//� , and we can write

gr.x.J //DR.g0.�//�„.jL/„..JX /L/
�1 � hR.g0.Pi//i:

With respect to the refined grading, the grading of an algebra element a 2A.Z/ (say)
with j �a�kDa (for primitive idempotents j and k ) is given by (see [5, Definition 3.9])

gr„.a/D„.j / gr0.a/„.k/�1:

6.2 The refined grading set for general surface homeomorphisms

Much of the discussion of gradings for arc-slides extends to arbitrary surface homeo-
morphisms. In particular, given a strongly-based mapping class  W F.Z1/! F.Z2/

there is an associated outer isomorphism of grading groups � W G.Z1/! G.Z2/,
gotten from the grading set of any Heegaard diagram for  . These assemble to give
an action of the mapping class group by outer automorphisms on G.Z/, as follows:

Proposition 6.6 For any pointed matched circle Z , there is a homomorphism

�W MCG0.F.Z//! Out.G.Z//;

extending the standard action on the homology

MCG0.F.Z//! Sp.2k;Z/� Aut.H1.F.Z///:

More generally, let fZk
i g be the set of all pointed matched circles for surfaces of

genus k , and Out.fG.Zk
i /g/ be the groupoid with object set fZk

i g and morphisms
Hom.Zi ;Zj / D Out.G.Zi/;G.Zj // (see Definition 6.3). Then there is a homomor-
phism

�W MCG0.k/! Out.fG.Zk
i /g/

extending the standard action on H1 .

Proof Let  2MCG0.F.Z/;F.Z 0//. Then the mapping cylinder Y of  has grad-
ing set S which is isomorphic to G.Z/ (respectively G.Z 0/) as a left G.Z/–set (re-
spectively right G.Z 0/–set), which by Lemma 6.4 gives a map � 2Out.G.Z/;G.Z 0//.
If  0 is an element of MCG0.F.Z 0/;F.Z 00// then S 0ı D S �G.Z/ S 0 . Thus,
Lemma 6.4 applied to the S gives a map MCG0.k/! Out.fG.Zk

i /g/.
It is immediate from the form of S that the action on Out.fG.Zk

i /g/ projects to the
standard action of the mapping class group on H1 .
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The main goal of this subsection is to compute � for general mapping classes  .

We start with some lemmas regarding the structure of G.Z/.

Recall from Section 6.1.2 that the pointed matched circle Z gives a canonical basis
fh.Bi/g for H1.F.Z//, gotten by joining the cores of the handles attached to Z with
corresponding segments in Z . These can be upgraded to a generating set of G.Z/ as
follows:

Lemma 6.7 Let fBig2k
iD1

denote the set of matched pairs for Z , and 
 .Bi/ D
.�1

2
; h.Bi// denote the corresponding group element of G.Z/. Then G.Z/ is gener-

ated by the elements f
 .Bi/g2k
iD1

and �, subject to the relations:

� � is central.

� 
 .Bi/ � 
 .Bj / D �2h.Bi /�h.Bj /
 .Bj / � 
 .Bi/, where � denotes the intersection
product in H1.F.Z//.

Proof It is immediate from the definition of � that f
 .Bi/g2k
iD1

lies in G.Z/. To-
gether with �, the elements generate an index-two subgroup of 1

2
Z � H1.F.Z//

(with its twisted multiplication), which must be G.Z/. The relations follow from the
description of G.Z/ as a central extension of H1.F.Z// [6, Section 3.3.2].

Lemma 6.8 For any pointed matched circle Z and any matched pair Bi in Z , the
map  W G.Z/!G.Z/ given by

 .�/D �;
 .
 .Bi//D �2
 .Bi/;

 .
 .Bj //D 
 .Bj / if j ¤ i;

is an inner automorphism.

Proof Consider first the case when Z is the split pointed matched circle, for which the
argument is more concrete. For each Bi there is a corresponding B�.i/ so that h.Bi/ �
h.B�.i//D˙1 and h.Bi/ � h.Bj /D 0 for j ¤ �.i/, where � denotes the intersection
product on H1.F.Z//. The inner automorphism of G.Z/ given by conjugating by

 .B�.i// is given by


 .Bi/ 7! ��2
 .Bi/;


 .Bj / 7! 
 .Bj / if j ¤ i;

as desired.
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For general pointed matched circles, instead of conjugating by 
 .B�.i//, let V �
H1.F.Z// denote the subspace generated by all h.Bj / for j ¤ i . Choose a primitive
vector v 2H1.F.Z// symplectically orthogonal to V (so v �h.Bj /D 0 for j ¤ i and
v � h.Bi/D˙1), and conjugate by an element of G of the form .m;˙v/ (for some
m 2 1

2
Z).

Let GZ=2.Z/D .Z=2/�H1.F.Z//, which we view as the trivial Z=2–central extension
of H1.F.Z//. Since the cocycle defining the Z–central extension G.Z/ of H1.F.Z//
takes values in 2Z� Z, there is a homomorphism ‡ W G.Z/!GZ=2.Z/ extending
the projection map Z!Z=2. Explicitly, we may take ‡ to be defined by ‡.
 .Bi//D
.0; h.Bi// and ‡.�/D .1; 0/.

Lemma 6.9 Let Z1 and Z2 be pointed matched circles. Let �W G.Z1/!G.Z2/ be
an isomorphism so that �.�/D �. Then:

(1) The isomorphism � descends to an isomorphism x�W GZ=2.Z1/!GZ=2.Z2/.

(2) As an outer isomorphism with �.�/D �, � is determined by the induced map x� .

Proof For part (1), since the kernel of ‡ is the subgroup generated by �2 , � descends
to a homomorphism x�W GZ=2.Z1/ ! GZ=2.Z2/. Since � is an isomorphism and
�.�/D �, the elements Œ�.0; h.Bi/� form a basis for H1.F.Z2//. It follows that the
map x� is an isomorphism.

Part (2) follows from Lemma 6.8.

Remark 6.10 In particular, we have that Lemma 6.9 gives an injective homomorphism
Out�.G.Z//! Aut.GZ=2.Z//, where Out�.G.Z//D f� 2 Out.G.Z// j �.�/D �g.
The image of this homomorphism is all automorphisms of GZ=2 which cover symplec-
tomorphisms of H1.F.Z// (with respect to the intersection form).

Definition 6.11 For any class a 2H1.F.Z//, write aDPi aih.Bi/, and define the
`1 –norm of a to be

kak1 D
2kX

iD1

jai j:

Given a map  W F.Z1/! F.Z2/, define a map � W GZ=2.Z1/!GZ=2.Z2/ by

(6-1) � .m; a/D .mCkak1Ck �.a/k1;  �.a//:

Lemma 6.12 The map � is a group homomorphism.
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Proof This is a direct computation:

� .m; a/� .m
0; a0/

D �mCkak1Ck �.a/k1;  �.a/��m0Cka0k1Ck �.a0/k1;  �.a0/�
D �mCm0Ckak1Cka0k1Ck �.a/k1Ck �.a0/k1;  �.a/C �.a0/

�
D �mCm0CkaC a0k1Ck �.aC a0/k1;  �.aC a0/

�
D � .mCm0; aC a0/D � ..m; a/.m0; a0//

(The third equality uses the fact that  � is linear, and the modulo 2 reduction of k � k1
is also linear.)

Proposition 6.13 Let  W F.Z1/! F.Z2/ be a strongly-based mapping class. Then
the outer isomorphism � W G.Z1/!G.Z2/ is characterized by x� D � (as defined
in (6-1)).

Proof The proof is in two steps:

(1) Verify that if  D Fı.m/ is the diffeomorphism induced by an arc-slide, then
� D x� .

(2) Verify that if  1W F.Z1/! F.Z2/ and  2W F.Z2/! F.Z3/, then � 1
D x� 1

and � 2
D x� 2

imply � 2ı 1
D x� 2ı 1

.

Since the arc-slides generate the strongly-based mapping class group, it follows from
steps (1) and (2) that x� D � for any mapping class  .

We start with part (1). Since both x� and � are group homomorphisms, it suffices
to verify that x� .�/D � .�/ and x� .
 .Bi//D � .
 .Bi//. The statement about �
holds trivially. For i ¤ 2k ,

� .
 .Bi//D 
 0.Bi/;

x� .
 0.Bi//D .0; h0.Bi//;

� .
 .Bi//D .0; h0.Bi//;

as desired. For i D 2k , it follows from the formulas in Lemma 6.5 that

x� .
 .Bi//D .1;  �.h.Bi///;

where  �.h.Bi// has `1 –norm 2. Similarly,

� .
 .Bi//D .0C 1C 2;  �.h.Bi///D .1;  �.h.Bi///D x� .
 .Bi//;
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as desired.

Recall that the cases (U.I)–(O.III) are only half of the combinatorial configurations for
arc-slides; the other half are their inverses. But � �1 D ��1

 and � �1 D ��1
 , so it

follows that x� and � agree on the remaining six types of arc-slides, as well.

For part (2), since we already know (by Proposition 6.6) that �� is a groupoid homo-
morphism MCG0.k/! OutfG.Z/g, and so x�� is a groupoid homomorphism as well,
it suffices to verify that �� is a groupoid homomorphism. That is, we must check that

� 2ı 1
D � 2

ı � 1
;

� �1 D ��1
 :

The second property is obvious (and we already used it, above). For the first property,

� 2
ı � 1

.m; a/

D � 2

�
mCkak1Ck. 1/�.a/k1; . 1/�.a/

�
D �mCkak1Ck. 1/�.a/k1Ck. 1/�.a/k1Ck. 2/� ı . 1/�.a/k1;

. 2/� ı . 1/�.a/
�

D �mCkak1Ck. 2 ı 1/�.a/k1; . 2 ı 1/�.a/
�

D � 2ı 1
.m; a/;

as desired.

Remark 6.14 Since the G0–set grading 1CFDD. / is not transitive for the left and
right actions, it does not correspond to a map G0.Z/! G0.Z 0/. Note also that the
G –set grading induces the G0–set grading (cf [5, Lemma 3.15]), so Proposition 6.13
determines the G0–set which grades 1CFDD. /.

7 Assembling the pieces to compute HF^

Using the computations from Section 4 and the pairing theorems (Theorems 2.19
and 2.20), we finish the proofs of Theorems 3 and 4. Then, in Section 7.1, we
use the computations of gradings from Section 6 to compute the decomposition ofcHF.Y / according to spinc –structures, and the relative Maslov grading inside each
spinc –structure.

First, we turn to the calculation of bCFD for a handlebody. We start with the standard
“0–framed” handlebody:
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Proof of Proposition 1.12 Recall from Section 1.4 that Hg denotes the 0–framed
handlebody of genus g , the boundary sum of g copies of the 0–framed solid torus.
A bordered Heegaard diagram Hg

0
for Hg can be constructed as the boundary sum

of g bordered Heegaard diagrams for the 0–framed solid torus. We can draw this
diagram Hg

0
on a genus-g surface with 2g alpha-arcs f˛c

1
; ˛c

2
; : : : ; ˛c

2g�1
; ˛c

2g
g and g

beta-circles, so that ˇi meets ˛c
2i

transversely in a single point (and is disjoint from
all other ˛–arcs). The g D 2 case H2

0
is illustrated in Figure 5.

The type-D module bCFD.Hg
0
/ has a single generator x . Its associated idempotent

ID.x/ is the idempotent where all the odd-numbered strands are occupied. The
differential is specified by

@x D
� gX

iD1

a.�4i�3/ � a.�4i�2/

�
�x;

where �j denotes the j th short chord in �@Hg
0

. To see this, note that there are g

connected components of † n .˛[ˇ/, each of which contributes one term in the sum.
Although these disks do not quite fit the conditions of Definition 2.6, it is easy to see
that they each contribute as indicated. Moreover, there are no other contributions to the
differential.

The module bCFD.Hg
0
/ we have just described is exactly the module yD.Hg/ of

Section 1.4.

Proof of Theorem 3 This follows immediately from Proposition 1.12 and Theorems 1
and 2, by inductively applying the relation

MorD;C
�
D;C X;DM˝F2

MorB;A.B;AY; C;BN˝F2 AP /
�

'MorD;C;B;A
�
D;C X˝F2 B;AY;DM˝F2 C;BN˝F2 AP

�
:

and the pairing theorem, Corollary 2.21.

Proof of Theorem 4 This follows immediately from Theorems 3 and 2.19.

7.1 Gradings

The one missing ingredient to compute the spinc and Maslov gradings on cHF.Y / is
the computation of the gradings on bCFD.Hg

0
/. Number the points in Zg

0
D �@Hg

0

by 1; : : : ; 4g , from bottom to top. Write elements of G0.Z/ as pairs .mI a/ where
m2 1

2
Z and a is a linear combination of intervals Œi; j � in Z , subject to the congruence

condition m� �.a/ .mod 1/.
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Proposition 7.1 As a G0.Zg
0
/–set graded module, bCFD.Hg

0
/ is graded by S 0

0
D

G0.Zg
0
/=H , where

H D ˝˚.�1
2
I �Œ4i C 1; 4i C 3�/

	g�1

iD0

˛
:

The generator x has grading .0I 0/ in G0.Z/.

Proof Each generator of H corresponds to a periodic domain P consisting of a single
component of † n .˛[ˇ/, with multiplicity 1. Each of these domains P has Euler
measure �1

2
and point measure 1.

Now, to compute the gradings on cCF.Y /, one follows a simple, seven-step process:

(1) Take a Heegaard decomposition Y DH
g
0
[ H

g
0

and factoring the gluing map into
arc-slides,  D 1 ı � � � ı n , where  i W �F.Zi/!�F.Zi�1/. By Theorem 4,cCF.Y / is homotopy equivalent to the complex

(7-1) Mor
�bDD.IZn

/˝� � �˝bDD.IZ1
/; yD.Hg

0
/˝bDD. n/˝� � �˝bDD. 1/˝ yD.Hg

0
/
�
;

where the Mor–complex is over A.Zn/˝ � � �˝A.Z1/.

(2) Choose grading refinement data „i for A.Zi/, as in [5, Section 3.2.1]. Each
homogeneous element a D j � a � j 0 2 A.Zi/ (where j and j 0 are primitive
idempotents) gets a grading gr„.a/ D „.j /�1 gr0.a/„.j 0/. (Sometimes we
will denote gr„.a/ simply by gr.a/.)
(In Section 6.1.2, we explain how to use  i to choose convenient grading
refinement data for Zi and Zi�1 . But the data chosen this way by  i and  iC1

for Zi may not agree.)

(3) As discussed in Section 6.1.3, each module bDD. i/ ' 1CFDD.Fı. i// is
graded by a set S 0i with a left action by G0.Zi/ � G0.�Zi�1/. (These sets
are computed in Section 6.1.2, and the gradings of generators are computed in
Section 6.1.3.)
Consequently,

RD yD.Hg
0
/˝bDD. n/˝ � � �˝bDD. 1/˝ yD.Hg

0
/

is graded by the G0.�Zn/�G0.Zn/�G0.�Zn�1/�� � ��G0.�Z1/�G0.Z1/–set

S 0R D S 00 �S 0n � � � � �S 01 �S 00:

(Here, � means �Z ; we suppress the subscript in this section to keep the notation
manageable.)
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(4) Using the grading refinement data „i , we can turn S 0
R

into a G.�Zn/�G.Zn/�
G.�Zn�1/� � � ��G.�Z1/�G.Z1/–set SR , as in [5, Lemma 3.15]. In this set,
the grading of a generator y0˝y1˝ � � �˝yn˝ynC1 , where ji �yi � jiC1 D yi

for primitive idempotents j1; : : : ; jn , is given by

gr.y0˝y1˝ � � �˝yn˝ynC1/

D gr0.y0/„1.j1/˝„1.j1/
�1 gr0.y1/„2.j2/

˝ � � �˝„n�1.jn�1/
�1 gr0.yn/„n.jn/˝„n.jn/

�1 gr0.ynC1/:

(5) The module L D bDD.IZn
/ ˝ � � � ˝ bDD.IZ1

/ is graded by the G.�Zn/ �
G.Zn/�G.�Zn�1/� � � � �G.�Z1/�G.Z1/–set

SL DG.Zn/�G.Zn�1/� � � � �G.Z1/:

Each complementary idempotent I generating 1CFDD.IZi
/ has grading .0I 0/.

(This argument is a simpler version of the discussion in Section 6.1, and is also
given in [5, Lemma 8.13].)

(6) Finally, as discussed in Section 2.5, the Mor–complex (7-1) is graded by

S D S
op
L
�G.Zn/�G.Zn/op�G.Zn�1/�����G.Z1/op SR:

The Mor–complex is generated, as an F2 –vector space, by maps of the form

f D x1˝ � � �˝xn 7! y0˝ a1˝y1˝ � � �˝yn˝ an˝ynC1;

where x1; : : : ;xn are generators of bDD.IZn
/; : : : ; bDD.IZ1

/, yi is a generator
for bDD. nC1�i/ if 0 < i < n C 1, y0;yn are generators of yD.Hg

0
/, and

ai 2A.ZnC1�i/ is a basic generator (strands diagram). The grading of such a
map f is

gr.f /D �gr.x1/
op � � � � � gr.xn/

op�
� �gr.y0/ gr.a1/� gr.a01/ gr.y1/ gr.a2/� � � � � gr.a0nC1/ gr.ynC1/

�
D gr.y0/ gr.a1/� gr.x1/

op � gr.a01/ gr.y1/ gr.a2/

� � � � � gr.xn/
op � gr.a0nC1/ gr.ynC1/

D gr.y0/ gr.a1/� gr.a01/ gr.y1/ gr.a2/� � � � � gr.a0nC1/ gr.ynC1/;

where the last equality uses the fact that each xi has grading .0I 0/ 2 G.Zi/.
All the � are �G.Zi / for appropriate i .

(7) The set S retains an action by the central element �. By the graded version of the
pairing theorem, each spinc –structure on cCF.Y / corresponds to a �–orbit. If f
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and g lie in the same spinc –structure then gr.f /D�i gr.g/, for some i , and the
grading difference between f and g is i . (If � acts nonfreely on that orbit then
this grading difference is only well defined modulo minfn j �n gr.f /D gr.f /g;
this n is the divisibility of the first Chern class of the corresponding spinc –
structure.)

For practical computations, it is generally not necessary to refine the gradings. Working
with the larger grading groups G0 , let S 0

L
DG0.Zn/�G0.Zn�1/� � � � �G0.Z1/, a set

with a left action of G0.Zn/�G0.Zn/
op � � � � �G0.Z1/�G0.Z1/

op . Then, without
worrying about grading refinements, elements of the Mor complex (7-1) are graded by

S 0 D .S 0L/op �G0.Zn/�G0.Zn/op�G0.Zn�1/�����G0.Z1/op S 0R:

The grading of a generator f is given by

gr0.f /D �gr0.x1/
op � � � � � gr0.xn/

op�� �gr0.y0/� gr0.a1/� � � � � gr0.ynC1/
�
:

Two generators f and g lie in the same �–orbit of S 0 if and only if they represent
the same spinc –structure. In this case, gr0.f / D �i gr0.g/, where i is the grading
difference between f and g . The only part that breaks is that with respect to the
unrefined grading there will be �–orbits with no generators, which do not correspond
to spinc –structures on Y .

8 Elementary cobordisms and bordered invariants

Although we have focused so far on computing cHF for a closed 3–manifold, the
techniques of this paper can also be used to calculate bCFD and 1CFDD for bordered
3–manifolds, as well. (One can then compute the type-A, -DA and -AA invariants,
too; see Section 9.)

Let Y be a bordered 3–manifold with boundary @Y parameterized by F.Z/. The goal
is to break up Y into basic pieces, calculate the bimodules associated to those pieces,
and then calculate bCFD.Y / by composing the individual bimodules. In addition to
arc-slides, we need one new kind of basic piece: an elementary cobordism. Since we
already know how to change the parametrizations of the boundary by using arc-slides,
we will only need elementary cobordisms with a particular bordering. In Section 8.1 we
compute the invariants of these elementary cobordisms. In Section 8.2 we discuss how
to compute the invariant bCFD of a bordered 3–manifold with connected boundary.
Because of the particular form of the pairing theorem we have been using, there are mild
technical complications for the invariant 1CFDD of a 3–manifold with two boundary
components; we discuss (and overcome) these in Section 8.3.
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8.1 The invariant of a split elementary cobordism

Definition 8.1 Let F1 be a connected surface of genus g and F2 be a surface of
genus gC 1. Let M1 DM1.g/ be the cobordism from F1 to F2 gotten by adding a
three-dimensional one-handle to Œ0; 1��F1 at a pair of points in f1g �F2 . Dually, let
M2 DM2.g/ be the cobordism from F2 to F1 gotten by adding a three-dimensional
two-handle to Œ0; 1��F2 along a nonseparating curve in f1g �F2 . The 3–manifolds
M1.g/ and M2.g/ are called elementary cobordisms.

Up to diffeomorphism, an elementary cobordism is uniquely determined by the genera
of its boundary. Also, M1.g/ is simply the orientation-reverse of M2.gC 1/.

Next, we compute the invariant of an elementary cobordism with a particular bordering.
Recall from Section 1.4 that Z1 denotes the (unique) pointed matched circle for a
genus-1 surface. Given a pointed matched circle Z for a surface of genus g , the split
bordering by Z of M1.g/ is the bordering by F.Z/ and F.Z #Z1/ so that the circle
in F.Z1/ specified by fa; a0g bounds a disk in M1.g/. The split bordering by Z
of M2.g/ is the orientation-reverse of the split bordering of M1.g� 1/ by �Z .

Let Z be a pointed matched circle, and let Z1 denote the pointed matched circle for a
genus-one surface. Let H1 denote the 0–framed solid torus, as in Section 1.4.1. There
is an inclusion map

i W A.Z/˝A.Z1/!A.Z #Z1/:

Now, yD.IZ/˝ yD.H1/ can be viewed as a type-D structure over A.�Z/˝A.Z/˝
A.Z1/. Promoting the homomorphism i by the identity map on A.�Z/, we obtain a
homomorphism

j W A.�Z/˝A.Z/˝A.Z1/!A.�Z/˝A.Z #Z1/:

Proposition 8.2 The induced module j�. yD.IZ/˝ yD.H1///, which is a (left-right) type-
DD bimodule over A.Z #Z1/ and A.�Z/, is isomorphic to the bimodule 1CFDD of
the elementary cobordism M1 , endowed with the split bordering by Z . Similarly, the
induced bimodule j�. yD.I�Z/˝ yD.�H1//, which is a type-DD bimodule over A.Z/
and A.Z#Z1/, is isomorphic to the bimodule 1CFDD of the elementary cobordism M2 ,
endowed with the split bordering by Z .

Proof Draw a Heegaard diagram for .F.Z/�Œ0; 1�/#@H1 by forming the boundary sum
of a Heegaard diagram H.IZ/ for IZ with the Heegaard diagram H1

0
for the 0–framed

genus-one handlebody, where the boundary sum is taken near z\.@LH.IZ//2 @H.IZ/
and z 2 @H1

0
. See Figure 41. Holomorphic curves which contribute to the differential
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must have connected domains. For this reason, the holomorphic curves in the differential
are either supported in the identity DD bimodule region, or in the handlebody region.
This implies the result for M1 . The result for M2 is obtained by replacing Z with �Z
and reflecting the picture horizontally.

z

Figure 41: An elementary cobordism A diagram for an elementary cobor-
dism from a genus-three surface to a genus-two surface: the genus-two surface
here has the antipodal matching.

Remark 8.3 The above proof can be seen as a special case of a boundary connected
sum formula for bCFD ; see Zarev [15] for further generalizations.

8.2 Computing CFD^ of a 3–manifold with connected boundary

By standard Morse theory, any connected 3–manifold Y with connected bound-
ary F.Z/ can be obtained from the 3–ball by a sequence of elementary cobordisms.
That is,

Y DD3[�1
Mi1

.g1/[�2
Mi2

.g2/[�3
� � � [�n

Min
.gn/;

where each ij 2 f1; 2g and the genera gi are determined by the sequence of the ij in
the obvious way (ie gi D

P
j<i 2.3

2
� ij /).

Let Yk be the part of Y obtained after attaching k of the elementary cobordisms, ie

Yk DD3[�1
Mi1

.g1/[�2
Mi2

.g2/[�3
� � � [�n

Mik
.gk/:
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We compute bCFD.Yk/ inductively as follows. The gluing map �k is a map from
@LMik

.gk/ to �@Yk�1 . Suppose we are given bCFD.Yk�1/ for some bordering
�F.Zgk�1/! @Yk�1 , and want to compute bCFD.Yk/ with respect to a bordering
�F.Zgk /! @Yk . (Here, Zgk�1 and Zgk are arbitrary pointed matched circle for a
surface of the right genus.)

Choose the split bordering of Mik
.gk/ by Zgk�1 (say). Then � (respectively �0 )

corresponds to some map  W F.Zgk�1/! F.Zgk�1/ (respectively  0W F.Zgk /!
F.Zgk ;0/). Factor  and  0 into arc-slides,

 Dm1 ı � � � ıml ;  0 Dm01 ı � � � ım0l 0 :

Then, by Theorem 2.20,

(8-1) bCFD.Yk/'Mor
� 1CFDD.I/˝ � � �˝ 1CFDD.I/; bCFD.Yk�1/

˝ 1CFDD.ml/˝ � � �˝ 1CFDD.m1/˝ 1CFDD.Mik
.gk//

˝ 1CFDD.m0l 0/˝ � � �˝ 1CFDD.m01/
�
:

(As in Section 1.4, Mor denotes the chain complex of bimodule homomorphisms. Also,
1CFDD.Mik

.gk// denotes the bimodule computed with respect to the split bordering
by Zgk�1 , the 1CFDD.I/ in the formula are with respect to the appropriate pointed
matched circles.)

We know how to compute all the pieces of (8-1): the bimodule 1CFDD.Mik
.gk// is

computed in Proposition 8.2; the bimodules 1CFDD.mi/ are computed in Theorem 2;
and the bimodules 1CFDD.I/ are computed in Theorem 1.

Remark 8.4 In the inductive computation, the first step formally uses bordered Floer
homology of a manifold with boundary S2 . In this degenerate case, the definitions
from bordered Floer homology give A.Z/ D F2 , and the module bCFD.Y / is justcCF.Y [@ D3/. In particular, bCFD.D3/D F2 .

Remark 8.5 Another way to compute bCFD.Y / is to decompose Y as the union of
a handlebody and a compression body. Computing the invariant of a compression body
with a standard bordering is a simple extension of Proposition 8.2 (or, in fact, follows
from that proposition). Section 1.4 explains how to compute the invariant of a handle-
body with an arbitrary framing. Theorem 2.20 then says how to compute bCFD.Y /.

8.3 Computing CFDD^ of a 3–manifold with two boundary components

Recall that associated to a strongly bordered 3–manifold Y with two boundary com-
ponents is a bordered 3–manifold Ydr with connected boundary, obtained by deleting
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a neighborhood of the framed arc from Y . Suppose Y is bordered by �F.Z1/

and �F.Z2/. Then Ydr is bordered by �F.Z1 # Z2/. There is a projection map
pW A.Z1 # Z2/ ! A.Z1/˝ A.Z2/ which sets to zero any algebra element cross-
ing between Z1 and Z2 . Then 1CFDD.Y / is defined to be the induced module
p�. bCFD.Ydr //.

Section 8.2 explains how to compute bCFD.Ydr /. Thus, we now know how to compute
1CFDD.Y /.

Remark 8.6 It is possible to give a more direct computation of 1CFDD.Y /, without
using Ydr . The version of the pairing theorem we have used so far is inconvenient
for this. Suppose Y1 and Y2 are strongly bordered 3–manifolds with two boundary
components, and @R.Y1/D F.Z/D�@L.Y2/. Then

Mor
�
A.Z/ 1CFDD .IZ/A.Z/; 1CFDD.Y1/˝ 1CFDD.Y2/

�
is not 1CFDD.Y1 [@ Y2/, but rather 1CFDD.��1

@
.Y1 [@ Y2//, the result of gluing Y1

to Y2 and then decreasing the framing on the arc by one.

To remedy this, one could use any of several other variants of the pairing theorem. One
way forward will be apparent in Section 9.

9 Computing (with) type-A invariants

In [6], we consider two types of modules, bCFD.Y / and bCFA.Y /. There are ana-
logues 1CFDD.Y /, 1CFDA.Y / and 1CFAA.Y / in the two boundary component case
[5]. Until now, we have focused exclusively on bCFD.Y / and 1CFDD.Y /. There are
several reasons for doing this. Type-D modules are easier to compute, as they count
fewer holomorphic curves. They are algebraically simpler to describe, because they are
ordinary differential modules, rather than A1–modules. Moreover, thanks to duality
results from [5], it is possible to formulate the theory purely in terms of bCFD and
1CFDD ; this formulation serves to shorten the exposition.

However, in some contexts it is useful to think of type-A modules. To this end, we recall
how to extract the type-A modules, and type-DA and -AA bimodules, from the type-D
modules and -DD bimodules via the duality result, [5, Proposition 9.2]. (Alternatively,
one could use any of several results from [8].) This is discussed in Section 9.1.

One advantage of working with type-A modules is that one can work with chain
complexes with fewer generators; the cost is more complicated algebra actions. This is
a special case of a class of results called homological perturbation theory. We review
the relevant instance in Section 9.2. Using this, we discuss reconstructing the closed
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invariant using type-A modules in Section 9.3. As an example of these techniques, we
compute a small (in fact, minimal) model for the type-AA module for the identity map
of the torus in Section 9.4 (where here size is measured by the rank of the underlying
vector space). In Sections 9.5 and 9.6 we discuss some computer computations.

9.1 Computing type-A invariants

The key step in computing the type-A modules and bimodules from the type-D modules
is understanding the type-AA module for the identity map. Fix a pointed matched
circle Z . We proved in [5, Proposition 9.2] that

(9-1) 1CFAA.IZ/DMorA.�Z/
�
A.�Z/;A.Z/ 1CFDD .IZ/;A.�Z/

�
:

Here, MorA.�Z/ denotes the chain complex of A.�Z/–module maps between the
bimodules. This complex retains commuting right actions by A.Z/ and A.�Z/.
Theorem 1 calculates 1CFDD.IZ/; this description can be combined with (9-1) to give
an explicit description of 1CFAA.I/.

For the purposes of this paper, the reader unfamiliar with the definition of 1CFAA in
terms of holomorphic curves can safely take (9-1) (as well as Equations (9-2), (9-3)
and (9-4)) as a definition.

Tensoring with the type-AA bimodule of the identity map turns type-D invariants into
type-A invariants. More precisely, suppose Y is a Z –bordered 3–manifold. Then

(9-2) bCFA.Y /' 1CFAA.IZ/� bCFD.Y /:

Here, �, an operation taking in one A1–module and one type-D structure, denotes a
particular model for the derived tensor product [5, Section 2.3.2].

Similarly, if Y 0 is a strongly bordered 3–manifold with boundary components F.Z1/

and F.Z2/ then

F.Z1/
1CFDA .Y 0/F.Z2/ '1CFAA.IZ1

/� 1CFDD.Y 0/;(9-3)

F.Z1/;F.Z2/
1CFAA .Y 0/'1CFAA.IZ2

/�1CFAA.IZ1
/� 1CFDD.Y 0/:(9-4)

In Section 8, we explained how to compute bCFD.Y / and 1CFDD.Y 0/. So, Equa-
tions (9-2), (9-3) and (9-4) give algorithms for computing the type-A, -DA and -AA

invariants, as well.

We can describe this procedure for calculating the bimodules in more detail, as follows.
Theorem 2 computes the type-DD modules for arc-slides, and Proposition 8.2 computes
the type-DD module for a split elementary cobordism. Using (9-3), we can turn each
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of these bimodules into a type-DA module. Any bordered 3–manifold Y can be
factored as

Y D Y1 @R
[@L

Y2 @R
[@L
� � � @R

[@L
Yk ;

where each Yi is either an arc-slide or a split elementary cobordism. The pairing
theorem [5, Theorem 12] then gives

(9-5) 1CFDA.Y /D 1CFDA.Y1/� 1CFDA.Y2/� � � �� 1CFDA.Yk/:

We can compute 1CFDD.Y / or 1CFAA.Y / by tensoring 1CFDA.Y / with 1CFDD.I/ or
1CFAA.I/, respectively.

As a special case, (9-5) gives another algorithm for reconstructing cCF.Y / for a closed
3–manifold Y via a Heegaard splitting of Y . (Actually, unpacking the definitions, this
is the same as the formula in Theorem 4.)

9.2 Homological perturbation theory

One key advantage of A1–modules is that for any A1–module (and in particular,
any dg–module) M , the homology H�.M / of M carries an A1–module structure
which is (under mild assumptions) homotopy equivalent to M . We state a version of
this result presently; for more on this, see for example Keller [3] (which discusses the
case of algebras, rather than modules).

Fix a ground ring (with trivial differential) k of characteristic 2. We consider A1
algebras over k, and strictly unital A1–modules. In particular, such A1–modules
over A are honest differential modules over k.

Lemma 9.1 Let M be an A1–module over an A1–algebra A over k, let M denote
its underlying chain complex over k, and let f W N !M be a homotopy equivalence
of k–modules. Then we can find:

� An A1–module structure N on N .

� An A1 quasi-isomorphism

F W N !M

with the property that F1 D f .

(Of course, if k is F2 , or more generally a direct sum of copies of F2 then we can
replace the condition that f be a homotopy equivalence by the condition that f be a
quasi-isomorphism: for these rings, any quasi-isomorphism is a homotopy equivalence.)
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Proof We recall now some notation. Let AŒ1� denote the algebra A with grading
shifted by 1 (or, in the group-graded context, shifted by �; ie AŒ1�g DA��1g ). If V is
a k–bimodule, let T �.V / denote the tensor algebra on V (this includes the 0th tensor
product), and let T C.V /� T �.V / denote the ideal generated by V . Here (and below),
tensor products will be taken over k. In practice, we will apply this construction in the
case where V DAŒ1�, thought of as a k–bimodule.

Let gW M !N be a homotopy inverse to f and T W M !M be a homotopy between
f ıg and IM .

The A1–module structure on N is given as follows. We write the A1–module
structure on M as a map mW M ˝ T �.AŒ1�/!M . Comultiplication induces a map

��W T C.A/! T �.T C.AŒ1�//;

defined as follows: For xaD a1˝ � � �˝ an 2 T C.A/, let

��.a1˝ � � �˝ an/D
X

fi1;:::;ik j1�i1<���<ik<ng

.a1˝ � � �˝ ai1
/˝ .ai1C1˝ � � �˝ ai2

/

˝ � � �˝ .aikC1˝ � � �˝ an/:

With these maps in hand, define the operations mi for i > 1 on N by:

(9-6)

mN .x˝xa/D

g

m

f ��

x xa

g

m

T

m

f ��

C x xa

g

m

T

m

T

m

f ��

xC C � � �xa

Here, doubled arrows indicate elements of T CA; in particular, there is always at least
one algebra element present. Dashed lines indicate elements of N , while solid lines
indicate elements of M . It is a property of the comultiplication �� that for any given xa,
there are only finitely many nonzero elements in this sum.
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We verify this is indeed an A1–module. As usual, mN induces an endomorphism Sm
of N ˝ T �.A/, and � a differential d on T �.A/. We must check that

(9-7) Sm2.x; xa/C Sm.x; dxa/D 0;

for any xa D a1 ˝ � � � ˝ an . We begin this verification by considering terms in the
second sum Sm.x; dxa/. Applying the A1 relation on M , we see that Sm.x; dxa/ can be
interpreted as counting the same kinds of trees as in the definition of mN .x˝xa/, except
for one difference: whereas the m–labeled vertices in the definition of mN .x˝ xa/
all have incoming algebra elements (and no two of these m–labeled vertices are
consecutive), the trees in Sm.x; dxa/ have a pair of consecutive m–labeled vertices (one
of which may have no incoming algebra elements). Equivalently, we can think of
these as counting trees obtained from trees counted in Sm.x; xa/, by applying one of the
following operations:

(T-1) Insert an m–labeled vertex with no incoming algebra elements immediately
before some T –labeled vertex.

(T-2) Insert an m–labeled vertex with no incoming algebra elements immediately
after some T –labeled vertex.

(T-3) Insert an m–labeled vertex with no incoming algebra elements immediately
after the initial f –labeled vertex.

(T-4) Insert an m–labeled vertex with no incoming algebra elements before the
terminal g–labeled vertex.

(T-5) Split some m–labeled vertex with at least 2 incoming algebra elements to a
pair of consecutive m–labeled vertices, each of which has at least 1 incoming
algebra element.

Terms of type (T-1) pair off with terms of type (T-2) (in view of the formula d ıT C
T ı d D ICf ıg ) to produce a sum of two types of trees: one of these types match
those of type (T-5); the other type is gotten by applying the following operation:

(T-6) Replace a T –labeled vertex by a vertex labeled by f ıg .

Thus, Sm.x; dxa/ counts trees of types (T-3), (T-4) and (T-6). The fact that f and g are
chain maps allow us to move the differentials past the f and g–labeled vertices in the
trees of types (T-3) and (T-4).

But these terms are precisely the trees counted in Sm2.x; xa/; and hence (9-7) holds.
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We claim that f extends to an A1 homomorphism, which has the following graphical
representation:

(9-8)

f .x˝xa/D

f

x

T

m

f ��

x xaC

T

m

T

m

f ��

C x xa

T

m

T

m

T

m

f ��

xC C � � �xa

We leave the verification that this extension is, indeed, an A1 homomorphism as
an exercise for the reader. The fact that F1 D f is immediate, and hence F is a
quasi-isomorphism.

9.3 Reconstruction via type-A modules, and its advantages

As discussed in Section 9.1, Theorem 4 can be reformulated as follows. As before,
write Y as a union of two 0–framed handlebodies Hg , identified via some gluing map � .
Once again, decompose � as a composition of arc-slides, � D m1 ı � � � ımk . Next,
calculate 1CFDA.mi/ for each arc-slide, using Theorem 2 and (9-3); and bCFA for the
handlebody Hg using Proposition 1.12 and (9-2) (or by simply writing down bCFA.Hg/

directly by counting holomorphic curves). Then, there is a homotopy equivalence

(9-9) cCF.Y /' bCFA.Hg/� 1CFDA.m1/� � � �� 1CFDA.mk/ bCFD.Hg/

D bCFD.Hg/�1CFAA.I/� 1CFDD.m1/�1CFAA.I/

� � � �� 1CFDD.mk/�1CFAA.I/� bCFD.Hg/:

(For clarity, we are viewing the bimodules as each having one left and one right action.)

So far, we have not gained anything computationally. The point is that, since the
operation � respects quasi-isomorphisms, we are free to replace the bimodule 1CFAA.I/
with a smaller model than the one given by (9-1). Thinking of the type-AA module
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associated to the standard diagram for the identity map (Figure 13), it is clear that
there is a model for 1CFAA.I/ whose rank over F2 is the number of idempotents
in A.Z/. One can arrive at a model of this size by taking the homology of the chain
complex 1CFAA.IZ/ (thought of as a vector space over F2 ). Although this homology
H�.1CFAA.IZ// is no longer an honest A.Z/ bimodule, by Lemma 9.1 it does retain the
structure of an A1–bimodule over A.Z/ (which is quasi-isomorphic to 1CFAA.IZ/).

Replacing 1CFAA.IZ/ by its homology drastically reduces the number of generators.
For instance, we will see in Section 9.4 that in the torus boundary case, we have
that dimF2

.1CFAA.IZ ; 0//D 30, while dimF2
.H�.1CFAA.IZ ; 0///D 2. (The 0 in the

notation here refers to the restriction to the portion of the algebra with strands weight
zero, ie with exactly one moving strand or two matched horizontal strands.)

In practice, to work with the fewest generators possible, one would want to compute
(9-9) by starting at one end, and taking homology (using Lemma 9.1) after each tensor
product.

Doing the replacement of 1CFAA.IZ/ with H�.1CFAA.IZ//, one has to take care with
the boundedness hypotheses needed for � to be well defined. If we take a bounded
model for bCFD.Hg/ on the left of (9-9), and compute the tensor products starting at
the far right, the relevant boundedness hypotheses are satisfied throughout, even if one
takes homology after each tensor product.

As a last computational point, we can use a smaller model for the algebra A.Z/: we
can divide out by the differential ideal of algebra elements with local multiplicity at
least 2 somewhere. (See [5, Proposition 4.15].)

9.4 Example: Torus boundary

Let I D IZ1 denote the identity map of the torus. In this section we calculate the AA

identity bimodule for the torus with strands weight zero, 1CFAA.I/D 1CFAA.IZ1 ; 0/,
using results of the previous subsections. This module was calculated before, by
explicitly finding all the relevant holomorphic curves, in [5, Section 10.1]. The method
here is more algebraic, and generalizes in a straightforward way to arbitrary genus;
direct holomorphic curve counts in higher genus would be complicated at best, and
probably intractable.

Let ADA.Z1; 0/ be the algebra associated to the torus with strands weight equal to
zero, and A0 D A.�Z1; 0/. (The algebras A and A0 are isomorphic, but it will be
clearer to treat them as distinct.) Note that 1CFDD.I/ has eight generators as a left A
module; it also admits a left action by A0 , a ring whose generators we denote �i rather
than �i .

Similarly, A has eight generators as an F2 –vector space.
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�123

�12 �23

�1 �2 �3

�3

�12

�1

�2

T7 H4 H5 H6 T8

T14 H1 H2 H3 T15

X H10 H11
H12D
H13

H9

�23

�2 �3

�1

�123

�12

�23

�1

�2

�3

T9 H7 H8

T4D
T13

T5 T6

T1 T2 T3

T10 T11 T12

Y H14 H15

Figure 42: Genus-one identity Dualizing the type-DD bimodule, in the
case of genus one

By (9-1), 1CFAA.I/ is equivalent to the bimodule of left A–module maps from
1CFDD.I/ to A. Such an A–linear map from 1CFDD.I/ to A is determined by

the image of a basis for 1CFDD.I/; and it is zero unless elements are mapped to
elements with compatible idempotents.

Using the description of 1CFDD.I/ from Theorem 1, there are 30 generators of the
bimodule HomA. 1CFDD.I/;A/. It is straightforward to find the 15 differentials which
connect various generators. The results of this are illustrated in Figure 42, with the
following convention. Generators are named Hi , Ti , X or Y , with the understanding
that Hi appears in the differential of Ti , while the generators X and Y have no
differentials either entering or leaving them. The labels H12 and H13 refer to the
same generator, as do T4 and T13 . In the table, rows are indexed by generators
of A0˝ 1CFDD.I/, and the columns are indexed by generators of A. Each square
corresponds to the morphism which takes the generator in that row to the generator in
that column (and all other generators to zero). The right action by A is indicated by
the arrows connecting the columns, while the right action by A0 is indicated by the
arrows connecting the rows. (Note that left translation in A0 dualizes to the stated right
action.)

The homology of the complex is two-dimensional, generated by the generators X and Y .
Thus, 1CFAA.I/ is quasi-isomorphic to an A1–bimodule with just two generators, X0
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and Y0 (as we already knew from the standard Heegaard diagram for the identity map).
Indeed, the quasi-isomorphism

f W H.1CFAA.I//! 1CFAA.I/

defined by f .X0/DX , f .Y0/D Y has a homotopy inverse

gW 1CFAA.I/!H.1CFAA.I//

defined by g.X / D X0 , g.Y / D Y0 , g.Hi/ D g.Ti/ D 0. Note that g ı f D
IH�.CFAA^.I// , while f ıg ' ICFAA^.I/ via the map

T W 1CFAA.I/! 1CFAA.I/

specified by

(9-10)

T .X /D 0;

T .Y /D 0;

T .Tj /D 0; 1� j � 15;

T .H4/D T4CT12;

T .Hi/D Ti ; 1� i � 15; i 62 f4; 13g;
where here i; j 2 1; : : : ; 15, and i ¤ 4; 13. (At first glance, it might appear that T is
not defined on H13 ; but in fact H13 DH12 , so T .H13/D T12 .)

An explicit form of the A1 structure on H�.1CFAA.I// is constructed in the proof of
Lemma 9.1. We can think of this graphically, as follows. Consider the directed graph
whose nodes correspond to the 30 generators of HomA. 1CFDD.I/;A/. Draw an edge
from v1 to v2 labeled by a basis vector a for the algebra if v2 appears in m2.v1; a/;
include another kind of edge — a T–labeled edge — from v1 to v2 if v2 appears in
T .v1/. All A1 operations on H�.1CFAA.I// correspond to paths with the following
properties:

� The path starts and ends at vertices labeled X or Y .

� The initial and final edges in the graph are labeled by algebra elements.

� The path alternates between edges labeled by algebra elements and T–labeled
edges.

Each such path corresponds to a term in an A1 operation, starting at the initial
vertex v , with coefficient 1 in the terminal vertex w ; and the sequence of algebra
elements gives the sequence of operations. More precisely, if r1; : : : ; rm and `1; : : : ; `n

are the sequences of algebra elements in the order they are encountered, where here
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the ri correspond to those labeled by algebra elements gotten by products of �j ,
while the `i correspond to those gotten as products of the �j , then this path gives a
contribution of w in the operation m1;n;m.v; .`1˝ � � � ˝ `n/; .r1˝ � � � ˝ rm//. Note
that paths of the above type in this graph coincide with the smaller graph, where we
include algebra-labeled edges only in cases where the terminal point of the edge is
either the initial vertex of a T –labeled edge, or it is one of X or Y . This smaller graph
is illustrated in Figure 43 (except that we have drawn several vertices corresponding
to X and Y , for clarity).

For instance, we see that m1;1;1.X0; �3; �2/D Y0 , via the path through X , H9 , T9 ,
and Y . More generally, by traveling around the loop through H9 , T9 , H8 , and T8 we
see that

m
�
X0; �3;

n‚ …„ ƒ
�23; : : : ; �23;

n‚ …„ ƒ
�12; : : : ; �12; �2

�D Y0

for any n� 0. (Note that to draw this conclusion, we need to check that there are no
other paths in the graph which give rise to a cancelling term.)

9.5 A computer computation

We conclude by describing a computer computation of cHF of the Poincaré homology
sphere, via an open book decomposition. For this, we will use a particular class of
handlebodies, useful for studying open books:

Definition 9.2 Let Z be a pointed matched circle. The self-gluing handlebody of Z ,
denoted Hsg.Z/, is the handlebody corresponding to a bordered Heegaard diagram
Hsg.Z/ obtained from the standard Heegaard diagram for the identity map of Z by
deleting the arc z and placing a basepoint on one of the two sides.

See the lower right of Figure 44 for the case when Z is the genus-1 pointed matched
circle. Also, observe that @Hsg.Z/D .�Z/ #Z .

Of course, Hsg.Z/ can be obtained from the split handlebody of genus g by doing
a sequence of arc-slides. Suppose Z is the pointed matched circle of genus 1. Then
we can get Hsg.Z/ from the split genus-2 handlebody by performing 8 handleslides.
Numbering the points along the boundary from 1 to 8, we perform the handleslides: 5
over 4; 2 over 1; 3 over 2; 4 over 3; 2 over 1; 6 over 5; 7 over 6; 2 over 3. See Figure 44.
In Section 9.6, we explain how to find this sequence of handleslides.

We can use a computer to calculate bCFD.Z/, for instance by computing inductively

bCFD.Hi/DMor
� 1CFDD.� i/; bCFD.Hi�1/

�
;
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1
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Figure 43: Genus-one identity type-AA bimodule A graphical represen-
tation of the A1 operations on CFAA^.I/ . T –labeled edges are shown
dashed. All vertices labeled X are identified, as are all vertices labeled Y .
The algebra-labeled edges can be immediately read off from the algebra
operations coming from Figure 42; the T–labeled edges are determined
by (9-10).

where  i is the i th arc-slide, � i denotes the same map but between orientation-
reversed surfaces, H0 is the 0–framed, split handlebody, and Hi D  i.Hi�1/. This
computation leads to type-D structures with the following number of generators before
and after simplification (cancelling arrows labeled by idempotents):

Gens. before Gens. after
Diagram simplifying simplifying
bCFD.H1/ 34 2
bCFD.H2/ 56 2
bCFD.H3/ 57 1
bCFD.H4/ 31 3

Gens. before Gens. after
Diagram simplifying simplifying
bCFD.H5/ 33 1
bCFD.H6/ 50 2
bCFD.H7/ 130 2
bCFD.H8/ 134 4
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Figure 44: Obtaining the genus-2 self-gluing handlebody by arc-slides

(These computations were done using Sage [14]. Code for doing such computations,
together with documentation including this example, is available from [4].)

The result has a more conceptual description, via a mild generalization of Theorem 1.
First, let 
 be the arc in .�Z/ # Z which runs from �Z to Z . There is a map
A..�Z/#Z/!A.�Z/˝A.Z/ gotten by setting to zero any basis element crossing a.
Call an element a 2A..�Z/ #Z/:

� Symmetric of type I if a does not cross 
 , and the image of a in A.�Z/˝A.Z/
is a chord-like element of the diagonal subalgebra.

� Symmetric of type II if a consists of a single chord � from 4k � i to 4k C i ,
where k is the genus of Z .

Also, there is an inclusion map A.�Z/˝A.Z/!A..�Z/ #Z/.

Theorem 9.3 Let Hsg.Z/ be the self-gluing handlebody of Z . Then bCFD.Hsg.Z//
is generated by the images in A..�Z/ #Z/ of all pairs of complementary idempotents.
The differential is given by right multiplication byX

a symmetric of type I or II

a:

Proof sketch This follows from a factorization lemma just like Lemma 3.5, except
that there is an additional type of chord: a chord covering the middle region of the
diagram, going between �Z and Z .
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The Poincaré homology sphere has a genus-1, one boundary component open book
decomposition with monodromy .�a�b/

5 , where �a and �b are Dehn twists around a
pair of dual curves in the punctured torus. Note that these Dehn twists can be viewed
as arc-slides in the genus-1 pointed matched circle, of point 2 over point 1 and point 3
over point 2, respectively.

Extend these arc-slides by the identity map to arc-slides A and B of the genus-2 split
pointed matched circle. Then the Poincaré homology sphere is given by

�Hsg.Z/[Y.AB/5 [Hsg.Z/

(see Figure 45).

A

B A

B B
A B

AD D D D D
C C C C C

D D D D D

C C C C C

Figure 45: Heegaard diagram for the Poincaré homology sphere This di-
agram is obtained by gluing together a diagram for �Hsg and Hsg , the
self-gluing handlebody and its reflection, with bordered Heegaard diagrams
for ten arc-slides (Dehn twists) in between, and then destabilizing 30 times.

We can again compute this by computer. Let H0iDYB.AB/i�1[Hsg , H00i DY.AB/i[Hsg .
Calculating bCFD.H0i/ and bCFD.H00i / inductively as

bCFD.H0i/DMor
� 1CFDD.�YB/; bCFD.H00i�1/

�
;

bCFD.H00i /DMor
� 1CFDD.�YA/; bCFD.H0i/

�
;

computer computation gives type-D structures with the following ranks before and
after simplification:

Gens. before Gens. after
Diagram simplifying simplifying
bCFD.H0

1
/ 229 7

bCFD.H0
2
/ 250 6

bCFD.H0
3
/ 337 9

bCFD.H0
4
/ 445 11

bCFD.H0
5
/ 586 14

Gens. before Gens. after
Diagram simplifying simplifying
bCFD.H00

1
/ 317 5

bCFD.H00
2
/ 263 7

bCFD.H00
3
/ 374 10

bCFD.H00
4
/ 447 13

bCFD.H00
5
/ 567 15
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Finally, we have cCF.Y /DMor
� bCFD.Hsg/; bCFD.H005/

�
(where Y is the Poincaré homology sphere). This is a complex with 405 generators,
and 1–dimensional homology.

9.6 Finding handleslide sequences

z z

z z

Figure 46: The source of the handleslides in Figure 44 We start with a
Heegaard diagram for the self-gluing handlebody and end up with the split
handlebody by a sequence of cuttings and regluings. At each stage, we glue
the edges drawn thick, and cut along the dashed line. The dotted line is the
desired separating curve.

We now explain how we found the sequence of handleslides used to construct the self-
gluing handlebody from the split handlebody, as in Figure 44. It is easiest to compute
the sequence of handleslides going in the other direction, starting from a self-gluing
handlebody and sliding until we obtain a split handlebody. The split handlebody has
two distinguishing characteristics:

� The two ˇ–circles each intersect a single ˛–arc once.

� There is a separating loop 
 from the boundary to itself that does not intersect
any ˛–arcs.

We try to achieve these two features by successively performing arc-slides among the
˛–arcs, keeping the two ˇ–circles unchanged. To this end we choose also a separating
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loop 
 . Each arc-slide is chosen to decrease the number of intersection points between
the ˛–arcs, the ˇ–circles, and 
 . This is illustrated in Figure 46, where the Heegaard
surface is shown split open along the ˛–arcs, rather than along the ˇ–circles as in, for
example, Figure 44. The curve 
 is indicated by a dotted arc. In this representation, a
sequence of handleslides involving a single ˛–arc ˛i sliding over others consists of

� gluing the sides of the diagram corresponding to ˛i and

� cutting open the resulting annulus along a new arc connecting the different sides
of the annulus.

At each stage, we were able to choose the arc at the second step to reduce the number
of intersections of the ˛i with the ˇ–circles.
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