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Algebraic Nahm transform
for parabolic Higgs bundles on P 1

KÜRŞAT AKER

SZILÁRD SZABÓ

We formulate the Nahm transform in the context of parabolic Higgs bundles on P 1

and extend its scope in completely algebraic terms. This transform requires parabolic
Higgs bundles to satisfy an admissibility condition and allows Higgs fields to have
poles of arbitrary order and arbitrary behavior. Our methods are constructive in
nature and examples are provided. The extended Nahm transform is established as an
algebraic duality between moduli spaces of parabolic Higgs bundles. The guiding
principle behind the construction is to investigate the behavior of spectral data near
the poles of Higgs fields.

14H60; 14E05, 14J26

Introduction

This article brings a new geometric point of view to the Nahm transform for Higgs
bundles. This new outlook is the analogue of the Fourier–Laplace transform for D–
modules (see Malgrange [7]) in the Dolbeault complex structure. For a survey of
different aspects of the Nahm transform, see Jardim [6].

In this article, we limit ourselves to Higgs bundles .E ; �/ over the projective line
consisting of:

� An effective divisor D.

� A vector bundle E .

� A morphism of coherent sheaves � W E! E.D/, called the Higgs field.

The fundamental property of Higgs bundles is that they are reconstructible from the set
of eigenvalues and eigenspaces of the endomorphism � , which we call the spectral data.
The standard construction formulates the spectral data corresponding to a Higgs bundle
on a curve C as a divisor for the set of eigenvalues and a pure sheaf of homological
dimension 1 for the eigenspaces in a geometrically ruled surface over C . This surface
is never a trivial fibration unless the Higgs bundle is of no interest. When C D P1 , the
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geometrically ruled surface is called a Hirzebruch surface, whose base C and fibers
are all copies of P1 .

In these circumstances, one is tempted to ask:

Question 1 Can the roles of the base and the fibers be reversed?

If the answer is affirmative, we will obtain a transform of Higgs bundles.

Nevertheless, the answer is no unless the Hirzebruch surface is a product surface.

In [10], the second author follows an analytical route to answer this question and
describes the Nahm transform for parabolic Higgs bundles with a Hermitian–Einstein
metric on the complex projective line P1 satisfying some semisimplicity and admissi-
bility conditions. These parabolic Higgs bundles have at most regular singularities in
points at finite distance and an irregular (Poincaré rank 1) singularity at infinity. Then
the Nahm transform of a parabolic Higgs bundle .E ; �/ is defined by the following
steps:

(1) Construct an eigensheaf M [ on an open subset U of P1 � yP1 .

(2) Push M [ by the projection y� W P1 � yP1! yP1 .

(3) Choose the “right” extension yE of y��.M [/ to yP1 .

Here, yP1 refers to the target projective line for the transform. For more details, we
refer the reader to Section 2.

Since the answer to the above question is negative, we ask a different question in
this paper:

Question 2 Can one define the spectral data corresponding to a Higgs bundle on
P1 � yP1 ?

We will show that the answer to this question is yes.

In the spirit of nonabelian Hodge theory, it is important to understand whether this
transform respects the parabolic structures on Higgs bundles. Although it doesn’t for
arbitrary parabolic Higgs bundles, this transform respects an important subclass of
parabolic Higgs bundles satisfying a natural condition:

Admissibility condition At a parabolic puncture, either there is no jump correspond-
ing to the weight zero, or otherwise, the jump is exactly prescribed by the residue of
the Higgs field.
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This condition will reappear in different, yet equivalent, forms throughout the paper
(Admissibility conditions 1 and 2). For a more precise formulation of admissibility, we
refer the reader to Section 1.

The main results of the present paper require only the admissibility condition on
parabolic Higgs bundles; there is no further restriction on either

� the order of poles of the Higgs fields � ,
� the character of the Higgs fields � .

For instance, any coefficient in the Laurent expansion of the Higgs field � is allowed
to have nilpotent part for any eigenvalue except for the eigenvalue 0. However if the
eigenvalue of the most polar part of the Higgs field is 0 then our method needs to
be refined both analytically and sheaf-theoretically to take into account the weight
filtration corresponding to the action of the residue on the 0–eigenspace, along the
lines of T Mochizuki’s work in [9, Section 5.1].

Another attribute of the theory developed in the present paper is that despite being
motivated by the Nahm transform in differential geometry, the results hold true over an
arbitrary field and are not restricted to the complex number field, except for Theorem 8.5,
which is used to compare our work with the main construction of [10].

Yet another advantage is that our methods are very explicit and allow one to calculate
concrete examples; an important feature in a field where new examples are highly
sought.

Along the way, we also introduce the notion of a proper transform to relate coherent
sheaves on a scheme X to coherent sheaves on a blow-up of scheme X . We establish
its basic properties required for the purposes of the present paper. We suspect that this
new operation might be of independent interest in algebraic geometry.
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matics (Bonn) for the hospitality during the period in which this paper was prepared.
The research of the second author was supported by the Advanced Grant “Arithmetic and
physics of Higgs moduli spaces” number 320593 of the European Research Council,
grant NK81203 of the Hungarian Scientific Research Fund and the Lendület LDT
program of the Hungarian Academy of Sciences.

1 Outline of the paper

In Section 1.1 we explain the notation and the notions we use and the conditions under
which our results hold. In Section 1.2 we then describe briefly the contents of the paper.
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1.1 Notation

Let X be a projective scheme over a field K . Given a birational morphism !W X 0!X ,
denote the total and proper transforms of a Cartier divisor P by !�P and !�P respec-
tively.

The vanishing locus of a global section t of a line bundle L on X is denoted by .t/.

Let P be an effective Cartier divisor on X . Denote:

� PX .O˚O.�P// WD Proj.Sym�.O˚O.�P//_/ by ZP .

� The structure morphism by �PW Z
P!X .

� The relative hyperplane bundle by OZP.1/.

� The canonical section of OZP.1/ by yP .

� The canonical section of OZP.1/˝O.P/ by xP .

� The automorphism acting on ZP by .xP;yP/ 7! .�xP;yP/ by .�1/ZP .

We refer to the divisor .yP/ as the infinity section and the divisor .xP/ as the 0–section
of ZP .

Definition 1.1 A Higgs sheaf .E ; �/ on X consists of a coherent sheaf E on X and
a homomorphism � W E! E.P/ for an effective Cartier divisor P.

As the divisor P controls where the Higgs field � is allowed to have poles, we refer to
it as the polar divisor and the points in its support as polar points.

A Higgs sheaf on a projective scheme X determines a unique coherent sheaf M P on
the surface ZP so that dim M P D dim E , Supp M P\ .yP/D∅ and �P�M

P D E.P/.
The sheaf M P is called the eigensheaf corresponding to the Higgs sheaf .E ; �/. The
support of M P is the spectral scheme. The sheaf M P fits into an exact sequence

0 �! E
xP�yP�
�����! E.P/˝OZP.1/ �!M P

�! 0:

Let
�H .E ; �/ WDM P:

Conversely, let the Higgs bundle � W E ! E.P/ be the pushforward of the following
sequence by �P :

IdM ˝xPW M.�P/ �!M ˝OZP.1/:

Denote .E ; �/ by �H .M;xP/, or simply by �H .M /. It is clear that �H and �H are
quasi-inverses. The correspondence extends to parabolic objects (see Definitions 3.5
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and 3.15) in a straightforward manner. We refer to this construction as the standard
construction and the resulting objects as the standard eigensheaf, the standard spectral
cover etc.

Given a Higgs bundle .E ; �/ on P1 (ie a Higgs sheaf with E the sheaf of holomorphic
sections of a vector bundle) with polar divisor PDp1C� � �Cpn where p1; : : : ;pn 2C ,
define the locally free sheaf

F WD ker
�
E! coker.�.�P/P/

�
on P1 . Then � gives rise to well-defined residue maps

res.�;pj / W End.Epj /:

(Notice here that with respect to the usual terminology, we contract with the section @=@z
of the holomorphic tangent bundle; see also Remark 2.1.) The sheaf F can then be
described as the sheaf of local sections of E whose evaluation at the polar divisor
vanishes on the generalized 0–eigenspace of the residue. We suppose furthermore that
a compatible parabolic structure is given at all pj . Throughout the paper we will use
the notion of parabolic structure in various degrees of generality. In this section, we
will content ourselves by using the most classical such notion, first defined by Mehta
and Seshadri [8]: this means the data of real numbers

0� ˛
j
0
� � � � � ˛

j
r�1

< 1

(called parabolic weights) and a finite decreasing filtration

(1) f0g D .Epj /1 � .Epj /˛j
r�1

� � � � � .Epj /˛jrj
� .Epj /0 D Epj

of the fiber of E at pj , preserved by the residue res.�;pj /. Here, we denoted by rj
the smallest index k such that ˛j

k
> 0 (when such an index exists; rj D r otherwise).

Let us introduce the notation

gr
˛
j

k

Epj D .Epj /˛j
k

ı
.Epj /˛j

kC1

for the graded vector spaces of the parabolic filtration, where by ˛j
r we mean 1. For

rj � k < r we also require that gr˛j
k
Epj D 0 if and only if ˛j

k
< ˛

j

kC1
. Also, let

˛k.Ep/ stand for ˛j

k
for p D pj .

The results of Sections 10 and 11 hold under the following admissibility condition for
the parabolic structure:
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Admissibility condition 1 (for Higgs bundles) For any polar point p 2 P, the Higgs
bundle .E ; �/ satisfies one of the following conditions:

� ˛0.Ep/ > 0 and Ep D Fp .

� ˛0.Ep/ D 0 and F1Ep D im.Fp ! Ep/ and the residue of � acts on its 0–
eigenspace with no nilpotent part.

1.2 Results

The paper is organized along the following lines: in Section 2, we give an overview of
the conditions and results of [10] which are often referred to in the present paper.

In Section 3, we recall the notions which will be used throughout the paper: pure
sheaves of dimension 1, parabolic sheaves, parabolic Euler characteristic, degree and
stability of parabolic sheaves. We also prove some of their properties.

In Section 4, we define an iterated version of blow-up maps for nonreduced 0–
dimensional subschemes. This will be essential for the generalization of the Nahm
transform to Higgs bundles with higher-order poles.

In Section 5, analogous to the proper transform of a divisor with respect to a blow-
up, we introduce the proper transform of a coherent sheaf with respect to a blow-up
of a closed point. We study properties of the proper transform for 1–dimensional
pure sheaves on surfaces. For such sheaves, the proper transform is related to the
Hecke transform of locally free sheaves. In particular, for such sheaves, the proper
transform is a quasi-inverse of the direct image (Lemma 5.13), and it preserves the
Euler characteristic (Lemma 5.15). We also give a parabolic version of the proper
transform, and prove that it preserves the parabolic Euler characteristic (Section 5.6).

In Section 6, we define two operations to modify the divisors of parabolic sheaves:
Deletion along E removes an effective subdivisor E of the parabolic divisor, whereas
addition along E appends an effective divisor E to the parabolic divisor. Under an
assumption (which is equivalent to Admissibility condition 1), these operations are
inverses of each other. Moreover, they preserve the parabolic Euler characteristic
(Proposition 6.2).

In Section 7, we introduce what we call spectral triples, consisting of a smooth surface,
flat over a base curve, an effective divisor on the surface, flat and finite over the base
curve, and a coherent sheaf supported on the divisor, of homological dimension 1.
Notice that the operation �H associates to a given Higgs bundle a spectral triple
.ZP;Supp.M P/;M P/. We shall call this spectral triple the standard spectral triple
associated to the Higgs bundle. However, there is another way of defining a spectral
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triple .Z0;Supp.M 0/;M 0/ for the surface Z0 D P1 � yP1 : we call this the naive
spectral triple. The surfaces ZP and P1 � yP1 are related by a series of elementary
transformations. Let Z be the resolution of indeterminacies of Z0 �!� ZP . We show
that the proper transforms of M P and M 0 agree on Z (Proposition 7.7).

In Section 8, we construct the Nahm transform of parabolic Higgs bundles on the
projective line as a composition of the operations we have introduced thus far. The
starting point is the diagram

(2)

Zint

�P

{{

y�yP

##��

ZP

��

P1 � yP1

{{ ##

yZyP

��

P1 yP1

(see (27)). Here the maps �P and y�yP are blow-up maps and Zint is called the interme-
diate spectral surface. Starting from a 1–dimensional parabolic sheaf M P

� on ZP , the
Nahm transform produces a 1–dimensional parabolic sheaf �M yP

� on yZyP by the formula

M P
� 7! .�1/�

yZyP
�M yP
� D .�1/�

yZyP
.y�yP/�AddyECDelEC.�P/

� .M P
� /:

From right to left, this formula reads as a proper transform with respect to �P , deletion
along a divisor EC , addition along a divisor yEC , pushforward with y�yP , and pullback
with respect to the fiberwise .�1/ multiplication. Here, EC and yEC are suitably chosen
divisors related to the birational morphisms �P and y�yP respectively. Theorem 8.5
shows that our construction generalizes that of [10].

In Section 9, we describe two examples in which we use our method to compute the
transformed Higgs bundle explicitly. These examples are beyond the scope of [10].
The first example features a Higgs field with a nilpotent residue. The second one is an
example of a higher-order pole.

Section 10 provides a geometric proof of the fact that the transformation is involutive
up to a sign.

In Section 11, we study the map induced by the Nahm transform on the moduli spaces
of stable Higgs bundles of degree 0 with prescribed singularity behavior. First, we
compute the dimension of these moduli spaces (Lemma 11.1). Then, we show that the
Nahm transform preserves the parabolic degree, and for Higgs bundles of degree 0, it
preserves stability (Lemma 11.3). Finally, in Theorem 11.4 we prove that the Nahm
transformation induces a Kähler isometry between the corresponding Dolbeault moduli
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2494 Kürşat Aker and Szilárd Szabó

spaces. It is also true that the Nahm transform respects the de Rham complex structure
(see Remark 11.5); however, since in this paper we are only concerned with the
Dolbeault complex structure, we do not give a proof of this fact here.

2 An overview of the analytic Nahm transform

In this section, we give a summary of the results of [10] relevant for the present paper.

Let P D fp1; : : : ;png be a finite set in P1 composed of distinct points at finite
distance, E be a rank-r holomorphic vector bundle on P1 and

� W E! E ˝OP1.P/

be a holomorphic map (called the Higgs field), where OP1.P/ is the sheaf of meromor-
phic functions with at most simple poles in the points of P and no other poles.

Remark 2.1 This definition differs from the usual definition of the Higgs field, which
is an endomorphism-valued 1–form. However, in the particular case of the projective
line, tensor multiplication by the globally defined meromorphic 1–form dz establishes
an isomorphism between the sheaf of holomorphic functions and the sheaf of 1–forms
with a double pole at infinity. Therefore, the above definition is equivalent to that of a
Higgs field in the usual sense, with logarithmic singularities at P and a double pole at
infinity. Throughout the paper we tacitly use this isomorphism to simplify notation.

By definition, the residue of the Higgs field is semisimple if the endomorphism induced
by res.�;pj / on each graded vector space of the parabolic filtration is semisimple. In
this section, in addition to admissibility we will assume that at any pj 2 P the Higgs
field has semisimple residue satisfying the following additional properties:

(1) res.�;pj / vanishes on gr
0
Epj ,

(2) for all k � rj , the space gr
˛
j

k

Epj is one-dimensional,

(3) for l ¤ k � rj , the eigenvalues of res.�;pj / on gr˛j
k
Epj and on gr˛j

l
Epj are

different constants (in particular, for k � rj , the residue is nonvanishing on
gr˛j

k
Epj ).

Remark 2.2 As it is easy to see, Admissibility condition 1 is weaker than the above
Assumptions (1)–(3).
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In more explicit terms, in the standard holomorphic coordinate z of C and in a
convenient holomorphic trivialization fej

0
; : : : ; e

j
r�1
g of E in a neighborhood of pj

the Higgs field can be written

(3) � D Bj
1

z�pj
CO.1/;

where O.1/ stands for holomorphic terms and

(4) Bj D

0BBBBB@
0
: : :

0
�

j
rj : : :

�
j
r�1

1CCCCCA
is a diagonal matrix with all the �j

k
for rj � k < r nonvanishing and distinct. Here,

the vectors e
j
0
; : : : ; e

j
rj�1

span gr
0
Epj and for k � rj the vector e

j

k
spans gr˛j

k
Epj .

At infinity, we suppose that � is holomorphic, such that its Taylor series written in the
local coordinate z�1 and some holomorphic trivialization of E near infinity

(5) � D
1

2
ACB1

1

z
CO

�
1

z2

�
satisfy that the constant term A is diagonal with eigenvalues �1; : : : ; �yn of multiplicity
possibly higher than one:

(6) AD

0BBBBBBBBB@

�1
: : :

�1
: : :

: : :
�yn : : :

�yn

1CCCCCCCCCA
and the first-order term B1 is also diagonal (in the same trivialization)

(7) B1 D

0BBBBBBBBBB@

�1
0 : : :

�1
�1Ca1

: : :
: : :

�1ayn : : :
�1

r�1

1CCCCCCCCCCA
:
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Here the eigenvalues f�1al
; : : : ; �1

�1CalC1
g correspond to the basis vectors spanning the

�l –eigenspace of A (where we have put a0 D 0; aynC1 D r ). We make the assumption
that for a fixed 1� l � yn, none of these eigenvalues f�1al

; : : : ; �1
�1CalC1

g vanish and
they are all distinct. In light of Remark 2.1, we will call A=2 the second-order term
and B1 the residue of � at infinity. Furthermore, we suppose that a parabolic structure
is given at this singularity as well: that is, we are given parabolic weights 0< ˛1

k
< 1

for k D 0; : : : ; r �1, arranged in such a way that inside one block al � k < alC1 they
form an increasing sequence, and a corresponding filtration .E1/˛ for ˛ 2 Œ0; 1� of the
fiber of E over infinity, spanned by the basis elements having parabolic weight greater
than or equal to ˛ . A sheaf E with a parabolic structure will often be denoted by E� .

In the rest of this section, a holomorphic vector bundle with a parabolic structure in
P[f1g will be called parabolic vector bundle; if moreover a compatible Higgs field
is given, then we will call it a parabolic Higgs bundle.

Denote by deg.F/ the usual algebraic geometric degree of a holomorphic vector
bundle F . It is clear that a subbundle F (or quotient bundle Q) of a parabolic vector
bundle E also admits an induced parabolic structure by intersecting with F the terms
of the filtration of E , and assigning the biggest of the weights to all filtered terms that
become isomorphic after taking intersections with F .

Definition 2.3 The parabolic degree of E� is the real number

par-deg.E�/D deg.E/C
X

j2f1;:::;n;1g

r�1X
kD0

˛
j

k
:

The parabolic slope of E� is the real number par-�.E�/D par-deg.E�/= rk.E/. Finally,
.E�; �/ is said to be parabolically stable if for any subbundle F� invariant with respect
to � with its induced parabolic structure, the inequality par-�.F�/ < par-�.E�/ holds.

Suppose in all what follows that .E ; �/ is not the trivial line bundle OP1 together
with a constant multiplication map. Denote by yC the dual line of C (another copy
of C ), and by yP1 the dual sphere, the compactification of yC by the point �1. By [10],
the Nahm transform of a stable parabolic Higgs bundle .E�; �/ of parabolic degree 0

is then a parabolic Higgs bundle . yE�; y�/ on yP1 , with regular singularities (ie y�d�

having simple poles) in the set yPD f�1; : : : ; �yng and an irregular singularity (ie y�d�

having a double pole, therefore y� being holomorphic) at infinity. Also, the transform
of a Hermitian–Einstein metric on .E�; �/ is a Hermitian–Einstein metric on . yE�; y�/;
in particular, this latter is polystable. We sketch the idea of the construction of the
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transform. First, introduce a twist of the Higgs field: for any � 2 yC set

�� D � �
�

2
IdE ;

where IdE is the identity bundle endomorphism of E . Consider now the open spectral
curve †[ in .C n P/� .yC n yP/ defined by

†[ D f.z; �/ j det.��/.z/D 0g:

In other words, denoting by �[ (respectively y�[ ) the projection on C nP (respectively
yC n yP) in the product .C n P/ � .yC n yP/, this curve is the support of the cokernel
sheaf M [ of the map

�� W .�
[/�E! .�[/�E :

Propositions 4.7, 4.15 and 4.24 together with Lemma 4.30 of [10] give an interpretation
of the transform on an open set.

Theorem 2.4 The Nahm transformed Higgs bundle restricted to yC nyP can be obtained
as follows:

� The holomorphic bundle yE is the pushdown y�[�M
[ endowed with its induced

holomorphic structure; we denote its rank by yr .

� On the open set of � 2 yC n yP over which the fiber of †[ consists of distinct
points fz1.�/; : : : ; zyr .�/g of multiplicity 1, the transformed Higgs field y� acts
on the subspace coker.��.zk.�/// � yE j� as multiplication by �zk.�/=2; this
then admits a unique continuation into points where the fiber has multiple points.

This description then gives an understanding of the behavior of the Higgs field near a
point of yP and near �1: we only have to understand the behavior of the open spectral
curve near these points. Because of the special form of � in the singularities, we
deduce that the eigenvalues of the transformed Higgs field have indeed simple poles
in the points of yP, and are bounded near �1. In different terms, this defines a natural
compactification †0 � P1 � yP1 of †[ . Moreover, we gain precise information about
its asymptotic expansions near these points: namely, near a point �l 2 yP the residue of
the transformed Higgs field in a convenient trivialization of the transformed bundle is
equal to

�

0BBBB@
0
: : :

0
�1al : : :

�1
�1CalC1

1CCCCA I
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ie it is the direct sum of the opposite of the residue of the original Higgs field at infinity
restricted to the �l –eigenspace of the leading term and a 0–matrix (see [10, Theo-
rem 4.32]), whereas its leading term at infinity in a convenient trivialization is

�
1

2

0BBBBBBBBB@

p1
: : :

p1
: : :

: : :
pn

: : :
pn

1CCCCCCCCCA
;

each pj appearing with multiplicity rk.res.�;pj // D r � rj , and the corresponding
first-order term in the same trivialization is then

�

0BBBBBBBBB@

�1
r1 : : :

�1
r�1

: : :
: : :

�n
rn : : :

�n
r�1

1CCCCCCCCCA
(see [10, Theorem 4.33]). In particular, we deduce the formula

(8) yr D

nX
jD1

rk.res.�;pj //:

Therefore, we see an intricate interplay between singularity behavior at the regular
singularities and the one at the irregular singularity.

Afterwards, we use the extensions of E over the singularities to define an extension M 0

of M [ to the compactified spectral curve †0 . These in turn induce an extension yE ind
�

of yE into a holomorphic bundle endowed with a parabolic structure in each point of
yP[f�1g, which we call the induced extension (cf [10, Section 4.4]). By definition, a
local holomorphic section of this extension has a D00

�
–harmonic representative obtained

from a local section of the cokernel sheaf M 0 multiplied with a bump function of
constant height concentrated near the spectral points of � , such that the diameter of
their support converges to 0 up to first order near the points �l and to 1 near �1 also
up to first order. Next, we compute the parabolic weights of these extensions with
respect to the transformed Hermitian–Einstein metric: for a point �l 2 yP the nonzero
weights are equal to ˛1al

� 1; : : : ; ˛1
�1CalC1

� 1; whereas the weights at �1 are equal
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to ˛1
r1
�1; : : : ; ˛1

r�1
�1; : : : ; ˛n

rn
�1; : : : ; ˛n

r�1
�1 (cf [10, Section 4.6]). In particular,

we have that all the nonzero weights violate the requirement that they be between 0

and 1: they are actually shifted by �1. Therefore, in order to get a genuine parabolic
Higgs bundle on yP1 , we have to change the induced extension at �1 by a factor of ��1 ,
and the extension of the basis vectors corresponding to nonzero eigenvalues of the
Higgs field at the logarithmic singularities �l by factors of .� � �l/. The result we
obtain this way is called the transformed extension, and is denoted by yE tr (cf [10,
Section 4.7]). Finally, an application of the Grothendieck–Riemann–Roch theorem
yields the degree of the transformed holomorphic bundle on yP1 with respect to the
transformed extensions:

(9) par-deg. yE tr
� /D par-deg.E�/:

3 Basic material

Fix a projective scheme X over a field K with an ample invertible sheaf OX .1/.
For a given coherent OX –module E , the support of E is the closed set Supp.E/ D
fx 2X j Ex ¤ 0g. Its dimension is called the dimension of the sheaf E and is denoted
by dim.E/.

Definition 3.1 For a given coherent sheaf E on X , the Euler characteristic is defined
to be

�.E/D
dim.X /X

iD0

.�1/i dimk H i.X; E/:

The Hilbert polynomial P .E/ of E is defined by P .E ;m/ WD �.E˝OX .m//.

Definition 3.2 A coherent sheaf E of OX –modules on X is pure of dimension d if
dim.F/D d for any nontrivial subsheaf F of E .

Equivalently, E is pure if and only if the associated points of E are all of the same
dimension.

Definition 3.3 A subsheaf F of a pure d –dimensional sheaf E is saturated if E=F
is either 0 or pure of dimension d .

Remark 3.4 In order to be able to define parabolic sheaves E with respect to an
effective Cartier divisor D on X , we need to make the assumption,

dim.D\Supp E/ < dim Supp E :
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This assumption with the purity of the sheaf E ensures that E ˝OX .�D/ ! E is
injective. Hence, the sheaf E ˝OX .�D/ can be seen as a subsheaf of E .

The condition dim.D\Supp E/ < dim Supp E can be viewed as a very coarse transver-
sality condition between the support of the sheaf E and the divisor D, stating that no
component of D contains a component of the support of the sheaf E .

In the rest of this section, we assume E and D are as in Remark 3.4.

Definition 3.5 A triple .E ;F�E ; ˛�/ is called a parabolic sheaf on X with parabolic
divisor D and weights ˛� if F�E is a filtration of E by coherent subsheaves FiE so
that

E.�D/D FlE � Fl�1E � � � � � F1E � F0E D E

and ˛� is a sequence of real numbers with 0 � ˛0 < ˛1 < � � � < ˛l�1 < 1. Set
grF

i E WD FiE=FiC1E .

One can view grF
i E as coherent sheaves on D\Supp.E/.

Definition 3.6 Let D1 be an irreducible component of D such that for any other
irreducible component D0 one has D0 \ D1 \ Supp E D ∅. We say that the parabolic
structure is trivial on D1 if grF

i E jD1
D 0 for all i > 0 and ˛0 D 0.

Definition 3.7 The pair .E ; E�/ is an R–parabolic sheaf on X if E� D fE˛g is
a collection of coherent sheaves parametrized by ˛ 2 R satisfying the following
properties:

(1) E0 D E .

(2) For all ˛ < ˇ , Eˇ is a coherent subsheaf of E˛ .

(3) For all ˛ and small " > 0, E˛�" D E˛ .

(4) For all ˛ , E˛C1 D E˛.�D/.

Set gr˛ E WD E˛=E˛C" for sufficiently small " > 0.

Parabolic sheaves and R–parabolic sheaves are equivalent. To see this, set ˛lC1 D 1

and ˛0 WD ˛l � 1. For any real number ˛ , let i be the unique integer such that
˛i�1 < ˛ � b˛c � ˛i , where b˛c is the largest integer such that b˛c � ˛ . Set
E˛ WD FiE.�b˛cD/. Conversely, given an R–parabolic sheaf E� , inductively choose
0 � ˛i < 1 for i D 1; : : : ; l so that E˛i

properly contains Eˇ for any ˇ > ˛i . Set
FiE WD E˛i

and FlC1 D E.�D/. The resulting triple .E ;F�; ˛�/ is a parabolic sheaf
on X .
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Therefore, from now on we will drop the adjective R– from the expression R–parabolic
structure. In addition, when the parabolic structure of a sheaf E is clear from the context,
we will simply write E� for the pair .E ; E�/.

Definition 3.8 Given two parabolic sheaves E 0� and E� , an OX –module homomor-
phism 'W E 0! E is a parabolic homomorphism if '.E 0˛/� E˛ for all real numbers ˛ .
For E a parabolic sheaf and E 0 a subsheaf endowed with a parabolic structure, we say
that E 0� is a parabolic subsheaf if the inclusion is a parabolic homomorphism.

Definition 3.9 Given a saturated subsheaf E 0 of a parabolic sheaf E� , the induced
parabolic structure indE 0� on E 0 is defined as indE 0˛ WD E 0\ E˛ for all ˛ 2R.

Remark 3.10 The induced parabolic structure for a given saturated subsheaf E 0 is the
largest among the parabolic structures E 0� which makes E 0 into a parabolic subsheaf
of E� . As a consequence, it suffices to consider the saturated subsheaves of a parabolic
sheaf E� with their induced parabolic structures to measure the stability of E� .

Definition 3.11 Define the parabolic Euler characteristic of a parabolic sheaf E� by

(10) par-�.E�/ WD �.E.�D//C
l�1X
iD0

˛i�.grF
i E/:

If X is a curve, then the parabolic degree of E� is defined as

(11) par-deg.E�/ WD deg.E.�D//C
l�1X
iD0

˛i dim.grF
i E/:

One can check that par-�.E�/D int10�.E˛/ d˛ (see Yokogawa [12]).

Proposition 3.12 The parabolic Euler characteristic is additive: Given any short exact
sequence

0 �! E 0� �! E� �! E 00� �! 0

of parabolic sheaves with the same parabolic divisor D, we have

par-�.E�/D par-�.E 0�/C par-�.E 00� /:

Proof Recall that a sequence of parabolic sheaves is said to be exact if for all ˛ 2R
the induced sequence on the ˛–filtered terms is exact. Taking ˛ D�1, we see that

0 �! E 0.�D/ �! E.�D/ �! E 00.�D/ �! 0
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is exact. By additivity of the usual Euler characteristic, �.E.�D// D �.E 0.�D//C
�.E 00.�D//. On the other hand, the snake lemma implies that for any ˛ 2R the induced
sequence on the ˛–graded pieces

0 �! gr˛ E 0 �! gr˛ E �! gr˛ E 00 �! 0

is also exact. The statement follows by applying additivity of � to these sequences.

Definition 3.13 Given a parabolic sheaf E� and L a line bundle, define a parabolic
structure on E ˝L by setting .E ˝L/˛ WD E˛˝L for all ˛ 2R.

On a smooth projective curve X , parabolic Euler characteristic and parabolic degree
are related as follows:

Proposition 3.14 If E is a parabolic sheaf on a smooth projective curve X , then

par-deg.E.D//D par-deg.E/C r deg D;

par-�.E.D//D par-deg.E/C r�.OX /:

Proof The first formula follows by definition, because the jumps ˛i of the para-
bolic structures of E and E.D/ are the same, and the graded pieces of the filtration
corresponding to each ˛i are isomorphic.

The second follows from Riemann–Roch and the isomorphism of the graded pieces.
We have

par-�.E.D//D �.E/C
lX

iD1

˛i�.grF
i E.D//D deg.E/C r�.OX /C

lX
iD1

˛i�.grF
i E/

D deg.E/C r�.OX /C

lX
iD1

˛i dim.grF
i E/

because the grF
i E are supported on the 0–dimensional subscheme D.

Definition 3.15 A Higgs sheaf .E ; �/ consists of a coherent sheaf E on X together
with a OX –module homomorphism � W E! E.D/. The resulting O.D/–valued endo-
morphism � is called a Higgs field. A parabolic Higgs sheaf .E�; �/ with divisor D
consists of a parabolic sheaf E� on X with divisor D and a parabolic homomorphism
� W E�! E�.D/. A homomorphism of Higgs sheaves  W .E1; �1/! .E2; �2/ is a homo-
morphism of sheaves  W E1! E2 commuting with the Higgs fields: . ˝ 1/ ı �1 D

�2 ı . A homomorphism of parabolic Higgs sheaves is a homomorphism of Higgs
sheaves respecting the parabolic structure.
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A (parabolic) Higgs subsheaf of E is defined in the obvious way: it is a (parabolic)
subsheaf preserved by the Higgs field.

Remark 3.16 Starting from Section 8, we will consider Higgs sheaves on X D P1

with polar divisor P and parabolic divisor DD PC1 . In terms of Definition 3.15, these
objects are defined as Higgs sheaves with polar divisor D with an apparent singularity
at 1. In other words, the Higgs field, as a rational section with values in P, extends
regularly at 1. We take ZP as the standard spectral surface for a Higgs sheaf with
polar divisor P and parabolic divisor D. It would also be possible to work with the
surface ZD : these two surfaces are related by an elementary transformation over infinity.
However, we work with ZP because the poles of the Higgs field are already contained
in P.

Definition 3.17 A parabolic (Higgs) sheaf E� is said to be semistable if for any given
proper parabolic (Higgs) sheaf F� � E� , par-p.F�;m/ � par-p.E�;m/ for large m.
The (Higgs) sheaf E� is said to be stable if for all proper parabolic (Higgs) subsheaves
F� � E� , par-p.F�;m/ < par-p.E�;m/ for large m.

The standard construction described in Section 1.1 adapts to the parabolic case as well.
A parabolic Higgs sheaf � W E�! E�.P/ with parabolic divisor D determines a parabolic
sheaf M P

� on ZP with parabolic divisor ��P .D/, with �P�M
P
˛ D E.P/˛ for any ˛ 2R

and Supp M P
� \ .yP/D∅. Write �H .E�; �/ for M P

� and �H .M
P
� / for .E�; �/.

Automorphism .�1/ If M corresponds to the Higgs sheaf � W E!E.P/, the pullback
.�1/�

ZPM corresponds to �� W E ! E.P/. We formalize this for parabolic Higgs
sheaves as well as Higgs sheaves:

Lemma 3.18 We have

�H .�1/�ZP�
H .E ; �/D �H .E ;��/;

�H .�1/�ZP�
H .E�; �/D �H .E�;��/:

4 Iterated blow-ups

A sequence of infinitesimally near points .p0; : : : ;pn/ on X is defined recursively as
follows. Let X0 WDX and p0 2X0 . Let !j W Xj !Xj�1 denote the blow-up of Xj�1

at pj�1 , let Ej denote the exceptional divisor !�1
j .pj�1/ and let pj be a point in Ej

for j D 1; : : : ; n. By abuse of notation, denote the total transform of the exceptional
divisor Ej in Xn still by Ej for j D 1; : : : ; n. For 1< j < n, set

(12) Cj WD Ej � EjC1:

The curve Cj is a .�2/–curve on Xn .
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Definition 4.1 We call a 0–dimensional closed subscheme T of a smooth (projective)
surface X linear if for each p 2 Tred , one can find u; v 2mX ;p and a positive integer
n so that

mX ;p D .u; v/OX ;p and JT;p D .u
n; v/OX ;p:

For p 2 Tred , the integer n is uniquely determined and is equal to the length of T at p ,
dimk.OX ;p=JT;p/. Denote this integer by np . The total length N of T equals the
sum

P
np .

An irreducible linear subscheme T of local length nC1 with closed point p determines
a sequence of infinitesimally near points .p0; : : : ;pn/ with p0 D p as follows. Let:

� p0 WD p .
� D0 WD .u

n� v/.
� Dj WD !

�
j Dj�1 .

� pj is the unique intersection point of Dj with Ej for j D 1; : : : ; n.

The divisor D0 is a smooth curve, thus so are all Dj for j > 0. Because multp0
D0D 1,

it follows that Dj � Ej D 1, ie the intersection of Dj and Ej is a unique point, say pj ,
for j > 0.

The surface Xn is the iterated blow-up of X at T and is denoted !T W F-BlT X !X .

Enumerate the components of a linear subscheme as T1; : : : ;Tm . Then define the
iterated blow-up of X at T to be

F-BlT X WD F-BlT1
X �X � � � �X F-BlTm

X

and !T W F-BlT X !X to be the corresponding morphism.

Clearly, F-BlT X and !T do not depend on the enumeration chosen. However, we need
the enumeration for better record keeping: denote the closed point of T corresponding
to Ti by pi and add the subscript i in front of previously written subscripts for the
related data, thus making them pij ; Eij ; Cij for appropriate values of j .

4.1 Formulas for exceptional divisors

Each leg of the following diagram is an iterated blow-up. To keep the notation simpler,
assume that DD n � pt for some n> 0 and replace D with n in notation, making ZD

into Zn etc:
Z

�0

~~

�n

  
Z0 // Zn
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In order to construct this diagram, one has to fix a global section s of O.D/ so that
D D .s/. All such sections differ by nonzero multiples. Let u be a global section
of O.pt/, and without loss generality assume that s D un .

Given a divisor in Z0 or Zn , denote its total transform in Z by the same letter. Attach
a superscript C=� to divisors related to �n and �0 respectively. Denote the fiber class
by F on any of the surfaces Z0 , Zn and Z . Moreover, set

(13) C˙0 WD F� E˙1 ; C˙n WD E˙n :

Recall that

(14) C˙j D E˙j � E˙jC1 for j D 1; : : : ; n� 1:

Then

(15) FD ECj C E�k for j C k D nC 1; FD
nX

iD0

CCi D
nX

iD0

C�i :

Denoting the linear equivalence of divisors �, we see that

(16) X0 � Y0; Xn � YnC n � F:

The formulae below relate various (exceptional) divisors.

Lemma 4.2 We have

X0 D Xn�

nX
jD1

ECj ; Yn D Y0�

nX
jD1

E�j ; C�j D CCn�j for j D 0; : : : ; n:

The various relations are summarized by

E�n D C�n D CC
0
D F� EC

1

E�n�1� E�n D C�n�1 D CC
1
D EC

1
� EC

2

:::
:::

:::
:::

E�1 � E�2 D C�1 D CC
n�1
D EC

n�1
� ECn

F� E�1 D C�0 D CCn D ECn :

(17)

We switch from the additive notation of divisors to multiplicative notation of line
bundles and sections. Let F be the fiber above pt, ie it is cut out by the equation uD 0.
Denote the section corresponding to a divisor by the same letter in lowercase, ie x0

is the section which cuts the divisor X0 . Set Ci D CCi . The equality FD
P

CCi now
becomes uD

Qn
0 ci .
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Given a Higgs bundle � W E!E.D/, the eigensheaf M D on ZD equals coker.xn�yn�/.
We want to relate M D to M 0 on Z0 . The sheaf M 0 is defined by using sx0�y0� .
We relate sx0�y0� to xn�yn� by

(18) sx0�y0� D unx0�y0� D

� nY
1

e�j

�
.xn�yn�/D

�n�1Y
0

cn�i
i

�
.xn�yn�/:

For 0� k � n,

xn D

� nY
1

eCj

�
x0 D

� nY
1

c
nC1�j
j

�
x0;

gcd.xn;u
k/D c1

1c2
2 � � � c

k�1
k�1ck

k � � � c
k
n ;� nY

1

e�j

�
gcd.xn;u

k/D cn
0 � � � c

n
kcn�1

kC1 � � � c
k
n D uk

�
cn�k

0 � � � cn�k
k c

n�.kC1/

kC1
� � � c1

n�1

�
:

For iD1; : : : ; r , let ki be the largest power of u to divide all the elements of the i th row
of � . Set P , Q, R to be diagonal matrices whose i th diagonal entries are respectively

(19)

Pii Qii Rii

cn�k
0
� � � cn�k

k
c

n�.kC1/

kC1
� � � c1

n�1
uk c1

1
c2

2
� � � ck�1

k�1
ck

k
� � � ck

n

= = =

e�
1
� � � e�

l
uk eC

1
� � � eC

k

for k D ki and l D n� k . Then we have the following.

Lemma 4.3 P �QD

� nY
1

e�j

�
R:

5 Proper transform of coherent sheaves

The goal of this section is to introduce a new tool, the proper transform of coherent
sheaves, to compare eigensheaves constructed on different Hirzebruch surfaces. Hirze-
bruch surfaces are related to each other by a series of elementary transformations. An
elementary transformation of a Hirzebruch surface Fn at a point of the intersection of
the 0–section and a fiber F produces a Hirzebruch surface Fn�1 . First, blow up Fn

at the intersection of its 0–section and the fiber F . Call this surface S . Then contract
the proper transform of F in S to a point on the infinity section of Fn�1 . Similarly,
one can revert the process to define an elementary transformation of Fn�1 at a point
of intersection of the infinity section and a fiber F .
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The idea of defining a proper transform for coherent sheaves comes from the observation
that under elementary transformations, spectral curves transform to each other.

For a given Higgs bundle, one can define eigensheaves defined on different Hirzebruch
surfaces. We will find that these sheaves transform to each other under elementary
transformations of Hirzebruch surfaces once we replace pullbacks of coherent sheaves
by proper transforms of coherent sheaves.

5.1

We are interested in eigensheaves on rational surfaces, such as Hirzebruch surfaces. By
definition, eigensheaves are of homological dimension 1 at all points in their support.

For a bit more generality and to emphasize the local nature of problem, we fix a
smooth point x on a scheme X and concentrate on sheaves M which are of homo-
logical dimension 1 at this point. For such a coherent sheaf M , there exists an open
neighborhood U of x on which MU has a locally free resolution

0 �! F1 �! F0 �!MU �! 0:

We denote the scheme corresponding to the single point x by T .

Recall that our interest is to analyze how eigensheaves on different Hirzebruch surfaces
transform to each other under elementary transformations. For this reason, we need to
introduce a new sheaf NU using the short exact sequence

0 �!NU �!MU �!MT �! 0:

We incorporate these two short exact sequences into an exact diagram which also
defines the sheaf H:

(|)

0

��
0

��

NU

��
0 // F1

ˆ //

��

F0
// MU

//

��

0

0 // H //

��

F0
// MT

//

��

0

NU

��

0

0
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Denote the blow-up of X at x by X � , the morphism to X by !W X � !X and the
exceptional divisor by E.

The pullback of diagram (|) via the blow-up morphism ! is not an exact diagram. The
exactness fails at the pullback of the terms of H and NU .

The notion of proper transform for coherent sheaves is introduced to eradicate the failing
exactness of the pullback diagram. Once the terms !�H and !�NU are replaced with
their proper transforms H� and N �

V
respectively, the exactness of the diagram will be

restored, where V D !�1.U /. The resulting diagram

(})

0

��
0

��

N �
V

��
0 // !�F1

ˆ //

��

!�F0
// !�MV

//

��

0

0 // H� //

��

!�F0
// !�MT

//

��

0

N �
V

��

0

0

is exact. More importantly, we have the following.

Proposition 5.1 One can reconstruct diagram (|) from diagram (}) by the pushfor-
ward !� . That is, !�(})D (|).

The rest of this section is devoted to the proof of this statement, which is divided into
smaller pieces as Lemmas 5.6, 5.11 and 5.12.

5.2

Given a smooth point x of a scheme X , denote the blow-up of X at x by X � , the
morphism to X by !W X �!X and the exceptional divisor by E. On X � , the pullback
of any Cartier divisor D of X splits as !�D D mEC D� where m is a nonnegative
integer and D� is the proper transform of the divisor D. One can imagine the proper
transform D� as the total transform !�D whose exceptional locus is trimmed.
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For a divisor B , say a divisor A is a subdivisor of B and write A � B if B �A is
effective. The relation � is a partial order on the set of divisors of an arbitrary scheme.
In this sense, the proper transform D� is the largest subdivisor of !�D which does not
contain the exceptional locus E.

Keeping these properties of the proper transform of divisors in mind, we define the
proper transform of coherent sheaves in complete analogy.

Let T denote the 0–dimensional subscheme corresponding to x . For a given coherent
sheaf F on X , we call the pullback !�F the total transform of F . Let

FE
WD TorOX�

1
.!�F ;OX � .E/E/:

The sheaf FE coincides with the subsheaf of sections of !�F supported along the
exceptional divisor E.

Definition 5.2 The proper transform of F is defined as the quotient !�F=FE and
will be denoted by !�F , or simply F� when suitable.

The following sequences are exact:

0 // OX � // OX � .E/ // OX � .E/E // 0;

0 // FE // !�F // F� // 0;

0 // F� // !�F.E/ // !�F.E/E // 0:

To see the exactness of the latter two, tensor the first sequence with !�F and split the
resulting sequence into two short exact sequences.

Proposition 5.3 Given a coherent sheaf F on X , we have the following.

(1) If F is torsion-free, then FE and F� coincide with the torsion and torsion-free
parts of !�F respectively.

(2) If F D Jx is the ideal sheaf of the point x 2X . Then J �
x DOX � .�E/.

(3) If F is locally free at x , then !�F D F� .

(4) If x 62 SuppF , then !�F D F� and !�F� D !�!�F D F .

(5) Given a locally free sheaf L on X , then .F ˝ L/E Š FE ˝ !�.L/ and
.F ˝L/� Š F� ˝!�.L/.

Proof Part (1) follows as !W X �nE!Xnfxg is an isomorphism, !�F is torsion-free
over the open set X �nE and the torsion locus is E. Parts (2) and (3) follow from (1).
Part (4) is clear. Part (5) follows from the locally freeness of the sheaf L.
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The third column of diagram (}) is exact:

Lemma 5.4 Given an exact sequence of sheaves on X

0 �!N �!M
evT
��!MT �! 0;

where evT is the evaluation map, then the sequence

0 �!N �
�! !�M �! !�MT �! 0

is exact and N � DM � .�E/.

For any divisor D with multx DD 1, M.�D/� DN � .�D� /.

Proof The map N !M is 0 at x and an isomorphism of the fibers away from x .
Hence the map !�N !!�M vanishes along E and it is an isomorphism away from E.
As a result, the kernel and the image of this map are N E and N � . This proves the
exactness of the above sequence.

The proper transform M � fits into the exact sequence

0 �!M �
�! !�M.E/ �! !�M.E/E �! 0:

Tensoring this sequence by O.�E/ shows that N � DM � .�E/.

Given such a divisor D, we see that !�D D D� C E. Starting from N � DM � .�E/,
tensoring both sides by O.�D� /, we get N � .�D� /DM � .�!�D/DM.�D/� .

The second row of diagram (}) is exact by the following observation:

Lemma 5.5 Given an exact sequence of coherent sheaves on U

0 �! S �! F �!Q �! 0

with F locally free and Q torsion, then

0 �! S� �! !�F �! !�Q �! 0

is exact on U � .

Proof The sequence !�S! !�F ! !�Q! 0 is exact. The first homomorphism
factors through S� because S� is the torsion-free quotient of !�S . The homomor-
phism S� ! !�F is generically injective since !�Q is torsion and injective since S�
is torsion-free. Consequently, the image of !�S in !�F coincides with S� .

Geometry & Topology, Volume 18 (2014)



Algebraic Nahm transform for parabolic Higgs bundles on P 1 2511

Lemma 5.6 Given a coherent sheaf M on X , suppose that either

(1) M is a skyscraper sheaf supported at x , or

(2) M is of at most homological dimension 1 at x .

Then
R0!�!

�M DM and Ri!�!
�M D 0 for all i > 0:

Proof (1) The pullback !�M is the constant sheaf OE˝Mx on the exceptional
divisor E. From this, the result follows.

(2) The result holds for M DOX because the blown-up point x is a smooth point. It
holds for arbitrary locally free sheaves by the projection formula. This takes care of
homological dimension 0 at x .

If M is of homological dimension 1 at x , then there exists an open neighborhood U

of x on which MU has a locally free resolution

0 �! F1 �! F0 �!MU �! 0:

The pullback of this sequence via ! stays as a short exact sequence since F1 is locally
free. The pushforward of the pullback sequence is also a short exact sequence since
the higher direct images of the locally free sheaves F1 and F0 vanish. We conclude
R0!�!

�M DM and Ri!�!
�M D 0 for all i > 0.

Lemma 5.7 Suppose the following sequences are exact for coherent sheaves A;B

and C on X and X � respectively:

0 // A // B // C // 0;

0 // A� // !�B // !�C // 0:

Suppose the coherent sheaves B and C satisfy the conclusion of the previous lemma.
Then

R0!�A
�
DA and Ri!�A

�
D 0 for all i > 0:

Proof The pushforward by ! of the second short exact sequence yields

0 // R0!�A
� // R0!�!

�B // R0!�!
�C

// R1!�A
� // R1!�!

�B // R1!�!
�C // � � � :

From the first line of this long exact sequence and the assumptions R0!�!
�B D B ,

R0!�!
�C DC , it follows that R0!�A

� is the kernel of the natural map B!C , which
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is isomorphic to A by assumption. Similarly, from the first line and the assumption
R1!�!

�BD 0 we have that R1!�A
� is the cokernel of the natural map B!C , that

is to say, 0 again by assumption. The higher direct images Ri!�A
� for i > 1 vanish

by the five lemma and the assumption Ri!�!
�B DRi!�!

�C D 0 for i > 0.

From now on, assume that M is a coherent sheaf on X with dh.Mx/ D 1. Let
N WD ker.M !Mx/.

Lemma 5.8 The sequence

0 �!M E
�! !�ME �!M �

E �! 0

is exact.

Proof Let K WD ker.!�ME!M �
E /. The following diagram is exact:

0

��

0

��
M E

��

K

��
0 // N � // !�M //

��

!�ME //

��

0

0 // N � // M � //

��

M �
E

//

��

0

0 0

This completes the proof.

5.3 The sheaf H� is a Hecke transform

We finalize our findings about diagram (}).

Definition 5.9 Given a projective scheme X , a normal crossing divisor †, a locally
free OX –module F and a locally free O†–module M together with a surjection
�W F !M , the coherent sheaf ker� is called the Hecke transform of F with respect
to M and � .

Remark 5.10 Hecke transforms are locally free sheaves on X .
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Lemma 5.11 (1) If Mx is torsion OX ;x –module, then H is a torsion-free OX –
module of the same rank as E1 .

(2) Diagram (}) is exact.
(3) The proper transform H� of H is a Hecke transform of F1 along E. In particu-

lar, H� is locally free.

Proof (1) The sheaf H is torsion-free since any nontrivial subsheaf of a torsion-free
sheaf is torsion-free. The sheaves H and F0 are of the same rank since they are
isomorphic away from T .

(2) The exactness of the second row and the third column follows from Lemmas 5.5
and 5.4. The exactness of the first column is as a consequence.

(3) The locus !�1.T / is a normal crossing divisor and !�MT a vector bundle on
this divisor. The proper transform H� of H is the kernel of !�F0! !�MT which
proves it is a Hecke transform.

5.4 Purity

Lemma 5.12 Given a coherent sheaf M on X with dh.Mx/D 1, we have:
(1) M E ŠOE.�1/˚m , where mD dimk.x/Mx˝ k.x/.

(2) R0!�M
� DM and Ri!�M

� D 0 for all i > 0.
(3) If X is of dimension 2 and Mx is torsion, then for all y 2 E, dh.M �

y /D 1.

(4) TorOX�

i .M � ;OE/D 0 for all i > 0.

(5) Ext0OX�
.OE;M

� /D 0.
(6) If M is pure of dimension 1, then Eª Supp M � .

Proof of Lemma 5.12 (1) The stalk Mx has a two-step resolution by free OX ;x –
modules. Therefore, there exists an open neighborhood U of x on which MU has a
locally free resolution

0 �! F1 �! F0 �!MU �! 0:

The locally free sheaves Fi may be assumed to be of the same rank, say r . Let m be
the fiber dimension of M at x . Then m� r . Denote !�1.U / by V . Because E� V ,
M E

V
D TorOV

1
.!�MU ;OV .E/E/. Using the locally free resolution of MU , we see that

M E ŠOE.�1/˚m , where mD dimk.x/Mx˝ k.x/.

(2) The sequence
0 �!M E

�! !�M �!M �
�! 0

is exact. The first term is isomorphic to OE.�1/˚m . Therefore Ri!�M
ED 0 for all i ,

R0!�M
� DM and Ri!�M

� D 0 for all i > 0.
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(3) For all y 2 E, dh.!�My/ D 1 and !�My is a torsion OX � ;y –module. By
Lemma 5.4 the sheaf N � is a subsheaf of !�M . By Corollary 5.19, N �

y is also torsion
of homological dimension equal to 1. Again by Lemma 5.4 we have M � DN � .E/,
so the same conclusion holds for M �

y too.

(4) We know that the third column of (}) is exact; by the snake lemma so is its first
column. Applying Lemma 5.4 shows that the sheaf M �

V
has a two-step locally free

resolution
0 �! F1.E/ �!H� .E/ �!M �

V �! 0;

where H� is defined by a Hecke transform as ker.F0! !�ME/ and hence locally
free. Applying OE˝OX�

� to this exact sequence and using the five lemma we get
TorOX�

i .M � ;OE/D 0 for i � 2.

As for TorOX�

1
.M � ;OE/, by (1) we have M E ŠOE.�1/˚m . Therefore we have

TorOX�

1
.M E;OE/ŠO˚m

E :

On the other hand, as we have seen in (1) we have

TorOX�

1
.!�M;OE/D TorOX�

1
.!�M;O.E/E/˝O.�E/

DM E
˝O.�E/ŠO.E/˚m

E ˝O.�E/ŠO˚m
E :

From these equalities, the portion of the long exact sequence

TorOX�

2
.M � ;OE/ //

// TorOX�

1
.M E;OE/ // TorOX�

1
.!�M;OE/ // TorOX�

1
.M � ;OE/

and the already established vanishing of TorOX�

2
.M � ;OE/ we therefore deduce

TorOX�

1
.M � ;OE/D ker.M E! !�ME/; the latter is in turn 0 by Lemma 5.8.

(5) Apply Hom.OX � ; �/M � to the exact sequence

0 �!OX � .�E/ �!OX � �!OE �! 0:

The result is

0 �! Ext0OX�
.OE;M

� / �!M �
�!M � .E/ �!M � .E/E �! 0:

Then, Ext0OX�
.OE;M

� /D TorOX�

1
.M � ;OE/D 0. The latter sheaf is trivial by (4).

(6) If M is pure of dimension 1, then M � is torsion and dh.M �
y /D 1 for all y 2X � .

Consequently, M � is pure of dimension 1. As E is not an associated point of M �

by (4), Eª Supp M � .
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5.5 Morphisms

Let M1;M2 be coherent sheaves on X . Then a homomorphism �W M1!M2 induces
��W !�M1! !�M2 with !�.M E

1
/�M E

2
, and we denote the induced morphism on

the quotients M �
1
!M �

2
by �� . For coherence, we also use !�� for �� .

From now on we assume that M1;M2 are pure of dimension 1.

Lemma 5.13 For any homomorphism �W M1!M2 , !�!�� D � . For any homo-
morphism  W M �

1
!M �

2
, .!� /� D  .

Proof The image of ��!��� is 0–dimensional. Because M2 is pure of dimension 1,
the image is trivial and hence � D !��� . The image of  � .!� /� is contained in
the 0–dimensional subscheme E\Supp M �

2
. Hence,  D .!� /� .

Lemma 5.14 A homomorphism �W M1!M2 is injective if and only if �� is injective.
In this case, !�.coker�� /D coker� .

Proof (() As Mi are pure of dimension 1, Mi DM �
i and � D !�!�� . The

injectivity follows from the left exactness of !� .

()) The homomorphism �� is injective away from E, thus ker�� � E\Supp M �
1

,
hence trivial.

Lemma 5.15 Let M be a pure sheaf of dimension 1. Then

�.!�M /D �.M /;

�.!�M /D �.M /:

Proof Lemma 5.6 (respectively Lemma 5.12) shows that the sheaf cohomology
of !�M (respectively !�M ) matches the sheaf cohomology of M , and hence
�.!�M /D �.M /D �.!�M /.

5.6 Parabolic case

Here, we introduce the proper transform for parabolic sheaves of dimension 1 on
surfaces and investigate its basic properties.

Given a surface X , fix a smooth point x , an effective Cartier divisor D and parabolic
sheaf M� of dimension 1 with divisor D.
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No further transversality conditions other than Remark 3.4 are required of the parabolic
sheaf M� , the divisor D and the point x : the divisor D or the support of M� are
allowed to contain the point x , or meet each other arbitrarily.

In Proposition 5.17, we show that the proper transform of a parabolic sheaf of dimen-
sion 1 with parabolic divisor D can be given the structure of a parabolic sheaf whose
parabolic divisor is the total transform of D.

In Section 6, we provide the details of how to alter the parabolic structure of the proper
transform of a parabolic sheaf along the exceptional divisor E and obtain a parabolic
sheaf whose associated divisor will be a proper transform of the sheaf D.

Definition 5.16 Given a parabolic sheaf M� of dimension 1 on X with parabolic
divisor D, the proper transform of M� is defined by setting !� .M /˛ WD !

� .M˛/ for
˛ 2R.

Then !�M� has the same weights as M� . We show that the definition of proper
transform make sense for parabolic sheaves:

Proposition 5.17 The proper transform !�M� of M� with divisor D is a parabolic
sheaf on X � with divisor !�D, !� grF

i !
�M D grF

i M for all i and par-�.!�M�/D

par-�.M�/.

Proof We start by proving that the proper transform of a parabolic sheaf M is again
a parabolic sheaf with divisor !�D.

First, !� .M /0 D !�M . By assumption, M� is parabolic. The sheaf Mˇ is a
subsheaf of M˛ for ˇ � ˛ . Lemma 5.14 implies M �

ˇ
is a subsheaf of M �

˛ and
!� grF

i !
�M D grF

i M for all i . In addition, by Proposition 5.3,

!� .M /˛C1 D !
� .M˛.�D//D Œ!� .M˛/�.�!

�D/:

The weights of !�M� coincide with the weights of M� . These make !�M� into a
1–dimensional parabolic sheaf with divisor !�D.

The parabolic Euler characteristic is preserved since

!� .M.�D//D !�M.�!�D/

and !� grF
i M � D grF

i M for all i :

par-�.!�M�/D �.!
�M.�!�D//C

X
˛i�.grF

i !
�M /

D �.M.�D//C
X

˛i�.grF
i M /D par-�.M�/:
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Similarly, we can define pushforwards of parabolic sheaves of dimension 1 whose
divisor is !�D:

Definition 5.18 Given a parabolic sheaf �M� of dimension 1 with parabolic divi-
sor !�D, define the pushforward of �M� by setting .!� �M /˛ WD !�. �M˛/ for ˛ 2R.

Then !� �M� has the same weights as �M� . In order to show that this definition makes
sense we only need to check that !�. �M˛C1/D !�. �M˛/.�D/ for every ˛ 2R. This
follows from the projection formula:

!�. �M˛C1/D !�. �M˛.�!
�D//D !�. �M˛/˝!�!

�OX .�D/:

5.7 Appendix on commutative algebra

Let A be a local ring with maximal ideal m. For any A–module M , the depth of M

is defined as

depth.M / WDminfi j ExtiA.A=m;M /¤ 0g

and the homological dimension dim.M / is defined as the minimal length of a projective
resolution of M .

The Auslander–Buchsbaum formula relates the two invariants:

dh.M /C depth.M /D depth.A/:

If A is a regular local ring, then depth.A/D dim.A/.

Corollary 5.19 Let A be a regular local ring of dimension 2, M a torsion A–module
with dh.M / D 1. Then, any submodule M 0 of M is a torsion A–module with
dh.M 0/D 1.

Proof Any submodule M 0 of M is torsion, therefore not locally free and dh.M 0/� 1.
Since depth.M /D 1,

Ext0A.A=m;M
0/� Ext0A.A=m;M /D 0:

Consequently, depth.M 0/� 1. By the Auslander–Buchsbaum equality,

dh.M 0/D depth.M 0/D 1:
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Lemma 5.20 Assume X is a smooth projective surface. For a coherent sheaf M

on X , the following are equivalent:

(1) M is pure of dimension 1.

(2) M is a torsion sheaf with dim.Mx/D 1 for all x 2X .

(3) dh.Mx/D depth.Mx/D 1 for all x 2X .

Moreover, any subsheaf of a given pure sheaf M of dimension 1 is also pure of
dimension 1.

Proof Apply Corollary 5.19 and [5, Proposition 1.1.10] by Huybrechts and Lehn,
which in this particular case, states that a coherent sheaf M of dimension 1 is pure if
and only if depth.Mx/� 1 for all x 2X .

6 Addition and deletion

In this section, we introduce two operations, addition and deletion, to modify the
parabolic structure of a parabolic sheaf. Given a parabolic sheaf whose associated
divisor is of the form D0 and a different effective divisor E, addition of E to the
parabolic structure of the parabolic sheaf in question yields a new parabolic sheaf
whose associated divisor is D0C E. Conversely, deletion of E removes the divisor E
from the parabolic divisor D0C E of some parabolic sheaf. In application, D0 will be
the proper transform of some divisor D with respect to a blow-up and E the exceptional
divisor of the said blow-up.

Deletion Let P� be a parabolic sheaf on X with divisor D and D0; E be effective Cartier
divisors in X such that DD D0C E. Because dim.Supp.P /\ D/ < dim.Supp.P //, the
same holds for E and D0 as well. We set P 0 WDP .�E/. One can put a parabolic structure
on the sheaf P 0 whose parabolic divisor is D0 : for 0 � ˛ < 1, set P 0˛ WD P 0 \ P˛ .
Extend this to a parabolic structure by setting P 0˛ WD P 0

˛�b˛c
.b˛cD0/. We call P 0� the

deletion of E from the divisor of P� , and denote it by DelE.P�/.

Addition Conversely, given a parabolic sheaf P 0� with divisor D0 and an effective
divisor E such that dim.Supp.P 0/ \ E/ < dim.Supp.P 0//, one can put a parabolic
structure with parabolic divisor D D D0 C E on P D P 0.E/ by setting P0 D P and
P˛ D P 0˛ for 0 < ˛ < 1 and extending this to R in the usual way. Denote P� by
AddE.P 0�/, and call it the addition of E to the divisor of P 0� .

Admissibility condition 2 (for parabolic sheaves) One has either

˛0.P / > 0 and Supp.P /\ ED∅;

˛0.P /D 0 and F1P D P .�E/:
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Definition 6.1 A parabolic sheaf P� with associated divisor D will be called E–
admissible if for an effective Cartier divisor E, the divisor D� E is effective and P�
obeys the dichotomy

˛0.P / > 0 and Supp.P /\ ED∅; or

˛0.P /D 0 and F1P D P .�E/:

Proposition 6.2 There is a one-to-one correspondence between the following two sets
of objects induced by operations DelE and AddE :

E–admissible parabolic sheaves P with associated divisor D

 ! Parabolic sheaves P 0 with divisor D� E and ˛0.P
0/ > 0:

Furthermore, par-�.DelE.P�//D par-�.P�/.

Proof We show first that given an admissible parabolic sheaf P , the parabolic sheaf
DelE.P / obtained by deleting E from the parabolic divisor D produces a parabolic
sheaf of the second kind.

Set P 0� WD DelEP� . Suppose first ˛0.P / > 0. Then Supp.P /\ ED ∅ implies P 0
0
D

P .�E/D P and hence P 0˛ D P˛\P 0
0
D P˛\P D P˛ for 0< ˛ < 1. In short, in this

case, P 0� D P� and ˛0.P
0/D ˛0.P / > 0.

Suppose now ˛0.P /D 0. Therefore, F1P D P .�E/ by definition. In other words, for
small � > 0, P� D P .�E/. Recall that P 0

0
is set to be P .�E/ and P 0˛ WD P˛ \P .�E/

for 0<˛ < 1. Consequently, we see that at ˛D 0, there is no jump, ie for small � � 0,
we have P 0

0
D P .�E/D P 0˛ . Hence, ˛0.P

0/ > 0.

Traversing the steps back one observes that AddE is the inverse of DelE . These prove
that DelE and AddE form a one-to-one correspondence between the two sets of parabolic
sheaves above.

One of the conclusions of the above paragraph is that DelE does not modify the
sheaves P˛ for any 0 < ˛ � 1, ie for ˛ in this range, P˛ D DelE.P�/˛ . This also
forces gr˛.P�/D gr˛.DelE.P�// for ˛ in the same range. Finally, we conclude that
par-�.DelE.P�//D par-�.P�/.

Lemma 6.3 Let P� be an E–admissible parabolic sheaf on X and S� be a saturated
subsheaf endowed with the induced parabolic structure. Then S� is also E–admissible.

Proof The induced parabolic structure is defined by the formula S˛ D S \P˛ for all
0� ˛ < 1. For small enough " > 0, one then has S"D S\P"D S\P .�E/. Because
S � P , this implies S" D S.�E/. Assuming Supp.S/ \ E ¤ ∅, one has S" ¤ S .
Letting "! 0, this implies ˛0.S/D 0, and F1S D S.�E/ as claimed.
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7 Spectral triples

From now on, let C be a smooth projective curve over the field K and P an effective
Cartier divisor on C .

Definition 7.1 A spectral triple .Z; †;M / consists of a smooth surface Z together
with a morphism !W Z! C , an effective divisor †�Z and an OZ –module M of
homological dimension 1 with support † so that � W Z! C is flat and �j†W †! C

is finite and flat.

Definition 7.2 A parabolic spectral triple .Z; †;M�/ is a spectral triple so that M�
is a parabolic sheaf whose parabolic divisor is !�.P/.

Remark 7.3 In fact, it would be enough to consider the pair .Z;M / as † is deter-
mined by †D Supp.M /. We include † in the definition for expository purposes.

Starting from a Higgs bundle � W E!E.P/ one can define a spectral triple .Z[; †[;M [/:
set C [ WD C � P and A1 WD Spec.kŒ��/. Here:

Z[
WD C [

�A1 with the obvious choice for ![W Z
[
�! C:(20)

†[ WD .det.� IdE ��//:(21)

M [
WD coker.� IdE ��/:(22)

Definition 7.4 A compactification of the triple .Z[; †[;M [/ is a spectral triple
.Z; †;M / and an open immersion i W Z[!Z so that

(1) Z is a connected smooth projective surface,

(2) i.†[/ is contained in † as a dense open subset,

(3) i�M DM [ ,

so that the following diagram commutes:

Z[

�[   

i // Z

���
C

By (1) and (2), Z[ is dense inside Z and † is the closure of i.†[/ in Z .

There are many compactifications of the triple .Z[; †[;M [/: given one compactifica-
tion, one can obtain other via suitable blow-ups.
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The standard choice for a compactification of .Z[; †[;M [/ is

ZP
WD PC .O˚O.�P//; †P

WD
�
det.xP IdE �yP�/

�
; M P

WD coker.xP IdE �yP�/:

Remark 7.5 The divisor †P does not meet the line at infinity .yP/.

7.1 Naive compactification: The surface and the curve

We describe the compactification Z0 D C �P1 . The spectral curve †0 is determined
by †[ as its closure. The sheaf M 0 is the cokernel of a morphism between locally
free sheaves as was M P .

Remark 7.6 The spectral curve †0 meets the line at infinity .y0/ over the points
p 2 P for which �p is not a nilpotent endomorphism.

7.2 Naive compactification: The sheaf

Fix a section s so that P D .s/ and let ‚0 WD sx0 IdE �y0� W E ! E.P/˝OZ0.1/.
Then

.det‚0/D†
0
C .det coker.�//:

We construct another map ˆ0 related to ‚0W E! E.P/˝OZ0.1/ so that

†0
D .detˆ0/:

Set F WD ker.E.P/! coker �.�P/P/ and denote the inclusion F ,! E by Q. The
map � W E ! E.P/ naturally factors through F.P/. Similarly, ‚0 factors through
F.P/˝OZ0.1/. Denote the map E!F.P/˝OZ0.1/ by ˆ0 . The following diagram
is exact:

(23)

0

��
0

��

M 0

��
0 // E

‚0 //

ˆ0

��

E.P/˝OZ0.1/ // ��
T�

coker‚0
//

��

0

0 // F.P/˝OZ0.1/
Q˝1 //

��

E.P/˝OZ0.1/ // ��
T�

coker �D
//

��

0

M 0

��

0

0
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From this diagram, we see that

Supp M 0
D .detˆ0/D†

0:

7.3

We use the ideas we have developed in Section 5 to compare the sheaves M 0 and M P

constructed on the Hirzebruch surfaces Z0 and ZP respectively. The Hirzebruch
surfaces transform to each under other arbitrary elementary transformations. However,
in our description, elementary transformations are prescribed by the data derived
from the Higgs bundle .E ; �/. Moreover, instead of analyzing a single elementary
transformation, we analyze all elementary transformations which will be needed in a
single diagram:

Z
�T�

~~

�
TC

  
Z0 // ZP

Here:

� T � WD†�\ .y0/ and �T� is the iterated blow-up map Z!Z0 .

� TC WD†C\ .xP/ and �TC is the iterated blow-up map Z!ZP .

Also, set:

� F0
1
WD E and F0

0
WD F.P/˝OZ0.1/.

� FP
1
WD E and FP

0
WD E.P/˝OZP.1/.

View FB
1
! FB

0
as a two-step locally free resolution for the sheaf M B on U D ZB .

Set
HB WD ker

�
FB

0 �!M B
TB

�
:

Proposition 7.7 For BD 0; P, T B is linear, Z D F-BlT B ZB and !B D !T B . Also:

��TCHP
D ��T�H0:(24)

��TCN P
D ��T�N 0:(25)

†0�
D†P� :(26)

We denote the proper transformed spectral curve (26) by †.
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Proof For simplicity, assume PD n �pt with local coordinate u at pt. The subscheme
T P is linear because T P D .un/\ .t/D .un; t/, where t is xP or yD . The pair of u

and t is clearly transversal. Lemma 4.3 says that the following is diagram commutative
and �TC

�HP D �T�
�H0 :

HP
� .Š/ //

P
��

H0
�

R
��

F.P/˝OZ0.1/

Q ((

E.P/˝OZP.1/

�
nQ
1

e�
i

�
vv

E.P/˝OZP.1/

The rest follows.

8 Algebraic Nahm transform

Let .ZP; †P;M P
� / be the standard parabolic spectral triple of the parabolic Higgs

bundle .E�; �/ whose parabolic divisor D is PC1. Define the following 0–dimensional
subschemes of ZP :

TC WD ��.P/\ .xP/;

which is the intersection of the pullback divisor ��.P/ and the 0–section in ZP , and

yT � WD ��.1/\†P;

which is the fiber of †P over 12 ZP . Applying the ideas of Section 5.2 to the 0–
dimensional subscheme TC produces a new spectral triple .ZP; †P;N P/ out of M P

� :

N P
WD ker

�
M P
!M P

TC

�
:

By definition, N P consists of the local sections of M P vanishing in TC .

Next, define another spectral triple .Z; †;N�/: the surface Z is the blow-up �TC

of ZP at TC , the divisor EC is the exceptional divisor of �TC and the coherent
sheaf N is defined as the proper transform �P� .N

P/ of N P . The support † of N is
the proper transform ��TC.†

P/ of †P . Let

N� WD DelEC�
�
TCM P

� :

The sheaf N now has a parabolic structure whose divisor is ��TCDD ��
TC

D� EC . By
our convention, the parabolic structure of N P

� (as the ones of all the other sheaves
involved in the construction) has weights between 0 and 1 in all parabolic points.
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Proposition 8.1 If Admissibility condition 1 holds for .E ; �/, then Admissibility con-
dition 2 holds for the parabolic sheaf N� and the divisor EC .

Proof It is sufficient to work in a neighborhood of a parabolic point p 2 P. The
Admissibility condition 2 says that if the residue of � at p has a 0 eigenvalue, the
relation F D F1E holds, and the smallest parabolic weight is 0. This then implies
that grF

0
.E/D coker.�.�p/p/, and that the parabolic weight associated to this graded

piece is 0. By the definition of the parabolic structure of M P , this is equivalent to
saying that grF

0
.M P/ D coker.�.�p/p/ on the fiber F D ��1.p/, with 0 parabolic

weight associated to this graded piece. Since the sheaf coker.�.�p/p/ is supported in
the point t D F\ .xP/, we see that the 0–weight subspace of M PjF is precisely M Pjt .
Therefore, we have F1M P D ker.M P ! M Pjt /. Now let us blow up the point t ,
and call E the exceptional divisor and M the proper transform of M P . Then for the
parabolic structure of M the relation F1M D ker.M !M jE/DM.�E/ holds, and
the corresponding parabolic weight is 0. This shows that Admissibility condition 2 is
true for M . It then follows for N as well because of our convention of keeping the
same weights for kernel and cokernel sheaves.

For simplicity, write � for the projection � ı �TC W Z
P ! P1 , whenever this does

not create any ambiguity, and do the same for all other projections to P1 composed
with blow-up maps. Similarly, identify the 0–dimensional subscheme T �Z2 with
!�1.T / if !W Z1!Z2 does not affect T . For example, view yT � D ��.1/\†P

both as a 0–dimensional subscheme of ZP and Z .

Now, apply the blow-up construction of Section 5.2 to the 0–dimensional scheme yT �

in Z in order to obtain a parabolic spectral triple .Zint; †int;N int
� /, called the abso-

lute parabolic spectral triple of .E�; �/: the surface Zint is the blow-up � yT� of Z

along yT � , and the coherent sheaf N int is defined as the proper transform ��
yT�
��TCN

of N with respect to �TC� yT� . It is supported on the proper transform

†int
D ��

yT�
†

of † with respect to � yT� . Set

N int
� WD DelEC.�TC ı� yT�/

� .M P
� /:

The parabolic divisor of N int
� is

Dint
D��
yT�
��TCD:

We call yE� the exceptional divisor of � yT� . Now, set PintD Dint n��11. We call Zint

the absolute surface, †int the absolute spectral curve and N int the absolute spectral
sheaf.
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It is possible to reconstruct the original parabolic Higgs bundle from the absolute
parabolic spectral triple: by Lemma 5.12, we have

N P
D .�TC ı� yT�/�N

int and M P.�P/� D .�TC ı� yT�/�N
int
� .�Pint/:

The parabolic vector bundle E� is ��M P.�P/� , and the Higgs field � is the direct
image of multiplication map by the global section xP on ZP .

The dual divisor yP is defined as the image of yT � under y� W P1 � yP1! yP1 , ie

yP WD y�. yT �/:

We equally set yD D yPC �1. All the maps we have constructed so far fit into the
commutative diagram

(27)

Zint

� yT�

yy

�T�

%%
Z

�
TC

||

�T�

$$

yZ
y� yT�

zz
y� yTC

""
ZP P1 � yP1 yZyP:

Here, the surfaces yZyP , yZ and the related maps are defined in an analogous manner to
above. More precisely, recall that �TC is the blow-up of ZP at the points TC , and �T�

is the blow-down of Z along the proper transforms E� D ��TC.�
�.P// in Z of the

fibers of � in ZP over the points of P. As usual, call � and y� the two projections of
P1�yP1 . For any p 2P the proper transform ��TC.�

�.p// of the fiber over p contracts
to the point in P1�yP1 which is the intersection of the1–fiber of y� with the fiber of �
over p : denote by T � � y��. y1/ the union of these points for all p 2 P; this is a finite
set. Furthermore, recall that yT � is the intersection of †0 and the 1–fiber of � , or
said differently, the intersection of the fibers of y� over yP in P1� yP1 and the 1–fiber
of � . Then, the map y� yT� is the blow-up of P1� yP1 in the 0–dimensional subscheme
yT � , �T� is the blow-up of yZ in the 0–dimensional subscheme T � , and finally y� yTC
is the blow-down of the proper transform yEC D y��

yT�
.y��.yP// of the fibers of y� over yP

with respect to y� yT� . Call yTC the finite set where these fibers contract in the 0–section
of y� in yZyP . In other words, the relation between P1� yP1 , yZyP and yZ with respect to
the points yP and the projection y� is the same as the relation between P1 � yP1 , ZP

and Z with respect to the points P and the projection � ; whereas Zint is the fibered
product of Z and yZ over P1 � yP1 . Therefore, Zint has two projections to projective
lines: � D � ı �TC ı � yT� to the base P1 of the geometrically ruled surface ZP ,
and y� D y� ı y� yTC ı�T� to the base yP1 of yZyP . Let �M yP be the direct image sheaf
.y� yTC ı�T�/�.AddyECN int/ and denote by y†yP its support.
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Definition 8.2 The direct image parabolic sheaf y�� �M yP
� .�yP/ on yP1 with parabolic

points yD will be called yE 0� .

By the definition of �M yP
� , yE 0� is isomorphic to�

y�� ı .y� yTC/� ı .�T�/� ıAdd yECDelEC ı�
�
yT�
ı��TC.M

P
� /
�
.�yP/:

Remark that by construction, the parabolic weights of yE 0� are between 0 and 1. Fur-
thermore, similarly to .xP;yP/ on ZP , there exists a pair of globally well-defined
parameters .yxyP; yyyP/ on yZyP .

Definition 8.3 Denote the direct image of multiplication by the global section �yxyP
on �M yP

� .�yP/ by y� 0 .

Remark 8.4 One checks without difficulty that y� 0 respects the parabolic filtration
of yE 0� ; hence . yE 0�; y� 0/ is a parabolic Higgs bundle. Using the notation introduced in
Section 1, the definitions above can be written as

. yE 0�; y� 0/D �H . �M yP
� ;�yxyP/;

or equivalently by Lemma 3.18 as

. yE 0�; y� 0/D �H

�
.�1/�

yZyP
�M yP
� ; yxyP

�
:

Notice that the construction of . yE 0�; y� 0/ only assumes that � has first-order poles at
finite distance and no singularity at infinity, but no assumption is made on the residues
of � in these singularities, nor about stability or the degree of E . However, the reason
why we introduced this construction is that under the assumptions of [10], the two
definitions of the Nahm transform agree:

Theorem 8.5 Assume .E�; �/ satisfies the conditions of Section 2: the residue of � is
semisimple at all points of P, with no multiple eigenvalues except possibly for 0, and
the additional properties (1)–(3) of Section 2 are fulfilled. Furthermore the Higgs field at
infinity has a second-order pole of the form .(5); (6); (7)/ with all f�1

1Cal
; : : : ; �1alC1

g

nonvanishing and distinct for a fixed 1 � l � yn and a compatible parabolic structure
with positive weights. Then the parabolic Higgs bundles . yE 0�; y� 0/ and . yE tr

� ;
y�/ are

isomorphic.

Definition 8.6 In what follows of this paper, this common object will be referred to
as . yE�; y�/.
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Proof It follows from the results discussed in Theorem 2.4 that on the open set yC n yP
the two Higgs bundles . yE 0; y� 0/ and . yE ; y�/ agree. Indeed, over yC n yP the two surfaces
P1� yP1 and yZyP are isomorphic, the same holds for the sheaves M 0 and �M yP and the
coordinates � and yxyP . Finally, the two factors of 1

2
in the definition of . yE ; y�/ (namely,

that of �� D � � �=2 and y� D �z.�/=2) cancel each other. Hence, we only need to
check that the extensions to the singularities agree as well.

Lemma 5.12 implies

.�T�/� ı .� yT�/�.N
int/DN 0.��1.1//

as sheaves, and because we have the equality yE�\†intD .� ı�T� ı� yT�/
�1.1/\†int

and .y� ı�T� ı� yT�/
�1.yP/D yE�[yEC , this implies

.�T�/� ı .� yT�/�AddyEC.N
int/DN 0.y��1.yP//:

Since the projections y� ı �T� ı � yT� and y� ı y� yTC ı �T� from Zint to yP1 are the
same, we have the isomorphism of sheaves

y��N
0.yP/D y�� �M yP;

because both are equal to the direct image of AddyECN int with respect to the same
projection. However, the direct image of the parabolic structure of N 0 is not the correct
one: indeed, on one hand the set of parabolic points of N 0 contains the points of
EC \†0 with trivial parabolic structure, so these will induce extra parabolic points
on yP1 with trivial structure; and on the other hand it does not contain the points
yEC\†0 � y��1yP so that the direct image with respect to y� of the parabolic structure
on N 0 does not really make sense. On the other hand, we modified the parabolic divisor
of N int so that these problems do not occur when we push it down. Hence, in order
to prove equality of the bundles yE tr and yE 0 it is sufficient to prove that ��N 0 D yE tr ;
whereas for their parabolic structure, we will work directly with �M yP.�y��1.yP//.

Now, since local sections of N 0 are sections of M 0 which vanish in the points
T � D .f�1g/\†0 and yT � D .yP � f1g/\†0 , this means precisely that if � is a
local coordinate of yP1 at �1 then the local sections near �1 of the direct image y��N 0

can be represented by a local section of the sheaf M 0 multiplied by bump functions
concentrated at the spectral points of � whose heights converge to 0 up to first order
as �! 0. On the other hand, the induced extension at infinity is defined precisely by
admitting a representation by bump functions of constant height as �! 0, and the local
sections of the transformed extension are obtained from those of the induced extension
upon multiplication of the latter with ��1D � (cf the discussion before (9)). It is proved
in [10, Proposition 4.24] that a D00

�
–harmonic 1–form 'D '1dzC'x1dz represents the
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element of M 0
�

which is the class of f'1.q.�//dzg modulo the image of � , where q.�/

runs over the finite set of spectral points of � . It follows that multiplying the harmonic
representatives by bump functions of height converging to 0 instead of constant height
amounts to taking sections of M 0 that vanish at �1. Therefore, locally near the dual
infinity the isomorphism of holomorphic bundles y��N 0 D yE tr holds. Similarly, near a
logarithmic singularity �l the change of trivializations to obtain yE tr from yE ind is to take
bump functions of height decaying as j� � �l j near the spectral points converging to
12 P1 . This amounts precisely to taking local sections of M 0 vanishing up to first
order on the divisor f1g� yP. Such local sections of M 0 are by definition the local
sections of N 0 , therefore the direct image of N 0 in the logarithmic singularities yP
of y� is also equal to yE tr ; this implies an isomorphism of the bundles and Higgs fields.

It remains to identify the parabolic structures of the direct image. First of all, the
set of parabolic points of yE tr

� in yP1 is yD D yP [ f�1g, and the same holds for yE 0�
because the deletion procedure removes extra parabolic points with trivial structure
from �M yP

� . Second, by [10, Section 4.6], near the punctures the local bases of the
transformed bundle defined by the representatives given in the previous paragraph are
adapted to the transformed harmonic metric. Hence, the direct images of the parabolic
filtrations of �M yP.�y��1.yP//� are the filtrations of yE tr

� . Furthermore, the same thing
holds for the weights as well. Indeed, the weights of �M yP.�y��1.yP//� in the points
of yE� \ y†yP above �l are equal to the parabolic weights ˛1

k
of the original bundle

on the �l –eigenspace of A at infinity. This follows because the weights of M P
� at

infinity are ˛1
k

, since near infinity the isomorphism of sheaves N P ŠM P holds, and
because our convention is to keep the same parabolic weights for sheaves isomorphic
near a parabolic divisor. The weights of �M yP.�y��1.yP//� in the points yTC are in
turn equal to 0 by the definition of adding a new divisor to the parabolic divisor of a
parabolic structure. On the other hand, by [10, Theorem 4.37] the nonzero weights
of yE tr

� in yP corresponding to the sections defined above are equal to ˛1
k

. This proves
equality of the parabolic structures of the two extensions in the logarithmic singularities.
Similarly, the weights of �M yP.�y��1.yP//� at �1 are the nonzero weights ˛j

k
of E� in

points of P: again, this follows from the fact that the weights of M P
� in the points of

��1.P/\†PnTC are ˛j

k
, combined with the local isomorphism of sheaves N PŠM P

away from the 0–section of � . By [10, Theorem 4.34] the corresponding weights
of yE tr

� in �1 are also equal to ˛j

k
; whence the theorem.

9 Examples

In this section, we illustrate by two examples how our approach allows us to increase
the degree of generality of the setup of the transform defined in [10].

Geometry & Topology, Volume 18 (2014)



Algebraic Nahm transform for parabolic Higgs bundles on P 1 2529

9.1 Nilpotent residues

In this first example we show that the transform can be defined for a Higgs field whose
polar parts are not necessarily semisimple. The conclusion is that a zero residue matrix
at infinity can induce two nilpotent residues of rank one in points of finite distance of
the transformed object; hence, there is no analog to nilpotent parts of the preservation
of the sum of the ranks of the semisimple parts of the residues by the transform. Parallel
to this, the multiplicity of the parabolic weights is also not preserved by the transform.
In concrete terms, this means that a parabolic weight ˛ of multiplicity 1 splits up to a
multiplicity 2 weight ˛=2; in particular, the total parabolic degree is preserved. Notice
finally that in this example we start out with a Higgs field with a rank-two singularity
at infinity, and we arrive at one with a logarithmic pole at infinity.

Let u0 and v0 be the standard coordinates on P1 in a neighborhood of 0 and 1
respectively, let P D f0g � P1 , let E be the rank-two trivial holomorphic bundle
OP1˚OP1 , and let � on the open affine v0D 1 containing 0 be given in matrix form

(28)

 
1

u0
1

�1 � 1
u0

!
;

or, in homogeneous coordinates,

(29)
�

v0 u0

�u0 �v0

�
:

The residue in 0 has two distinct eigenvalues ˙1; whereas the limit of the field at
infinity is �

0 1

�1 0

�
with eigenvalues ˙i . Furthermore, setting u0 D 1 in (29), an easy computation shows
that the eigenvalues �.v0/ of the matrix can be written

(30) �.v0/D˙i

q
1� v2

0
D˙i

�
1�

v2
0

2
CO.v4

0/

�
:

In particular, since the eigenvalues are distinct for v0 D 0, in a neighborhood of 1
there exists a trivialization of E in which the matrix of this endomorphism is diagonal.
This trivialization then clearly satisfies the properties required by (5)–(7) with first-order
term B1D 0, since the eigenvalues are functions of v2

0
. However, the assumption that

the eigenvalues of B1 are all nonvanishing and distinct obviously fails. Finally, let
˛0
C; ˛

0
� 2 Œ0; 1Œ be arbitrary weights at the singularity 0 corresponding to the 1– and
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.�1/–eigenspaces respectively, and let ˛1C ; ˛
1
� 2 Œ0; 1Œ be arbitrary weights at infinity

corresponding to the i – and .�i/–eigenspaces.

Consider the standard spectral surface Z1DPP1.OP1˚OP1.P//, and call the preferred
sections of OZ1.1/˝OP1.P/ and OZ1.1/ x1 and y1 respectively. The standard
spectral curve †1 in Z1 is defined by the polynomial

det.x1�y1�/:

Since the standard spectral curve does not intersect the 1–section, we may assume
y1 D 1. Then this polynomial becomes

x2
1 � v

2
0 Cu2

0:

The solution of this homogeneous equation is

(31) y1 D 1; x1 D s2
� t2; u0 D 2st; v0 D s2

C t2;

where Œs W t � stands for homogeneous coordinates on a smooth rational curve. In other
words, the mapping Œs W t � 7! u0; v0;x1;y1 defined by (31) is a closed embedding
whose image is the smooth spectral curve †1 . In particular, it has two branches over
Œu0 D 0 W v0 D 1�D 0 2C which do not intersect: one of them through s D 0; t D 1,
the other one through s D 1; t D 0. The first corresponds to x1 D �1, that is, the
eigenvalue �1 of the residue of � in 0, the second x1 D 1 to the eigenvalue 1.
Similarly, the two branches of †1 over 12 P1 pass through x1 D i and x1 D �i .
The pullback of E to †1 is the rank-two trivial holomorphic bundle O†1 ˚O†1 and
the map ‚ is then by definition

x1�y1� W O†1 ˚O†1 �!O†1.2/˚O†1.2/:

Using the above formulae, we obtain for this map the matrix form�
�2t2 �2st

2st 2s2

�
:

A cokernel map for this is left matrix multiplication

.s; t/W O†1.2/˚O†1.2/ �!O†1.3/I

in particular, the sheaf M P is O†1.3/. Now, since the residue of � in 0 has two
distinct nonzero eigenvalues f˙1g and the rank of E is equal to 2, the set tD0 is empty.
Therefore, the sheaf N P is the kernel of evaluation of O†1.3/ in the points of the
spectral curve †1 over the point at infinity ŒuD 0 W v D 1�. Because †1 is a double
cover of P1 and smooth over infinity, we deduce that N P DO†1.1/. Furthermore, it
has four parabolic points: the two points over 0 2C and the two points over 12 P1
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discussed above. The weights are as follows: the one in x1 D�1 over 0 2C is ˛0
� ;

the one in x1 D 1 over 0 2 C is ˛0
C ; the one in x1 D �i over 1 2 P1 is ˛1� ; the

one in x1 D i over 12 P1 is ˛1C .

Let us now consider the compactification †0 of the open spectral curve †[ in the
surface P1 � yP1 . We have seen that it is the proper transform of †1 with respect to
the elementary transformation linking Z1 to P1 � yP1 . Let x0;y0 be homogeneous
coordinates of yP1 : they can be thought of as sections of OyP1.1/ vanishing in 0 and �1
respectively. Since the elementary transformation in question blows up the point u0D0,
the relation between these coordinates and the sections of OZ1.1/ is

(32) x0 D x1; y0 D y1u0:

Therefore, the parametrization (31) transforms into

(33) y0 D 2st; x0 D s2
� t2; u0 D 2st; v0 D s2

C t2;

and the equation defining the curve becomes

(34) x2
0u2

0�y2
0v

2
0 Cy2

0u2
0:

This curve in P1 � yP1 is not smooth. Indeed, it is straightforward to check that it has
a node in the point .0; �1/ 2 P1 � yP1 . On the other hand, it has no other singularity,
because on the complement of the fiber of � over 0 it is isomorphic to †1 .

The first thing we need to identify in order to perform the elementary transformations
for the projection y� is the polar divisor yP� yP1 . Recall that it is given as the intersection
points of †1 with the 1–fiber of � . Plugging u0D 0; v0D 1 into the equation of †1

we get x2
1
D�1. We deduce yPDfŒi W 1�; Œ�i W 1�g; in other words, the points f˙ig of yC .

We now proceed in two steps: first, compute the coordinates of the surface yZi obtained
by performing an elementary transformation on the point Œi W 1�; then perform another
elementary transformation, this time on Œ�i W 1�, to obtain the surface yZ2 D yZf�i;ig .

The transformation in i is

u1 D u0.x0� iy0/D u0.s� i t/2; v1 D v0I

since these are projective variables, this is equivalent to

u1 D u0.s� i t/; v1 D
v0

s� i t
D sC i t:

The transformation in �i is

u2 D u1.x0C iy0/D u1.sC i t/2; v2 D v1;
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which is again equivalent to

(35) u2 D u1.sC i t/D u0.s� i t/.sC i t/D 2st.s2
C t2/; v2 D

v1

sC i t
D 1:

Meanwhile, since over the points ˙i 2 yC the spectral curve has only one branch
through 1 2 P1 , these modifications do not introduce new singularities. In other
words, the spectral curve is transformed by these modifications into a rational curve
y†2 D y†�i;i with one node, in the 0–section over the point �1.

Next, we need to compute the transformed bundle yE . First, because †1 does not pass
through the intersection of the 0–section and the 0–fiber of Z1 , the curve †�Z is
isomorphic to †1 , and † is disjoint from the proper transform EC of the blow-up
Z!Z1 . Furthermore, because the multiplicity of each intersection point of †1 and
the 1–fiber of Z1 is 1, the curve †int �Zint is also isomorphic to †1 , which is a
projective line. It follows that the proper transform of M 1 in Zint is O†int.3/, and the
intermediate spectral sheaf is by definition N int DDelEC.O†int.3//, which is O†int.3/

because EC is disjoint from †int . The curve y†2 intersects the 0–section of yZ2 over
each of the points ˙i with multiplicity 1. Hence, both components of the exceptional
divisor yEC of the blow-up of yZ2 in these points intersects the curve †int in one point.
Therefore, the sheaf AddyEC.N

int/ D .O†int.3//.yEC/ is isomorphic to O†int.5/. By
definition, yE.f�i; ig/ is the direct image of AddyEC.N

int/ with respect to the projection
of Zint to yP1 . By the computations above and because †int is a double cover of yP1 ,
this means that yE is the direct image of O†int.1/. We claim that

yE DOyP1 ˚OyP1 :

Indeed, since †int is a double cover of yP1 , clearly yE is of rank 2. Now O†int.1/

has exactly two independent global sections: s and t . They induce global sections
of yE . Conversely, any global section of yE induces a global section of O†int.1/, and
is therefore a linear combination of s and t . In different terms, s and t give a global
trivialization of yE on yP1 .

The last thing to compute is the transformed Higgs field y� . Here, the section yxyP is
called u2 , and y� is the direct image of multiplication by �u2 on Oy†�i;i .1/. Notice
that using (33) and (35) we obtain

u2 � s D 2st.s2
C t2/ � s D x0y0 � sCy2

0 � t;(36)

u2 � t D 2st.s2
C t2/ � t D y2

0 � s�x0y0 � t;(37)

therefore the matrix of y� in the above trivialization is

�

�
x0y0 y2

0

y2
0
�x0y0

�
:
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Here x0;y0 are standard projective coordinates for yP1 , vanishing at the points 0 and �1
respectively. The matrix form of this map on the affine yC with poles in the points f˙ig

can be obtained by setting y0 D 1, and dividing each entry by .x0� i/.x0C i/. The
result is

y� D�
1

x2
0
C 1

�
x0 1

1 �x0

�
:

This matrix clearly has poles in x0 D˙i , with residues

�

�
˙i 1

1 �i

�
;

both of which are nilpotent. Furthermore, the spectral curve is ramified over both of
these points, as it can be seen for example from the defining equation (34) of †0 upon
putting x0D 1, v0D 1, and using the observation that taking the proper transform with
respect to an elementary transformation does not change the property of the projection
to yP1 being ramified or not. Another way of seeing the same thing is as follows.
Express v0 in terms of x0 D � in (30) for example near the value x0 D i ; we get

(38) v2
0 D x0� i;

which is clearly an index–2 ramification for y� . It follows that over the logarithmic
poles ˙i of the transformed field, both branches of the spectral curve pass through the
1–section of y� .

We deduce that the parabolic filtration of yE in these points has to be trivial, hence with
only one weight in i (resp. �i ). Moreover, the norm squared with respect to h of the
cokernel vector is equivalent to jv0j

2˛1
C , which is equal to jx0� i j˛

1
C because of (38);

therefore, this unique parabolic weight in the point i (resp. �i ) is ˛1C =2 (resp. ˛1� =2).
On the other hand, near �1 the matrix for y� looks up to higher-order terms like

�

0@ 1
x0

1

x2
0

1

x2
0

�
1

x0

1A I
this converges to 0 as x0 goes to infinity, and the first-order term in its Taylor series is�

�1 0

0 1

�
;

with eigenvalues f˙1g. The parabolic weight of the ˙1–eigenspace is ˛0
˙

.

9.2 Higher order pole

Although so far we assumed that the Higgs field has at most logarithmic singularities in
the singular points at finite distance, it is relatively clear that iterating the construction
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several times according to the order of the poles, one can get a transform for Higgs
bundles with higher-order poles; the transformed Higgs field will then have a ramifica-
tion at infinity. Here we describe the archetype of this phenomenon: the original Higgs
bundle has a maximal ramification at infinity, and the transformed field has a pole in
the origin whose order equals the index of this ramification.

Let r � 2 and take E to be the rank-r trivial holomorphic bundle O˚r
P1 , with PD f0g

the only regular parabolic point. Define the Higgs field as the map

� W O˚r
P1 �!OP1.1/˚r

defined in some global trivialization f�1; : : : ; �r g by the matrix

(39)

0BBBBB@
0 u0 0 � � � 0

0 0 u0 � � � 0
:::

:::
: : :

: : :
:::

0 0 � � � 0 u0

v0 0 � � � 0 0

1CCCCCA ;
where u0; v0 are the global sections of OP1.1/ vanishing in 0 and1 respectively. Here
and in the rest of this section we identify OP1.P/ with OP1.1/, and correspondingly
replace P by 1 in all upper and lower indices.

We immediately see that at infinity the matrix (39) has only 0 eigenvalues, so we
deduce that the singular set of the transform will be yPD f0g. Furthermore, in a local
affine coordinate v centered at infinity, the matrix becomes0BBBBB@

0 1 0 � � � 0

0 0 1 � � � 0
:::
:::
: : :

: : :
:::

0 0 � � � 0 1

v 0 � � � 0 0

1CCCCCA :
It is clear that there exists no nontrivial subspace invariant by both the constant and the
first-order term of this matrix. Since the parabolic filtration has to be preserved by the
polar part of the field, this then implies that the only possible filtration in this point is
the trivial filtration

E j1 D F0E j1 � F1E j1 D f0g:

Let us call the corresponding weight ˛1 . By the general hypotheses made on the
weights, ˛1 is in �0; 1Œ. For the sake of simplicity, let us also suppose that ˛1 < 1=r .

On the other hand, the residue of the Higgs field (39) in the only regular singular point
0 2C is of rank 1, so the transformed bundle will be of rank 1. Moreover, since this
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residue has only 0 eigenvalues, the standard spectral curve passes through the 0–section
over the polar point 0 with maximal multiplicity r . The Admissibility condition 1 then
forces the parabolic structure in this polar point to be trivial, ie the filtration is trivial
and the only weight is 0.

The spectral surface is Z1 D PP1.OP1 ˚OP1.1//, and

‚1 D x1�y1� D

0BBBBB@
x1 �y1u0 0 � � � 0

0 x1 �y1u0 � � � 0
:::

:::
: : :

: : :
:::

0 0 � � � x1 �y1u0

�y1v0 0 � � � 0 x1

1CCCCCA
implies that the spectral curve is

†1
D .det.‚1//D .x

r
1 � .�y1/

r ur�1
0 v0/:

This curve is singular in the point x1D0;u0D0 if r >2. Therefore, instead of working
on this surface, we choose first to perform an elementary transformation of the point 0

and reduce our problem to the case of a smooth curve in P1 � yP1 . The elementary
transformation to apply is given by the coordinate changes x0u0 D x1;y0 D y1 , and
now we consider Q�1� as a map E!F.1/DO

L
.r�1/

P1 ˚OP1.1/. In concrete terms,
denoting by � external tensor product of sheaves on a product space, the map Q in
the Diagram (23) has the form diag.u0; : : : ;u0; 1/ in the same basis as above, and this
means that

‚0 DQ�1.x0u0�y0�/W O
L

r

P1 �!
�
O
L
.r�1/

P1 ˚OP1.1/
�
�OyP1.1/

is given by 0BBBBB@
x0 �y0 0 � � � 0

0 x0 �y0 � � � 0
:::

:::
: : :

: : :
:::

0 0 � � � x0 �y0

�y0v0 0 � � � 0 x0u0

1CCCCCA :
Therefore, the spectral curve †0 is defined by the equation

xr
0u0� .�y0/

rv0 D 0;

and this is clearly a nonsingular rational curve smoothly parametrized by .x0;y0/:
namely, one has u0 D .�y0/

r ; v0 D xr
0

. As an effect of passing to the product surface
we therefore desingularize the curve, and applying the map Q�1 we get rid of the extra
fiber of multiplicity .r � 1/ over 0 of the total transform of the curve. Over the origin
in P1 one has u0 D 0; v0 D 1, so necessarily y0 D 0, which means that the only point
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of the spectral curve over the origin is the point .0; �1/ 2 P1 � yP1 . Moreover, putting
x0 D 1 the equation for the curve near this point becomes

u0 D .�1/r yr
0 ;

which means that the projection to P1 has a ramification of index r in this point.
Similarly, the curve passes through .1; 0/ and projection to P1 has a ramification of
index r over infinity. In particular, it intersects the 0– and 1–fibers of � in these
points with multiplicity r . A simple computation shows that the map

AW
�
O˚.r�1/

P1 ˚OP1.1/
�
�OyP1.1/ �!OP1.1/�OyP1.r/;

AD
�
y0xr�2

0 v0;y
2
0xr�3

0 v0; : : : ;y
r�1
0 v0;x

r�1
0

�
;

is a cokernel for ‚0 . In particular, the cokernel sheaf M 0 of ‚0 is the restriction of
OP1.1/�OyP1.r/ to †0 , which is equal to O†0.2r/ because †0 is an r -to-1 cover
of P1 and a 1-to-1 cover of yP1 . By definition, the sheaf N 0 is the kernel of evaluation
of M 0 in the intersection points .1; 0/2P1�yP1 and .0; �1/2P1�yP1 of the spectral
curve with the 1–fiber of � and the 0–fiber in the 1–section. We have seen above
that these intersections are of multiplicity r . It follows that N 0 DM 0.�2r/DO†0 .
Since y� W †0! yP1 is an isomorphism, we deduce that yE DOyP1 .

Let us now identify the transformed Higgs field y� ; for this purpose, we need to perform
additional elementary transformations on P1 � yP1 , but this time with respect to the
projection y� . Namely, since the spectral curve †0 intersects the 1–section of y� in
its 0–fiber, we need to introduce u1 D u0x0; v1 D v0 . The equation of the proper
transformed curve y†1 is then given by xr�1

0
u1� .�y0/

rv1 D 0. However, this still
intersects the 1–section of y� , so we need to do another elementary transformation
u2 D u1x0; v2 D v1 , and continue this procedure until the proper transformed curve
no longer intersects the 1–section, that is, ur D u0xr

0
; vr D v0 . The equation of

the proper transformed curve y†r is now ur � .�y0/
rvr D 0. Since this curve does

not intersect the 1–section of y� , we may set vr D 1. Then the curve is given by
ur D .�y0/

r . Now, one has by definition y� D y��.�ur � /, hence we see that the
transformed Higgs field has the form

�.�y0/
r
W OyP1 �!OyP1.r/;

where OyP1.r/ stands for OyP1.rf0g/. This map therefore has an order r pole at 0

(on the affine yC it can be written as ˙1=xr
0

), and on the other hand it clearly has an
order r zero at infinity. Since the fibers are of dimension one, the parabolic filtrations
are trivial in both of these points. Similar arguments as in Section 9.1 show that the
corresponding parabolic weights in 0 and �1 are r˛1 and 0 respectively.
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10 Quasi-involutibility

As the second author has proved in [10, Chapter 5], one of the features of the Nahm
transform is its involutibility up to a sign. The proof there is done in the framework of
integrable connections, and relies on the analysis of a spectral sequence. Our aim in
this section is to give a new, more geometric proof of the same result in terms of the
techniques developed in this paper (Theorem 10.2).

Define the K –linear map
�1W P1

�! P1

to be the extension to P1 of the (K –linear) involution taking an element of K to its
additive inverse. It has two fixed points: 0 and 1. We will denote by .�1/rel the
relative version of this map on any P1 –fibration over a curve. It then induces a map
on any blow-up of points in the 0–section or the 1–section, that we will still denote
with the same symbol.

Remark 10.1 In what follows, it will be important to distinguish the divisors .�1/�P
and �P: the first is the set of points �p where p 2 P, whereas the second is the inverse
of the divisor P in the divisor group.

Recall that given a parabolic Higgs bundle .E ; �/ on P1 with singularities on D[f1g

we have constructed in Section 8 its Nahm transformed Higgs bundle . yE ; y�/: it is
a parabolic Higgs bundle on yP1 , the “dual” projective line, with singularities on
yD D yP[ f�1g. Here yP is the set of eigenvalues of the leading term of � at 1. We
have also computed the eigenvalues of y� at �1, and we realized that they agree with
the image �1.P/ of P under the involution. The bidual yyP1 of P1 identifies naturally
with P1 itself, hence applying the Nahm transform to . yE ; y�/, we obtain a parabolic
Higgs bundle .yyE; yy�/ on P1 with singularities on the set �1.P/[f1g. The main result
of this section can now be formulated.

Theorem 10.2 If .E ; �/ satisfies Admissibility condition 1, then there is a natural
isomorphism of parabolic Higgs bundles between .yyE; yy�/ and .�1/�.E ;��/.

Remark 10.3 There is a sign change of � between this and the corresponding formula
in [10]. This is because there we considered the Higgs field as a 1–form valued
endomorphism, and d.�z/D�dz .

Proof Starting with the parabolic Higgs bundle . yE ; y�/ on yP1 , we wish to construct
its transform. The first object we need to understand is the standard spectral triple
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.W yP; „yP;QyP/ of . yE ; y�/. Remember that in Section 8 we constructed the spectral triple

. yZyP; y†yP; �M yP
� / out of .E ; �/. First, because of the definition W yPDP .OyP1˚OyP1.yP//,

we see immediately that W yP is naturally isomorphic to the surface yZyP . Since yE is the
direct image under y� W yZyP! yP1 of �M yP.�yP/ and y� is that of multiplication by �yxyP ,
it follows also that „yP D .�1/rel y†

yP . Finally, by the results of Beauville, Narasimhan
and Ramanan [1, Proposition 3.6 and Remark 3.7], we obtain QyP D .�1/�rel

�M yP.yP/ as
a sheaf. We know furthermore that the parabolic structure of yE induces a parabolic
structure on QyP . On the other hand, because �M yP has a parabolic structure, the above
isomorphism makes QyP into a parabolic sheaf as well. These two parabolic structures
on QyP agree: indeed, the parabolic structure of yE is the direct image of the one of �M yP ,
so the filtration comes from the restriction of �M yP to some branches of the spectral
curve over the parabolic points of yE , hence the two filtrations of QyP are the same; a
similar argument works for the weights.

The next ingredient in the construction is the analog of diagram (27). The surface Z

was obtained from ZP by blowing up the points tC of the 0–section mapping to P
under � . Therefore, its analog W for W yP is the blow-up in the points TC of the
0–section of y� over yP: clearly, this is the surface yZ . Now, Zint was obtained from ZP

by blowing up the points yT � in the intersection of the 1–fiber of � and the spectral
curve. Because of „yP D .�1/rel y†

yP , the intersection points of the 1–fiber of y� and
the spectral curve „yP are the points .�1/�T � of yZ . It follows that .�1/ induces a
natural isomorphism between the absolute surface W int of . yE ; y�/ and Zint ; hence, we
will simply write W int D .�1/�relZ

int . Notice that this surface has a projection to both
projective lines P1 and yP1 (although these projections are only rational, and not every
fiber is a single line), and the map .�1/rel above is induced by inversion on the fibers
when it is considered as a fibration over yP1 . However, it is possible to interpret the
same map as induced by inversion of the basis of the other fibration; we will simply
write .�1/ for this map in the sequel, for any fibration over P1 . Therefore, W int can
equally be written as .�1/�Zint . We now come to an analog of yZ : this surface was
the blow-down in Zint of the proper transforms E� of the fibers of � over the points P.
Applying this to W int we obtain the result �W D .�1/�Z . Finally, arguments similar to
the above yield that the analog of yZyP for . yE ; y�/ is �W PD .�1/�ZP , that is, the surface
P .OP1 ˚OP1..�1/�P//. We deduce that diagram (27) corresponding to . yE ; y�/ is

(40)

.�1/�Zint
.�1/��T�

xx

.�1/�� yT�

((
yZ

y� yTC

{{

y� yT�

&&

.�1/�Z
.�1/��T�

vv

.�1/��
TC

((
yZyP P1 � yP1 .�1/�ZP
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The surface in the lower-left corner is the standard spectral surface of . yE ; y�/, it has a
projection to yP1 , and the transformed bundle is obtained by taking the proper transform
of QyP in .�1/�Zint with respect to y� yTC ı .�1/��T� , deleting the exceptional divisor
of y� yTC from the parabolic divisor, adding the exceptional divisor of .�1/��TC to the
parabolic divisor, pushing down the result to .�1/�ZP , then pushing down the result
to P1 by the projection map � of .�1/�ZP , and finally tensoring by .�1/�P.

We have seen that the sheaf QyP is isomorphic to .�1/�rel
�M yP.yP/. It follows from the

property .y� yTC ı�T�/
�
ı .y� yTC ı�T�/� D Id for pure sheaves of dimension 1 on a

smooth surface (see Lemma 5.12) that

.y� yTC ı�T�/
�Q
yP
D .�1/�AddyECN int:

To obtain the absolute spectral sheaf of . yE ; y�/ we need to delete from the parabolic
divisor of .�1/�AddyECN int the exceptional divisor yEC of the blow-up map y� yTC . We
deduce from Proposition 6.2 that the absolute spectral sheaf of . yE ; y�/ is .�1/�N int

on .�1/�Zint . The next step in the construction is to add the exceptional divisor
.�1/�EC of .�1/��TC to the parabolic divisor of .�1/�N int . By Proposition 8.1,
Admissibility condition 1 for .E ; �/ implies Admissibility condition 2 for N int and EC .
Again by Proposition 6.2, addition and deletion of a divisor are inverses to each other
under Admissibility condition 2. We obtain that

Add.�1/�EC.�1/�N int
D .�1/�.AddECN int/D .�1/�.y� yTC ı�T�/

�M P :

We then consider the direct image of this parabolic sheaf with respect to the blow-up map
.�1/�.y� yTC ı�T�/: by Lemma 5.12, the direct image is .�1/�M P . The push-down of
this to P1 by the projection .�1/�� of .�1/�ZP is .�1/�.E.P//D..�1/�E/..�1/�P/;
see Lemma 3.18. The final step is to tensor this sheaf by the inverse (in the divisor
group) of the effective divisor corresponding to the parabolic set. Here this effective
divisor is .�1/�P. Therefore tensoring ..�1/�E/..�1/�P/ by its inverse, we get
precisely .�1/�E . This proves equality of the bundles yyE and .�1/�E . Clearly, the
modifications of the sheaves involved so far transform the parabolic structure of �M yP

into the parabolic structure of .�1/�M P induced via pullback by .�1/ of the original
structure of M P . Since the direct image by � of the parabolic structure of M P.�P/ is
the parabolic structure of E , we also see that the direct image by � of the parabolic
structure of .�1/�.M P.�P// is the parabolic structure of .�1/�E induced by pullback
under .�1/ from the parabolic structure of E . Finally, the canonical section yyx.�1/�P
of .�1/�ZP is .�1/�xP , where xP is the canonical section of ZP . By definition, the
double transformed Higgs field yy� is the direct image with respect to � of multiplication
by �yyx.�1/�P . On the other hand, the Higgs field � is equal to the direct image of
multiplication by xP . It follows that �yy� D .�1/�� .
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11 The map on moduli spaces

In this section, we show that the Nahm transform is a Kähler isometry between Dolbeault
moduli spaces (Theorem 11.4).

As shown by Biquard and Boalch in [2, Theorem 0.2], the moduli space of stable
Higgs bundles of parabolic degree 0 with fixed simultaneously diagonalizable polar
parts of arbitrary order and fixed parabolic structures is a hyper-Kähler manifold. The
two anticommuting complex structures J and I are by definition given by the local
holomorphic variations of Higgs bundles (inducing the Dolbeault complex structure)
and integrable connections (inducing the de Rham complex structure) respectively,
and the Kähler metric on the moduli space is defined as the L2 –inner product of the
harmonic representatives of tangent vectors with respect to the harmonic metric on the
endomorphism-bundle and the usual Euclidean metric on the base C . Let now M stand
for the moduli space of Higgs bundles on P1 with logarithmic singularities in the points
of D with fixed equivalence class of polar parts (3)–(4) and fixed parabolic filtration (1)
and with weights ˛j

k
, and with an irregular singularity of rank one at infinity with fixed

equivalence class of polar parts (5)–(7) and fixed parabolic structure with weights ˛1
k

,
up to complex gauge transformations preserving the parabolic structures.

Lemma 11.1 The complex dimension of the Zariski tangent space of M in any
point is

2ryr C 2� r �yr �

nX
jD1

rk.res.�;pj //
2
�

ynX
lD1

rk.res.y�; �l//
2;

where the last two sums are taken for all logarithmic singularities of � and y� respec-
tively.

Remark 11.2 This formula is in fact invariant under exchanging r with yr and �
with y� , as it should be because of invertibility of the transform.

Proof The computation is done by Boden and Yokogawa in [3] for the case of parabolic
Higgs bundles of rank r with only logarithmic singularities on a curve of arbitrary
genus g . Notice that the authors there fix the residues of the Higgs field to be block
nilpotent, but in fact the same proof works for any other fixed block-diagonal parts as
well. The result obtained there is

(41) 2.g� 1/r2
C 2C

nX
jD1

2fpj ;
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where 2fpj is the dimension of the adjoint orbit of res.�;pj / in g D gl.r;K / (see
also the count of the dimension of the moduli space of parabolic vector bundles in [8]).
We can understand this as coming from excision: the term 2.g�1/r2C2 is the degree
of �1˝End.E/ plus the constant 2 coming from global endomorphisms of E , and in
the last sum we add up terms arising in a neighborhood of each of the singular points.
Explicitly, because we only consider deformations of the Higgs field whose residues
in any singular point can be taken into the initial residue by a holomorphic change of
basis, the residue of an infinitesimal deformation corresponding to a one-parameter
family of such deformations has to be in the adjoint orbit of the residue of � in g;
the dimension of such choices for the residue in pj is by definition 2fpj . In the case
where irregular singularities occur, by the same excision argument we need to define
the quantity 2fp in the last sum of (41) as the dimension of the adjoint orbit of the
polar part of the Higgs field in g˝K K Œ"�=."npC1/, where np is the Poincaré rank of
the singularity in p . Indeed, the local contribution to the dimension formula comes
from two distinct sources: first, the change in the parabolic structure of the underlying
bundle; second, the modification of the Higgs field. The first amounts to a parameter in
the flag manifold associated to the parabolic subgroup of the filtration of Ep . Once the
parabolic structure is fixed, the highest-order term of the change in the Higgs field is
further restricted to lie in the parabolic subalgebra. Clearly, the sum of the dimensions
of these two contributions is equal to the dimension of the orbit of the polar part of the
Higgs field.

In our case, the only irregular singularity is infinity, of Poincaré rank 1; let us compute
the dimension of its orbit in g˝K K Œ"�=."2/. For the sake of simplicity, we only do
this in the special case yn D 2; the generalization to higher yn is immediate. So we
suppose that at infinity the Higgs field can be written in the block form

(42) 1

2

�
„1 0

0 „2

�
C "

�
ƒ1 0

0 ƒ2

�
;

where „1 D �1 Ida for some 1 � a < r , „2 D �2 Idr�a , ƒ1 D diag.�1
1
; : : : ; �1a /,

and ƒ2 D diag.�1
1Ca

; : : : ; �1r / (see (6)–(7)). We also assume �1 ¤ �2 , and that
all the �1

1
; : : : ; �1a are nonzero and pairwise distinct, and the same condition for

�1
1Ca

; : : : ; �1r . Then the stabilizer of the adjoint action is by definition the block
matrices

(43)
�

A B

C D

�
C "

�
˛ ˇ


 ı

�
;

which commute with (42) modulo "2 . It is straightforward to check that this holds
if and only if B D 0, C D 0, ˇ D 0, 
 D 0 and A and D are diagonal; under these
assumptions, ˛ and ı can be arbitrary. Therefore, the dimension of the stabilizer of
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the polar form (42) is aC .r � a/C a2C .r � a/2 , and so the dimension of its orbit is
2r2 � r � a2 � .r � a/2 . For general yn, the same argument gives for this dimension
2r2� r �

Pyn
lD1.al �al�1/

2 . Now, since the transformed Higgs field y� has residue of
rank .al � al�1/ in �l , we can rewrite this as

2r2
� r �

ynX
lD1

rk.res.y�; �l//
2:

Similarly, it is easy to check that under the assumptions made in (4), for all logarithmic
singularity pj the formula

2fpj D r2
� r2

j � .r � rj /

D r2
� .r � rk.res.�;pj ///

2
� rk.res.�;pj //

D 2r � rk.res.�;pj //� rk.res.�;pj //
2
� rk.res.�;pj //

D .2r � 1/ rk.res.�;pj //� rk.res.�;pj //
2

holds, where r � rj is the rank of res.�;pj /. Plugging these into (41) and using (8)
one obtains the dimension of the Zariski tangent as claimed.

Similarly to M, let us denote by �M the moduli space of stable Higgs bundles of
parabolic degree 0 on yP1 with logarithmic singularities in the points of yD with fixed
equivalence class of polar parts and parabolic structures induced by the transform from
the corresponding structures of .E ; �/ at infinity, and with an irregular singularity of
rank one with fixed equivalence class of polar parts and fixed parabolic structure induced
by the transform from the corresponding structures of .E ; �/ in the points of D — as
explained in Section 2 — again up to complex gauge transformations preserving the
parabolic structures.

Lemma 11.3 Let .E�; �/ be a Higgs bundle on P1 which satisfies Admissibility con-
dition 1. Then the parabolic degrees of E� and of its Nahm transform yE� are the same.
Furthermore, if .E�; �/ is stable of degree 0, then the same is true for . yE�; y�/.

Proof The claim on parabolic degrees follows from Grothendieck–Riemann–Roch, as
explained in [10, Section 4.7]. It is also possible to deduce it using the fact that under
Admissibility condition 1 all operations involved in passing from M P

� to �M yP
� preserve

the parabolic Euler characteristic. Indeed, by the parabolic Riemann–Roch theorem
(Proposition 3.14) applied to the curve P1 , one has par-�.E�.PC1//Dpar-deg.E�/Cr ,
or equivalently, par-�.E�.P //D par-deg.E�/. Of course, a similar relation holds for
yE� as well. Finally, we obtain the result using the fact that par-�.E�.P//D par-�.M P

� /

because ��M P
� D E.P/� , and the analogous statement for yE� .

Geometry & Topology, Volume 18 (2014)



Algebraic Nahm transform for parabolic Higgs bundles on P 1 2543

Suppose now .E 0�; � 0/ is a parabolic Higgs subbundle of .E�; �/. By Remark 3.10,
we may suppose that the parabolic structure of E 0� is the structure induced by E� . By
Lemma 6.3, the standard spectral sheaf .M 0/P of E 0� and the divisor EC also satisfy
Admissibility condition 2, because .M 0/P� is a parabolic subsheaf of M P

� with the
induced parabolic structure. By Lemma 5.14, the proper transform preserves injective
maps of sheaves. The same thing holds clearly for the direct image by a blow-up map
because it is the inverse of the proper transform, and for addition and deletion, since
on the level of sheaves the latter are simply tensoring operations. We conclude that
. �M 0/yP� is a parabolic subsheaf of �M yP

� , hence . yE 0�; y� 0/ is a parabolic Higgs subbundle
of . yE�; y�/. On the other hand, by the first part of the lemma, the parabolic degree of yE 0�
is equal to that of E 0� . In particular, the parabolic degree of yE 0� is positive if and only
if the parabolic degree of yE� is positive. In different terms, if par-deg.E�/D 0, then
.E 0�; � 0/ is destabilizing for .E�; �/ if and only if . yE 0�; y� 0/ is destabilizing for . yE�; y�/.
This proves preservation of stability.

The lemma allows us to introduce the map

(44) N WM �! �M
defined by mapping the gauge equivalence class of the Higgs bundle .E ; �/ to the gauge
equivalence class of the Higgs bundle . yE ; y�/; by an easy adaptation of [6, Lemma 1] to
the parabolic case over a curve, this map is well defined. It is a bijective map between
hyper-Kähler manifolds. We have the following result.

Theorem 11.4 The map N is an algebraic Kähler isometry for the Dolbeault complex
structures.

Proof By Theorem 10.2, the map N is invertible. For the fact that N preserves the
L2 –metric, we refer to Braam and van Baal [4]: the computations there carry through
to this case, because they only make use of the invertibility of the transform and general
algebraic properties of Green’s operator that are satisfied in this case as well.

Therefore, all that remains is to check that it preserves the complex structure J , and is
moreover algebraic. By [10, Proposition 4.15 and Equation (4.14)], the restriction of
the holomorphic bundle yE to the affine yC is the first hypercohomology

H 1
�
E
��
�! F.P/

�
;

together with the holomorphic structure induced by the trivial holomorphic structure
of F.P/ relative to yP1 . (Notice that the sheaf we denoted by F in [10] is called F.P/
in the present paper.) Furthermore, by the extension [10, Equation (4.35)] of this
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holomorphic bundle to infinity, we have the isomorphism of holomorphic bundles
over yP1 ,

(45) yE ind
DH 1

�
E

y0��x0
�����! F.P/˝OyP1.1/

�
;

where the right-hand side is endowed with the holomorphic structure induced from
the holomorphic structure of the sheaf F.P/˝OyP1.1/ relative to yP1 . Let T be an
open set in an affine complex line, and .E.t/; �.t// with t 2 T be a local 1–parameter
algebraic family of Higgs bundles with fixed singularity data. The transform maps
each Higgs bundle in this family to a Higgs bundle . yE.t/; y�.t//; we need to show
that this is an algebraic family of Higgs bundles on yP1 over T . Because of (45),
the induced extensions of yE vary algebraically over T : indeed, the sheaves E.t/
and F.t/ depend algebraically on t , as well as the map y0�.t/� x0 , and the first
hypercohomology spaces of an algebraic family of sheaf complexes such that all the
other hypercohomologies vanish, form again an algebraic family. In order to obtain the
transformed extensions from the induced ones we need to modify the local holomorphic
sections with nonzero weights. In terms of the spectral sheaf, this amounts to a Hecke-
modification at the intersection points of the spectral curve with the fibers of y� over the
set yP. Now, since �.t/ varies algebraically with t , it follows that so does the standard
spectral curve †P.t/ and standard spectral sheaf M P.t/ corresponding to .E.t/; �.t//.
The same then holds for the intermediate spectral data as well as for the spectral data
.y†yP.t/; �M yP.t// because they arise from the standard data by proper transform along
divisors which do not depend on t . Since the spectral curve changes algebraically and
the fibers are fixed, the intersection scheme of the spectral curve with the fibers of y�
also varies algebraically. Because the transformed extension of yE.t/ is the result of a
Hecke modification at this scheme, it follows that the bundles yE.t/ depend algebraically
on t as well.

On the other hand, by Theorem 8.5 the map y�.t/ is the direct image by y�.t/ of multi-
plication by �yxyP ; here y�.t/ is the projection map from y†yP.t/ to yP1 . Clearly, since
y†yP.t/ depends algebraically on t , so does y�.t/. Therefore, since y�.t/ is the direct
image of multiplication by a coordinate that does not depend on t , with respect to a
projection depending algebraically on t , the resulting map depends also algebraically
on t . This proves that N preserves the complex structure J , and is an algebraic
map.

Remark 11.5 Actually, it is also true that the Nahm transform preserves the complex
structure I . Indeed, in the proof of Theorem 11.4 we only made use of an algebraic
interpretation of the Nahm transform for the Dolbeault complex structure established
in earlier sections of this paper. Therefore, once we have an algebraic interpretation of
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the Nahm transform for the de Rham complex structure, the analogous statement for I

can be treated along the same lines as J . Such an interpretation is provided in [11] by
the second author, as the Laplace transform of D–modules.
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