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Complex twist flows on surface group representations and
the local shape of the deformation space of hyperbolic

cone–3–manifolds

GRÉGOIRE MONTCOUQUIOL

HARTMUT WEISS

In the former articles [17; 31], it was independently proven by the authors that
the space of hyperbolic cone–3–manifolds with cone angles less than 2� and fixed
singular locus is locally parametrized by the cone angles. In this sequel, we investigate
the local shape of the deformation space when the singular locus is no longer fixed,
ie when the singular vertices can be split. We show that the different possible splittings
correspond to specific pair-of-pants decompositions of the smooth parts of the links of
the singular vertices, and that under suitable assumptions the corresponding subspace
of deformations is parametrized by the cone angles of the original edges and the
lengths of the new ones.

57M50, 58D27; 53C35

1 Introduction

It is well-known, by the fundamental works of Mostow and Weil [18; 28], that closed hy-
perbolic 3–manifolds are rigid; the noncompact, complete case is also well understood.
However for incomplete hyperbolic metrics, the situation is more complicated, and in
this setting, it is natural to look at the metric completion of the manifold. For simplicity,
we will consider the case of a hyperbolic metric g on a 3–manifold M which is the
interior of a compact manifold with boundary SM . Then there are, broadly speaking,
two distinct types of situations depending on whether or not g extends to a metric on the
boundary. In the latter, the metric degenerates on @ SM : this can happen in any number
of ways, but cone-manifolds provide arguably the simplest and most interesting class
of examples. In this setting, the boundary @ SM collapses to a (possibly disconnected)
geodesic graph, called the singular locus †, along which the metric exhibits a simple,
“cone-like” singularity. The completion of M is then a length space X , without
boundary, such that X n† D .M;g/; for more details and precise definitions, see
Boileau, Leeb and Porti [2], Cooper, Hodgson and Kerckhoff [3], Mazzeo and the first
author [15] and Thurston [25]. Cone-manifolds are particularly interesting to study,
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370 Grégoire Montcouquiol and Hartmut Weiß

since they arise naturally in many different contexts: they first appeared as deformations
of complete, cusped hyperbolic 3–manifolds (see Thurston [23]); they are the natural
models for orbifolds, and the theory of their deformations plays a prominent role in
the proof of the orbifold version of the geometrization theorem [2; 3]; as doubles
of polyhedra, they form a natural framework for the resolution of Stoker’s problem
(see [15] and Stoker [22]); finally, let us mention their use as models for space-times
with massive point-like particles (see Krasnov and Schlenker [12]).

Throughout this article, X will denote a closed, orientable hyperbolic cone–3–manifold,
and † its singular locus. The homeomorphism type of the pair .X; †/ is called
the topological type of the cone-manifold. The smooth or regular part of X is the
(incomplete) hyperbolic manifold M D X n †. To each edge ei of the singular
locus, one can assign a quantity called its cone angle: it is defined as the positive real
number ˛i such that in cylindrical coordinates the metric near any point of the interior
of ei is expressed as

g D dr2
C sinh2.r/ d�2

C cosh2.r/ dz2; r 2 .0; �/; � 2R=˛iZ; z 2 .��; �/:

If all cone angles are less than 2� , then X is a metric space with curvature bounded
below by �1 in the triangle comparison sense. Furthermore, if all cone angles are
less than or equal to � , then the vertices of † are at most trivalent, which simplifies
significantly the deformation theory. In general, the valence of the singular vertices
can be arbitrarily high.

We are interested in the space of hyperbolic cone-manifold structures in the case where
the cone angles are less than 2� , ie contained in the interval .0; 2�/. More precisely,
let C�1.X; †/ denote the space of hyperbolic cone-manifold structures on X of fixed
topological type .X; †/; it is topologized as a subspace of the deformation space
Def.M / of incomplete hyperbolic structures on M . Let N be the number of edges
in †. In their seminal article [10], C D Hodgson and S P Kerckhoff showed that if the
singular locus is a link, ie it does not contain vertices, then the map

˛ D .˛1; : : : ; ˛N /W C�1.X; †/! .0; 2�/N

sending a hyperbolic cone-manifold structure to the vector of its cone angles is a
local homeomorphism at the given structure. Hodgson and Kerckhoff proved more
generally that Def.M / is locally a smooth manifold at the given structure and that
dimR Def.M / D 2N ; cone-manifold structures are then identified to lie on a half-
dimensional submanifold. In [29], the second author showed that the same is true when
vertices are allowed, if the cone angles are less than or equal to � . The general case
has been open until recently, when the following has been proven independently by the
authors in [17; 31].
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Theorem 1.1 Let X be a hyperbolic cone–3–manifold with cone angles less than 2� .
Then the map

˛ D .˛1; : : : ; ˛N /W C�1.X; †/! .0; 2�/N

is a local homeomorphism at the given structure.

A similar result applies in the spherical and the Euclidean cases, at least when the cone
angles are less than or equal to � , cf Porti and the second author [20; 29]. However,
if the cone angle bound is 2� , then there exist counterexamples in the spherical case
(see [19] and Schlenker [21]), whereas a weaker infinitesimal rigidity result still holds
in the Euclidean case [15].

The techniques used to show Theorem 1.1 in [17] and [31] are somewhat different: in the
former, the starting point is an infinitesimal rigidity theorem for Einstein deformations
obtained by the first author in a joint work with R Mazzeo, cf [15], while the latter
proceeds along the lines of [10; 29]. There the main technical ingredient is a vanishing
theorem for L2 –cohomology with values in a certain flat bundle; see Section 2.3. Com-
mon to both approaches is the use of the variety of representations �W �1M ! SL2.C/
to pass from an infinitesimal rigidity statement to a local deformation theorem. Indeed,
we recall that the map that sends a hyperbolic structure to its holonomy representation
holW �1M ! SL2.C/ induces a local homeomorphism

(1) Œhol�W Def.M /!X.�1M;SL2.C//;

where the right-hand side is the space of representations �W �1M!SL2.C/ considered
up to conjugation by elements in SL2.C/; see for instance Goldman [6].

In the above-mentioned works it has become apparent that the dimension of Def.M /

is much larger once vertices of higher valence are present. More precisely one has
dimR Def.M /D 2N C

Pk
jD1 2.mj � 3/, where k is the number of singular vertices

and mj the valence of the vertex vj 2 †. This corresponds to the fact that the
spherical cone-surface structure on the link of such a vertex becomes more flexible.
More precisely, as a consequence of Luo and Tian [13], Troyanov [27] and Mazzeo
and the second author [16], one has that for m � 3 the space of spherical cone-
manifold structures on .S2; fp1; : : : ;pmg/ is locally parametrized by T0;m� .0; 2�/

m ,
where T0;m is the Teichmüller space of the m–times punctured sphere. Note that the
dimension of T0;m is precisely 2.m� 3/.

The aim of this article is to describe how this additional flexibility can be used to deform
a given cone-manifold structure on X into cone-manifold structures on X of possibly
different topological type, ie with possibly the pair .X; †0/ not being homeomorphic
to the pair .X; †/. This will be achieved by splitting a vertex vj of valence mj � 4
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into two or more vertices of lower valence. Note that what we actually deform is the
incomplete hyperbolic metric on the smooth part M ; the new cone-manifold is its
completion. Before describing our main result, we need to set up some more notation.

For simplicity we will assume that † does not contain circle components. This
assumption will be in place for the remainder of the article. It makes for a cleaner
statement of our main results and, besides that, the case of circle components is already
well understood by the work of Hodgson and Kerckhoff.

For " > 0 sufficiently small the subset SM" DM nU".†/ is a compact core of M ,
ie xM" ,!M is a homotopy equivalence. Its boundary @ SM" is a (possibly disconnected)
surface of genus g , such that

Pk
jD1.mj�3/CN D 3g�3 (recall that N and k denote

respectively the number of edges and of vertices contained in the singular locus †, and
that for each vertex vj , mj denotes the number of edges meeting in vj ). Let Lj be
the link of the vertex vj ; it is a spherical cone-surface, homeomorphic to the 2–sphere
when the cone angles are less than 2� . Its smooth part is an mj –times punctured
sphere, denoted by Nj , which embeds naturally (but not isometrically) as an open
subsurface of @ SM" ; throughout this article Nj and the image of this embedding will
be identified.

A pair-of-pants decomposition CjDf�j ;1; : : : ; �j ;mj�3g of Nj determines an unknotted
embedding of a trivalent tree †0j into the closed 3–ball B".vj / in such a way that
the curves �j ;i are precisely the meridian curves of the newly created edges e0j ;i and
that †\B".vj / is obtained back by collapsing these new edges. (An embedding of a
trivalent tree .T; @T / ,! .D3; @D3/ is unknotted, if it factors through an embedding
of the 2–disk .D2; @D2/ ,! .D3; @D3/.) If we now replace †\B".vj / by †0j , then
we say that .X; †0/ is obtained from .X; †/ by splitting a vertex; see Figure 1 for
examples. The homeomorphism type of the pair .X; †0/ is determined by the pair-of-
pants decomposition Cj , where homotopic pair-of-pants decompositions clearly yield
the same type.

In order to construct a hyperbolic cone-manifold structure on the pair .X; †0/, even
locally on a neighbourhood of the new singular locus †0 , we need an additional,
geometric condition on the splitting curve �j ;i , namely that it satisfies the so-called
splitting condition, cf Definition 3.1. We will also simply say that such a curve is
splittable. The splitting condition allows us to construct a concrete model for the
splitting deformation along �j ;i ; this construction is carried out in Section 3.2. The
geometry of a splitting deformation will in general be different for two splittable curves
in the same homotopy class of a simple closed curve. However, there is a notion of
equivalence of splittable curves in a homotopy class, which is essentially requiring the
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Figure 1: Different ways of splitting a vertex

curves to be homotopic through splittable curves, cf Section 3.1. Equivalent splittable
curves then turn out to yield the same geometric splitting deformations.

Now let E� D f�1; : : : ; �N g be the set of meridians of †, and further let Cj be
a pair-of-pants decomposition of Nj for each j D 1; : : : ; k . Note that we fix a
system of simple closed curves here and not just their homotopy classes. Let E� D
f�1; : : : ; �3g�3�N g denote the family of curves

Sk
jD1Cj , which is a pair-of-pants

decomposition of
`k

jD1Nj ; and let C be equal to E�[ E� , which is (up to homotopy)
a pair-of-pants decomposition of @ SM" . Let us assume for simplicity now that all the
curves in E� satisfy the splitting condition. We will then say that a deformation of the
hyperbolic cone-manifold structure on X is compatible with E� , if its singular locus †0

is obtained by splitting some vertices vj as determined by Cj and the geometric
deformation on a neighbourhood of the singular locus is precisely given by a model
deformation as in Definition 3.11. Here we allow that some of the newly created edges
have length 0. These model deformations combine the splitting deformations along
the curves in E� with the usual deformations of the singular tube, namely changing the
spherical structure on the links (which involves changing the cone-angles) and changing
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the length or twist parameters of the singular edges. Let C�1.X; E�/ denote the space
of E�–compatible hyperbolic cone-manifold structures on X , cf Definition 4.1; it is
topologized as a subset of Def.M /. Clearly C�1.X; †/ � C�1.X; E�/ for any such
family E� .

To a cone-manifold structure on X compatible with E� , we can associate the vector of
the cone angles ˛D .˛1; : : : ; ˛N / corresponding to the original edges .e1; : : : ; eN / and
the vector of the lengths `D .`1; : : : ; `3g�3�N /D .lj ;i/jD1;:::;k; iD1;:::;mj of the newly
created edges. Our main result is that these data actually provide a parametrization
of the space C�1.X; E�/ near X , under the following two assumptions. The first
one is that the curves in E� satisfy the splitting condition as introduced above. The
second one is that C is admissible in the sense of Definition 2.3; this is essentially an
algebraic assumption which ensures that the holonomy representation restricted to any
pair-of-pants in a decomposition of a link remains irreducible.

Theorem 1.2 Let X be a hyperbolic cone–3–manifold with cone angles less than
2� and meridian set E�. Let E� be a pair-of-pants decomposition of

`k
jD1Nj such that

C D E�[ E� gives an admissible pair-of-pants decomposition of @ SM" . If all the curves
in E� are splittable, then the map

.˛; `/W C�1.X; E�/! .0; 2�/N �R3g�3�N
�0

sending a E�–compatible cone-manifold structure to the vector composed of its original
edges’ cone angles and new edges’ lengths, is a local homeomorphism at the given
structure.

Note that we recover Theorem 1.1 by setting `i D 0 for all i (if there exists a family E�
satisfying the above assumptions).

The main difficulty in the proof of Theorem 1.2 is to obtain an adapted local chart on
Def.M /, or equivalently (using (1)) on X.�1M;SL2.C//. As in the previous works,
the strategy consists of constructing first a larger, adequate coordinate system on the sim-
pler space X.�1@ xM";SL2.C//. Using the infinitesimal rigidity, we can then show part
of these coordinates lift via the natural map X.�1M;SL2.C//!X.�1@ SM";SL2.C//
to a local chart on the former space. This is what is done in Section 2. The coordinate
system is provided by action-angle variables: as explained in Sections 2.1 and 2.2, the
character variety X.�1@ SM";SL2.C// has a canonical complex-symplectic structure
(actually introduced by Goldman [8], along the lines of Atiyah and Bott [1] and
Goldman [4]), and the traces of the curves in C yield a holomorphic completely
integrable system whenever C is admissible. The L2 –cohomology vanishing result
of [31] is then applied in Section 2.3 to show which part of the action-angle coordinates
lifts well to Def.M / near X (Theorem 2.11).
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To construct actual deformations of the cone-manifold X , we follow the same strategy
of beginning with a simpler problem, namely deforming a neighbourhood of the
singular locus. The splitting condition, explained in Section 3.1, ensures the existence of
splitting deformations as constructed in Section 3.2. We survey the other, more standard
deformations of the singular tube U".†/ in Section 3.3, and give in Proposition 3.10
the relation between the E�–compatible deformations of U".†/ and the action-angle
coordinates on X.�1@ xM";SL2.C//.

Combining the results of Sections 2 and 3, we can characterize the holonomy representa-
tions of the elements of C�1.X; E�/. This enables us to determine which E�–compatible
deformations of U".†/ can be extended to the whole of the cone-manifold, leading to
the following statement.

Theorem 4.3 Let X be a hyperbolic cone–3–manifold with meridian set E� and cone
angles ˛ D .˛1; : : : ; ˛N / 2 .0; 2�/

N . Let E� be a family of curves on
`k

jD1Nj such
that C D E�[ E� is up to homotopy an admissible pair-of-pants decomposition of @ SM" .
Then a E�–compatible deformation of the hyperbolic cone-manifold structure on X

corresponding to a vector .˛0; `/ 2 .0; 2�/N �R3g�3�N
�0

close to .˛; 0/ exists, if the
curves �i with `i > 0 are splittable and disjoint.

Theorem 1.2 is then a direct consequence. In the remaining part of Section 4, we
discuss the stratified structure of the space of cone-manifold deformations of X and its
relation with the curve complex of j̀ Nj , and we explain how our main result applies
to the polyhedral case.
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Differentialgeometrie”.

2 Local coordinates on the variety of characters

We begin by recalling various facts about the variety of representations of a surface
group into the Lie group SL2.C/. Let S be a closed orientable surface of genus
g � 2 in the following. Let R.�1S;SL2.C// be the space of group homomorphisms
�W �1S ! SL2.C/ equipped with the compact-open topology. The group SL2.C/
acts on the space R.�1S;SL2.C// by conjugation and we may form the set-theoretic
quotient

X.�1S;SL2.C//DR.�1S;SL2.C//=SL2.C/:
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We will endow X.�1S;SL2.C// with the quotient topology and we will refer to the
elements of X.�1S;SL2.C// as characters. In our main application S will be the
boundary of a compact core of the smooth part of a hyperbolic cone–3–manifold,
ie S D @ SM" . Note that here S may be disconnected, in which case we have to replace
X.�1S;SL2.C// by the product of the character varieties of the fundamental groups
of the connected components of S , as explained eg by the authors in [17; 30]. Since
this presents no further technical difficulty, we will mostly pretend that S is actually
connected.

Recall that a representation �W �1S ! SL2.C/ is called irreducible if it does not
leave invariant any line in C2 . Let Rirr.�1S;SL2.C// be the space of irreducible
representations and Xirr.�1S;SL2.C// the space of irreducible characters. It is
known that Rirr.�1S;SL2.C// is a complex manifold of complex dimension 6g� 3,
cf [4; 8]. Furthermore PSL2.C/ acts properly and freely on Rirr.�1S;SL2.C//, hence
Xirr.�1S;SL2.C// is a complex manifold of complex dimension 6g� 6; see [8] and
the references therein for details.

2.1 The complex-symplectic structure and complex twist flows

In the following we review Goldman’s construction of a natural complex-symplectic
structure on Xirr.�1S;SL2.C// as carried out in [4; 8]. Recall that a complex-
symplectic manifold Y is a complex manifold equipped with a nondegenerate closed
holomorphic 2–form �. If 2n is the complex dimension of Y , then nondegeneracy
of � may be rephrased by saying that �n is a nonvanishing .2n; 0/–form. Let

bW sl2.C/� sl2.C/!C

be a nondegenerate symmetric bilinear form which is Ad–invariant. Such a pairing is
provided by the trace form on sl2.C/, ie b.A;B/D tr.AB/ for A;B 2 sl2.C/. Let

E� D zS �Ad ı� sl2.C/

be the flat vector bundle on S with fiber sl2.C/ and holonomy given by the represen-
tation Ad ı� . Then, by Ad–invariance, b induces a pairing

bE� W E� � E�!C

which is parallel and fiberwise nondegenerate. Finally, by Poincaré duality, the pairing

�W H 1.S I E�/�H 1.S I E�/!C;

.Œ˛�; Œˇ�/ 7!

Z
S

bE� .˛^ˇ/;
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is skew-symmetric and nondegenerate. Now recall that, using Weil’s construction,
the tangent space of Xirr.�1S;SL2.C// at a character Œ�� may be identified with
the cohomology group H 1.�1S I sl2.C/Ad ı�/, which in turn may be identified with
H 1.S I E�/ using de Rham’s theorem. With these identifications, � becomes a 2–
form, shown to be indeed closed and holomorphic in [4]. Hence it defines a complex-
symplectic structure on Xirr.�1S;SL2.C//, which in fact is invariant under the mapping
class group of S .

We continue with the description of the complex Hamiltonian flows associated to the
trace functions; the material we present here is in essence contained in Goldman [5]; see
also [8]. If .Y; �/ is a complex-symplectic manifold and f W Y !C is holomorphic,
then the complex Hamiltonian vector field Xf is defined by

�.Xf ; � /D df:

By definition, Xf is a holomorphic vector field on Y , and hence possesses a local
holomorphic flow �f , called the complex Hamiltonian flow associated with f . The
trajectory through y 2 Y is the holomorphic curve z 7! �

f
z .y/ satisfying the ordinary

differential equation
@

@z
�fz .y/DXf .�

f
z .y//

in “complex time” z 2 C (for jzj sufficiently small). For holomorphic functions
f;gW Y !C the Poisson bracket is as usual defined by

ff;gg D�.Xf ;Xg/;

and we say that f and g Poisson-commute if ff;gg D 0.

Now let Y DXirr.�1S;SL2.C//. For any closed curve 
 on S , we define the function

tr
 W X.�1S;SL2.C//!C;

�D Œ�� 7! tr �.
0/;

where 
0 2�1S is freely homotopic to 
 ; note that it does not depend on its orientation.
In the case 
 is a simple closed curve, the associated complex Hamiltonian vector
field X
 can be described as follows.

For A 2 SL2.C/ we may consider the differential of the trace at A as a map
.d tr/AW sl2.C/!C by setting

.d tr/A.B/D d
dt

ˇ̌̌
tD0

tr.A exp.tB//
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for B 2 sl2.C/. If bW sl2.C/ � sl2.C/! C is a nondegenerate bilinear form, the
variation function F W SL2.C/! sl2.C/ with respect to b is defined by requiring that

.d tr/A.B/D b.F.A/;B/

for all B 2 sl2.C/. If b is chosen to be the trace form, ie b.A;B/ D tr.AB/ for
A;B 2 sl2.C/, one obtains that F.A/DA� 1

2
tr A � id for A 2 SL2.C/. Note that by

virtue of this formula Ad.A/F.A/D F.A/, ie F.A/ 2 sl2.C/ is Ad.A/–invariant.

If we identify the fiber of E� over 
 .0/ with sl2.C/, then the Ad.�.
 //–invariant
element F.�.
 // 2 sl2.C/ defines a parallel section �
 on a collar C D Œ0; 1��S1

to the left of 
 , ie @C D 
 0�1[ 
 , taking into account the orientations of 
 and the
surface S . Let 'W Œ0; 1�! Œ0; 1�, z 7! '.z/ be a smooth function which vanishes near
z D 0 and is identically 1 near z D 1. We set

!
 D d'˝ �
 2�
1.S I E�/:

Let X
 D Œ!
 � 2 H 1.S I E�/. We claim that �.X
 ; Œ��/ D d tr
 .Œ��/ for all closed
� 2 �1.S; E�/. Note that bE� .!
 ^ �/ D d.' � bE� .�
 ^ �// since �
 and bE� are
parallel. Applying Stokes’ theorem we obtainZ

S

bE� .!
 ^ �/D

Z
@C

' � bE� .�
 ^ �/D

Z



bE� .�
 ^ �/:

On the other hand,

d tr
 .Œ��/D .d tr/�.
/.
R

�/D b.F.�.
 //;

R

�/D

Z



bE� .�
 ^ �/;

where
R

 � 2 sl2.C/ is defined using parallel transport in E� along 
 , cf [29] for

details. The claim follows.

Now let C D f
1; : : : ; 
3g�3g be a pair-of-pants decomposition of S . We may arrange
that the supports of the forms !
1

; : : : ; !
3g�3
are disjoint, hence we immediately

deduce the following result of Goldman, cf [8, Proposition 2.2.2 and Corollary 2.2.3].

Proposition 2.1 The functions tr
1
; : : : ; tr
3g�3

Poisson-commute pairwise, that is
�.X
i

;X
j /D 0 for all 1� i; j � 3g� 3.

In particular, the complex Hamiltonian flows �i
z associated with the functions tr
i

commute and define a local holomorphic C3g�3 –action

�Ez D �
1
z1
ı � � � ı�3g�3

z3g�3

on Xirr.�1S;SL2.C//, where Ez D .z1; : : : ; z3g�3/ 2 C3g�3 (for kEzk sufficiently
small). Under the assumption that the differentials d tr
1

; : : : ; d tr
3g�3
are linearly
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independent at �0 2Xirr.�1S;SL2.C//, one thus obtains a holomorphic completely
integrable system

trE
 D .tr
1
; : : : ; tr
3g�3

/ WXirr.�1S;SL2.C//� U !C3g�3:

By choosing a local section

� W C3g�3
� V! tr�1

E

.V/�Xirr.�1S;SL2.C//

with �.trE
 .�0//D �0 we obtain local “action-angle” coordinates

Xirr.�1S;SL2.C//� U !C3g�3
�C3g�3;

� 7! .trE
 .�/; �E
 .�//;

near �0 ; they are defined by requiring that �D ��E
 .�/.�.trE
 .�// for � 2 U and using
the implicit function theorem. This set of coordinates will be further discussed in
Section 2.2.

The complex Hamiltonian flow �z on Xirr.�1S;SL2.C// associated with the func-
tion tr
 is covered by a holomorphic flow  z on Rirr.�1S;SL2.C//; see Goldman [8].
This complex twist flow can be quite explicitly described as follows (we have to be
rather careful about various choices in order to match the directions of the flows):

(1) If 
 is separating, then �1S splits as an amalgamated free product. Let S1

denote the component of S cut along 
 lying to the left of 
 , taking into account the
orientations of 
 and the surface S . Let S2 denote the component lying to the right
of 
 . Then �1S D �1S1 ?
 �1S2 . For � 2R.�1S;SL2.C// and z 2C we set

 z.�/.

0/D

(
�.
 0/ 
 0 2 �1S1;

�z�.

0/��z 
 0 2 �1S2;

where �z denotes the complex 1–parameter subgroup in SL2.C/ associated with �.
 /.
More precisely, if F W SL2.C/! sl2.C/ is the variation function with respect to the
trace form b , then �z D exp.zF.�.
 ///. Note in particular that �z centralizes �.
 / in
SL2.C/. To check that the flows match, we calculate the periods of !
 :Z


 0
!
 D

(
0 
 0 2 �1S1;

.1� .Ad ı�/.
 0//F.�.
 // 
 0 2 �1S2;

D
d
dz

ˇ̌̌
zD0

 z.�/.

0/�.
 0/�1:

(2) If 
 is nonseparating, then �1S splits as an HNN-extension. Let S 0 denote
the connected surface obtained by cutting S along 
 . Then �1S D �1S 0?
 . More
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precisely, let � be another simple closed curve intersecting 
 transversally at the base
point with positive intersection number. This determines an arc, again denoted by �,
in S 0 connecting @CS 0 to @�S 0 . If we place the base point on @�S 0 and denote
the element in �1S 0 corresponding to 
 by 
� , then with 
C D ��1:
:� we get
�1S D h�1S 0; � j ��1
��D 
Ci. For � 2R.�1S;SL2.C// and z 2C we set

 z.�/.

0/D

(
�.
 0/ 
 0 2 �1S 0;

�z�.�/ 
 0 D �;

with �z D exp.zF.�.
 /// as above. Again as a check we calculate the periods of !
 :Z

 0
!
 D

(
0 
 0 2 �1S 0;

F.�.
 // 
 0 D �;

D
d
dz

ˇ̌̌
zD0

 z.�/.

0/�.
 0/�1:

The significance of this for us is that we can easily reconstruct � 2 U from its coordi-
nates trE
 .�/ and �E
 .�/ once we know the local section � .

2.2 Action-angle coordinates

We return now to our 3–dimensional situation, ie X is a closed, orientable hyperbolic
cone–3–manifold with smooth part M DX n† and S D @ SM" ; we will furthermore
assume all the cone angles are smaller than 2� . The hyperbolic metric on M determines
a holonomy representation holW �1M ! SL2.C/, which in turns induces on @ SM" a
representation �0 2R.�1@ SM";SL2.C//, with corresponding character �0 D Œ�0�.

For each edge ei of the singular locus, let �i � @ xM" be a meridian of ei , ie a simple
closed curve winding exactly once around ei . The collection E� D f�1; : : : ; �N g

decomposes @ SM" into a family of k subsurfaces f†1; : : : ; †kg, each of which is
homeomorphic to the regular part Nj of the link of a vertex vj ; in the following we
will always identify †j and Nj .

As in [17; 31] we find the following (see [17, Theorem 9] for a detailed proof).

Lemma 2.2 The representation holW �1Nj ! SL2.C/ is irreducible.

Actually, the induced holonomy on Nj fixes a point in H3 (corresponding to the
vertex vj ), so has values in a maximal compact subgroup K of SL2.C/; up to conjugacy
we can assume K D SU.2/.

For each 1 � j � k , let Cj be a pair-of-pants decomposition of Nj . If we cut Nj

along Cj we obtain a disjoint collection Pj ;1; : : : ;Pj ;mj�3 of subsurfaces, each home-
omorphic to a thrice punctured sphere.
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Definition 2.3 Let S be a surface and �W �1S!SL2.C/ an irreducible representation.
A pair-of-pants decomposition C of S is called �–admissible (or just admissible for
short) if the restriction of � to each of the pairs of pants obtained by cutting S along C
is irreducible.

A natural question is whether an admissible pair-of-pants decomposition for Nj always
exists. This is settled by the following.

Proposition 2.4 Let S be a d –punctured sphere and �W �1S! SU.2/ an irreducible
representation such that �.
 / 62 f˙ idg for any peripheral element 
 2 �1S . Then S

admits a �–admissible pair-of-pants decomposition.

Proof The proof is by induction on d . If d D 3, then the result is trivial, so we will
now assume that d > 3. Since � has values in SU.2/, it is reducible if and only if all
the elements of its image commute. Let h
1; : : : ; 
d j

Q
i 
i D 1i be a presentation

of �1S such that 
i is a loop around the i –th puncture of S . Since � is irreducible,
up to a change in the order of the generators we can assume that �.
1/ and �.
2/

do not commute. The curve 
1:
2 (or rather, any simple closed curve homotopic to

1:
2 ) cuts S into a pair-of-pants P 0 and a .d�1/–punctured sphere S 0 . The induced
representation on P is generated by �.
1/ and �.
2/ and is thus irreducible. If the
induced representation on S 0 is also irreducible, then by induction we can find an
admissible decomposition of S 0 and the proof is completed. If on the other hand the
induced representation on S 0 is reducible, this means that there exists a complex line L

which is invariant by �.
i/ for all 3 � i � d . If L is invariant by �.
2/, then it is
also invariant by �.
1/D .�.
2/ � � � �.
d //

�1 , and this contradicts the irreducibility
of � . So L is not invariant by �.
2/; similarly, it is not invariant by �.
1/. Now
any simple closed curve homotopic to 
2:
3 cuts S into a pair-of-pants P 00 and a
.d�1/–punctured sphere S 00 . The induced representation on P 00 is generated by �.
2/

and �.
3/, and they do not commute since L is invariant by �.
3/, which is different
from ˙ id, but not by �.
2/; this implies that the induced representation on this pair-
of-pants is irreducible. Similarly, the induced representation on S 00 is irreducible since
it is generated by �.
1/; �.
4/; : : : ; �.
d /, which do not commute.

The same argument shows that under the same assumptions, any simple closed curve

 �S with the property that �.
 / is different from ˙ id and that the restriction of � to
each component obtained by cutting S along 
 is irreducible, can be completed to an
admissible pair-of-pants decomposition of S . In the case where S DNj and �D �0 ,
the peripheral elements are actually edges’ meridians whose holonomy is nontrivial
since the cone angles are smaller than 2� , so the proposition applies.
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Lemma 2.5 Let S be a d –punctured sphere and �W �1S ! SL2.C/ an irreducible
representation. Let f
1; : : : ; 
dg be the boundary curves of S and assume that the
pair-of-pants decomposition C D f
dC1; : : : ; 
2d�3g is �–admissible. Then the map

.tr
1
; : : : ; tr
2d�3

/W Xirr.�1S;SL2.C//!C2d�3

is a submersion at �D Œ��.

The proof of this lemma is based on the following elementary fact (see for instance
Goldman [7, page 578]).

Lemma 2.6 Consider the map

f W SL2.C/�SL2.C/!C3;

.A;B/ 7! .tr A; tr B; tr AB/:

Then df.A;B/ is surjective if and only if A and B do not commute.

Now let P be a thrice punctured sphere and �1P Dh
1; 
2; 
3 j 
1
2
3i a presentation
of its fundamental group. Lemma 2.6 immediately implies the following statement.

Corollary 2.7 The map

trE
 D .tr
1
; tr
2

; tr
3
/W Xirr.�1P;SL2.C//!C3

is a submersion.

We can then use the standard gluing construction as explained in [17; 29; 31] together
with Corollary 2.7 to finish the proof of Lemma 2.5.

Recall that for each 1 � j � k , Cj is a pair-of-pants decomposition of the smooth
part Nj of the j –th vertex’s link, and that the set E�D f�1; : : : ; �N g consists of all
the edges’ meridians. Let E� D

Sk
jD1Cj D f�1; : : : ; �3g�3�N g (where g stands for the

genus of @ SM" , so that
Pk

jD1.mj �3/D 3g�3�N , with mj being the valence of the
j –th vertex). Then the collection C D E�[ E� is a pair-of-pants decomposition of @ xM" ,
which is admissible if and only if all the Cj are admissible. To this decomposition we
associate the two trace maps

tr E� D .tr�1
; : : : ; tr�N

/W X.�1@ xM";SL2.C//!CN ;

trE� D .tr�1
; : : : ; tr�3g�3�N

/W X.�1@ xM";SL2.C//!C3g�3�N :

Proposition 2.8 Assume that C D E�[ E� is �0 –admissible. Then the map

TrC D .tr E�; trE�/W Xirr.�1@ xM";SL2.C//!C3g�3

is a submersion at �0 .

Geometry & Topology, Volume 17 (2013)



The local shape of the deformation space of hyperbolic cone–3–manifolds 383

The proof uses the standard gluing construction as in Lemma 2.5. Further details are
left to the reader.

If C D E�[ E� is admissible for �0 , then upon choosing a local section for the map
.tr E�; trE�/, we obtain using Proposition 2.8 together with Proposition 2.1 and the ensuing
discussion local action-angle coordinates near �0 D Œ�0�:

Xirr.�1@ SM";SL2.C//� U !CN
�C3g�3�N

�CN
�C3g�3�N ;

� 7! .tr E�; trE� ; � E�; �E�/:

Remark 2.9 (Warning) The “action-angle” terminology, while customary, is some-
what misleading in our context. Indeed, it is the action variables tr�i

and tr�i
that

actually involve the cone angles via the trace of the holonomy of elliptic isometries.
We will see that the “angle” variables ��i

and ��i
have little to do with the cone angles

but are rather related to the lengths of the edges.

In our 3–dimensional setting we can give a more geometric description of the angle-
coordinates � E� and �E� . But since they depend on � , we will first look at the most
natural choice for this local section.

Let Nj be the regular part of the link of a singular vertex of X ; we know that
the induced holonomy representation on Nj fixes a point pj 2 H3 and hence has
values in a maximal compact subgroup Kj of SL2.C/. In particular, the induced
holonomy representation on any of the pair-of-pants of the admissible decomposition
of Nj has values in this maximal compact subgroup, which is conjugated to SU.2/
inside SL2.C/. A first consequence of this fact is that TrC.�0/ actually belongs to
.�2; 2/3g�3 �C3g�3 .

Let t D .t1; : : : ; t3g�3/ 2 R3g�3 . Let 
j1
; 
j2

; 
j3
2 Cj be the boundary curves of

a pair-of-pants P in the decomposition of Nj . If t is close enough to TrC.�0/,
then there exists a unique (up to conjugation) representation �P .t/W �1P !Kj such
that tr.�P .t/.
ji

// D tji
for i 2 f1; 2; 3g; and we can proceed in the same way for

all the pairs-of-pants of the decomposition. It is then possible to glue these repre-
sentations together to obtain an element �Nj .t/ 2 Rirr.�1Nj ;Kj /. The representa-
tions �Nj .t/ may then again be glued together (possibly after conjugation) to obtain
�.t/ 2Rirr.�1@ SM";SL2.C// such that TrC.Œ�.t/�/D t . Such an element �.t/ is not
unique, but this shows that we can choose a neighbourhood V �C3g�3 of TrC.�0/ and
a local section � W V!Xirr.�1@ SM";SL2.C// of TrC such that for any t 2 V\R3g�3 ,
�.t/ is the character of a representation �.t/ with the property that the restriction of
�.t/ to �1Nj has values in a maximal compact subgroup Kj .t/ for all j D 1; : : : ; k .
Note that in general we cannot achieve that Kj .t/DKj for all t 2 V \R3g�3 .
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We want to understand how the complex twist flows  i
z act on the holonomy rep-

resentation �0 of the hyperbolic cone-manifold structure (or more generally, on a
representation �.t/ as constructed above). If A 2 SL2.C/ corresponds to an elliptic
isometry, we may assume without loss of generality that

AD

�
� 0

0 x�

�
for � 2 U.1/. If we set � D ei˛=2 for ˛ 2 R (ie A corresponds to an elliptic isom-
etry with (oriented) rotation angle ˛ ), then the complex 1–parameter subgroup �z
corresponding to A is given by

�z D

�
eiz sin.˛=2/ 0

0 e�iz sin.˛=2/

�
:

The corresponding group of isometries preserves the axis ı0 D f0g�RC �C�RC in
the upper half-space model of H3 . In particular,

�t D

�
eit sin.˛=2/ 0

0 e�it sin.˛=2/

�
; t 2R;

is a real 1–parameter group of rotations fixing ı0 with (oriented) rotation angle given
by 2t sin.˛=2/. Similarly,

�it D

�
e�t sin.˛=2/ 0

0 et sin.˛=2/

�
; t 2R;

is a real 1–parameter group of translations along ı0 with (signed) translation length
given by �2t sin.˛=2/.

This yields a rather concrete description of representations � with character � 2 U
in terms of action-angle coordinates. The most relevant situation for us is when
TrC.�/ 2 .�2; 2/3g�3 (such representations provide candidates for holonomy represen-
tations of cone-manifold structures compatible with E� in the sense of Definition 4.1). In
this case, as a consequence of the particular choice of the local section � as described
above, we obtain that vanishing of the imaginary parts of the angle coordinates �E� for a
character � implies that �.�1Nj / is contained in a maximal compact subgroup Kj .�/

for all j D 1; : : : ; k . This corresponds geometrically to a deformation keeping the
topological type .X; †/ fixed. Giving the angle-coordinate ��i

a nonzero imaginary part
amounts to splitting along �i the link Nj that contains this curve into components N 0j
and N 00j and separating the fixed points of �.�1N 0j / and �.�1N 00j / in H3 by some
positive distance. This corresponds geometrically to a splitting deformation as described
in the following sections.
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2.3 L2–cohomology

In Section 2.1 we introduced the flat sl2.C/–bundle E� D zS �Ad ı� sl2.C/ over a
surface S , associated to a representation � . In the same way, we can define over the
smooth part M of the cone-manifold X a bundle

E D �M �Ad ı hol sl2.C/;

where holW �1M ! SL2.C/ is the holonomy representation of the hyperbolic structure
on M . This bundle E carries a natural flat connection rE . It is canonically identified
with the bundle of infinitesimal isometries so.TM /˚TM ; this identification gives a
natural metric hE on E (the direct sum decomposition is not preserved by the connection,
so that hE is not parallel with respect to rE ). Using Weil’s construction and de Rham’s
theorem one obtains

T�0
X.�1M;SL2.C//ŠH 1.�1M I sl2.C/Ad ı hol/ŠH 1.M I E/:

Note further that using the hyperbolic metric g on M and the bundle metric hE ,
the L2 –cohomology groups H i

L2.M I E/ are defined. For details concerning these
constructions we refer the reader to our earlier works. If Nj is the smooth part of the
j –th link, then hol.�1Nj / fixes a point pj 2H3 , ie is conjugated into SU.2/. As a
consequence one has the following splitting:

E jNj D E1
j ˚ E2

j ;

where the first summand corresponds to infinitesimal rotations about pj and the second
one to infinitesimal translations at pj . The following has been proven in [31].

Theorem 2.10 Let c 2H 1
L2.M I E/ be a class with the property that for all vertices vj

the following holds:

cjH 1

L2
.Nj IE1

j
/ D 0 or cjH 1

L2
.Nj IE2

j
/ D 0:

Then c D 0.

As a consequence we obtain that the map H 1. SM"I E/! H 1.@ SM"I E/ is injective,
so that we will identify H 1. SM"I E/ with its image, and that dimC H 1. xM"I E/ D
1
2

dimC H 1.@ xM"I E/DN C
Pk

jD1.mj � 3/, cf [31, Proposition 4.7].

The following is the main result of this section.
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Theorem 2.11 Let C D E�[ E� be a pair-of-pants decomposition of @ SM" . Assume C
is admissible for �0 D hol and U is a neighbourhood of �0 in Xirr.�1@ SM";SL2.C//,
on which action-angle coordinates are defined. Then the map

ˆC W U \X.�1M;SL2.C//!CN
�R3g�3�N

�R3g�3�N ;

� 7! .tr E�.�/; Im �E�.�/; Im trE�.�//;

is a local diffeomorphism at �0 .

Proof Let L WDker.dˆC/�0
�H 1.@ xM"I E/; where as usual H 1.@ SM"I E/ is identified

with T�0
X.�1@ SM";SL2.C//. We claim that

L\H 1. SM"I E/D f0g;

where according to the remark following Theorem 2.10 the space H 1. SM"I E/ is
identified with a subspace of H 1.@ SM"I E/.

Now let c 2 L\H 1. SM"I E/. In particular, c 2 ker.d tr E�/�0
, hence by [31, Corol-

lary 4.17], c 2 H 1
L2.M I E/. Note that by [31, Corollary 4.4] we have that the

space H 1
L2.M I E/ may be identified with a subspace of H 1. xM"I E/. Finally, since

Im.d trE�/�0
.c/D Im.d�E�/�0

.c/D 0, the restriction of c to Nj is tangent to a path of
characters Œ�t � with �t W �1Nj ! SU.2/ for all j D 1; : : : ; k . This implies that

cjH 1

L2
.Nj IE2

j
/ D 0;

for all j D 1; : : : ; k . Hence Theorem 2.10 applies to yield c D 0. It follows that ˆC
is an immersion at �0 . Now

dimR X.�1
SM";SL2.C//D 2N C

kX
jD1

2.mj � 3/;

so that the result follows.

Remark 2.12 The same argument shows that .tr E�;Re trE� ;Re �E�/ also provides a
system of local coordinates near �0 . However, as we will see later, the coordinate
system of Theorem 2.11 is better adapted for our purposes.

3 Deformations of the singular tube

Let X be a closed hyperbolic cone–3–manifold. The topologies of the singular locus †
and of @ SM" are closely related, besides the obvious one-to-one correspondence between
the components of † and those of @ SM" : each component of † is a (compact) connected
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graph, hence is homotopy equivalent to a bouquet of g circles, where g is precisely
the genus of the corresponding component of @ SM" .

Let X 0 be a deformation of X , ie X and X 0 have diffeomorphic regular parts M

and M 0 , and the respective hyperbolic structures on M and M 0 are close. The
boundary surfaces @ SM" and @ SM 0

" are diffeomorphic, so by the above remark the
singular loci † and †0 are homotopy equivalent. This implies that it is possible to
go from one singular locus to the other by shrinking some edge lengths to zero and
splitting some vertices. But by continuity of the lengths of the edges, if X 0 and X are
close enough then the only possibility is that †0 is obtained from † by splitting some
(possibly zero) vertices, that is, X 0 has some “new” singular edges as compared to X .

In order to study the deformations of X , we begin with the less obstructed problem of
constructing deformations of the singular tube U".†/. We will then see (in Section 4)
when they can be extended to the whole of M . The possible deformations of a singular
tube are quite easy to classify (cf [15, Section 3]).

� We can change the lengths and/or twist parameters of the existing edges.

� We can deform the spherical structure of the vertices’ links, with or without
changing the cone angles. In the latter case, this also implies changing the cone
angles of the existing edges.

� We can split some vertices to create new edges.

The last case is clearly the most complicated. Topologically, such a deformation is
described by specifying the meridian of the new edge (see Figure 1) but the actual
geometric description is more complicated. In fact, to ensure the existence of the
splitting deformation we will need an additional assumption.

3.1 The splitting condition

We now introduce a geometric condition on a simple closed curve, which we call
the splitting condition. This condition complements the more algebraic condition of
admissibility of a pair-of-pants decomposition in the formulation of our main results.

Let N be an incomplete oriented spherical surface, for instance the smooth part of a
spherical cone-surface, and let 
 be a closed curve on N . We can choose a base point x

on 
 , so that 
 defines an element of �1.N;x/. The spherical structure on N allows
us to define a developing map devW zN ! S2 and associated holonomy representation
�W �1.N;x/! IsomC.S2/. The image of 
 by � is then a direct isometry of S2 . If
we assume that this isometry f is not trivial, it has exactly two fixed points, denoted
by Fix.f /.
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Let r and � be polar coordinates in S2 n Fix.f /. The angular variable � is only
defined modulo 2� , but the corresponding 1–form d� and Killing vector field @=@�
are well-defined, and are invariant by f . In particular, d� (resp. @=@� ) descends to a
1–form (resp. local Killing vector field) in a neighbourhood of 
 . Actually, since d�

is not defined on the whole of S2 (it has singularities at Fix.f /), the corresponding
1–form along 
 may be singular.

Definition 3.1 With the above notation, we say that a simple closed curve on N with
nontrivial holonomy satisfies the splitting condition (or is splittable) if it is transverse
to the 1–form d� (ie the tangent direction to the curve at any point does not lie in
ker d� ; in particular d� has no singularity along the curve).

Alternatively, the 1–form d� on S2 can be pulled back by dev to a 1–form (still
denoted d� ) on zN ; then a simple closed curve with nontrivial holonomy is splittable
if its lift to zN is transverse to d� .

An important fact is that this condition is open, and in particular still holds if N is
slightly deformed.

Lemma 3.2 Let 
 be a simple closed curve on N . Then the set of spherical metrics
on N for which 
 is splittable is open.

Indeed, small perturbations of the spherical metric induce small perturbations of d� ,
so that the transversality condition is preserved.

On the set of splittable curves on N , we define a new equivalence relation refining
the one given by homotopy and say that two simple closed curves on N satisfying the
splitting condition are equivalent if they are homotopic through splittable curves. In
particular, equivalent splittable curves will play exactly the same role in the remainder
of the article. The following result shows that in a given homotopy class there can be
at most two distinct equivalence classes of splittable curves.

Proposition 3.3 Let 
1 and 
2 be two homotopic splittable curves on N . The 1–
form d� defined in a neighbourhood of 
1 can be uniquely extended to a neighbourhood
of 
2 . If

R

1

d� and
R

2

d� have the same sign, then 
1 and 
2 are equivalent,
ie homotopic through splittable curves.

Geometry & Topology, Volume 17 (2013)



The local shape of the deformation space of hyperbolic cone–3–manifolds 389

Proof Let X denote the locally defined vector field sin.r/ @=@r spanning the local
foliation ker d� along 
1 where it is nonsingular. After choosing a base point on 
1 ,
the based homotopy class of 
1 defines an element in �1N . We consider the covering
space corresponding to the subgroup generated by this element. The lifts of 
1 and 
2

to this cover are again simple closed curves. The singular 1–form d� and the vector
field X also lift as globally defined objects; this justifies the claim about the extension
of d� to 
2 . Up to a change of sign of d� , we can assume that at any point of 
1 , the
tangent vector v satisfies d�.v/ > 0, and similarly for 
2 .

We will now work entirely on the covering space. Note that the zeroes of X , which
in fact is a gradient vector field, are either sources or sinks, ie they all have index 1.
The obstruction against finding a homotopy from 
1 to 
2 transverse to ker d� is
the possible existence of zeroes of X , over which we cannot pull 
2 without losing
transversality. In a first step we can make 
1 and 
2 transverse to one another, keeping
transversality to ker d� . If 
1 and 
2 do not intersect, then they bound an annulus and
are both transverse to the vector field X . Poincaré–Hopf now shows there cannot be
any zeroes in the interior of the annulus, hence we can construct a transverse homotopy.

To try to reduce to this case, we can divide both curves into subarcs in such a way
that any subarc of 
1 together with a corresponding subarc of 
2 bounds a disk. If
such a disk does not contain a zero of X , we can slide this subarc of 
2 over the disk
to remove two intersection points. After these modifications two possibilities remain:
either 
1 and 
2 do not intersect anymore and we are done, or they still do. In this
case, again Poincaré–Hopf shows that any disk bounded by two corresponding subarcs
of 
1 and 
2 contain exactly one zero of X . Now direct inspection shows that on
one of the subarcs the tangent vector must satisfy d�.v/ < 0, which we had excluded.
Hence we are left with the first case and the proof is finished.

The fact that there can exist homotopic but nonequivalent splittable curves is of practi-
cal significance for the development of the deformation theory, since it implies that
specifying the homotopy class of a new meridian is not enough to determine a splitting.
It is actually not difficult to construct a spherical cone-surface with smooth part N and
a homotopy class on N containing two nonequivalent splittable curves, however all the
examples we have found so far have some large cone angles (ie larger than 2� ). Thus
it remains an open question whether such examples can exist in our setting, where all
the cone angles are smaller than 2� . Of course, intuition suggests that many homotopy
classes will not contain any splittable curve at all; but as we will see later, infinitely
many nonhomotopic curves satisfying the splitting condition can exist on a spherical
cone-surface.

A related, useful notion is that of the cone angle along a curve.
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Definition 3.4 Let N be an incomplete oriented spherical surface. We say that a
closed curve on N is nonsingular if its holonomy is not trivial and the 1–form d�

along it is not singular. The cone angle along a nonsingular curve 
 is then defined
as j

R

 d� j.

It is an easy exercise to check that if 
 is a loop around a conic point of a cone-surface,
then the cone angle along 
 is exactly the cone angle of this conic point; moreover, the
cone angle along a curve is always equal modulo 2� to (plus or minus) the rotation
angle of its holonomy. Note also that the cone angle along 
 may very well be greater
than 2� , even if N is the smooth part of a spherical cone-surface with cone angles
smaller than 2� and 
 is a simple closed curve. Finally, we emphasize that this
quantity is not homotopy-invariant: if H is a homotopy from 
 to 
 0 that crosses a
singular point of d� , then one easily shows that

R

 d� �

R

 0 d� D ˙2� , where the

exact sign depends on the direction of the crossing. In particular, if 
 is such that d�

is singular along it, then we can always find a small perturbation of 
 for which this is
no longer the case, but the resulting cone angle may depend on the chosen perturbation.
Of course, since this kind of homotopy is forbidden for equivalent splittable curves,
the notion of cone angle is well-defined for an equivalence class of splittable curves.
As we will see in Section 3.2, this quantity is actually equal to the cone angle of the
new edge obtained by splitting a vertex along a splittable curve.

Some examples Let S be the spherical cone-surface obtained as the double of a
spherical square with angle 2�=3 and let N be its smooth part. This cone-surface is
particularly easy to study: it has a nontrivial isometry group, and more importantly, the
image of its holonomy representation is finite in SU.2/ (it covers the group of direct
isometries of a regular tetrahedron). In Figure 2 we have depicted a simple closed
curve on N as well as (one of) its lift(s) to the universal cover zN (of course each
“square” is actually spherical with angles measuring 2�=3). The gray lines represent
the foliation integrating ker d� , and we can see that the curve is transverse to d� (and
so is splittable) and that the cone angle along it is 8�=3. A nonsplittable example is
given in Figure 3, where we can observe that the lift is not transverse to the foliation.
Interestingly, it is possible in this case to find a curve in the same homotopy class
whose lift (pictured by the dashed curved line) is transverse to d� , but this new curve
is actually self-intersecting on N .

It turns out that on this spherical cone-surface, there exist infinitely many nonhomotopic
splittable curves, and that the cone angles along such curves can grow arbitrarily large.
In Figure 4 we give some of the simplest curves on S ; except for three of them, they are
all splittable (actually even the two nonadmissible curves satisfy an adapted splitting
condition; see the end of Section 3.2). The first seven depicted curves are obtained by
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Figure 2: A splittable curve on N and its lift to zN

Figure 3: A nonsplittable curve on N and its lift to zN

applying iteratively the same half Dehn twist. Let 
k be the curve obtained after k

such half Dehn twists. Then one can verify that the homotopy class of 
k always
contains a splittable curve (unique up to equivalence) when k is odd, and that its cone
angle is equal to k� C �=3 if k � 1 mod 4, and k� � �=3 if k � 3 mod 4. In
particular, it goes to infinity as k grows to infinity.

Bounding the cone angle We have seen that even if a curve 
 satisfies the splitting
condition, the cone angle along 
 may well be larger than 2� . Hence, in general, a
splitting deformation will not preserve the class of hyperbolic cone–3–manifolds with
cone angles less than 2� . However, if 
 has special extrinsic geometry, then the cone
angle along 
 can in fact be bounded from above.

Proposition 3.5 Let S be a spherical cone-surface with cone angles less than 2�

and N its smooth part. If 
 is a simple closed curve on N of constant geodesic
curvature � 2 Œ0;1/, then the length of 
 is less than or equal to 2�=

p
1C �2 , which

is precisely the length of such a curve on the standard round 2–sphere.

Proof It is a classical result of Toponogov, cf [26], that a simple closed geodesic on
a simply connected smooth surface with Gauss curvature K � 1 has length less than
or equal to 2� . Moreover, equality can only occur on the standard round 2–sphere.
An exposition of this appears in Klingenberg [11, page 297]. Applying this result to
smoothings of S yields the same statement for simple closed geodesics on N .
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cone angle � cone angle 4�=3
not admissible

(cone angle 2� )

cone angle 8�=3 non-splittable cone angle 16�=3

not admissible
(cone angle 6� ) cone angle 3� cone angle 5�

cone angle 5� cone angle 16�=3 cone angle 20�=3

Figure 4: The cone angle along some simple closed curves on N
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Having established the assertion for simple closed geodesics, we can argue as follows
in the general case: Suppose there exists a spherical cone-surface with cone angles
less than 2� and a simple closed curve 
 of constant geodesic curvature � , but with
length l > 2�=

p
1C �2 . Clearly this curve cannot be peripheral, since the cone angles

are less than 2� . If we cut our cone-surface along 
 , we obtain a piece with convex
boundary and a piece with concave boundary. Take the convex piece and add the region
of a spherical football of cone angle ˛ D l

p
1C �2 (ie the spherical suspension over a

circle of length ˛ ) bounded by the closed geodesic of length ˛ > 2� and the circle of
constant geodesic curvature � . We may now double to obtain a spherical cone-surface
with cone angles less than 2� containing a simple closed geodesic of length greater
than 2� , which contradicts Toponogov’s result.

An immediate consequence is the following.

Corollary 3.6 If 
 is as above and has nontrivial holonomy, then the cone angle
along 
 is less than 2� .

3.2 Splitting deformations

The splittable case Let S be a spherical cone-surface with smooth part N and
holonomy representation %W �1N !K � SL2.C/, and let � be a simple closed curve
on N with nontrivial holonomy. Let C be the untruncated hyperbolic cone over S . It is
a complete, infinite volume hyperbolic cone–3–manifold, with a unique singular vertex
(the summit of the cone) and singular edges corresponding to the cone points of S .
We want to construct a one-parameter family of cone-manifolds, obtained from C by
splitting its vertex in such a way that the new edge has � as a meridian. If � satisfies the
splitting condition, there is a natural way to proceed, and the resulting one-parameter
family Cl , l � 0, is then called a splitting deformation of C along � .

Let ˛ D j
R
� d� j be the cone angle of � . The football of angle ˛ , denoted by S2

˛ , is
defined as the only (up to isometry) spherical cone-surface with underlying space S2

and two cone-points of angle ˛ ; it can be constructed as the spherical suspension over
a circle of length ˛ . More relevantly, in our case, if r and � are polar coordinates on
the universal cover of S2 nFix.%.�//, then S2

˛ is the metric completion of the quotient
of this universal cover under the identification .r; �/� .r; �C˛/. It is then possible to
embed isometrically a neighbourhood of � in S2

˛ ; the image of � by this embedding
will be denoted by �0 .

The hyperbolic cone C.�/ over � separates C into two “cone-manifolds with bound-
ary” C1 and C2 ; if � is smooth, the boundary @Ci D C.�/ is a smooth surface except
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at the singular vertex. Now let T be the untruncated hyperbolic cone over S2
˛ . It is an

infinite singular tube, with a unique singular edge of cone angle ˛ . The cone over �0

is a surface B1 D C.�0/ in T , and since � and �0 have isometric neighbourhoods,
C.�/ and C.�0/ are isometric and have isometric conic neighbourhoods. Let B2 be
the image of B1 D C.�0/ by a hyperbolic translation of length l along the singular
edge of T . The fact that � satisfies the splitting condition implies that B1 and B2

do not intersect; in particular, they bound a region U . We can now define the new
(complete, infinite volume) cone-manifold Cl as

Cl D C1[U [C2=�;

where the boundaries @Ci and Bi are identified; by construction, the meridian of the
new edge is homotopic to � and its cone angle is equal to the one along � .

This method also allows us to split C along a family of disjoint splittable curves. More
precisely, if �1; : : : ; �p are pairwise disjoint, nonhomotopic curves on N satisfying
the splitting condition, then we can split C along this family by proceeding as above:
we first cut C along the C.�i/ (which only intersect at the singular vertex), then glue
parts of singular tubes between the pieces. By restricting this construction, we can
apply it to a neighbourhood of a singular vertex v of X ; in fact, we can thus produce
a splitting deformation of the neighbourhood U".†/ of the singular locus.

Remark 3.7 If we replace � by an equivalent splittable curve in this construction,
then it is clear that the resulting cone-manifolds are the same. However, replacing �
by a homotopic but nonequivalent splittable curve will yield a different splitting de-
formation C 0

l
of C , even though the meridian of the new edge is still homotopic to � .

The two families Cl and C 0
l

should be thought as splitting C into opposite directions,
and we will see that they can be distinguished by their holonomy characters.

More general splitting deformations The splitting condition that we introduce in
Section 3.1 is rather simple to formulate and to verify; however, it is not strictly
necessary for the existence of splitting deformations. In fact, the above construction
can be carried out for a slightly larger class of curves.

We first consider the case of a nonperipheral, nonsingular simple closed curve � on
the smooth part N of a spherical cone-surface S . The curve � separates S into two
parts S1 and S2 , and we want to construct the splitting deformation of the hyperbolic
cone C.S/ by gluing a part of a singular tube between C1 D C.S1/ and C2 D C.S2/.
We know that a neighbourhood of � can be isometrically immersed in the football S2

˛ ;
we will furthermore assume that this immersion is an embedding.
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B1 � @C1 B2 � @C2

Figure 5: Construction of model splittings

As before, let �0 be the image of � by this embedding, and let B1 be the cone over �0

in T D C.S2
˛/. The surface B2 is obtained as the image of B1 by a hyperbolic

translation of length l along the singular axis of T . Now B1 (resp. B2 ) separates T

into two half-spaces; let M1 (resp. M2 ) be the one lying in the negative (resp. positive)
direction with respect to the direction of the hyperbolic translation above. Several cases
can happen:

� The two half-spaces M1 and M2 (and consequently also the two surfaces B1

and B2 ) do not intersect. This is the “good” case, happening in particular
when � is splittable. Then we can proceed as before: B1 and B2 bound a
region U D T n .M1[M2/, and the deformed cone-manifold is constructed as
C1[U [C2 with boundaries identified.

� The two half-spaces M1 and M2 intersect. Let U D T n .M1 [M2/ and
W D M1 \M2 ; for simplicity of the discussion we will assume that W is
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connected, but what follows can be applied to all the components of W . The
boundary of W is composed of two parts, @W1 � B1 and @W2 � B2 . The
isometry between neighbourhoods of � and �0 yields an isometric embedding of
a (conic) neighbourhood of B1 in M1 into C1 ; starting from a neighbourhood
of @W1 , we can try to extend this to an isometric embedding of W into C1 .
We can proceed similarly for embedding isometrically W into C2 . Here again,
several cases can happen:

(1) The region W can be embedded isometrically as W 0 in eg C2 . Then the
deformed cone-manifold can be constructed as C1[U [ .C2 nW 0/, with
the consistent boundary identifications. This case arises for instance when �
could have been homotoped into a splittable curve.

(2) The region W cannot be embedded in C1 or C2 , but can be embedded
isometrically as W 0 in C2 [ U , where the boundaries @C2 and B2 are
identified (the case is of course similar if W embeds isometrically in C1[U ).
Then the deformed cone-manifold can be constructed as C1[..C2[U /nW 0/,
with the consistent boundary identifications. We give in Figure 6 an example
of this construction: in the top-left corner is represented a part of a spherical
cone-surface S with three of its cone points, and the (nonsplittable) simple
closed curve � that separates it into S1 and S2 . The right side of the picture
is a sketch of T and its various regions. If we use cylindrical coordinates
.r; z; �/ in T (as in the introduction), then this sketch should be thought as
a slice fr D constantg; the foliation given by ker d� is vertical, and we see
at once that � is not splittable. The bottom-left corner depicts (a slice of)
C2[U , as well as W 0 , the isometric image of W . The darkest part of W 0

lies in U and is also represented on the right.
(3) The region W cannot be embedded isometrically in C1[U or C2[U , for

instance because such an embedding would encounter a singular edge. Then
the construction of the deformed cone-manifold along these lines fails.

Case (2) is of course the most interesting: the curve � is then called a generalized
splittable curve. Figure 7 shows an example where this situation arises. It represents
a spherical cone-surface; the thick boundary edges should be identified according to
their labels. All the big triangles are equilateral and have angles 2�=5, so that the
holonomy representation actually has values in the icosahedron symmetry group. It
has 5 cone points of cone angles � , 4�=3 (three times) and 8�=5. The cone angle
along the simple closed curve � depicted in the picture is 8�=5. The homotopy class
of � is not splittable; however, splitting deformations along this curve are possible,
according to the above construction.
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Figure 7: A generalized splittable curve
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Splitting deformations can also be defined for curves with trivial holonomy (although
they never can be part of an admissible pair-of-pants decomposition of @ SM" ). Let � be
a nonperipheral, simple closed curve with trivial holonomy on N . Let z� be a lift of �
to the universal cover zN . Since the curve � has trivial holonomy, the image of z� under
the developing map is a closed curve on S2 . Now every point p of S2 defines polar
coordinates .r; �/ on S2 n fp;�pg, and the 1–form d� descends to a well-defined
1–form, still denoted d� , in a neighbourhood of � (nonsingular if the image of z� does
not intersect fp;�pg). We can then proceed exactly as before. In particular, we can
define a splitting condition for � by requiring that it is transverse to such a 1–form d�

corresponding to some point p 2 S2 ; similarly, the cone angle along � with respect
to d� is simply defined as j

R
� d� j, and is necessarily a multiple of 2� .

A splitting deformation obtained in that way (provided that it can be constructed, either
because � is splittable or that the generalized construction works) depends obviously
on the choice of p , and it is quite unclear whether it can be extended to the whole
of M . Note that if a new edge e has cone angle 2� , then the Riemannian metric is
actually not singular along e , and this “removable edge” can be included in the smooth
part. This operation, however, changes the topological type of the smooth part, and
thus does not fit well within our Def.M /–framework.

3.3 Deformations and the holonomy character

The splitting deformations of the singular tube U".†/ that we have just constructed
are closely related to the complex Hamiltonian (twist) flows introduced in Section 2.1.
Since U".†/ retracts by deformation onto @ xM" , they have the same character va-
riety, and a hyperbolic metric on the singular tube yields a holonomy character
� 2 X.�1U".†/;SL2.C// D X.�1@ SM";SL2.C//. Let �0 D Œ�0� be the character
induced by the hyperbolic structure of the cone-manifold X .

Lemma 3.8 Let N be the smooth part of a vertex’s link and let � be a splittable curve
on N . There exists a sign s 2 f�1; 1g such that the deformation of U".†/ obtained by
splitting along � has holonomy character �0 D �ist .�0/, where � is the Hamiltonian
flow associated to tr� , t D l.4� tr�.�0/

2/�1=2 , and l is the length of the new edge.

Proof We begin with the construction of the sign s . Let d� be the standard 1–form
along � . Up to a change of sign of � , we can assume that the integral of d� along �
is positive (hence equal to the cone angle ˛ along � ). The vector field @=@� is a
Killing vector field in a neighbourhood of � , and as such it corresponds to a parallel
section �@=@� of the sl2.C/–bundle E�0

. Up to conjugacy, we can assume that the
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restriction of �0 to N has values in SU.2/, and that the fibers of E�0
over � are

identified with sl2.C/ in such a way that �@=@� is the constant section�
i=2 0

0 �i=2

�
:

This implies the more precise statement that

�0.�/D c

�
exp.i˛=2/ 0

0 exp.�i˛=2/

�
;

for a sign c2f�1; 1g (depending on the choice of a lifting from IsomC.H3/'PSL2.C/
to SL2.C/). Since the holonomy of � is not trivial, ˛ ¤ 0 mod 2� , and we can let

s D�c sign.sin.˛=2//I

it is equal to minus the sign of the imaginary part of the first diagonal coefficient
of �0.�/, once the section �@=@� is correctly identified. (Note that this identification is
only necessary when ˛ D � mod 2� ; otherwise it is sufficient to require that �0.�/

has the above expression.)

The curve � separates N into two subsurfaces; let N1 be the one lying to the left of � ,
and N2 the other one. We can choose a representative �0 of �0 so the restrictions of �0

and �0 to N1 coincide (and in particular have values in SU.2/). Now let

� D

�
exp.l=2/ 0

0 exp.�l=2/

�
I

this is a hyperbolic isometry of translation length l . Then it is easy to check that on
�1.N1[N2/, �0 and �0 are related by the formula

�0.
 /D

(
�0.
 / 
 2 �1N1;

��0.
 /�
�1 
 2 �1N2:

This expression matches the description of the complex twist flow from Section 2.1.
More precisely, if  denotes the complex twist flow associated to the function tr� ,
then �0 is equal to  z.�0/ for any z such that � D ˙ exp.zF.�0.�///, which is
equivalent to exp.l=2/ D ˙ exp.izc sin.˛=2//. All such values of z have the same
imaginary part, and a solution is given by

z D�icl.2 sin.˛=2//�1
D isl.2

q
1� cos.˛=2/2/�1

D isl.4� tr�.�0/
2/�1=2:

In particular, if we let t D l.4� tr�.�0/
2/�1=2 , we obtain that the diffeomorphism �ist

associated to the Hamiltonian flow of tr� maps �0 to �0 .

Geometry & Topology, Volume 17 (2013)



400 Grégoire Montcouquiol and Hartmut Weiß

Remark 3.9 We have seen that there can exist on N a splittable curve �0 , homotopic
but not equivalent to � . Then one can check that the signs associated to � and �0 are
opposite, so that in terms of holonomy, splitting along � or along �0 corresponds to
following the Hamiltonian flow �it in two different directions.

We can now deal with the remaining deformations of U".†/, and relate them to the
action-angle coordinates introduced in Section 2.2. The following proposition is the
main result of this section.

Proposition 3.10 Let E� be the meridian set of U".†/ and let E� be a family of
curves on j̀ Nj such that the family C D E�[ E� is up to homotopy an admissible
pair-of-pants decomposition of @ SM" . In particular, the map .tr E�; trE� ; � E�; �E�/ is a
system of local coordinates on Xirr.�1@ SM";SL2.C//. Let �0 be a character such
that .tr E�.�

0/; trE�.�
0// 2 .�2; 2/3g�3 . Assume furthermore that the curves in E� for

which Im ��i
.�0/ ¤ 0 are splittable, disjoint, and with associated signs si such that

si Im ��i
.�0/ > 0. If �0 is sufficiently close to �0 , then there exists a deformation

of U".†/ whose holonomy character is precisely given by �0 .

Proof We begin by constructing a deformation U 0 of U".†/ whose holonomy charac-
ter �0

0
satisfies .tr E�; trE�/.�

0
0
/D .tr E�; trE�/.�

0/, � E�.�
0
0
/D 0, and �E�.�

0
0
/D Re.�E�.�

0//.
Recall that the action-angle coordinates depend on the choice of a local section � for
the map TrC D .tr E�; trE�/. Due to our choice of this local section (cf the discussion
at the end of Section 2.2), this means that the restriction to any vertex’s link Nj of a
representative �0

0
of �0

0
has values in a maximal compact subgroup of SL2.C/; this is

of course also true for �0 . In particular, we can consider the restrictions of �0 and �0
0

as elements of X.�1Nj ;SU.2//. Now the local homeomorphism (akin to (1)) between
the space Def.Nj / of spherical structures on Nj and X.�1Nj ;SU.2// means that we
can deform the link Lj into a spherical cone-surface L0j whose holonomy character
is given by �0

0
. Taking the hyperbolic cone over L0j , we obtain the corresponding

deformation of a neighbourhood of vj . Note that changing the spherical structure
on Nj may also include changing the cone angles. Adjusting the cone angles of the
singular edges if necessary we obtain the deformation U 0 of U".†/ associated to �0

0
.

A second, easy step is to construct a deformation U 00 whose holonomy character �00
0

is such that .tr E�; trE� ; � E�; �E�/.�
00
0
/D .tr E�.�

0/; trE�.�
0/; � E�.�

0/;Re.�E�.�
0//. For this, all

we have to do is to change the lengths and/or twist parameters of the existing edges;
see [15, Section 3] for more details. Note that we can realize any change of the
twist parameters and any small change of the lengths, independent of the previously
constructed deformation U 0 .

If �0 and �0 are sufficiently close, Lemma 3.2 implies that the curves �i for which
Im ��i

.�0/¤ 0 are still splittable and disjoint in U 00 ; furthermore, it is easy to check
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that the associated signs si given by Lemma 3.8 are preserved if the deformation
is small enough. We can thus apply the splitting deformations described above si-
multaneously to all the curves �i for which Im ��i

.�0/ ¤ 0, inserting new edges of
lengths li D si Im.��i

.�0//
p

4� tr�i
.�0/2 . Lemma 3.8 then shows that the resulting

deformation of U".†/ has the correct holonomy character �0 . Again, as long as a
curve �i for which Im ��i

.�0/¤ 0 remains splittable in U 00 , we can insert a singular
tube of arbitrary length, hence we can realize any positive value of the parameter
si Im ��i

, independent of the previously constructed deformation U 00 .

The above proposition shows the existence of the deformation for the character �0 ,
but not the uniqueness. Actually, in the correspondence (1), the deformation of the
hyperbolic structure on U".†/ corresponding to a character close to �0 is unique only
up to the relation induced by thickening (and isotopy); see [3]. So �0 determines the
hyperbolic metric only in a compact core, and it is conceivable that this metric admits
different completions as a deformation of the cone-manifold structure on U".†/. The
following definition lifts this ambiguity.

Definition 3.11 A deformation of the hyperbolic cone-manifold structure on U".†/

is called E�–compatible if it is obtained as a sequence of deformations as in the proof
of Proposition 3.10.

Note that by construction, a E�–compatible deformation is not split along any nonsplit-
table curve; furthermore if E� contains two nondisjoint curves then the deformation
is split along only one of them. (Recall that C D E� [ E� is only assumed to be a
pair-of-pants decomposition up to homotopy, ie curves in E� might intersect.)

4 The local shape of the deformation space

Having completed our study of the deformations of singular tubes, we now turn
to the deformations of cone-manifolds. We actually limit ourselves to compatible
deformations, as defined below. The results of Sections 2 and 3 enable us to determine
the possible deformations of the holonomy representation and of the geometric structure
in a neighbourhood of the singular locus. With these two ingredients we can then
proceed to prove our main results (Theorems 4.3 and 1.2). As an application of these
results, we explain the structure of the deformation space of X and detail what happens
for doubles of polyhedra.

4.1 Compatible cone-manifold structures

We classify the deformations of X according to the deformations they induce on the
singular tube U".†/.
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Definition 4.1 Let E� be the meridian set of X , and let E� be a family of curves on

j̀ Nj such that the family C D E�[ E� is up to homotopy an admissible pair-of-pants
decomposition of @ SM" . A deformation of the hyperbolic cone-manifold structure on X

is called E�–compatible if its restriction to U".†/ is E�–compatible. We denote by
C�1.X; E�/ the space of E�–compatible deformations of X .

We identify an element in C�1.X; E�/ with the corresponding deformation of the smooth
part, ie with an element in Def.M /. Hence we may topologize C�1.X; E�/ as a subset
of Def.M /.

If X has cone angles less than 2� , then C defines a local coordinate system on
Xirr.�1M;SL2.C// near the holonomy character �0 D Œhol� of X . This coordinate
system is given by Theorem 2.11, which asserts that the map

ˆC W U \Xirr.�1M;SL2.C//!CN
�R3g�3�N

�R3g�3�N ;

� 7! .tr E�.�/; Im �E�.�/; Im trE�.�//;

is a local diffeomorphism at �0 . Since via (1) the deformation space Def.M / is locally
homeomorphic to the character variety Xirr.�1M;SL2.C//, we also obtain in this way
a local coordinate chart on Def.M /. There is of course a connection between this
coordinate map ˆC and the subspace of E�–compatible deformations of X . By definition
of the action-angle coordinates, we know that ˆC.�0/2 .�2; 2/N �f0g6g�6�2N . Now
if a character �0 2 U corresponds to an element X 0 2 C�1.X; E�/, then every curve
in C is either homotopic to the meridian of an edge or is up to homotopy contained in
the link of a vertex of X 0 ; in any case, its holonomy is elliptic. This means that ˆC
restricted to U\C�1.X; E�/ actually has values in .�2; 2/N �R3g�3�N �f0g3g�3�N .
Using Lemma 3.8, we can actually be more precise, since we know that Im �E�i

.�0/

must have sign si if �i is splittable, and must vanish otherwise.

In the same lemma, we have also seen a formula for the length of a new edge:

`i D si Im ��i
.�0/

q
4� tr�i

.�0/2:

This suggests that on C�1.X; E�/, we can use more geometrically meaningful coordi-
nates. For simplicity, we assume that the family E� is sorted so that the curves �1 to �n1

are splittable and the others are not. Let Rn1
s be the subset of tuples .x1; : : : ;xn1

/

such that sixi � 0. Now for each curve �i 2 E�, there exists a sign ci 2 f�1; 1g

such that tr�i
.�0/ D 2ci cos.˛i=2/ (this is the same definition as in the proof of

Lemma 3.8). Let fi.x/ D 2ci cos.x=2/; it is a diffeomorphism from .0; 2�/ to
.�2; 2/, and fi.˛i/D tr�i

.�0/.
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Proposition 4.2 Let EE� � U denote the submanifold-with-corners

ˆ�1
C .V \ .�2; 2/N �Rn1

s � f0g
3g�3�N�n1 � f0g3g�3�N /:

Then the map ‰E� W EE�! .0; 2�/N �Rn1

�0
,

‰E�.�/D
�
f �1

1 .tr�1
.�//; : : : ; f �1

N .tr�N
.�//;

s1 Im ��1
.�/

q
4� tr�1

.�/2; : : : ; sn1
Im ��n1

.�/
q

4� tr�n1
.�/2

�
;

is a local diffeomorphism. Moreover, if �0 is the holonomy character of a cone-manifold
structure X 0 2 C�1.X; E�/ close to X , then

‰E�.�
0/D .˛01; : : : ; ˛

0
N ; `1; : : : ; `n1

/;

where .˛0i/1�i�N are the cone angles of the original edges and .`i/1�i�n1
are the

lengths of the new edges.

Proof It follows directly from the preceding discussion and the fact that the map ˆC
is a local diffeomorphism (Theorem 2.11).

4.2 Deformations of hyperbolic cone–3–manifolds

We have just seen that the local diffeomorphism ‰E� W EE�! .0; 2�/N �Rn1

�0
induces

on C�1.X; E�/ a locally injective map, that sends an element to the vector composed
of the cone angles of the original edges and the lengths of the new ones. As a final
step, we now show that assuming the splitting condition, this map is locally onto, or
equivalently that C�1.X; E�/ can be locally identified with EE� .

Theorem 4.3 Let X be a hyperbolic cone–3–manifold with meridian set E� and cone
angles ˛ D .˛1; : : : ; ˛N / 2 .0; 2�/

N . Let E� be a family of curves on
`k

jD1Nj such
that C D E�[ E� is up to homotopy an admissible pair-of-pants decomposition of @ SM" .
Then a E�–compatible deformation of the hyperbolic cone-manifold structure on X

corresponding to a vector .˛0; `/ 2 .0; 2�/N �R3g�3�N
�0

close to .˛; 0/ exists, if the
curves �i with `i > 0 are splittable and disjoint.

Proof Using Proposition 4.2, we know the candidate �0 D‰�1
E�
.˛0; `/ for the conju-

gacy class of the holonomy representation of X 0 . Since Def.M / is locally homeomor-
phic to X.�1M;SL2.C//, we know that �0 is the holonomy character of a neighbouring
hyperbolic structure on M . What we need to show is that this hyperbolic structure (or
a thickening thereof) can be completed into a cone-manifold X 0 2 C�1.X; E�/, ie such
that its singular locus †0 is obtained from † by splitting some vertices according to
the curves of E� .
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By abuse of notation, the restriction of �0 to X.�1@ xM";SL2.C// will still be de-
noted �0 . Similarly, �0 stands for both the conjugacy class of the holonomy repre-
sentation hol of X and its restriction. Using Proposition 3.10, and the fact that the
curves �i satisfy the splitting condition and are disjoint whenever `i is positive, we
can continuously deform the hyperbolic structures on U".†/ into a E�–compatible one
whose holonomy representation is given by �0 .

Let us now recall briefly some elements of the theory of deformations of hyperbolic
structures; see [6] for more details. We know that a hyperbolic structure on M is
determined by its developing map devW �M ! H3 and its holonomy representation
�W �1M ! SL2.C/. On �M , we can consider the trivial bundle zE D �M �H3 , which
admits a horizontal foliation F given by the constant sections. The developing map then
gives rise to a section z� of zE , mapping p 2 �M to .p; dev.p//; this developing section
is transverse to F . We can quotient zE D �M �H3 by the action of the fundamental
group of M given by the holonomy representation .p;x/ � .
:p; �.
 /.x//. The
result is a bundle E� on M , with fiber H3 , still endowed with the horizontal foliation
inherited from F . The equivariance of the developing map means that the section z�
descends to the developing section � of E� , transverse to F . What we have described
here is a construction that to a hyperbolic structure on M associates a triplet .E;F ; �/
where E is a .H3;SL2.C//–bundle on M with a horizontal foliation F and a section �
transverse to this foliation. One can then show that any such triplet actually determines
a hyperbolic structure on M .

Now let �0 be a representative of �0 close to hol. Then the corresponding bundles E�0

and Ehol are actually isomorphic, so we can identify them: E�0 'Ehol 'E . The two
horizontal foliations F and F 0 are however different but close. We have seen that
using the results of the previous section, we can construct on a neighbourhood U".†/

of the singular locus of X a continuous family of hyperbolic structures, joining the
initial structure to one whose holonomy representation is induced by �0 ; this means that
over U".†/, the foliation F 0 is still transverse to � . By compactness, this is also true
over the remainder of M if �0 is close enough to hol, ie if .˛0�˛; `/ is small enough.
This implies that the triplet .E;F 0; �/ determines a hyperbolic structure on M , whose
restriction to U".†/ is the deformation constructed above. In particular, the metric
completion of M is the desired cone-manifold.

Remark 4.4 It should be noted that the splitting assumption on the curves �i for which
`i ¤ 0 is not indispensable; actually, the only necessary condition is that the correct
deformation on U".†/ can be constructed. In particular, we can include generalized
splittable curves, as described in the last part of Section 3.2.
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From this result, our main theorem follows easily. It also supposes the splitting
condition, since it is easier to state, but the reader should be aware that it applies to a
slightly more general situation.

Theorem 1.2 Let X be a hyperbolic cone–3–manifold with cone angles less than
2� and meridian set E�. Let E� be a pair-of-pants decomposition of

`k
jD1Nj such that

C D E�[ E� gives an admissible pair-of-pants decomposition of @ SM" . If all the curves
in E� are splittable, then the map

.˛; `/W C�1.X; E�/! .0; 2�/N �R3g�3�N
�0

sending a E�–compatible cone-manifold structure to the vector composed of its original
edges’ cone angles and new edges’ lengths, is a local homeomorphism at the given
structure.

Proof This follows directly from Proposition 4.2 and Theorem 4.3.

4.3 Stratified structure of C�1.X/

Let X be a closed hyperbolic cone–3–manifold with all cone angles smaller than 2� ;
we denote as usual its regular part by M and its meridian set by E�. Its deformation
space C�1.X / is defined as the space of all hyperbolic cone-manifold structures on
the same underlying topological space (but possibly with different singular loci) and
with the same regular part M . Let C�1.X /comp be the union

S
C�1.X; E�/ over all

the families E� such that E�[ E� is an admissible pair-of-pants decomposition (note that
C�1.X; E�/DC�1.X; E�

0/ if each splittable curve of E� is equivalent to a splittable curve
of E�0 and reciprocally). This space of compatible deformations contains a large piece
of the neighbourhood of X in C�1.X /. Theorems 4.3 and 1.2 give a description of the
shape of C�1.X /comp , and its expression as

S
C�1.X; E�/ shows that it is a stratified

space near X :

� The (closed) top-dimensional strata have dimension 3g�3 and correspond to the
C�1.X; E�/–spaces for which we have that all the curves in E� are splittable and
disjoint. In these strata, we have the local parametrization given by Theorem 1.2
.˛; `/W C�1.X; E�/! .0; 2�/N �R3g�3�N

�0
.

� We can associate a lower-dimensional stratum to each family of curves E�02 j̀ Nj

such that E�[E�0 is a subset of an admissible pair-of-pants decomposition of @ SM" ,
and such that the curves in E�0 are splittable and disjoint. This (closed) stratum
then consists of the deformations that are only split along the curves of E�0 ,
and it also admits a parametrization by the cone angles of the original edges
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and the lengths of the new ones. An alternate description is as the intersectionT
C�1.X; E�/ over all the families of curves E� containing E�0 and such that
E�[ E� is admissible; note however that not all of the C�1.X; E�/–spaces in this
intersection correspond to top-dimensional strata. Indeed, it is possible that E�0

cannot be completed by any disjoint, nonhomotopic splittable curve, in which
case the corresponding stratum does not lie in any higher-dimensional one.

� At the intersection of all these C�1.X; E�/–spaces we find of course the bottom-
dimensional stratum C�1.X; †/, consisting of the deformations that do not split
any vertex.

Locally, C�1.X / can contain other types of deformation, besides the obvious extension
of the above description to include generalized splittable curves. First of all, as we have
seen in Section 3.2, it may be possible to split X along curves with trivial holonomy.
However, the parametrization results are no longer valid in that case. Secondly, a curve 

on a link’s smooth part Nj may be “weakly splittable”, if Nj lies on the boundary of
the open set of spherical structures for which 
 is splittable (cf Lemma 3.2). In that
case, even though X cannot be directly split along 
 , it can happen that arbitrarily
small deformations of it admit such splittings. The resulting elements of C�1.X / then
do not form a well-defined stratum. The fifth picture in Figure 4 provides an example
of a weakly splittable curve: under small perturbations of the spherical structure, it can
become splittable; the resulting cone angle is either close to 3� or to 5� , and these
two possibilities correspond to different signs for the direction of the Hamiltonian flow,
cf Lemma 3.8.

A complex of curves realization The local stratified structure on C�1.X /comp is in
fact closely related to the geometry of the complex of curves of j̀ Nj . We recall
briefly its definition: the complex of curves K.S/ of a surface S is the simplicial
complex whose n–dimensional simplices correspond to sets of nC1 distinct homotopy
classes of nonperipheral simple closed curves on S , realizable as disjoint curves; see
Harvey [9] and Masur and Minsky [14]. In particular, its top-dimensional simplices
(or facets) are in bijection with the pair-of-pants decompositions of S . Note that the
inclusion of j̀ Nj in @ xM" induces an embedding of K. j̀ Nj / into K.@ xM"/ as the
link of the simplex K E� corresponding to the family of meridians of X .

Every stratum of C�1.X /comp is determined by a family of curves E�0 , and thus cor-
responds to a simplex KE�0 in K. j̀ Nj /. But this correspondence is not one-to-one:
we have seen that there could exist on j̀ Nj two homotopic, nonequivalent splittable
curves; splitting deformations along one curve and along the other belong to two
disjoint strata of C�1.X /comp , that both correspond to the same simplex of the curve
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complex. Besides, most families of disjoint homotopy classes on j̀ Nj cannot be
realized by splittable curves.

However, we can still use the results of this article to construct a geometric realization
of a modified curve complex. Let K0 be the subcomplex of K. j̀ Nj / obtained by re-
moving all faces whose family of homotopy classes cuts j̀ Nj into subsurfaces at least
one of which has reducible holonomy representation, and also all faces whose family
of homotopy classes contains one with trivial holonomy (since it obviously cannot be
completed into an admissible pair-of-pants decomposition). Otherwise, Proposition 2.4
asserts that any remaining simplex is included in a facet, ie a .3g�4�N /–dimensional
one. Note however that generically K0DK. j̀ Nj / and this restriction is unnecessary.
We consider the cone C.K0/ over K0 ; it is not a simplicial complex, but its truncated
version carries this structure. Now let us choose an arbitrary function s which associates
to each homotopy class Œ
 � on j̀ Nj a sign s.Œ
 �/ 2 f�1; 1g. We will see that any
choice of such a function yields a continuous map „s from a neighbourhood V of
.˛; 0/ in .0; 2�/N �C.K0/ to Def.M /'loc X.�1M;SL2.C//, where ˛ 2 .0; 2�/N

is the vector of the cone angles of X .

Every top-dimensional simplex of K0 determines (up to homotopy) a family of curves E�
such that C D E�[ E� is an admissible pair-of-pants decomposition of @ SM" . This sim-
plex K0

E�
can be parametrized as f.x1; : : : ;x3g�3�N /2R3g�3�N

�0
j
P

j xj D 1g, where
the subset fxi D 1g is the vertex associated to the single curve �i . By Theorem 2.11, C
gives rise to a local coordinate chart ˆC on X.�1M;SL2.C//, and as in Proposition 4.2,
we can consider the local diffeomorphism

‰E�;sW ˆ
�1
C ..�2; 2/N �R3g�3�N

s � f0g3g�3�N /! .0; 2�/N �R3g�3�N
�0

;

‰E�;s.�/D
�
f �1

1 .tr�1
.�//; : : : ; f �1

N .tr�N
.�//;

s.Œ�1�/ Im ��1
.�/

q
4� tr�1

.�/2; : : : ;s.Œ�3g�3�N �/ Im ��3g�3�N
.�/

q
4� tr�3g�3�N

.�/2
�
:

Let VE� D V \
�
.0; 2�/N �C.K0

E�
/
�

. We can now define the continuous map „s by
requiring that its restriction to VE� is given by

„E�;sW VE� � .0; 2�/N �K0
E�
� .0;1/!X.�1M;SL2.C//;

.˛01; : : : ; ˛
0
N ;x1; : : : ;x3g�3�N ; t/ 7!‰�1

E�;s
.˛01; : : : ; ˛

0
N ; tx1; : : : ; tx3g�3�N /:

It is then easy to check that these restrictions coincide on VE� \VE�0 for all E� , E�0 . We
remark that this map cannot be proper, because K0 is locally infinite whereas Def.M /

is locally compact.
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There is an obvious relation between this map „s and the stratified structure on
C�1.X /comp . Indeed, the holonomy characters of the elements of C�1.X; E�/ corre-
spond to the image by „s of .0; 2�/N �C.K0

E�
/, if the function s maps the curves in E�

to their signs as defined in Lemma 3.8. The nonproperness of „s then corresponds to
the existence of converging sequences of representations, as discussed below.

Limit points It is remarkable that the stratified structure of C�1.X /comp is not locally
finite. Indeed, we have seen in Section 3.1 an example with infinitely many nonho-
motopic splittable curves. It implies that we can have infinitely many different strata
intersecting at a lower-dimensional one. However, C�1.X / is immersed in Def.M /,
which is locally compact; this means that in this situation, there must exist a sequence
of holonomy characters converging to a limit.

An exact computation can be done in the example of Section 3.1. We recall that S is
the double of a spherical square with angle 2�=3 (see Figure 8). We have seen that
the image �n of the curve � after n (full) Dehn twists along the curve 
 satisfies the
splitting condition and has cone angle 2n� C 4�=3 if n is even, and 2n� C 2�=3

if n is odd. Let �n be the representation obtained by splitting S along �n by a
length of l=n for some positive real number l . Then one can compute that this
sequence of representations converges to a limit representation �1 , which is exactly
the representation obtained by splitting S along 
 by a length of .

p
3=2/l . This result

is more striking expressed in terms of the complex Hamiltonian flow: the sequence of
characters obtained from Œ�� by following the flow associated to tr�n

for a complex
time z=n, converges to the character obtained by following the flow associated to tr

for a complex time z . Interestingly, it corresponds in this example to the convergence
of the underlying measured laminations, since 
 (as a lamination with the unit mass
transverse measure) is the limit of the rational measured laminations �n=n. This
relation between measured laminations and twist flow is well-known for hyperbolic
surfaces and .P/SL2.R/–representations and is part of the earthquake maps theory (see
Thurston [24]), but it is not clear whether this always holds in the complex case.

4.4 The polyhedral case

If P is a convex hyperbolic polyhedron, then its double D.P / has a natural cone-
manifold structure with cone angles smaller than 2� , so the results of this article
can be applied to D.P /. However for most splittings of the vertices, the resulting
cone-manifold will no longer be the double of a polyhedron; this contrasts strongly
with the nonsplitting case; see [17].

For simplicity we will work with face-marked polyhedra, that is, polyhedra equipped
with a bijective map from the set of faces F to f1; 2; : : : ; jF jg. Let Pol.n/ be the
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S

�




n Dehn twists ::: n!1
x n�

Figure 8: Converging deformations

set of strictly convex, face-marked, hyperbolic polyhedra with n faces. Each ele-
ment of this set can be defined as a (nonredundant) intersection of n half-spaces.
Using the correspondence between oriented half-spaces of H3 and points of the
de Sitter space dS3 , we see that Pol.n/ can be identified with an open subset of
.dS3/n ; in particular, it is a smooth manifold of dimension 3n. The isometry group
IsomC.H3/D IsomC.dS3/D SO0.1; 3/ acts freely and discontinuously on this set,
so that the quotient Pol.n/, the space of congruence classes of (face-marked) strictly
convex hyperbolic polyhedra with n faces, is a smooth manifold of dimension 3n� 6.
Using the Euler formula and the equality 2N D

Pk
jD1mj (recall that N is the number

of edges, k the number of vertices, and mj the valence of the j –th vertex), we obtain
that the dimension of Pol.n/ is also equal to N C

Pk
jD1.mj � 3/ D 3g � 3. This

is exactly the dimension of C�1.D.P /; E�/, for any family of curves E� satisfying the
assumptions of Theorem 1.2.

In a neighbourhood of D.P /, the double construction embeds Pol.n/ naturally into
C�1.D.P //, but as a union of several C�1.D.P /; E�/–spaces. Actually, it is rather
simple to determine which families of curves E� yield deformations that are doubles of
polyhedra. The link of each vertex of D.P / is the double of a convex spherical polygon,
and the splitting curves must preserve this doubles structure. Thus C�1.D.P /; E�/

corresponds to polyhedral deformations if and only if each curve �i in E� is the double
of an arc joining two nonadjacent edges of one of those spherical polygons. It is easy to
see that such curves �i satisfy the splitting condition and give admissible pair-of-pants
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decompositions. Theorem 1.2 then yields, for each such E� , a parametrization by the
dihedral angles and new edges’ lengths of the corresponding subset of Pol.n/ in a
neighbourhood of D.P /.

We give in Figure 9 a schematic picture of Pol.n/ near D.P / for a polyhedron P

having one vertex of valence 5 and all others of valence 3 (eg a pyramid with a
pentagonal base). The deformations modifying the dihedral angles are not depicted, but
should be thought as an N –dimensional space perpendicular to the plane of the figure.
Locally, Pol.n/ is the smooth union of five C�1.D.P /; E�/–spaces, corresponding to
the five different ways of splitting the spherical pentagon whose double is the spherical
link of the valence 5 vertex. Any other pair-of-pants decomposition of this spherical
link (satisfying the assumptions of Theorem 1.2) will yield deformations of D.P / that
are no longer doubles of polyhedra.

Figure 9: Partition of Pol.n/ corresponding to all the possible splittings of a
valence 5 vertex
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