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The deformation theory of hyperbolic cone–3–manifolds
with cone-angles less than 2�

HARTMUT WEISS

We develop the deformation theory of hyperbolic cone–3–manifolds with cone-angles
less than 2� , that is, contained in the interval .0; 2�/ . In the present paper we
focus on deformations keeping the topological type of the cone-manifold fixed. We
prove local rigidity for such structures. This gives a positive answer to a question of
A Casson.

53C25; 57M50

1 Introduction

Let X be a closed, orientable hyperbolic cone–3–manifold. Recall that X is a path
metric space homeomorphic to a closed, orientable 3–manifold with certain local models
prescribed (see Boileau, Leeb and Porti [1] or Cooper, Hodgson and Kerckhoff [7]).
More precisely, for x 2X the metric ball B".x/�X is required to be isometric to a
truncated hyperbolic cone over a space Sx , which in turn is required to be a spherical
cone-surface homeomorphic to the 2–sphere, see below. The space Sx is called the
link of x . Let M denote the open subset of X consisting of those points x 2X with
the property that Sx is actually isometric to S2 , the standard smooth round 2–sphere.
This subset M carries a smooth but typically incomplete hyperbolic metric gTM and
is called the smooth part of X . The complement †D X nM is called the singular
locus of X .

Now a spherical cone-surface S is again a path metric space, homeomorphic to a
surface in this case, with certain local models prescribed: A metric ball B".x/� S is
required to be isometric to a truncated spherical cone over S1

˛x
D R=˛xZ for some

number ˛x > 0. The number ˛x > 0 is called the cone-angle at x . The smooth
part N consisting of points x 2 S with ˛x D 2� carries a smooth, but typically
incomplete spherical metric gTN and the singular locus is just a finite collection of
points fp1; : : : ;pmg, also called cone-points in the following. This concludes the
description of the local structure of a hyperbolic cone–3–manifold.

Published: 11 March 2013 DOI: 10.2140/gt.2013.17.329

http://msp.org
http://www.ams.org/mathscinet/search/mscdoc.html?code=53C25,(57M50)
http://dx.doi.org/10.2140/gt.2013.17.329


330 Hartmut Weiß

From the description of the local structure of a hyperbolic cone–3–manifold it is evident
that the singular locus †�X is a geodesic graph. Let e1; : : : ; eN denote the edges
and v1; : : : ; vk the vertices contained in †. Note that † may be disconnected and that
some edges ei may be closed singular geodesics. For each vertex vj let mj denote the
number of edges meeting at vj , or equivalently, the number of cone-points contained
in Sj , the link of vj . To each edge ei we attach a number ˛i > 0, the cone-angle
along ei , in the following way: For each point x in the interior of ei the link Sx is
isometric to a spherical suspension Si D S2.˛i ; ˛i/, that is, a spherical cone-manifold
structure on S2 with two cone-points and both cone-angles equal to ˛i .

If the cone-angles are assumed to be less than or equal to � , then the list of possible
links is short: Sx may either be the smooth round 2–sphere S2 , a spherical suspension
S2.˛; ˛/ as above or a cone-surface of type S2.˛; ˇ; 
 /, that is, the double of a
spherical triangle with interior angles ˛=2; ˇ=2 and 
=2. All these cone-surfaces are
rigid in the sense that their isometry type is determined by the cone-angles. On the
other hand, if the cone-angles are allowed to lie in the interval .0; 2�/, then there
is a much larger choice of possible links. Moreover, these links are in general more
flexible, that is, their isometry type is not determined by the cone-angles alone. More
precisely, as a consequence of Troyanov [23] and Luo and Tan [12], see also Mazzeo
and Weiss [16], one has that for m� 3 the space of spherical cone-manifold structures
on .S2; fp1; : : : ;pmg/ is locally parametrized by T0;m � .0; 2�/

m , where T0;m is the
Teichmüller space of the m–times punctured sphere. One part of the original motivation
for this present work was to understand how this additional flexibility of the links affects
the deformation theory of hyperbolic cone–3–manifolds.

Now let C�1.X; †/ denote the space of hyperbolic cone-manifold structures on .X; †/,
that is, hyperbolic cone-manifold structures on X with singular locus precisely given
by †. The pair .X; †/ is called the topological type of the cone-manifold structure in
question. The space C�1.X; †/ carries a topology such that the map

˛W C�1.X; †/!RN
C

mapping a hyperbolic cone-manifold structure to the vector of cone-angles ˛ D
.˛1; : : : ; ˛N / 2RN

C is continuous.

In [9], C D Hodgson and S P Kerckhoff showed that if the cone-angles are less than 2�

and the singular locus is assumed to contain no vertices, that is, † is a disjoint union
of circles, then ˛ is a local homeomorphism at the given structure.

After the appearance of the results of Hodgson and Kerckhoff, A Casson asked in a
conference talk [4], if ˛ is a local homeomorphism in the case that vertices are present
and the cone-angles are less than 2� . At the same time he presented a counterexample
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in the case that some of the cone-angles are larger than 2� . Moreover he asked, if ˛
is at least always open.

In [24], the author showed that if the cone-angles are less than or equal to � and †
is allowed to contain vertices, then again ˛ is a local homeomorphism at the given
structure. Under the same condition on the cone-angles the spherical case is also treated
in [24], whereas the Euclidean case is treated in [21] by Porti and the author. In both of
these cases an additional non-degeneracy condition has to be imposed; the Euclidean
case involves deforming into nearby hyperbolic and spherical structures. For details
we refer the reader to [24] and [21].

The aim of this present work is to bridge the gap between the results contained in
Hodgson and Kerckhoff [9] and [24], namely we prove the following:

Theorem 1.1 (Local Rigidity) Let X be a hyperbolic cone–3–manifold with cone-
angles less than 2� . Then the map

˛ D .˛1; : : : ; ˛N /W C�1.X; †/!RN
C

is a local homeomorphism at the given structure.

In fact, we show slightly more, namely that the deformation space Def.M / of in-
complete hyperbolic structures on M , the smooth part of X , is smooth near the
given strucuture and of complex dimension N C

Pk
jD1.mj � 3/. We identify the

deformations which correspond to cone-manifold structures preserving .X; †/, that is,
C�1.X; †/� Def.M /, together with a good local parametrization of these deforma-
tions. This essentially yields Theorem 1.1, which in particular gives a positive answer
to the above mentioned question of Casson.

We now briefly describe the relationship of this article with concurrent work of R Mazzeo
and G Montcouquiol on the subject. Mazzeo and Montcouquiol have developed an
alternative approach to these questions using the deformation theory of Einstein metrics.
In [15] these authors prove an infinitesimal rigidity theorem for Einstein deformations
of the hyperbolic cone metric. This corresponds to our Theorem 3.15, which technically
speaking is an L2 –cohomology vanishing result. The local deformation theory is then
established by Montcouquiol in [19], leading to an alternative proof of Theorem 1.1.

It turns out that our infinitesimal rigidity result Theorem 3.15 has further applications. In
joint work with G Montcouquiol [20] we use it to establish a good local parametrization
for the whole of Def.M /. Furthermore, we are able to provide a geometric description
of certain cone-manifold deformations which are transverse to C�1.X; †/. These
deformations split a singular vertex into several vertices of lower valency and hence
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alter the topological type of the original cone-manifold. For details we ask the reader
to consult [20].

The author would like to thank Steve Kerckhoff and Rafe Mazzeo for useful conversa-
tions during the preparation of this article.

2 Analysis on manifolds with conical singularities

2.1 L2–cohomology

Let .M m;gTM / be a Riemannian manifold and .E ;rE ; hE/ a flat vector bundle over
M , where we do not assume hE to be rE –parallel. In our main instance of such a
situation, M will be the smooth part of a hyperbolic cone–3–manifold and E the flat
bundle of infinitesimal isometries equipped with its canonical metric.

Let ��.M I E/ denote the smooth differential forms on M with values in E and let
��

L2.M I E/D f! 2��.M I E/W ! 2L2; dE! 2L2g, where dE is the exterior differ-
ential associated with the flat connection rE . Clearly ��

L2.M I E/ is a complex with
differential dE and its cohomology H �

L2.M I E/ is by definition the L2 –cohomology
of M with values in E .

If we view dE as an unbounded operator acting on compactly supported smooth forms,
we consider the closed extensions dE

max and dE
min . Let H �max denote the cohomology of

the dE
max –complex and H �min the cohomology of the dE

min –complex. If the L2 –Stokes
theorem holds for E –valued forms on M , then dE

max D dE
min . Let

�dE
max
D ıEmindE

maxC dE
maxı

E
min

and
�dE

min
D ıEmaxdE

minC dE
minı

E
max:

Both �dE
max

and �dE
min

are selfadjoint extensions of �dE D ıEdE C dEıE , the latter
considered as acting on compactly supported smooth forms. We denote by

H�max D f! 2 dom��
dE

max
W dE

max.!/D ı
E
min.!/D 0g

the dE
max –harmonic (or L2 –harmonic) and by

H�min D f! 2 dom��
dE

max
W dE

min.!/D ı
E
max.!/D 0g

the dE
min –harmonic forms. Note that .dE

max/
� D ıEmin and .dE

min/
� D ıEmax . The dE

max –
complex computes the L2 –cohomology:
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Theorem 2.1 The inclusion of the subcomplex ��
L2.M I E/ � dom.dE

max/
� induces

an isomorphism in cohomology H �
L2.M I E/ŠH �max .

Furthermore, one has the following L2 –Hodge theorem:

Theorem 2.2 There is an orthogonal decomposition

�L2

�
M I

V�
T �M ˝ E

�
DH�max˚ im.dE

max/
��1˚ im.ıEmin/

� :

Corollary 2.3 If the range of dE
max is closed, then there is an orthogonal decomposition

�L2

�
M I

V�
T �M ˝ E

�
DH�max˚ im.dE

max/
��1
˚ im.ıEmin/

�

and there is a canonical isomorphism H�max ŠH �max .

If in addition bE 2 �.M I E�˝ E�/ is a fiberwise non-degenerate symmetric bilinear
form which is rE –parallel, then the map ˛ 7! ..hE/�1ıbE/?˛ induces an isomorphism
Hk

max ŠHm�k
min and the bilinear pairing

H k
max �H m�k

min !R

.Œ˛�; Œˇ�/ 7!

Z
M

bE.˛^ˇ/

is non-degenerate, where ^W
Vk

T �M ˝ E �
Vl

T �M ˝ E!
VkCl

T �M ˝ E˝ E .
In our main instance, bE

x will be the Killing form on Ex Š sl2.C/.

Theorem 2.4 If the L2 –Stokes theorem holds for E –valued forms on M , then
Poincaré duality holds for L2 –cohomology, that is, the bilinear pairing

H k
L2.M I E/�H m�k

L2 .M I E/!R

.Œ˛�; Œˇ�/ 7!

Z
M

bE.˛^ˇ/

is non-degenerate.

Most of these results are due to J Cheeger and can be found in [5], see also the references
in [24]. A more recent reference is Brüning and Lesch [2], which we found especially
useful.
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2.1.1 The Hodge–Dirac operator First we calculate the Hodge–Dirac operator near
a vertex v : Let .N n;gTN / be the spherical link of v . Then the hyperbolic metric has
the form

ghyp D dr2
C sinh.r/2gTN

on U".v/. We identify triples Œ�0; �1; �2�
t with �i 2 �

�
U".v/I�

�
N

Vi
T �N

�
with

either even or odd forms on U".v/ as follows:

�ev
D sinh.r/�1

�
�0C sinh.r/�1 ^ dr C sinh.r/2�2

�
and

�odd
D sinh.r/�1

�
�0 ^ dr C sinh.r/�1C sinh.r/2�2 ^ dr

�
:

This induces isometric isomorphisms

L2
�
.0; "/; �L2

�
N I

V�
T �N

��
Š �L2

�
U".v/I

Vev
T �M

�
and

L2
�
.0; "/; �L2

�
N I

V�
T �N

��
Š �L2

�
U".v/I

Vodd
T �M

�
:

Then with respect to these identifications

Dev

24�0

�1

�2

35D
0@@r C

1

sinh.r/

0@DN C cosh.r/

24�1 0 0

0 0 0

0 0 1

351A1A24�0

�1

�2

35 :
The corresponding operator in the Euclidean situation will serve as a model operator
and is given by

PB D @r C
1

r
B

with

B DDN C

24�1 0 0

0 0 0

0 0 1

35
acting on triples Œ�0; �1; �2�

t as above. Similarly we get

Dodd

24�0

�1

�2

35D
0@�@r C

1

sinh.r/

0@DN C cosh.r/

24�1 0 0

0 0 0

0 0 1

351A1A24�0

�1

�2

35
and the model operator is given by

P t
B D�@r C

2
r
B D�P�B
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acting on triples Œ�0; �1; �2�
t as above. Note that B is a symmetric first order differen-

tial operator on N of conic type. It was shown in [24] that any self-adjoint extension
of B has discrete spectrum.

For purposes of exposition we give a detailed treatment for the model operators PB

and P t
B

in the following. The necessary modifications for the actual operators Dev

and Dodd are straightforward and left to the reader.

From [24] we know that B is essentially selfadjoint if the cone-angles are less than 2� .
We denote by xB its closure, which is then a selfadjoint operator with dom xB �L2.N /.
Furthermore we know from [24] that under the same assumption on the cone-angles
one has

spec xB \ .�1
2
; 1

2
/D∅;

and hence for a cut-off function ' 2 C1
0
Œ0; 1/

'.PB/max D .PB/min:

Note that C1
0
.N /� dom xB and C1

0
..0; 1/�N /� dom PBmin are dense with respect

to the corresponding graph norms.

Recall from [24] that the solution to the homogeneous equation Pbf D 0 is given by

f .r/D r�bf .1/;

whereas the solution to the inhomogeneous equation Pbf D g is given by

f .r/D r�b

�
f .1/C

Z r

1

�bg.�/ d�

�
:

As in [24] we set (following Brüning and Seeley [3])

.Tb;1g/.r/D r�b

Z r

1

�bg.�/ d�

for b 2R and

.Tb;0g/.r/D r�b

Z r

0

�bg.�/ d�

for b > �1
2

.

We are mainly interested in the case that b 62 .�1
2
; 1

2
/, on which we will focus from

now on. We will use Tb;1 for b � �1
2

and Tb;0 for b � 1
2

.
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Let now f 2L2.0; 1/ and g2 r
L2.0; 1/ for 
 � 0, that is, gD r
 xg for xg2L2.0; 1/:
For b � �1

2
we get as in [3, Lemma 2.1], respectively [24, Lemma 4.6]:

j.Tb;1g/.r/j � r�b
�

8̂<̂
:

rbC 1
2
C

j2bC 2
 C 1j�

1
2 kxgkL2.0;1/ if bC 
 < �1

2
;

j log r j
1
2 kxgkL2.0;1/ if bC 
 D�1

2
;

.2bC 2
 C 1/�
1
2 kxgkL2.0;1/ if bC 
 > �1

2
:

For b � 1
2

we get

j.Tb;0g/.r/j � r
1
2
C
 .2bC 2
 C 1/�

1
2

�Z r

0

jxg.�/j2d�

� 1
2

:

The following is the analogue of [24, Lemma 4.7]:

Lemma 2.5 Let f 2 L2.0; 1/ and g 2 r
L2.0; 1/ for 
 � 0, that is, g D r
 xg for
xg 2L2.0; 1/. Then for r 2 .0; 1/ and with g D Pbf we have for b � 1

2

jf .r/j � r
1
2
C
 .2bC 2
 C 1/�

1
2

�Z r

0

jxg.�/j2d�

� 1
2

� r
1
2
C
 .2bC 2
 C 1/�

1
2 kxgkL2.0;1/;

and for b � �1
2

jf .r/j � r�b
�

8̂<̂
:
jf .1/jC rbC 1

2
C

j2bC 2
 C 1j�

1
2 kxgkL2.0;1/ if bC 
 < �1

2
;

jf .1/jC j log r j
1
2 kxgkL2.0;1/ if bC 
 D�1

2
;

jf .1/jC .2bC 2
 C 1/�
1
2 kxgkL2.0;1/ if bC 
 > �1

2
:

Remark 2.6 For 
 D 0 we recover the estimates in [24, Lemma 4.7].

As a consequence of these estimates we get the following:

Corollary 2.7 Assume that B is essentially selfadjoint and furthermore that spec xB\
.�1

2
; 1

2
/D∅. Let f 2 dom.PB/max . Then f .r/ 2L2.N / for all r 2 .0; 1/ and

kf .r/kL2.N / D

(
O.r

1
2 j log r j

1
2 / if � 1

2
2 spec xB;

O.r
1
2 / if � 1

2
62 spec xB:

as r ! 0.
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Proof Let ' 2 C1
0
Œ0; 1/ be a cut-off function satisfying ' � 1 in a neighbourhood

of 0. Then with f 2 dom.PB/max we also have zf D 'f 2 dom.PB/max . According
to [24] we even have zf 2 dom.PB/min , but we will only make use of zf .1/D 0 in the
following. We set zg D PB

zf 2 L2..0; 1/�N /. Let . b/b2spec xB be an orthonormal
system of eigenfunctions of xB on N . Writing

zf D
X

b

zfb˝ b and zg D
X

b

zgb˝ b

with zfb; zgb 2 L2.0; 1/ we get Pb
zfb D zgb for all b 2 spec xB . The estimates of

Lemma 2.5 with 
 D 0 (that is, [24, Lemma 4.7]) now reduce to

j zfb.r/j �

8̂<̂
:

r
1
2 .2bC 1/�

1
2 kzgbkL2.0;1/ if b � 1

2
;

r
1
2 j log r j

1
2 kzgbkL2.0;1/ if b D�1

2
;

r
1
2 j2bC 1j�

1
2 kzgbkL2.0;1/ if b < �1

2
:

By summing over b 2 spec xB we get

k zf .r/k2
L2.N /

D

X
b

j zfb.r/j
2
� C �

(
r j log r jkzgk2

L2..0;1/�N /
if � 1

2
2 spec xB;

rkzgk2
L2..0;1/�N /

if � 1
2
62 spec xB

hence that zf .r/ 2L2.N / and the desired estimate.

The transversal regularity and decay rate can be improved if f 2 dom.PB/max.P
t
B
/max :

Lemma 2.8 Assume that B is essentially selfadjoint and furthermore that spec xB \
.�1

2
; 1

2
/ D ∅. Let f 2 dom.PB/max.P

t
B
/max . Then f .r/ 2 dom xB for all r 2 .0; 1/

and
kf .r/kdom xB DO.r ı/

as r ! 0, where ı � 0 may be any number satisfying both ı < 3
2

and ı � minfb 2
spec xB W b � 1

2
g.

Proof Let ' 2 C1
0
Œ0; 1/ be a cut-off function as in the proof of Corollary 2.7. If

f 2 dom .PB/max.P
t
B
/max , then we set as above zf D 'f and zg D P t

B
zf . Again,

zf 2 dom .P t
B
/max and zf .1/D 0. Since zgD�.@r'/f C'PBf , we find that also zg 2

dom .PB/max and zg.1/D 0. Finally we set zhDPB zg 2L2..0; 1/�N /. Integrating the
above estimates, now applied to the equation PB zgD zh, we get that zg2r
L2..0; 1/�N /

for any 0� 
 < 1. More precisely,

kr�
 zgbk
2
L2.0;1/

� C �

(
j2bC 1j�1kzhbk

2
L2.0;1/

if b ¤�1
2
;

kzhbk
2
L2.0;1/

if b D�1
2
:
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We will choose 
 disjoint from the set �1
2
C spec xB but arbitrarily close to 1 in

the following. Then the estimates in Lemma 2.5 applied to the equation P t
B
zf D

�.P�B/ zf D zg yield:

k zf .r/k2
dom xB

D

X
b

.1C b2/j zfb.r/j
2

�r2ı
X

b

1C b2

j2bC 2
 C 1j
kr�
 zgbk

2
L2.0;1/

�C r2ı

� X
b¤� 1

2

1C b2

j2bC 2
 C 1jj2bC 1j
kzhbk

2
L2.0;1/

Ckzh
� 1

2
k

2
L2.0;1/

�
�C 0r2ı

kzhk2
L2..0;1/�N /

for any ı � 0 satisfying ı < 3
2

and ı � minfb 2 spec xB W b � 1
2
g. This proves that

zf .r/ 2 dom xB and the corresponding estimate.

The spectrum of xB has been determined in [24], namely

spec xB D f�1; 1g[
n
˙

1
2
˙

q
1
4
C� W � 2 spec�N;Fr ; � > 0

o
where �N;Fr is the Friedrichs extension of �N D�

0
dN

on functions. Furthermore �1

corresponds to ker�dN ;Fr on functions and 1 corresponds to ker�dN ;Fr on 2–forms.
Note that the set n

˙
1
2
˙

q
1
4
C� W � 2 spec�N;Fr ; � > 0

o
does not intersect the interval Œ�1; 1� if the first positive eigenvalue of �N;Fr is strictly
greater than 2.

Corollary 2.9 Assume that B is essentially selfadjoint and furthermore that spec xB\
.�1

2
; 1

2
/D∅ and that the first positive eigenvalue of �N;Fr is strictly greater than 2.

Let f 2 dom.PB/max.P
t
B
/max .

(1) If f corresponds to an odd form, then

kf .r/kdom xB DO.r
 /:

(2) If f corresponds to a 1–form, then there exists 
 > 0 such that

kf .r/kdom xB DO.r1C
 /:
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Proof The first assertion follows directly from Lemma 2.8. If f corresponds to a
1–form, then in the decomposition f D

P
b fb˝ b the term corresponding to b D 1

does not occur (since f does not involve a 2–form part on the cross-section).

A conic differential operator P on N of order m � 0 acts as a bounded operator
between weighted “cone” Sobolev spaces

P W HkCm;
Cm.N /!Hk;
 .N / ; k 2N0; 
 2R:

These spaces are nothing but weighted b–Sobolev spaces in the sense of Melrose’s
b–calculus, but defined with respect to the measure coming from the cone metric gTN

on N ; more precisely

Hk;0.N /D ff 2L2.N / WV1 � � �Vjf 2L2.N / for all j � k

and b–vector-fields Vig

and
Hk;
 .N /D �
Hk;0.N /

for 
 2R, k 2N0 . Here �2C1.N / denotes a positive function, which close to a cone
point equals the distance to that cone point. In particular, we have H0;0.N /DL2.N /

and H0;
 .N /D �
L2.N / for 
 2R.

Lemma 2.10 Assume that B is essentially selfadjoint and that 0 62 spec xB . Then
dom xB is continuously contained in H1;1.N /.

Proof It follows from Lesch [11] or from Gil and Mendoza [8] that dom xB�H1;
 .N /

for any 0< 
 < 1. We claim that for such a choice of 
 the map

BW H1;
 .N /! r
�1L2.N /

is invertible. Indeed, since 0 62 spec xB the L2 –kernel of B is trivial, hence so is the
kernel of B on H1;
 .N /�L2.N /. On the other hand, by duality the cokernel of B

on H1;
 .N / is identified with the kernel of B on H1;1�
 .N /, which is trivial for the
same reason. Now since B is elliptic, there exists a (generalized) inverse

G D B�1
W r
�1L2.N /!H1;
 .N /;

inducing continuous maps

GW Hk;�.N /!HkC1;�C1.N /
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for all � 2R, k 2N . This follows from the existence of a parametrix (see Melrose
and Mendoza [18] and Schulze [22], see also Mazzeo [14] or Melrose [17]). Now let
f 2 dom xB �H1;
 .N /. Then we get f DGBf 2H1;1.N /, since Bf 2L2.N /, and

kf kH1;1.N / � CkBf kL2.N / � Ckf kdom xB;

which proves the claim.

Remark 2.11 It follows from Gil and Mendoza [8] that actually dom xB DH1;1.N /.

We summarize what we have achieved so far:

Proposition 2.12 Let f 2 dom.PB/max.P
t
B
/max correspond to a 1–form. Under the

assumptions of Corollary 2.9 there exists 
 > 0 such that

kf .r/kH1;1.N / DO.r1C
 /

as r ! 0.

A direct consequence is the following:

Corollary 2.13 Let f 2 dom.PB/max.P
t
B
/max correspond to a 1–form and let P

be any first order conic differential operator on N . Then under the assumptions of
Corollary 2.9 there exists 
 > 0 such that

kPf .r/kL2.N / DO.r1C
 /

as r ! 0.

In the following we mean by a local solution close to a vertex a solution on an open set
of the form .0; "/�N for N the link of a vertex v 2†.

Corollary 2.14 Let � be a real-valued 1–form, which is a local solution of �d�C4�D

� close to a vertex v with � in L2 , D� in L2 and � in L2 . If the first positive
eigenvalue of �N;Fr is strictly greater than 2, then there exists 
 > 0 such that

k�.r/kL2.N / DO.r
 /

and
k.rei

�/.r/kL2.N / DO.r
�1/

for i D 2; 3.
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Proof If � satisfies �d�C 4� D 0 with � in L2 , D� in L2 and � in L2 , then this
is equivalent to D2�C 4� D � with � in L2 , D� in L2 and � in L2 . It follows that
D2� in L2 , that is, � 2 dom D2

max .

Let ' 2C1
0
Œ0; 1/ be a cut-off function satisfying '� 1 in a neighbourhood of 0. Then

by the explicit form of Dev and Dodd close to an edge, we get

D.'.r/�/D .@r'/.r/�C'.r/D�

and hence that also '.r/� 2 dom D2
max . Furthermore clearly '.r/� D � in a neighbour-

hood of the vertex. Now the result follows from Corollary 2.13, resp. the corresponding
statement for Dev in place of PB .

Next we calculate the Hodge–Dirac operator along an edge e : Let .r; �; z/ be cylindrical
coordinates along e . Then the hyperbolic metric has the form

ghyp D dr2
C sinh.r/2 d�2

C cosh.r/2 dz2

near e . We write

�ev
D sinh.r/�

1
2 cosh.r/�

1
2

�
'1C'2 sinh.r/ d� ^ dr C'3 cosh.r/ dz ^ dr

C'4 sinh.r/ cosh.r/ d� ^ dz
�

and

�odd
D sinh.r/�

1
2 cosh.r/�

1
2

�
'1 dr C'2 sinh.r/ d� C'3 cosh.r/ dz

C'4 sinh.r/ cosh.r/ dr ^ d� ^ dz
�

for even resp. odd forms. Let P DDev . Then

P D @r �
1
2

�
coth.r/C tanh.r/

�
C

1

sinh.r/

26664
0 �@� 0 0

@� 0 0 0

0 0 cosh.r/ �@�

0 0 @�
cosh.r/2Csinh.r/2

cosh.r/

37775

C
1

cosh.r/

2664
0 0 �@z 0

0 sinh.r/ 0 @z

@z 0 0 0

0 �@z 0 0

3775
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acting on quadruples Œ'1; '2; '3; '4�
t . Hence

P0 D @r C
1

r

26664
�

1
2
�@� 0 0

@� �
1
2

0 0

0 0 1
2
�@�

0 0 @�
1
2

37775C
2664

0 0 �@z 0

0 0 0 @z

@z 0 0 0

0 �@z 0 0

3775

D J

0BBB@@zC

2664
0 0 @r 0

0 0 0 �@r

�@r 0 0 0

0 @r 0 0

3775C 1

r

26664
0 0 1

2
�@�

0 0 �@� �
1
2

1
2

@� 0 0

@� �
1
2

0 0

37775
1CCCA

with

J D

2664
0 0 �1 0

0 0 0 1

1 0 0 0

0 �1 0 0

3775 ; J 2
D� id :

Similarly for P t DDodd :

P t
D�@r C

1
2

�
coth.r/C tanh.r/

�
C

1

sinh.r/

26664
�

cosh.r/2Csinh.r/2

cosh.r/ �@� 0 0

@� � cosh.r/ 0 0

0 0 0 �@�
0 0 @� 0

37775

C
1

cosh.r/

2664
0 0 �@z 0

0 0 0 @z

@z 0 � sinh.r/ 0

0 �@z 0 0

3775
acting on quadruples Œ'1; '2; '3; '4�

t . Hence

P t
0 D�@r C

1

r

26664
�

1
2
�@� 0 0

@� �
1
2

0 0

0 0 1
2
�@�

0 0 @�
1
2

37775C
2664

0 0 �@z 0

0 0 0 @z

@z 0 0 0

0 �@z 0 0

3775

D J

0BBB@@z �

2664
0 0 @r 0

0 0 0 �@r

�@r 0 0 0

0 @r 0 0

3775C 1

r

26664
0 0 1

2
�@�

0 0 �@� �
1
2

1
2

@� 0 0

@� �
1
2

0 0

37775
1CCCA
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with J as above.

As before we give a detailed treatment for the model operators P0 and P t
0

and leave
the necessary modifications for the actual operators to the reader.

Let ' 2 C1
0
Œ0; 1/ be a cut-off function satisfying ' � 1 in a neighbourhood of 0. We

consider the operator

A˙ D˙

2664
0 0 @r 0

0 0 0 �@r

�@r 0 0 0

0 @r 0 0

3775C�'.r/r
C

1�'.r/

1� r

�26664
0 0 1

2
�@�

0 0 �@� �
1
2

1
2

@� 0 0

@� �
1
2

0 0

37775
with domain C1

0
..0; 1/�S1

˛ ;R
4/�L2..0; 1/�S1

˛ ;R
4/. Note that A˙ is symmetric

and

JA˙ D˙@r C

�
'.r/

r
C

1�'.r/

1� r

�26664
�

1
2
�@� 0 0

@� �
1
2

0 0

0 0 1
2
�@�

0 0 @�
1
2

37775 :
Close to r D 0 and r D 1 this operator is of Fuchs type. We calculate its indicial roots
at r D 0, that is, we consider

PB D @r C
1
r
B

with

B D

26664
�

1
2
�@� 0 0

@� �
1
2

0 0

0 0 1
2
�@�

0 0 @�
1
2

37775 W C1.S1
˛ ;R

4/!L2.S1
˛ ;R

4/:

An easy calculation shows that

spec xB D
˚
�

1
2
˙

2�n
˛
W n 2 Z

	
[
˚

1
2
˙

2�n
˛
W n 2 Z

	
and we clearly get the same set of indicial roots at r D 1. Hence we get by the analysis
in the author’s paper [24]:

Lemma 2.15 If the cone-angles are less than 2� , then A˙ is essentially selfadjoint.
The unique selfadjoint extension xA˙ has discrete spectrum.

We may hence decompose

L2..0; 1/�S1
˛ � .z0; z1/;R

4/D
M

a2spec xA˙

L2..z0; z1/;R
4/
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with r 2 .0; 1/, � 2 S1
˛ and z 2 .z0; z1/. Note that dom xAC D dom xA� .

Lemma 2.16 Let f 2 dom.@zCA˙/
q
max for some q 2N . Then

(1) f .z/ 2L2..0; 1/�S1
˛ ;R

4/ for all z 2 .z0; z1/,

(2) f .z/ 2 dom xA˙ for all z 2 .z0; z1/ if q � 2,

(3) @zf .z/ 2 dom xA˙ for all z 2 .z0; z1/ if q � 4.

Proof Let f 2 dom.@z CA˙/max . By multiplying f with a cut-off function ' 2
C1

0
.z0; z1/ we may assume w.l.o.g. that f 2 dom.@z CA˙/min inside L2..0; 1/�

S1
˛ � .z0; z1/;R

4/. Recall that C1
0
..0; 1/ � S1

˛ � .z0; z1/;R
4/ is graph-dense in

dom.@zCA˙/min . Let now f 2C1
0
..0; 1/�S1

˛ �.z0; z1/;R
4/ and gD .@zCA˙/f .

Let . a/a2spec xA˙
be an orthonormal system of eigenfunctions of xA˙ on .0; 1/�S1

˛ .
Writing f D

P
a fa ˝  a and g D

P
a ga ˝  a we get @zfa C afa D ga for all

a 2 spec xA˙ . Solving this ODE with fa.z0/D 0, respectively fa.z1/D 0, we get

(1) fa.z/D e�az

Z z

z0

ewaga.w/ dw;

respectively

(2) fa.z/D�e�az

Z z1

z

ewaga.w/ dw:

We use (1) for a 2 spec xA˙ with a� 0 and (2) for a 2 spec xA˙ with a< 0. We thus
obtain using the Schwarz inequality

jfa.z/j �

8̂<̂
:
.2a/�

1
2 kgakL2.z0;z1/

if a> 0;

.z1� z0/
1
2 kgakL2.z0;z1/

if aD 0;

j2aj�
1
2 kgakL2.z0;z1/

if a< 0:

(3)

that is, jfa.z/j
2 � C.1C a2/�

1
2 kgak

2
L2.z0;z1/

. Summing over a 2 spec xA˙ we get

kf .z/k2
L2..0;1/�S1

˛/
D

X
a

jfa.z/j
2
� Ckgk2

L2..0;1/�S1
˛�.z0;z1//

and by integrating over z 2 .z0; z1/

kfak
2
L2.z0;z1/

� C.1C a2/�
1
2 kgak

2
L2.z0;z1/

:

Iterating these estimates we get f .z/ 2 dom xAq=2
˙

for all z 2 .z0; z1/ if f 2 dom.@zC

A˙/
q
max , hence assertions (1) and (2).
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Finally, if f 2 dom.@z CA˙/
4
max , then @zf .z/CA˙f .z/ 2 dom xA˙ and f .z/ 2

dom xA2
˙

for all z 2 .z0; z1/. Therefore A˙f .z/ 2 dom xA˙ and hence @zf .z/ 2

dom xA˙ for all z 2 .z0; z1/. This finishes the proof.

Lemma 2.17 Let f 2 dom xA˙ . Then kf .r/kL2.S1
˛/
DO.r

1
2 j log r j

1
2 / as r ! 0.

Proof This follows from Corollary 2.7. Note that �1
2
2 spec xB in this case.

In the following we mean by a local solution along an edge a solution on an open set of
the form .0; "/�S1

˛ � .z0; z1/ corresponding to cylindrical coordinates .r; �; z/ along
an edge e 2†.

Corollary 2.18 Let � be a real-valued 1–form. If � is a local solution of �d�C4�D0

along an edge with � in L2 and D� in L2 , then

k�.r/kL2.S1
˛�.z0;z1//

DO.j log r j
1
2 / and k.re3

�/.r/kL2.S1
˛�.z0;z1//

DO.j log r j
1
2 /:

Proof If � satisfies �d�C4�D 0 with � in L2 and D� in L2 , then this is equivalent
to D2�C4� D 0 with � in L2 and D� in L2 . It follows that D2� in L2 , and further
by applying powers of D to this equation, that Dq� in L2 for any q 2 N0 , that is,
� 2 dom D

q
max for any q 2N0 .

Let ' 2C1
0
Œ0; 1/ be a cut-off function satisfying '� 1 in a neighbourhood of 0. Then

by the explicit form of Dev and Dodd close to an edge, we get

D.'.r/�/D .@r'/.r/�C'.r/D�

and hence that also '.r/� 2dom D
q
max for any q2N0 . Furthermore clearly '.r/�D� in

a neighbourhood of the edge. Now the result follows from Lemma 2.16 and Lemma 2.17,
resp. the corresponding statements for P in place of P0 .

The estimates given in Corollary 2.14 and in Corollary 2.18 will turn out to be sufficient
to control the boundary term when integrating by parts later in the main argument.

3 A vanishing theorem for L2–cohomology

We begin by reviewing various facts from Hodgson and Kerckhoff [9] and the author’s
paper [24], where in case of conflict we prefer to use the notation of [24].
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Let now .M;gTM / be the smooth part of a hyperbolic cone–3–manifold and let
ED so.TM /˚TM denote the bundle of infinitesimal isometries. It carries a canonical
flat connection given by

r
E
X .B;Y /D .rX B �R.X;Y /;rX Y �BX /;

where r denotes the Levi-Civita connection on E and R the Riemannian curvature
tensor on M . Note that since M has constant sectional curvature �1, one has
R.X;Y /D X ]˝ Y � Y ]˝X , where as usual X ] and Y ] are the 1–forms dual to
X and Y with respect to the metric gTM . Let hE denote the metric on E induced by
gTM . Note however that rEhE ¤ 0, whereas of course rhE D 0. Furthermore, the
splitting E D so.TM /˚TM is hE –orthogonal and parallel with respect to r .

For x 2M the fibre Ex may be identified with sl2.C/ and hence has the structure of
a Lie algebra. The Lie bracket is given by

Œ.A;X /; .B;Y /�D .ŒA;B��R.X;Y /;AY �BX /;

in particular one has

r
E
X .B;Y /DrX .B;Y /C ad.X /.B;Y /:

Note that ad.X / switches the subbundles so.TM / and TM : One has ad.X /.B; 0/D
.0;�BX / and ad.X /.0;Y /D .�R.X;Y /; 0/.

The cross product induces an isomorphism

�W TM ! so.TM /;X 7! .Y 7!X �Y /;

such that we may write E D E 0˚ E 00 with E 0 Š E 00 Š TM . In fact, since sl2.C/ is a
complex Lie algebra and the adjoint representation is C–linear, E carries a parallel
complex structure. Furthermore, E 0 is a real form of the complex vector bundle E and
E 00 D iE 0 . This corresponds to the fact that su.2/ is a real form of sl2.C/.

Let ıE denote the formal adjoint of dE . Then with respect to a local orthonormal
frame e1; e2; e3 one has

dE
D

3X
iD1

".ei/rE
ei
D

3X
iD1

".ei/.rei
C ad.ei//

and

ıE D�

3X
iD1

�.ei/.rei
� ad.ei//:
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Let further

D D

3X
iD1

".ei/rei
and T D

3X
iD1

".ei/ ad.ei/;

whose formal adjoints are given by

Dt
D�

3X
iD1

�.ei/rei
and T t

D

3X
iD1

�.ei/ ad.ei/:

Let �dE D dEıE C ıEdE and let �D DDDt CDtD the associated Laplacians. Let
further H D T T t CT tT . Then one has the following Weitzenböck formula, which is
of central importance for our arguments:

Proposition 3.1 �dE D�D CH .

The Weitzenböck formula is due to Matsushima and Murakami [13]. The following con-
sequence of the Weitzenböck formula was first observed by Hodgson and Kerckhoff [9]:

Corollary 3.2 �dE preserves the decomposition E D E 0˚ E 00 in all degrees, that is,
for ! D .!0; !00/ 2 ��.M I E/ with !0 2 ��.M I E 0/ and !00 2 ��.M I E 00/ one has
�dE! D .�dE!0; �dE!00/.

Proof Since the decomposition E D E 0 ˚ E 00 is hE –orthogonal and parallel with
respect to r , this is clear for �D . Since ad.ei/ switches the subbundles E 0 and E 00 ,
the endomorphisms T T t and T tT again preserve the above decomposition.

It is easy to see that T T t C T tT commutes with the isomorphism induced by the
cross product �W ��.M ITM /! ��.M I so.TM //, hence it is enough to compute
its action on ��.M ITM /. On 0–forms this was achieved in [9]:

Lemma 3.3 T T t CT tT D T tT D 2 on �.M ITM /.

The following is immediate:

Corollary 3.4 �dE .A;X /D .rtrA;rtrX /C 2.A;X /.

Note that if � denotes the 1–form dual to X , then rtr�C 2� D�d�C 4� , since by
the usual Bochner formula for real-valued 1–forms one has �d� Dr

tr�CRic � D
rtr� � 2� and for a hyperbolic metric on a 3–manifold RicD�2.

A 1–form � 2�1.M ITM / may be decomposed into its pure trace, its traceless sym-
metric and its skew-symmetric part. Clearly �D and rtr preserve this decomposition:
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Lemma 3.5 For � 2�1.M ITM / one has

.DDt
CDtD/��rt

r�D

8̂<̂
:

0 if � pure trace;

�3� if � traceless symmetric;

�� if � skew-symmetric:

Proof If e1; e2; e3 is a local orthonormal frame satisfying rei.x/ D 0 at a point
x 2M and e1; e2; e3 the dual coframe, then we compute at x

DDt
CDtD D�

3X
i;jD1

�
".ei/�.ej /C �.ei/".ej /

�
rei
rej

D�

3X
iD1

rei
rei
�

X
i<j

�
".ei/�.ej /C �.ei/".ej /

�
R.ei ; ej /

Here we have used that ".ei/�.ej /C �.ej /".e
i/D ıij . Note that we generically use the

symbol R for the curvature tensor on any tensor bundle and that

RT �M˝TM .ei ; ej /DRT �M .ei ; ej /˝ 1C 1˝RTM .ei ; ej /:

By the usual proof of the Bochner formula on real-valued 1–forms one has

�

X
i<j

�
".ei/�.ej /C �.ei/".ej /

�
R.ei ; ej /˝ 1D Ric˝1D�2;

since RicD�2 for a hyperbolic metric on a 3–manifold. Further, using R.ei ; ej /D

ei ˝ ej � ej ˝ ei for a hyperbolic metric, we obtain

�

X
i<j

�
".ei/�.ej /C �.ei/".ej /

�
1˝R.ei ; ej /.e

k
˝ el/

D

X
i<j

.ıikej
� ıjkei/˝ .ıilej � ıjlei/D

(
�el ˝ ek k ¤ l;P

i¤j ei ˝ ei k D l D j:

Evaluating this on the various bits yields the result.

It turns out that also T T t CT tT preserves the decomposition of �1.M ITM / into
pure trace, traceless symmetric and skew-symmetric part:

Lemma 3.6 For � 2�1.M ITM / one has

.T T t
CT tT /�D

8̂<̂
:

4� if � pure trace;

� if � traceless symmetric;

3� if � skew-symmetric:
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Proof One easily computes (see also [9]) that

T T t
CT tT D

3X
iD1

ad.ei/
2
C

3X
i;jD1

".ei/�.ej / ad.Œei ; ej �/

with respect to a local orthonormal frame e1; e2; e3 and dual coframe e1; e2; e3 . Now
for a vector field X

ad.ei/
2X DR.ei ;X /ei D .ei ; ei/X � .X; ei/ei ;

hence
3X

iD1

ad.ei/
2X D 2X and

3X
iD1

ad.ei/
2�D 2�:

Further Œei ; ej �D�.e
i ˝ ej � ej ˝ ei/ and hence

ad.Œei ; ej �/X D .X; ej /ei � .X; ei/ej :

If �D
P3

i;jD1 �
j
i ei ˝ ej , then

3X
i;jD1

".ei/�.ej / ad.Œei ; ej �/�D

� 3X
iD1

�i
i

�� 3X
iD1

ei
˝ ei

�
�

3X
i;jD1

�i
j ei
˝ ej

D tr � � id��t :

Evaluating this on the various bits yields the result.

The positivity of T T t CT tT on �1.M I E/, which is originally due to Matsushima
and Murakami [13], follows immediately:

Corollary 3.7 T T t CT tT � 1 on �1.M I E/.

As a first step towards the proof of the vanishing theorem we show that both the real
and the imaginary part of the L2 –harmonic representative of a class in H 1

L2.M I E/
are traceless symmetric, see also [9]:

Proposition 3.8 Let ! 2 �1.M I E/ be L2 –harmonic. If ! D .!0; !00/ with !0 2
�1.M I E 0/ and !00 2�1.M I E 00/, then !0 and !00 are traceless symmetric.

Proof Note first that dE D D C T and ıE D Dt C T t with T and T t bundle
endomorphisms which are bounded on M together with all their derivatives. Hence it
is enough to show that a form � 2�1.M ITM / which together with D�;Dt�;DDt�

and DtD� is in L2 and which satisfies �dE�D 0 is in fact traceless symmetric.
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For y� 2�1.M ITM / skew-symmetric let � be the real-valued 1–form corresponding
to y�. Then �dE y�D 0 implies that � satisfies the equation

�d�C 4� D 0;

see Lemma 3.5, Lemma 3.6 and the remark following Corollary 3.4. We claim that
d�; ı�; dı� and ıd� are in L2 : Since Dy� 2�2.M ITM / is in L2 , we find that also
?Dy� 2�1.M ITM / is in L2 . Now a direct calculation shows that ı� D�1

2
tr.?Dy�/

and that d� is essentially given by the skew-symmetric part of ?Dy�. Hence both of
them are in L2 . Again by direct calculation we obtain that ıd� is essentially given
by the real-valued 1–form corresponding to the skew-symmetric part of DDt y�, hence
ıd� and dı� are in L2 . (Note that �d� D�4� is in L2 .)

Now this implies that � 2 dom dmaxımaxC ımaxdmax and by the L2 –Stokes Theorem
dmaxımaxC ımaxdmax is a non-negative operator. Note that the L2 –Stokes theorem for
R–valued forms holds on M since H 1

L2.Nj IR/D 0 for all links Nj , see [24]. We
conclude that � D 0, hence that y�D 0, and in general that the skew-symmetric part of
� vanishes.

We now analyze the trace part of � assuming already that � is symmetric. We find,
again using �dE�D 0 together with Lemma 3.5 and Lemma 3.6, that the trace of �
satisfies the equation

�d tr �C 4 tr �D 0:

We claim that d tr � is in L2 : Using the symmetry of � we find by direct calculation
that d tr � is essentially given by the sum of two terms: The first one is the result of
applying interior multiplication �W �2.M ITM /!�1.M / to D� and the second one
is simply the 1–form dual to Dt�.

Hence tr �2 dom ımaxdmax and by the L2 –Stokes Theorem ımaxdmax is a non-negative
operator. We conclude that tr �D 0, hence that � is traceless symmetric.

For a vertex vj let mj denote the number of edges meeting at vj . Let further U".vj /D

B".vj / n†. Let Nj denote the smooth part of the link of vj .

Lemma 3.9 Let vj 2† be a vertex and Nj the smooth part of its link. Then

H k.Nj I E/Š
(

0 if k D 0; 2I

C3.mj�2/ if k D 1:

and

H k
L2.Nj I E/Š

(
0 if k D 0; 2I

C2.mj�3/ if k D 1:
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Proof We drop the index j for convenience. Let xN � N be a compact core with
smooth boundary @ xN . We use the formula

�. xN I E/D rank.E/ ��. xN /

(which follows from a Mayer–Vietoris argument applied to a finite good cover of xN
which trivializes E ) and the elementary fact that �.N / D 2�m. Since m � 3 we
have H 0.N I E/ D 0 and, since N is homotopy equivalent to a bouquet of circles,
H 2.N I E/D 0. Hence it follows that dimC H 1.N I E/D 3.m� 2/. To compute the
L2 –cohomology groups, we use the formula

�L2.N I E/D
mX

iD1

�L2.U".pi/I E/C�. xN I E/��.@ xN I E/

from Cheeger [6, page 607], where U".pi/D B".pi/ n fpig for each cone-point pi .
(This formula follows from the Mayer–Vietoris sequence for L2 –cohomology, see
Cheeger [5, Lemma 4.3], since @ xN � xN is collared, and the Poincaré lemma for
collars, see [5, Lemma 3.1].) Clearly H 0

L2.N I E/D 0 (since already H 0.N I E/D 0)
and hence, by Poincaré duality for L2 –cohomology, H 2

L2.N I E/D 0. Note that the
L2 –Stokes theorem holds for E –valued forms on N , since the links (which are just
circles) do not have middle-dimensional E –valued L2 –cohomology. Furthermore,
by Poincaré duality for the compact manifold @ xN , we have �.@ xN I E/ D 0. Since
�L2.U".pi//D 1, we finally obtain dimC H 1

L2.N I E/D 2.m� 3/.

Lemma 3.10 Let vj 2† be a vertex and Nj the smooth part of its link. Let further-
more xNj � Nj be a compact core with smooth boundary @ xNj . Then there exists a
short exact sequence

0 �!H 1
L2.Nj I E/ �!H 1. xNj I E/ �!H 1.@ xNj I E/ �! 0:

Proof We look at a part of the long exact cohomology sequence of the pair . xN ; @ xN /:

� � � �!H 1. xN ; @ xN I E/
q
�!H 1. xN I E/ i

�!H 1.@ xN I E/ �! � � �

The map q factors through H 1
L2.N I E/, hence dimC im q�2.m�3/. On the other hand,

dimC H 1.@ xN I E/DdimC H 0.@ xN I E/Dm, hence by exactness dimC im q�2.m�3/.
Since im q � im.H 1

L2.Nj I E/!H 1.Nj I E//, this proves the claim.

The preceding lemma is saying that E –valued L2 –cohomology may be identified with
the space of ordinary cohomology classes in degree 1, which vanish on the boundary
of a compact core.
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We may now compute the E –valued L2 –cohomology of singular balls centered at
vertices of the singular locus:

Corollary 3.11 Let vj 2† be a vertex and U".vj /D B".vj / n†. Then

H k
L2.U".vj /I E/Š

(
0 if k D 0; 2; 3I

C2.mj�3/ if k D 1:

Proof By the Poincaré lemma for cones, see Cheeger [5, Lemma 3.4], one has

H k
L2.U".vj /I E/Š

(
H k

L2.Nj I E/ if k D 0; 1I

0 if k D 2; 3:

Now the result follows using Lemma 3.9.

Note that due to the presence of middle-dimensional L2 –cohomology of the links
Nj , the L2 –Stokes theorem for E –valued forms on M does not hold. This means
that H �max ¤H �min , and in particular that Poincaré duality does not hold for E –valued
L2 –cohomology on M .

Lemma 3.12 Let ei �† be an edge and x in the interior of ei , let further Nx be the
smooth part of its link. Then

H k
L2.NxI E/Š

(
C if k D 0; 2I

0 if k D 1:

Proof We argue in the same way as in the proof of Lemma 3.9. The only difference
is that now mD 2 and H 0

L2.Nx; E/ŠH 1
L2.Nx; E/ŠC .

Finally we compute the E –valued L2 –cohomology of singular tubes connecting singu-
lar balls centered at the endpoints of an edge:

Corollary 3.13 Let e be an edge with endpoints v and w . For 0 < ı � " let
Uı.e/D

S
x2e Uı.x/ n†. Then

H k
L2.Uı.e/ n .U".v/[U".w//I E/Š

(
C if k D 0;

0 if k D 1; 2; 3:

Proof The result follows from Lemma 3.12, the Poincaré lemma for cones and the
Mayer–Vietoris sequence for L2 –cohomology, see [5, Lemma 4.3]. Details are left to
the reader.
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Lemma 3.14 H �
L2.M I E/ is finite dimensional and hence the range of dE

max is closed
on M .

Proof This follows from a Mayer–Vietoris argument as in [5] using Corollary 3.11
and Corollary 3.13.

Let vj be a vertex. Then the holonomy restricted to Nj preserves a point pj 2H3 , that
is, hol j�1.Nj / is conjugate to a representation into SU.2/. Note that the adjoint repre-
sentation of SL2.C/ restricted to SU.2/ acts diagonally on sl2.C/D su.2/˚ isu.2/.
Therefore we obtain a splitting E jNj DE1

j ˚E2
j as flat vector bundles, the first summand

corresponding to infinitesimal rotations at pj and the second one corresponding to
infinitesimal translations at pj . Furthermore, Ad ı hol j�1.Nj / preserves the metric hE

pj

on
Epj D so.TpjH3/˚TpjH3;

hence there exists a parallel metric hE
0

on E jNj such that E1
j and E2

j are orthogonal.
We extend the bundles E1

j and E2
j as well as the metric hE

0
to U".vj / via parallel

transport along radial segments.

The metrics hE
0

and hE on U".vj / may be compared in the following way, see [24]:
Let A be the unique field of symmetric endomorphisms of E on U".vj / such that

hE.�; �/D hE
0.A�; �/

for �; � 2 �.U".vj /I E/. Let ıE
0

denote the formal adjoint of dE with respect to the
metric hE

0
(where as usual ıE denotes the formal adjoint of dE with respect to hE ).

Then according to [24, Lemma 4.2] one has

(4) ıE D ıE0 �A�1�.rEA/;

where �.rEA/ denotes interior multiplication with the End.E/–valued 1–form rEA.
Furthermore, according to [24, Lemma 5.7] one has

(5) A�1.rEA/D�2 ad;

which is a bounded End.E/–valued 1–form. This implies that hE
0

and hE are quasi-
isometric on U".vj /, see [24, Remark 4.1]. Hence, when computing H 1

L2.U".vj /I E/,
we may replace hE by hE

0
. Note however that harmonic forms for these metrics differ

since ıE
0
¤ ıE in view of (4) and (5).

Let us drop the index j now for convenience. We describe certain standard represen-
tatives of H 1

L2.N I E/ and H 1
L2.U".v/I E/ in the following: Let ci 2H 1

L2.N I E i/ for
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i D 1; 2. Using Corollary 2.3 we may represent ci by an L2 –harmonic form, that is, a
form !i 2�1

L2.N I E i/ satisfying

dEi

N !i
D 0 and ıE

i

N !
i
D 0:

Note that the range of dEi

is closed on N by Lemma 3.14. We denote the pull back
of this form to U".v/D .0; "/�N by the projection �N W U".v/! N again by !i ,
that is, !i is constant in r after identifying the fibers of E i using parallel transport
along radial segments. Computing dE and ıE

0
on U".v/ we get

dEi

!i
D 0 and ıE

i

0 !
i
D 0;

hence, using (4) and (5), that

(6) ıE!i
D 2�.ad/!i :

We have now set up enough notation to state the main result:

Theorem 3.15 Let M be the smooth part of a closed hyperbolic cone–3–manifold X

with cone-angles ˛i 2 .0; 2�/. Let E be the flat bundle of infinitesimal isometries. Let
c 2H 1

L2.M I E/ be a class with the property that for all vertices vj the following holds:

cjH 1

L2
.Nj IE1

j
/ D 0 or cjH 1

L2
.Nj IE2

j
/ D 0:

Then c D 0.

Note that for a trivalent vertex vj one has H 1
L2.Nj I E/D 0 by Lemma 3.9, such that

the condition on how c restricts to Nj is empty. In particular, if † is a trivalent graph,
then we get H 1

L2.M I E/D 0 by Theorem 3.15, so we are in situation which is very
similar to the one studied by Hodgson and Kerckhoff [9] and the author [24]. On the
other hand, in the presence of vertices of valency at least 4, we will see that indeed
H 1

L2.M I E/¤ 0, see Corollary 4.16.

The strategy of the proof of Theorem 3.15 – which in fact is quite similar to the
one in [9] – is as follows: For a class c 2H 1

L2.M I E/ as above let ! 2�1
L2.M I E/

denote its L2 –harmonic representative given by Corollary 2.3 and Lemma 3.14, that is,
! 2 dom dE

max\dom ıEmin and dE! D ıE! D 0. In order to apply the Bochner method,
we wish to justify the integration by parts

0D

Z
M

jdE!j2CjıE!j2 D

Z
M

jD!j2CjDt!j2C .H!;!/:

For this it is sufficient to show that the boundary term

B.r/D�

Z
@.MnUr .†//

.id �hE/.?T! ^!CT t! ^?!/
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tends to 0 for a sequence r ! 0.

We do this in 2 steps: First we show that the edges do not give rise to an “ideal”
boundary term, that is, we remove arbitrarily small balls centered at the vertices and
show that integration by parts can be performed on the resulting manifold with boundary
(retaining the boundary term of the new boundary components). This is the content of
Proposition 3.17.

Secondly we show that also the vertices do not give rise to an “ideal” boundary term,
that is, integration by parts can be performed on the whole of M . This is the content
of Proposition 3.19 and this is where we use the condition on how the class c restricts
to the links Nj .

Lemma 3.16 Let ! D .!0; !00/ 2�1.M I E/ be L2 –harmonic. Then

B.r/D 2

Z
@.MnUr .†//

.id �gTM /.!0 ^!00/:

Proof From [9, Lemma 2.5] it follows that for ! D .!0; !00/ 2�1.M I E/ with both
!0 and !00 traceless symmetric one has T t! D 0 and ?T! D .!00;�!0/. Then use
Proposition 3.8.

Proposition 3.17 For all " > 0 one has

0D

Z
Mn

Sk
jD1 U".vj /

jD!j2CjDt!j2C .H!;!/

C 2

Z
@.Mn

Sk
jD1 U".vj //

.id �gTM /.!0 ^!00/;

that is, the edges do not give rise to an “ideal” boundary term.

Proof This is the essence of the argument in [9]. Let e be an edge with endpoints
v and w . Let V";r .e/D Ur .e/ n .U".v/[U".w//, the closure taken in M . Note that
V";r .e/ is a non-compact manifold with boundary. We show that for a sequence r ! 0

the boundary term

B.r/D 2

Z
@V";r .e/

.id �gTM /.!0 ^!00/

tends to zero. We express the boundary term in terms of the orthonormal frame e1 D

@=@r; e2D sinh.r/�1@=@�; e3D cosh.r/�1@=@z . We further write ! D
P3

iD1 ei˝!i ,
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where e1; e2; e3 is the coframe dual to e1; e2; e3 , that is, e1Ddr; e2D sinh.r/d�; e3D

cosh.r/dz . Then we obtain

B.r/D 2

Z
@V";r .e/

.!0.e2/; !
00.e3//� .!

0.e3/; !
00.e2//:

Since by Corollary 3.13, H 1
L2.Uı.e/ n .U".v/[U".w//I E/D 0 for 0< ı� ", there

exists an L2 –section s such that ! D dEs on Uı.e/ n .U".v/[U".w//. Since ! is
coclosed, we find that �dE s D ıEdEs D 0. If we write s D .s0; s00/ according to the
decomposition EDE 0˚E 00 , then Corollary 3.2 implies that �dE s0D 0 and �dE s00D 0.
If � 0 and � 00 denote the 1–forms corresponding to s0 and s00 , then the remark following
Corollary 3.4 implies that �d�

0C 4� 0 D 0 and �d�
00C 4� 00 D 0. Let � denote either

� 0 or � 00 in the following. Clearly � itself is in L2 . We claim that also d� and ı�
are in L2 : Since ! D dEs is in L2 and dE DDCT with T a bounded 0th order
operator, we conclude that r� is in L2 and hence also d� D "ır� and ı� D��ır� .

We may estimate using the Schwarz inequality

1
2
jB.r/j �

�Z
@V";r .e/

j!0.e2/j
2

�1=2

�

�Z
@V";r .e/

j!00.e3/j
2

�1=2

C

�Z
@V";r .e/

j!0.e3/j
2

�1=2

�

�Z
@V";r .e/

j!00.e2/j
2

�1=2

:

Now ! in L2 implies thatZ
@V";r .e/

j!.e2/j
2
D o.r�1

j log r j�1/

for a sequence r ! 0, see [5, Lemma 1.2]. Since � and D� are in L2 , Corollary 2.18
applies. Taking further into account that the volume form on @V";r .e/ is given by
e2 ^ e3 D sinh.r/ cosh.r/ d� ^ dz , we getZ

@V";r .e/

j!.e3/j
2
DO.r j log r j/:

For the boundary term we obtain

B.r/D o.1/;

again for a sequence r ! 0. This finishes the proof.

We need the following basic estimate for the first eigenvalue of a spherical cone-surface,
which in particular applies to the link of a vertex:
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Lemma 3.18 Let S be a spherical cone-surface with singular locus the collection
of points fp1; : : : ;pmg and cone-angles ˛i 2 .0; 2�/, i D 1; : : : ;m. Let N D S n

fp1; : : : ;pmg be the smooth part of S and let �1 be the first (positive) eigenvalue of
ımindmax on functions on N . Then �1 � 2 with equality �1 D 2 if and only if S is a
spherical suspension.

For a proof see, for example, the paper [16] by Mazzeo and the author.

Note that by the L2 –Stokes Theorem for N one has ımindmax D ımaxdmin , which is
the Friedrichs extension of �d on functions.

Proposition 3.19 One has

0D

Z
M

jD!j2CjDt!j2C .H!;!/;

that is, also the vertices do not give rise to an “ideal” boundary term.

Proof Let v be a vertex. We show that for a sequence r ! 0 the boundary term

B.r/D 2

Z
@.MnUr .v//

.id �gTM /.!0 ^!00/

tends to zero. Let e1; e2; e3 be a local orthonormal frame with e1 D @=@r and let
e1; e2; e3 be the dual coframe. Note that e2; e3 are tangent to @.M nUr .v//. If we
write ! D

P3
iD1 ei ˝!i , then we obtain

B.r/D 2

Z
@.MnUr .v//

.!0.e2/; !
00.e3//� .!

0.e3/; !
00.e2//:

We now use the assumption on how the class c restricts to N to write

! D dEsC

8<:!
2 if cjH 1

L2
.N IE1/ D 0;

!1 if cjH 1

L2
.N IE2/ D 0

on Ur .v/ with an L2 –section s and a closed form !i 2�1
L2.U".v/I E i/ as described

before the statement of Theorem 3.15. Since ! is coclosed, we find that �dE s D

ıEdEs D�ıE!i for either i D 1; 2, and hence, using (6), that

�dE s D�2�.ad/!i :

We write sD .s0; s00/ according to the decomposition E D E 0˚E 00 and let � 0 and � 00 be
the 1–forms corresponding to s0 and s00 . Then �d�

0C4� 0D �0 and �d�
00C4� 00D �00

with � 0; �0; � 00; �00 in L2 . Furthermore, as above we have D� 0;D� 00 in L2 .
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Let us now assume that ! D dEsC !1 . The other case is treated in the same way.
Then we have that

lim
r!0
j.! � dEs/0�!1

j D 0 and lim
r!0
j.! � dEs/00j D 0:

Furthermore .dEs/0 DDs0CT s00 and .dEs/00 DDs00CT s0 . Therefore

lim
r!0

B.r/D 2 lim
r!0

Z
@.MnUr .v//

..Ds0CT s00C!1/.e2/; .Ds00CT s0/.e3//

� 2 lim
r!0

Z
@.MnUr .v//

..Ds0CT s00C!1/.e3/; .Ds00CT s0/.e2//:

We estimate the first summand, the second one is treated similarly: We have that
j!1.e2/j D O.r�1/. Assume that we have a pointwise estimate s D O.r
 / and
rei

s DO.r
�1/ for i D 2; 3. Since T is a bounded 0th order operator, we then have
jT sj D O.r
 /. Taking into account the volume form e2 ^ e3 D sinh.r/2dvolN on
@.M nUr .v//, we getZ

@.MnUr .v//

..Ds0CT s00/.e2/; .Ds00CT s0/.e3//DO.r2
 /

and Z
@.MnUr .v//

.!1.e2/; .Ds00CT s0/.e3//DO.r
 /:

We conclude that limr!0 B.r/ D 0 if 
 > 0. Now using Corollary 2.14 together
with Lemma 3.18 instead of the assumed pointwise estimates we clearly get the same
result.

Proof of Theorem 3.15 By Proposition 3.19 we may integrate by parts. The positivity
of the Weitzenböck remainder on E –valued 1–forms (see Corollary 3.7) yields ! D 0

as required.

4 L2–cohomology and the variety of representations

Let †D e1[� � �[eN , that is, N is the number of edges contained in †. Let k be the
number of vertices contained in † and for each vertex vj let mj denote the number of
edges meeting in vj (that is, the valency of the vertex vj ). Then one has

2N D

kX
jD1

mj :
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Let Sj denote the link of the j th vertex and Nj its smooth part. In the following we
assume for simplicity that † is connected and contains vertices, that is, † is not just a
circle.

Let .r; �; z/ be cylindrical coordinates along an edge e and let l be the length of e .
We define E –valued forms !len and !tws on U".e/ D

S
x2e U".x/ n† as follows,

see [24]: Let 'W Œ0; l �! Œ0; l � be a smooth function with

'jŒ0;l=3� D 0 and 'jŒ2l=3;l� D l:

Then we set
!len D d'˝ �@=@z

and
!tws D d'˝ �@=@� :

We list some properties of !len and !tws known from [24]:

(1) !len and !tws are closed and in L2 .

(2) !tws D i!len with respect to the parallel complex structure on E .

(3) !len and !tws infinitesimally do not change the trace of the meridian around the
edge e .

If defined along the i th edge, we denote these forms by !i
len and !i

tws .

Lemma 4.1 Let U".†/D
S

x2† B".x/ n† and let N denote the number of edges
and k the number of vertices contained in †. Then

H 1
L2.U".†/I E/D

NM
iD1

CŒ!i
len�˚

kM
jD1

H 1
L2.U".vj /I E/

and in particular dimC H 1
L2.U".†/I E/DN C

Pk
jD1 2.mj � 3/.

Proof This follows using the Mayer–Vietoris sequence for L2 –cohomology, see
Cheeger [5, Lemma 4.3], together with Corollary 3.11 and Corollary 3.13.

Lemma 4.2 The map H 1
L2.U".†/I E/!H 1.@ xM I E/ is injective.

Proof This again follows using the Mayer–Vietoris sequence, now for ordinary coho-
mology, together with Lemma 3.10 and Lemma 4.1.
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By this lemma we may identify H 1
L2.U".†/I E/ with a subspace of H 1.@ xM I E/. This

subspace is in fact precisely the space of cohomology classes in H 1.@ xM I E/, which
vanish on the meridians �i for all i D 1; : : : ;N , see also Lemma 4.11.

Proposition 4.3 The map H 1
L2.M I E/!H 1.@ xM I E/ is injective.

Proof By Theorem 3.15 a nontrivial class 0¤ c 2H 1
L2.M I E/ restricts to a nontrivial

class in at least one of the groups H 1
L2.Nj I E/, hence to a nontrivial class already in

H 1
L2.U".†/I E/. Now the result follows from Lemma 4.2.

Corollary 4.4 The map H 1
L2.M I E/!H 1. xM I E/ is injective.

We may hence identify E –valued L2 –cohomology on M with a subspace of ordinary
cohomology in degree 1.

Lemma 4.5 dimC H 1.@ xM I E/D 6.N � k/.

Proof We have

3 ��.@ xM /D dimC H 0.@ xM I E/� dimC H 1.@ xM I E/

and in our case H 0.@ xM I E/D 0 and �.@ xM /D 2.k �N /.

Remark 4.6 (1) In the case that mj D 3 for all j , one has 2N D 3k and hence
6.N � k/D 2N .

(2) In the general case one has 6.N � k/D 2N C
Pk

jD1 2.mj � 3/.

(3) If T0;m denotes the Teichmüller space of the m–times punctured sphere, then
one has dimC T0;m Dm� 3.

Proposition 4.7 The natural map i W H 1. xM I E/!H 1.@ xM I E/ is injective and

dimC H 1. xM I E/D 1
2

dimC H 1.@ xM I E/D 3.N � k/:

Proof We look at a part of the long exact cohomology sequence of the pair . xM ; @ xM /:

� � � �!H 1. xM ; @ xM I E/
q
�!H 1. xM I E/ i

�!H 1.@ xM I E/ �! � � �

Let now c 2 H 1. xM I E/ with i.c/ D 0. By exactness at H 1. xM I E/ there exists
b 2 H 1. xM ; @ xM I E/ with q.b/ D c . Since q factors through H 1

L2.M I E/, using
Proposition 4.3 we conclude c D 0. This proves injectivity of i .

Geometry & Topology, Volume 17 (2013)



The deformation theory of hyperbolic cone–3–manifolds with cone-angles less than 2� 361

Furthermore, Poincaré duality yields the short exact sequence

0 �! im q �!H 1. xM I E/ �!H 1.@ xM I E/ �!H 1. xM ; E/� �! im q� �! 0;

see [9] or [24] for details. The result follows taking into account that q D 0 since i is
injective.

Remark 4.8 (1) In the case that mj D 3 for all j , one has 3.N � k/DN .

(2) In the general case one has 3.N � k/DN C
Pk

jD1.mj � 3/.

Let now v2† be a vertex and N the smooth part of its link S. Let further p1; : : : ;pm2

S be the cone points. Hence N D S n fp1; : : : ;pmg is homeomorphic to the m–times
punctured sphere S2 n fp1; : : : ;pmg and

�1N D h
1; : : : ; 
m j 
1 � � � 
mi;

the free group of rank m� 1. Here the 
i are the obvious loops around the punctures
pi . It follows that

R.�1N;SL2.C//D f.A1; : : : ;Am/ 2 SL2.C/
m
WA1 � � �Am D 1g:

Clearly the map f W SL2.C/
m!SL2.C/; .A1; : : : ;Am/ 7!A1 � � �Am is a submersion,

such that R.�1N;SL2.C//Df
�1.1/�SL2.C/

m is a smooth submanifold of complex
dimension 3.m� 1/. Furthermore, as done in [24] for the case mD 3, one shows that
the map

t
 W R.�1N;SL2.C//!Cm; � 7! .t
1
.�/; : : : ; t
m

.�//

with t
i
.�/ WD tr �.
i/ is a submersion at the holonomy representation, which we

will also denote by �0 in the following. Equivalently this means that the differentials
dt
1

; : : : ; dt
m
are C–linearly independent in T ��0

R.�1N;SL2.C//.

We consider the map

t�W R.�1@ xM ;SL2.C//!CN ; � 7! .t�1
.�/; : : : ; t�N

.�//;

where the �i are the meridian loops around the edges ei .

Lemma 4.9 The representation �0 is a smooth point in R.�1@ xM ;SL2.C//, and the
differentials fdt�1

; : : : ; dt�N
g are C–linearly independent in T ��0

R.�1@ xM ;SL2.C//.
The local C–dimension of R.�1@ xM ;SL2.C// at the representation �0 equals 2N CPk

jD1 2.mj � 3/C 3.
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Proof Using the above facts about R.�1N;SL2.C// the glueing procedure goes
through as described in [24] for the case mj D 3 for j D 1; : : : ; k . A careful dimension
count yields the formula for dimC R.�1@ xM ;SL2.C// at �0 . Details are left to the
reader.

Since the holonomy representation of a hyperbolic cone-manifold structure is irreducible
(see [9] or [24] in the presence of vertices) and the action of SL2.C/ on the irreducible
part of R.�1@ xM ;SL2.C// is proper (see for example [24, Lemma 6.24]), we obtain
as in [24, Corollary 6.25] the following statement:

Lemma 4.10 The equivalence class �0 of the representation �0 is a smooth point
in X.�1@ xM ;SL2.C//. The local C–dimension of X.�1@ xM ;SL2.C// at �0 equals
2N C

Pk
jD1 2.mj � 3/. The tangent space T�0

X.�1@ xM ;SL2.C// may be identified
with H 1.@ xM I E/.

Since the traces are constant on the orbits of the SL2.C/–action on R.�1@ xM ;SL2.C//,
the differentials fdt�1

; : : : ; dt�N
g remain C–linearly independent considered as ele-

ments in T ��0
X.�1@ xM ;SL2.C//DH 1.@ xM I E/� . Hence the level set

V D ft�1
D t�1

.�0/; : : : ; t�N
D t�N

.�0/g

is locally at �0 a smooth submanifold in X.�1@ xM ;SL2.C// of C–dimension N CPk
jD1 2.mj � 3/ and with tangent space

T�0
V D fdt�1

D � � � D dt�N
D 0g:

Lemma 4.11 T�0
V DH 1

L2.U".†/I E/.

Proof By Lemma 3.10 and Lemma 4.1 and the fact that dt�i0
.Œ!i

len�/D 0 we get that
H 1

L2.U".†/I E/� T�0
V . Now a dimension argument yields the result.

As in [24], using a construction of M Kapovich, see [10, Lemma 8.46], and the
irreducibility of �0 , we get:

Lemma 4.12 The equivalence class �0 of the representation �0 is a smooth point
in X.�1

xM ;SL2.C//. Its tangent space T�0
X.�1

xM ;SL2.C// may be identified with
H 1. xM I E/.

Together with Proposition 4.7 this yields the following statement:

Corollary 4.13 The local C–dimension of X.�1
xM ;SL2.C// at �0 is equal to N CPk

jD1.mj � 3/.
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Using the holonomy theorem of Ehresmann–Thurston we obtain:

Corollary 4.14 The deformation space Def.M / of hyperbolic structures on M is
locally homeomorphic to CNC

Pk
jD1.mj�3/ .

Recall at this point that Def.M / is the space of all deformations into incomplete
hyperbolic structures, which are not necessarily cone-manifold structures. The space
of cone-manifold structures C�1.X; †/� Def.M / of fixed topological type .X; †/
is a proper subspace.

Proposition 4.15 The differentials fdt�1
; : : : ; dt�N

g are C–linearly independent
already in T ��0

X.�1
xM ;SL2.C//DH 1. xM I E/� .

Proof By what has been said above, it is enough to show that the subspaces

H 1
L2.U".†/I E/;H 1. xM I E/�H 1.@ xM I E/

meet transversally in the sense that

H 1
L2.U".†/I E/CH 1. xM I E/DH 1.@ xM I E/:

Recall that

dimC H 1
L2.U".†/I E/DN C

kX
jD1

2.mj � 3/

and

dimC H 1. xM I E/DN C

kX
jD1

.mj � 3/;

whereas dimC H 1.@ xM I E/D 2N C
Pk

jD1 2.mj � 3/. It follows that

(7) dimC H 1
L2.U".†/I E/\H 1. xM I E/�

kX
jD1

.mj � 3/:

On the other hand, by Theorem 3.15 the space H 1
L2.U".†/I E/\H 1. xM I E/ is contained

in
Lk

jD1 H 1
L2.U".vj /I E/ and intersects

Lk
jD1 H 1

L2.U".vj /I E1
j / trivially. It follows

that

(8) dimC H 1
L2.U".†/I E/\H 1. xM I E/�

kX
jD1

.mj � 3/:
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Now we compute dimC.H
1
L2.U".†/I E/CH 1. xM I E//D 2N C

Pk
jD1 2.mj � 3/D

dimC H 1.@ xM I E/ which proves the assertion.

Corollary 4.16 dimC H 1
L2.M I E/D

Pk
jD1.mj � 3/.

Proof Clearly H 1
L2.U".†/I E/\H 1. xM I E/ D im.H 1

L2.M I E/! H 1. xM I E// and
by Corollary 4.4 this map is injective. Hence we get

H 1
L2.U".†/I E/\H 1. xM I E/DH 1

L2.M I E/:

From (7) and (8) we obtain the result.

Consider the map

t� D .t�1
; : : : ; t�N

/W X.�1
xM ;SL2.C//!CN

and its differential .dt�/�0
W H 1.M I E/! CN . Proposition 4.15 says that t� is a

submersion at �0 , that is, that t�1
; : : : ; t�N

is part of a local coordinate system. Note
that dimC X.�1

xM ;SL2.C//�N D
Pk

jD1.mj � 3/, which is the number of missing
coordinates. It remains to construct these missing coordinates. We will return to this
question in the forthcoming paper [20] by Montcouquiol and the author.

Corollary 4.17 ker.dt�/�0
DH 1

L2.M I E/.

Proof This follows from Lemma 4.11.

Let X0.�1@ xM ;SL2.C// denote the space of equivalence classes of representations
�W �1@ xM ! SL2.C/ such that for all vertices vj the restriction �jNj fixes a point
pj 2H3 , that is, �jNj is conjugate to a representation into SU.2/.

Lemma 4.18 �0 is a smooth point in X0.�1@ xM ;SL2.C// and furthermore one has
dimR X0.�1@ xM ;SL2.C//D 3N C

Pk
jD1 2.mj � 3/ at �0 .

Proof This is done using the same constructions as in Lemma 4.9 and in Lemma 4.10.
Details are left to the reader.

The preceding lemma relates nicely to the deformation space of a cone-tube: The 3N

real parameters correspond to 3 real parameters for each edge, namely the cone-angle,
the length and the twist of the edge. Furthermore, the 2.mj � 3/D dimR T0;mj real
parameters for each vertex correspond to the conformal part of the deformation space of
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the link, see Troyanov [23] and Luo and Tian [12], see also the paper [16] by Mazzeo
and the author.

Continuing our main argument, we observe that

dimR X0.�1@ xM ;SL2.C//C dimR X.�1
xM ;SL2.C//

D 5N C

kX
jD1

4.mj � 3/D dimR X.�1@ xM ;SL2.C//CN

such that X0.�1@ xM ;SL2.C// and X.�1
xM ;SL2.C// meet transversally at �0 and

the intersection

X0.�1
xM ;SL2.C// WDX0.�1@ xM ;SL2.C//\X.�1

xM ;SL2.C//:

is locally a smooth submanifold with dimR X0.�1
xM ;SL2.C//�N at �0 .

Theorem 4.19 dimR X0.�1
xM ;SL2.C//DN at �0 and the map

t� D .t�1
; : : : ; t�N

/W X0.�1
xM ;SL2.C//!RN

is a local diffeomorphism at �0 .

Proof We claim that .dt�/�0
is injective. Indeed, let c 2H 1.M I E/ be a class with

dt�.c/ D 0. Then we get using Corollary 4.17 that c 2 H 1
L2.M I E/ considered as

a subspace in H 1.M I E/. Now since c is also tangent to X0.�1@ xM ;SL2.C// we
obtain that cjH 1

L2
.Nj IE2

j
/ D 0 for all vertices vj . Hence Theorem 3.15 applies to yield

c D 0.

Finally, injectivity of .dt�/�0
yields dimR X0.�1

xM ;SL2.C//�N , hence we get that
dimR X0.�1

xM ;SL2.C//DN and further that t� is a local diffeomorphism at �0 .

As a consequence we obtain our main result:

Theorem 1.1 (Local Rigidity) Let X be a hyperbolic cone–3–manifold with cone-
angles less than 2� . Then the map

˛ D .˛1; : : : ; ˛N /W C�1.X; †/!RN
C

is a local homeomorphism at the given structure.

Proof We just have to apply Theorem 4.19 and the Ehresmann–Thurston holonomy
theorem together with the usual relation between the trace of the meridians and the
cone-angles.
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