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Lagrangian homology spheres in .Am/ Milnor
fibres via C�–equivariant A1–modules

PAUL SEIDEL

We establish restrictions on Lagrangian embeddings of spheres, and more generally
rational homology spheres, into certain open symplectic manifolds, namely the .Am/

Milnor fibres of odd complex dimension. This relies on general considerations about
equivariant objects in module categories (which may be applicable in other situations
as well), as well as results of Ishii–Ueda–Uehara concerning the derived categories of
coherent sheaves on the resolutions of .Am/ surface singularities.

53D12; 53D40, 16E45, 18E30

1 Introduction

1.1 Lagrangian spheres

By the n–dimensional .Am/ Milnor fibre, we mean the complex hypersurface Qn
m �

CnC1 defined by the equation

(1-1) x2
1 C � � �Cx2

n CxmC1
nC1
D 1:

The topology of these manifolds is described by classical singularity theory (see for
instance [33] or the more recent [3]). Qn

m is homotopy equivalent to a wedge of m

spheres of dimension n. The intersection pairing on Hn.Q
n
m/Š Zm is given by

(1-2) .�1/n=2

0BB@
2 �1

�1 2 �1

�1 2 �1

�1 : : :

1CCA
if n is even, respectively

(1-3)

0BB@
0 1

�1 0 1

�1 0 1

�1 : : :

1CCA
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2344 Paul Seidel

if n is odd. Now let’s turn Qn
m into a (real) symplectic 2n–manifold in the standard

way, by using the restriction of the constant Kähler form on CnC1 . These manifolds
have become a test case for general techniques in symplectic topology. We will not
consider the results that have been obtained specifically for mD 1, since those belongs
to the context of cotangent bundles, Qn

1
Š T �Sn . With that excluded, relevant papers

are Seidel [39; 43], Khovanov and Seidel [24], Ritter [36], Evans [13] and Abouzaid
and Smith [2]. Continuing that tradition, we will derive a topological restriction on
Lagrangian submanifolds:

Theorem 1.1 Let L�Qn
m , n� 2, be a Lagrangian submanifold which is a rational

homology sphere and Spin. Then its homology class ŒL� 2 Hn.Q
n
mIZ/ Š Zm is

primitive (nonzero and not a multiple).

We also have an intersection statement, like a form of the Arnol’d conjecture but with
very weak assumptions:

Theorem 1.2 Let L0;L1 be Lagrangian submanifolds as in Theorem 1.1. If ŒL0�D

ŒL1� mod 2, then necessarily L0\L1 ¤∅.

This yields an upper bound (depending on m) for the number of pairwise disjoint
Lagrangian submanifolds of the relevant type. Note that for even n, both statements
have elementary proofs. The first one holds because then, ŒL� � ŒL�D .�1/n=2�.L/D

.�1/n=22. For the second one, note that (1-2) is even. Hence, if ŒL1�D ŒL0� mod 2,
then

(1-4) 0D .ŒL1�� ŒL0�/ � .ŒL1�� ŒL0�/D .�1/n=24� 2ŒL0� � ŒL1� mod 8;

which implies that ŒL0� � ŒL1� D 2 mod 4. One can use the definiteness of (1-2) to
analyze the possible homology classes in more detail, but that is not required for our
purpose.

More importantly, for m D 2 and any n � 2, Theorem 1.1 is a consequence of the
following stronger result of Abouzaid and Smith [2, Corollary 1.5]:

Theorem 1.3 (Abouzaid–Smith) Any closed Lagrangian submanifold L � Qn
2

,
n� 2, whose Maslov class vanishes is an integral homology sphere, and has primitive
homology class.

Abouzaid–Smith’s results are actually even sharper, and also imply the mD 2 case of
Theorem 1.2. We should say that our point of view is fundamentally similar to theirs,
in that we approach the problem via Fukaya categories (in other respects, our argument
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is quite different). One useful feature of the Fukaya category is that it admits objects
which are Lagrangian submanifolds equipped with flat complex vector bundles. By
applying the same ideas to those, one obtains the following:

Theorem 1.4 Let L�Qn
m , n� 2, be a Lagrangian rational homology sphere which

is Spin. Then there is no homomorphism �W �1.L/! C� such that the associated
twisted cohomology is acyclic, H�.LI �/D 0.

Theorem 1.5 Let L�Qn
m , n� 2, be a closed Lagrangian submanifold which is Spin.

Then there is no homomorphism �W �1.L/! GL.r;C/, r > 1, such that

(1-5) H k.LIEnd.�//D
�

C k D 0; n;

0 otherwise.

Both statements are empty for even n, because the conditions imposed can’t be satisfied
for Euler characteristic reasons. Also, even though we have not stated that explic-
itly, Theorem 1.5 is again only a statement about rational homology spheres, since
H�.LIEnd.�// always contains H�.LIC/ as a direct summand.

Example 1.6 Consider the lowest nontrivial dimension nD 3. There, Theorems 1.4
and 1.5 together say that L can’t be a spherical space form, which means S3=�

for finite � � SO.4/ acting freely (the Spin assumption being automatically true in
this dimension). Namely, if � is abelian then L would be a lens space, to which
Theorem 1.4 applies; and if � is nonabelian, it has an irreducible representation of
rank > 1, to which Theorem 1.5 applies.

Example 1.7 Continuing the previous discussion, Theorem 1.5 also rules out all ratio-
nal homology 3–spheres which are hyperbolic. To see that, recall that the hyperbolic
structure on a closed three-manifold L gives rise to a map �W �1.L/! PSL.2;C/
which can be lifted to �W �1.L/! SL.2;C/. Then

H�.LIEnd.�//ŠH�.LIC/˚H�.LIAd.�//;

and the second summand vanishes by Weil’s infinitesimal precursor of Mostow rigidity
(see for instance Müller [34] for a statement and further references). However, this
particular consequence is not new: since the complex three-dimensional .Am/ Milnor
fibre admits a dilation (see Seidel and Solomon [46, Example 7.4]), it can’t contain
any closed Lagrangian submanifold which is a K.�; 1/ [46, Corollary 6.3].

We will now explain the overall nature of our argument. Let Fuk.Qn
m/ be the Fukaya

category. It is known (see Seidel [43, Section 20], which is largely based on Khovanov
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and Seidel [24] and Seidel and Thomas [47]) that a certain formal enlargement, the
split-closed derived category, which we here denote by Fuk.Qn

m/
perf , can be explic-

itly described as the derived category A
n;perf
m of perfect dg modules over a certain

finite-dimensional algebra An
m . Problems about Lagrangian spheres can therefore be

approached in a purely algebraic way by looking at spherical objects in A
n;perf
m . For

n D 2, those objects have been completely classified by Ishii and Uehara [17] and
Ishii, Ueda and Uehara [16] (for another application of this classification in symplectic
topology, see the very recent Lekili and Maydanskiy [28]). Unfortunately, there is no
straightforward relation between the categories A

n;perf
m for different n. In contrast, if

one considers the derived categories A
n;mod
m of complexes of graded modules over An

m ,
and appropriate subcategories A

n;perf
m of perfect objects inside those, the dependence

on n is minimal. Finally, concerning the relation between A
n;perf
m and A

n;perf
m , it is an

elementary algebraic observation that the first category can be viewed as a “bigraded”
or “equivariant” (for a certain action of C� ) refinement of the second one. Given that,
the missing ingredient is a way of making objects equivariant, and we will now turn to
that question in a fairly general context.

1.2 Equivariant objects

As motivation, consider the following situation. Let X be a smooth projective variety
over C , carrying an action of C� . We denote by DbCoh.X / the bounded derived
category of coherent sheaves, and by DbCohC�.X / its equivariant analogue (for
consistency with the rest of the paper, we actually want to consider the underlying
dg categories, but still use the classical notation). In Polishchuk [35, Lemma 2.2],
it was pointed out that the existence of moduli stacks for a suitable class of objects
in DbCoh.X / (see Inaba [15] and Lieblich [30]) together with a gluing theorem
(Beı̆linson, Bernstein and Deligne [4, Theorem 3.2.4]) implies the following:

Theorem 1.8 (Polishchuk) Let E be an object of DbCoh.X / which is rigid and
simple, meaning that

(1-6)

(
H 1.homDbCoh.X /.E;E//D 0;

H 0.homDbCoh.X /.E;E//ŠC:

Suppose in addition that H i.homDbCoh.X /.E;E// D 0 for all i < 0. Then E is
quasi-isomorphic to an object coming from DbCohC�.X /.

What is surprising, at least at first glance, is that there is a single overall condition (1-6)
which then implies, a fortiori, equivariance for all the cohomology sheaves H i.E/ (if
one restricts to sheaves, which means objects of the abelian category rather than its
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derived category, the result is easier and more classical; see for instance Bezrukavnikov,
Finkelberg, and Ginzburg [7, Appendix (in the preprint version only)], or the case of
bundles on homogeneous spaces mentioned in Bondal and Kapranov [9]). As pointed
out to the author by Toën, the condition on the negative degree endomorphisms in
Theorem 1.8 can be removed by using the more powerful methods of homotopical
algebraic geometry. This leads to the following result (unpublished, but follows from
techniques in Toën and Vaquié [49]):

Theorem 1.9 (Toën) Let A be a differential graded algebra over C which is proper
(has finite-dimensional cohomology) and smooth [26, Definition 8.1.2]. Suppose that it
carries an action of C� . Let Aperf be the derived category of perfect dg modules (in
this case, that is the same as the derived category of dg modules with finite-dimensional
cohomology). Let M be a rigid and simple object of Aperf . Then M is quasi-
isomorphic to a C�–equivariant dg module.

To be precise, by an action of C� we meant a linear action which is rational (a direct sum
of finite-dimensional representations). Similarly, by an equivariant dg–module we mean
one which carries a rational action of C� compatible with the other structures (later,
we will call this a “naive C�–action”, to distinguish it from other related concepts).
The smoothness assumption on A is required in order to construct finite-dimensional
(derived) stacks parametrising modules. However, one can argue that the structure of
general modules should not be relevant for the argument, which only involves M and
its pullbacks by the C�–action. With that in mind, we will prove:

Theorem 1.10 Let A be a dg algebra over C which is proper. Suppose that it carries
an action of C� . Let M be a perfect dg module over A which is rigid and simple.
Then M is quasi-isomorphic to a C�–equivariant dg module.

The proof follows the same overall strategy as in Polishchuk [35] while remaining
elementary throughout. We first show that M can carry a “weak C�–action”. This is
done by considering the pullbacks of M as a family of modules over C� . Next, there
is an obstruction theory which equips M with a series of higher homotopies added
to the weak action, corresponding to the use of simplicial methods in [35]. Finally,
there is an explicit “gluing” step which constructs the desired quasi-isomorphic module.
Toën informs me that his methods can also be adapted to give a proof of Theorem 1.10.

Finally, to return to symplectic topology, note that our previous results about .Am/

Milnor fibres represent just one application of Theorem 1.10. There are more situations
in which one expects Fukaya categories of noncompact symplectic manifolds to have
C�–actions, such as the double suspensions considered in Seidel [44], and where
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the same algebraic ideas may be useful (with this in mind, Section 5 takes a look at
the results one can get for the .Am/ Milnor fibres without appealing to Ishii–Ueda–
Uehara [16; 17]).

Acknowledgments This work answers a question posed to me by Ivan Smith, who
also provided the basic idea of using group actions to attack it (I’ve probably interpreted
that suggestion in a more algebraic way than he would have liked). A conversation
with Bertrand Toën helped me greatly to understand the obstruction theory involved.
During the preparation of the paper, I was partially supported by NSF grant number
DMS–1005288.

2 Algebraic background

2.1 A1–algebras and modules

We recall some elements of the theory of A1–structures (not new of course, see for
instance Keller’s papers [20; 21; 23]). We consider A1–algebras A over C , assuming
for now that they are strictly unital. Our sign conventions follow Seidel [43]. In
particular, the correspondence between dg algebras and A1–algebras with vanishing
compositions of order > 2 is given by setting

(2-1)
�1

A.a/D .�1/jaj@Aa;

�2
A.a2; a1/D .�1/ja1ja2a1:

We will allow a certain sloppiness in terminology, saying “A is a dg algebra” instead
of “A is an A1–algebra with vanishing compositions of order > 2, and therefore
corresponds to a dg algebra”. Note that conversely, if A is a general A1–algebra, the
cohomology H.A/ becomes a graded associative algebra by applying the same sign
change as in (2-1) (similar conventions apply to dg categories and A1–categories). An
A1–algebra is called proper if H.A/ is of total finite dimension, and weakly proper
if H.A/ is finite-dimensional in each degree.

Fix an A1–algebra A. A right A1–module M over A is a graded vector space
equipped with operations

(2-2) �dC1
M
W M ˝A˝d

�!M Œ1� d �; d � 0;

satisfying

(2-3)
X
i;j

.�1/ja1jC���Cjai j�i�
dC2�j
M

.m; ad ; : : : ; �
j
A
.aiCj ; : : : ; aiC1/; ai ; : : : ; a1/

C

X
i

.�1/ja1C���Cjai j�i�iC1
M

.�dC1�i
M

.m; ad ; : : : ; aiC1/; ai ; : : : ; a1/D 0:
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We will again impose a strict unitality condition. As before, H.M / inherits the
structure of a graded module over H.A/. Right A–modules form a dg category Amod .
Also relevant for us is the full dg subcategory Aperf �Amod of perfect modules, defined
as follows. Start with the free module A and consider all modules constructed from
that by a finite sequence of shifts and mapping cones. M is perfect if, in H 0.Amod/,
it is isomorphic to a direct summand of one of the previously constructed objects. If
M0 is perfect and .M1;i/i2I is an arbitrary collection of modules, the natural map

(2-4)
M
i2I

homAmod.M0;M1;i/ �! homAmod.M0;
M
i2I

M1;i/

is a quasi-isomorphism. This is the compactness property of perfect A1–modules (a
more general version of which actually characterises them among all modules; see the
parallel discussion for dg modules in Keller [23]).

One can generalise both Amod and Aperf to the case where A is an A1–category. The
former can be defined as the category of contravariant A1–functors from A to chain
complexes. The latter is the full subcategory of objects built from those in the image of
the Yoneda embedding A!Amod in the same way as before (by shifts, mapping cones,
and taking direct summands). Alternatively, one can first introduce the A1–category
Atw of twisted complexes, which is a natural enlargement of A itself closed under shifts
and mapping cones. There is a canonical A1–functor Atw ! Amod which extends
the Yoneda embedding, and using that one shows that Aperf is quasi-equivalent to the
split-closure (Karoubi completion on the A1–level) of Atw .

2.2 Relation to classical derived categories

Let’s temporarily restrict to the case when A is a dg algebra. In that case, an A1–
module with �dC1

M
D 0 for all d > 1 is the same as a dg module; or more precisely, the

two structures are related by a sign change as in (2-1). Let K.A/ be the dg category of
dg modules over A (morphisms are maps compatible with multiplication with elements
of A), and D.A/ the dg derived category, formed by quotienting out K.A/ by acyclic
complexes as in Drinfeld [12] and Keller [19]. The obvious functor K.A/! Amod

induces a functor

(2-5) D.A/ �!Amod:

It is a well-known fact that this is a quasi-equivalence. The main ingredient in the proof
is the following quite general observation. Given any A1–algebra A and A1–module
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M , one can construct another module

(2-6)

M ˝A A
def
D

M
l�0

M ˝AŒ1�˝l
˝A;

�1
M˝AA.m˝xal ˝ � � �˝ xa1˝ a/

D

X
i

.�1/jajCjxa1jC���Cjxai j�i�l�iC1
M

.m; xal ; : : : ; xaiC1/˝xai ˝ � � �˝ a

C

X
i;j

.�1/jajCjxa1jC���Cjxai j�im˝xal ˝ � � �˝ xaiCjC1

˝ � � �˝�
j
A
.xaiCj ; : : : ; xaiC1/˝xai ˝ � � �˝ a

C

X
i

m˝xal ˝ � � �˝ xaiC1˝�
iC1
A

.xai ; : : : ; a/;

�dC1
M˝AA

.m˝xal ˝ � � �˝ xa1˝ a; ad ; : : : ; a1/

D

X
i

m˝xal ˝ � � �˝ xaiC1

˝�iC1Cd
A

.xai ; : : : ; xa1; a; ad ; : : : ; a1/ for d > 0.

This comes with a canonical quasi-isomorphism M ˝A A!M [42, Equation (2.21)].
In the case when A is a dg algebra, M ˝A A is always a dg module. Moreover, if the
original M was a dg module, the quasi-isomorphism M ˝A A!M is itself a dg
module map. This provides an inverse (up to quasi-isomorphism of dg functors) to the
more obvious functor (2-5).

Let’s specialise even further, to the case where our A1–algebra is a graded algebra,
meaning that �2

A
is the only nonzero structure map. One can then introduce another dg

category Amod (this is the start of a general notational convention, where bold stands
roughly for bigraded structures). To do that, think of A itself as being bigraded, with
bidegrees of the form .0; s/ where s is the original grading. Objects of Amod are
bigraded vector spaces M together with maps �dC1

M
as in (2-2) which have bidegree

.1 � d; 0/. These should satisfy equations as in (2-3), where the sum of the two
degrees is used in determining all the relevant signs. The bigraded space H r;s.M /

has the property that each piece H r;�.M / is a graded A–module in the classical
sense. As a special case, objects which have vanishing structure maps �dC1

M
for

d > 1 correspond bijectively to chain complexes of graded A–modules. An element
� 2 homk

Amod.M0;M1/ is a collection of maps

(2-7) �dC1
W M0˝A˝d

�!M1

of bidegrees .k � d; 0/. The dg category structure of Amod is given by the same
formulae as for ordinary A1–modules, again taking the sum of the two gradings into
account when determining signs. Given any object M , one can form two kinds of

Geometry & Topology, Volume 16 (2012)



Lagrangian homology spheres in .Am/ Milnor fibres 2351

shifts M Œ1� and M f1g. The first one shifts the first grading downwards, and has the
usual property that homAmod.� ;M Œ1�/D homAmod.� ;M /Œ1�. The second one shifts
the second grading upwards (by convention). For instance, for the free module A there
is a natural isomorphism

(2-8) H r .homAmod.Afsg;M //ŠH r .homAmod.A;M f�sg//ŠH r;s.M /:

One also has a full subcategory Aperf , which consists of objects that can be constructed
starting from the free module by shifts (both kinds), mapping cones, and taking direct
summands. As before, the entire construction turns out to be equivalent to one from
classical homological algebra. Let K .A/ be the dg category of (unbounded) chain
complexes of graded A–modules, and D.A/ the associated (dg) derived category. In
parallel with (2-5), the obvious functor K .A/!Amod induces a quasi-equivalence

(2-9) D.A/ �!Amod:

This is well-known in the case where A has trivial grading (stated in Keller [21; 22]
without proof, but see [20, Proposition 7.4] for a full proof of the analogous statement
for bimodules). Again, the key fact is that for any object M one can construct another
one M ˝A A which lies in the image of (2-9). Moreover, the image of the full
subcategory of bounded complexes of finitely generated projective modules, which we
denote by perf.A/, is quasi-equivalent to Aperf . This follows from the characterisation
as subcategories of compact objects (again, this may be most familiar in the case of
algebras with trivial grading).

Any graded algebra can be considered as a dg algebra with vanishing differential, and
in that context we can compare the two previously discussed constructions. There
are natural functors which collapse the bigradings, and these fit into a commutative
diagram

(2-10)

D.A/

Š

��

// D.A/

Š

��
Amod // Amod:

For simplicity, let’s consider the top line of this diagram. The collapsing process takes
a complex fM r ; @r

M
W M r !M rC1g of graded A–modules, and associates to it the

total graded vector M t D
L

rCsDt M r;s made into a dg module in the obvious way.
If M0 and M1 are obtained in this way, we have a quasi-isomorphism

(2-11) homD.A/.M0;M1/Š homD.A/.M0;
M

j

M1fj gŒj �/:
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By projecting to each summand Mj fj gŒj �, one sees that there is an injective map

(2-12)
M

iCjDk

H i.homD.A/.M0fj g;M1// �!H k.homD.A/.M0;M1//:

If M0 is an object of Aperf , this map is an isomorphism by compactness. One slight
cautionary remark concerning the multiplicative structures is appropriate: the diagram

H i2.homD.A/.M1fj2g;M2//

˝H i1.homD.A/.M0fj1g;M1//
//

��

H i1Ci2.homD.A/.M0fj1C j2g;M2//

��
H i2Cj2.homD.A/.M1;M2//

˝H i1Cj1.homD.A/.M0;M1//
// H i1Ci2Cj1Cj2.homD.A/.M0;M2//

commutes only up to a sign .�1/i1j2 . These signs come from the chain level realisation
of (2-12). Namely, take a class Œ�� of bidegree .i; j / on the left hand side of the
map, and suppose for simplicity that this is represented by an actual map of chain
complexes �. The associated dg module homomorphism � is given by �.m0/ D

.�1/j jm0j1�.m0/, where jm0j1 is the first grading.

Remark 2.1 Given any graded algebra A, one can define a whole family An of graded
algebras simply by multiplying the degrees by a nonzero integer n. Any graded module
over A can be made into a graded module over An in the same way. Conversely, any
graded module over An can be written as a finite direct sum of objects which come
from A, with some shifts. On the level of the abelian categories mod. � / of graded
modules, the resulting relationship is simply that

(2-13) mod.An/Š

n�1M
iD0

mod.A/:

The associated derived categories then inherit a corresponding relationship. In particular,
any indecomposable object of D.An/'An;mod comes from D.A/'Amod . Similarly,
any indecomposable object of An;perf comes from Aperf . Note that in contrast, there
is no direct relationship between the categories of dg modules over A and An .

Remark 2.2 One important class of examples, Fukaya categories, do not (at least when
constructed in the most obvious way) satisfy strict unitality, and instead are only unital on
the cohomology level. In that case, one should instead consider cohomologically unital
modules. Note if an A1–algebra is strictly unital, it does not make a difference whether
one considers strictly unital or cohomologically unital modules (the corresponding

Geometry & Topology, Volume 16 (2012)



Lagrangian homology spheres in .Am/ Milnor fibres 2353

categories are quasi-equivalent). We refer to Lefèvre-Hasegawa [27] for an extensive
discussion.

3 .Am/–algebras and hypersurfaces

3.1 Algebraic definition

Fix m� 3, n� 1. Define a finite-dimensional graded algebra ADAn
m over C as the

quotient of the path algebra of the following graded quiver:

(3-1) 1
�

0

22 2
�

nrr

0

22 � � �
nrr 11 m�1

�
rr 22 m

�
qq

Our convention is that we write paths from right to left, so .3 j 2 j 1/ is the length two
path going from the first to the third vertex. With this mind, the grading is such that
j.kC 1 j k/j D 0, j.k j kC 1/j D n. We define A by imposing the relations

(3-2) .k jkC1 jkC2/D 0; .kC2 jkC1 jk/D 0; .k jkC1 jk/D .k jk�1 jk/:

This can be extended to lower values of m as follows. For mD 2, take the same quiver
(3-1) but with relations .1 j 2 j 1 j 2/D 0, .2 j 1 j 2 j 1/D 0. Finally, for mD 1 one sets
An

1
DCŒt �=t2 with t a generator of degree n (this may seem ad hoc, but the resulting

algebras do fit in naturally with the general case m� 3).

Consider the derived category D.A/ of right graded modules, which as usual for us
is a dg category. As explained in [24; 37], this category carries a weak action of the
braid group BrmC1 . The generators �k 2 BrmC1 act by twist functors TPk

along the
modules Pk D .k/A, which means that for any object M one has an exact triangle:

(3-3)

M // TPk
.M /

Œ1�vvM
i;j

H j .homD.A/.Pkfig;M //˝PkfigŒ�j �

hh

More simply put, H j .homD.A/.Pkfig;M //ŠH i;j .M /.k/ as vector space, and we
take the associated direct sum of appropriately shifted copies of Pk as the bottom term
in (3-3).

Lemma 3.1 Take the central element ı D .�1 : : : �m/
mC1 2 BrmC1 . Then ı2 acts by

a functor isomorphic to the shift Œ4m�f.2mC 2/ng.
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Sketch of proof This falls in the “well-known to specialists” category, but since there
seems to be no direct reference, we will sketch a proof. One can show, either by direct
computation or by appealing to the geometric interpretation of the braid group action
given in [24], that there are quasi-isomorphisms

(3-4) ı.Pk/Š Pk Œ2m�f.mC 1/ng for all k .

Let the functor �W D.A/!D.A/ be the action of ı composed with the inverse shift
Œ�2m�f�.mC 1/ng. Then (3-4) says that � maps the free module A to itself (and
moreover that is compatible with its decomposition A D P1˚ � � � ˚Pm ). General
homological algebra says that then � must be quasi-isomorphic to the functor induced
by an automorphism of the algebra A (and moreover, that automorphism must act
trivially on the vertices of our quiver). By composing with inner automorphisms, which
do not affect the isomorphism type of the associated functor, we can further restrict to
automorphisms that act trivially on the paths .kC1 j k/. Such automorphisms are then
uniquely determined by their action on C.k j k˙1 j k/DH 0.homD.A/.Pkfng;Pk//.
To see that �2 acts trivially, one can either do an explicit computation similar to (3-4), or
else note that everything can be carried out with coefficients in Z rather than C , which
shows that the automorphism of C.k j k˙1 j k/ associated to � is necessarily ˙1.

This leads to the following useful technical criterion:

Lemma 3.2 An object M of D.A/ is perfect if and only if it has the following two
properties:

dimC H�.M / <1;(3-5)

dimC

M
i

H�.homD.A/.M ;M fig// <1:(3-6)

Proof It is obvious that perfect objects have those two properties, so only the converse
is of interest. Suppose that M satisfies (3-5), (3-6). By combining exact triangles
(3-3), we arrive at a triangle of the form:

(3-7)

M // ı2t .M /ŠM Œ4mt �f.2mC 2/ntg

Œ1�tt�an object built by mapping
cones and shifts from the Pk

�
ee

Here, we have used (3-5) to ensure that the bottom term in each triangle (3-3) is a finite
direct sum of shifted copies of Pk . Now, (3-6) implies that if we make t large, the
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horizontal arrow in (3-7) vanishes. In that case M is a direct summand of the bottom
object, hence perfect (this is a slight variation of a familiar split-generation argument
[43, Corollary 5.8]).

The algebras A D An
m occur in a variety of contexts. To understand that, it is

maybe useful to recall some material from Seidel–Thomas [47]. Let D be a co-
homologically unital A1–category over C . An object Z of D is called spherical
of some dimension n> 0 [47, Definition 2.9] if it satisfies the following conditions:
H�.homD.Y;Z// and H�.homD.Z;Y // are of finite total dimension for any Y ;
H�.homD.Z;Z//ŠH�.SnIC/ has one generator in degrees 0 and n, respectively;
and finally, the composition

(3-8) H n��.homD.Y;Z//˝H�.homD.Z;Y // �!H n.homD.Z;Z//ŠC

is a nondegenerate pairing for any Y . An .Am/ chain of spherical objects [47, Equa-
tion (2.8)] is an ordered collection .Z1; : : : ;Zm/ of spherical objects of the same
dimension n, such that

(3-9) H�.homD.Zi ;Zj //D

8<:
1–dimensional, concentrated in degree 0 j D i C 1;

1–dimensional, concentrated in degree n j D i � 1;

0 ji � j j � 2:

We then have the following formality result [47, Lemma 4.21]:

Lemma 3.3 Let .Z1; : : : ;Zm/ be an .Am/–chain, with n � 2. Then the endomor-
phism algebra of Z D

L
k Zk is quasi-isomorphic to A. In particular, we get a

cohomologically full and faithful embedding Aperf !Dperf , which sends Pk to Zk .

This is false for nD 1, as demonstrated by the examples in [43, Section 20] (m� 5)
and [29] (m� 2).

3.2 Algebraic geometry

We temporarily restrict to n D 2, and explain the algebro-geometric interpretation
of ADA2

m . Consider the quotient C2=.Z=.mC 1// by a cyclic subgroup (which is
unique up to conjugacy) Z=.mC 1/� SL2.C/. Let

(3-10) qW X �!C2=.Z=.mC 1//

be the minimal resolution, and C D q�1.0/� X the exceptional divisor, which is a
chain of m rational curves C DC1[� � �[Cm . Start with the bounded derived category
of coherent sheaves on X with support on C , and denote by D the full subcategory
of objects E such that q�E is acyclic (as usual, we really mean the underlying chain
level dg category).
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Lemma 3.4 (Ishii–Ueda–Uehara) D is quasi-equivalent to Aperf .

Sketch of proof As stated in [16, Section 2.2], D is generated by the objects

(3-11) Z1 DOC1
.�1/Œ1�; : : : ;Zm DOCm

.�1/Œm�:

Note that if X is a compactification of X to a smooth projective algebraic surface,
the bounded derived category of coherent sheaves on X with support on C is the
same as the bounded derived category of coherent sheaves on X whose cohomology is
supported on C (see [6, Lemma 3]). The latter is split-closed (Karoubi complete, in
other words) by general results from [8]. Moreover, the condition that q�E should be
acyclic is obviously preserved under passing to direct summands, so it follows that D

is split-closed as well.

The rest of the argument is explained in [16, Lemma 40]. The objects (3-11) form an
.Am/ chain of spherical objects. One applies Lemma 3.3 to get a cohomologically full
and faithful embedding Aperf !Dperf . Our previous observations about D show that
D 'Dperf , and because of the generation statement, one gets a quasi-equivalence.

Proposition 3.5 (Ishii–Ueda–Uehara) Consider objects E of D which are nonzero
and such that H�.homD.E;E// has total dimension � 2. The action of BrmC1 on D

generated by the TZk
acts transitively on quasi-isomorphism classes of such objects up

to shifts.

Due to Serre duality, the conditions on E imply that it must be a spherical object. With
that in mind, the result is a reformulation of [16, Lemma 38], which in turn relies on
results of [17].

3.3 Symplectic geometry

For the following discussion, we assume n � 2. Consider Q D Qn
m as defined in

(1-1). Take !Q to be the restriction of the constant Kähler form on CnC1 . It is
well-known [24; 39] that Q contains Lagrangian spheres .V1; : : : ;Vm/ which form an
.Am/ configuration. This means that they are pairwise transverse and

(3-12)
�

Vk \Vk˙1 D fpointg;

Vj \Vk D∅ if jj � kj � 2:

The homology classes ŒVk � form a basis of Hn.QIZ/, which is in fact the basis in
which we had written the intersection form in (1-2). Symplectically, one can think
of Q as the plumbing of the Vk . We will not explain in detail what the plumbing
construction means, but one of its main features is this:
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Lemma 3.6 Take any symplectic manifold M 2n with the following properties. It
is exact, meaning that !M D d�M , and the Liouville vector field dual to �M can
be integrated for all positive times. Moreover, it contains an .Am/ configuration of
Lagrangian spheres .L1; : : : ;Lm/. Then there is a symplectic embedding Q!M

which sends each Vk to Lk .

Sketch of proof The local structure near any two .Am/ configurations being the
same, one finds a symplectic embedding U !M , where U �Q is a neighbourhood
of V1 [ V2 [ � � � [ Vm , which sends Vk to Lk . The next step is the one we were
referring to above, when mentioning plumbing. Namely, one can choose U and a
one-form �Q with d�Q D !Q so that the following holds: @U is a contact type
hypersurface for the associated Liouville vector field, and the flow of that vector field
yields a diffeomorphism Œ0;1/�@U !QnU . Given that, take a compactly supported
function K on M such that �M C dK restricts to �Q on U . Using the Liouville
vector field associated to �M CdK , the given embedding can be extended to the whole
of Q.

In fact, we will only use a particular consequence of this, namely the existence of
symplectic embeddings Qn

m!Qn
mC1

, which can also be established in other ways.

To define the Fukaya category, we should choose an almost complex structure JQ with
suitable convexity properties (to prevent pseudoholomorphic discs from escaping to
infinity). In our case, the standard complex structure will do. We should also choose
a complex volume form �Q (even though �Q is required in the definition, any two
choices lead to quasi-isomorphic Fukaya categories, since H 1.Q/D 0). Objects of
Fuk.Q/ are closed Lagrangian submanifolds L � Q which are exact (the relative
class Œ!Q� 2 H 2.Q;LIR/ vanishes) and graded with respect to �Q . The grading
induces an orientation on L, and we require the additional choice of a Spin structure,
as well as a representation �W �1.L/! GLr .C/ (for some choice of base point and
some r D rank.�/� 1; equivalently one can work with flat complex vector bundles).
Morphisms in Fuk.Q/ are Floer cochain complexes with their natural differential, so
that

(3-13) H�.homFuk.Q/.L0;L1//Š HF�.L0;L1/:

The Euler characteristic is

(3-14) �.HF�.L0;L1//D .�1/n.nC1/=2 rank.�0/ rank.�1/ ŒL0� � ŒL1�;

where �k are the representations on Lk (this agrees with the intuitive way of thinking
of the objects as Lagrangian submanifolds with multiplicities). Next, if L0 and L1
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have the same underlying Lagrangian submanifold L, grading and Spin structure, but
come equipped with representations �0 , �1 , then Floer cohomology agrees with the
ordinary cohomology with twisted coefficients:

(3-15) HF�.L0;L1/ŠH�.LI hom.�0; �1//:

(3-14) is straightforward from the definition, whereas (3-15) can be proved by adapting
any of the arguments that are familiar for the case of trivial representations.

Lemma 3.7 There is a quasi-equivalence

(3-16) An;perf
m ��!

Š Fuk.Qn
m/

perf :

which sends the modules Pk to the Lagrangian spheres Vk .

Sketch of proof This is proved in [43, Section 20] for the Fukaya category without
flat vector bundles. We briefly summarise the argument, in order to explain how it
extends to the case considered here. Make the Vk into objects of Fuk.Q/, choosing the
gradings in such a way that HF�.Vk ;VkC1/ŠC lies in degree 0. Because of general
Poincaré duality properties of Floer cohomology, they then form an .Am/–chain of
spherical objects, and Lemma 3.3 yields a cohomologically full and faithful embedding
as in (3-16).

The Dehn twists �Vk
satisfy braid relations up to isotopy, hence generate a homomor-

phism BrmC1! �0.Sympc.M //. On the level of the action on objects of the Fukaya
category, the Dehn twists can be identified with the algebraic twists TVk

. This follows
from [43, Corollary 17.17], ultimately a consequence of the long exact sequence for
Floer cohomology groups [40]. To be precise, in order to apply to the current context
the exact sequence should be generalised so to allow Lagrangian submanifolds with flat
line bundles, but that is straightforward. One can show that the composition of Dehn
twists corresponding to the central element ı2 2 BrmC1 is isotopic to a nontrivial shift
Œ4m�.2mC2/n� in the graded symplectic automorphism group of M [43, Section 20a]
(the geometric analogue of Lemma 3.1). This implies that the Vk are split-generators,
hence that the previously constructed embedding is a quasi-equivalence.

4 Proofs of the main theorems

4.1 Algebraic results

Take AD An
m for some m; n � 2. We will now consider spherical objects in Aperf .

This relies on our general equivariance theorems to reduce to the case nD 2, where
the algebro-geometric results of Ishii–Ueda–Uehara can be applied.
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Lemma 4.1 Let M0 be an object of Aperf, with H�.homAperf .M0;M0//ŠH�.SnIC/
as a graded vector space. Suppose that m ¤ 1. Then there is another object M1 ,
obtained from the module P1 by applying some autoequivalence in the group generated
by TP1

; : : : ;TPm
, such that H�.homAperf .M0;M1// has dimension exactly 1.

Proof The main step is to use Theorem 1.10, which applies to our case as described in
Example 7.3. The outcome is that there is some M0 in Amod which maps to M0 under
the collapsing map Amod! Amod . By definition of that functor, the cohomology of
M0 is a bigraded version of that of M0 , hence finite-dimensional. Moreover, because
of the general injectivity of (2-12), we know that

(4-1) dimC

M
i

H�.homAmod.M0;M0fig//� 2:

In view of Lemma 3.2, it follows that M0 lies in Aperf . Since (2-12) is an isomorphism
for perfect modules, this also shows that equality holds in (4-1). Note that in particular,
M0 is nonzero and indecomposable (since all its endomorphisms of bidegree .0; 0/
are multiples of the identity).

Write xAD A2
m , and xPk D .k/ xA. Remark 2.1 allows us to transfer indecomposable

objects from Amod to xAmod , while preserving the total dimension of the cohomology
and of bigraded morphism spaces. Therefore, we get a corresponding object M0 of
xAmod , which still has finite-dimensional cohomology, and bigraded endomorphism

space of total dimension 2. Again applying Lemma 3.2, one finds that M0 lies in
xAperf . Let’s collapse the bigrading and consider the associated object M0 of xAperf .

Proposition 3.5 and Lemma 3.4 apply, showing that there is some autoequivalence
� of xAperf generated by T xP1

; : : : ;T xPm
, such that �.M0/Š xP1Œs� for some s . Take

M1 D �
�1. xP2/. Because it is constructed through a sequence of twists along the xPk ,

it is easy to see that M1 lifts to an object M1 of xAperf . Again using the fact that (2-12)
is an isomorphism for perfect modules, one sees that

(4-2) dimC

M
i

H�.hom xAperf.M0;M1fig//D 1:

There is a corresponding object M1 in Aperf constructed using the same sequence of
twists, and the pair .M0;M1/ will satisfy the analogue of (4-2). The image M1 of
M1 in Aperf has the desired property.

Remark 4.2 In principle, one could try to replace Theorem 1.10 by an application
of its algebro-geometric counterpart, Theorem 1.8. As an example, consider the
three-dimensional case. One can find a smooth toric Calabi–Yau threefold U and
compactly supported sheaves Z1 ,. . . ,Zm on it, which form an .Am/ configuration of
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spherical objects in the category DbCoh.U /; see the discussion in [47, Section 3f].
As part of the toric symmetry, this carries an action of G D C� which acts with
weight 3 on a suitably chosen holomorphic volume form on U . Choose a smooth toric
compactification X � U . One gets cohomologically full and faithful embeddings:

(4-3)

A
3;perf
m

� � //

��

DbCohG.X /

��

A
3;perf
m

� � // DbCoh.X /

Given an object M of A
3;perf
m whose endomorphism ring is H�.S3IC/, one can first

map it to an object E of DbCoh.X /, and then use Theorem 1.8 to lift E to an object
E of DbCohG.X /. One knows as in Lemma 3.1 that a suitable composition of twist
functors along the Zk takes E to itself up to a nontrivial shift Œ�2m� 6�. Given that
the Zk can be made into equivariant objects Zk , one can then apply the same argument
as in the proof of Lemma 3.2 to show that E lies in the subcategory split-generated by
the twisted versions Zk ˝�

l (for 1� k �m, and l 2 Z parametrising characters of
G ), which means in the image of the embedding of A

3;perf
m . This provides a lift M

of M to A
3;perf
m . We will not pursue this trick further, because it is artificial and only

an apparent simplification: the proof of Theorem 1.8 given in [35], while a good deal
shorter, relies on tools that are more abstract than our proof of Theorem 1.10.

Lemma 4.3 Let M0;M1 be two objects of Aperf such that H�.homAperf .Mi ;Mi//Š

H�.SnIC/. Suppose that m is even. Suppose also that for all k ,

(4-4) dimC H�.homAperf .Pk ;M0//� dimC H�.homAperf .Pk ;M1// mod 2:

Then H�.homAperf .M0;M1// is nonzero.

Proof Arguing exactly as in Lemma 4.1, one can reduce the situation to the case
nD 2, which we will concentrate on for the rest of the argument. One can then use
Proposition 3.5 (and the correspondence between Dehn twists and twist functors) to
show that the images of Mi under the quasi-equivalence Aperf Š Fuk.Q2

m/
perf are

quasi-isomorphic to Lagrangian spheres Li . The assumption (4-4) translates to

(4-5) ŒVk � � ŒL0�� ŒVk � � ŒL1� mod 2:

The intersection form on H2.Q
2
m/ (see (1-2)) has determinant .�1/m.mC 1/, which

is odd for even m. Hence (4-5) implies that ŒL0� � ŒL1� mod 2. As already ex-
plained in (1-4), we then have ŒL0� � ŒL1�¤ 0, hence HF�.L0;L1/¤ 0, which means
H�.homAperf .M0;M1//¤ 0.
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4.2 Geometric applications

We consider the manifolds QDQn
m , where m� 1 and n� 2.

Proof of Theorem 1.1 Assume first that m � 2. Let L0 � Q be a Lagrangian
submanifold which is a rational homology sphere and Spin. Lemma 4.1 implies that
there is a Lagrangian sphere L1 (in fact one obtained from the Vk by the braid group
action) such that HF�.L0;L1/ is one-dimensional. Passing to Euler characteristics
implies the desired result. The remaining case mD 1 is known already [41], but one
could also derive it by embedding Qn

1
D T �Sn ,!Qn

2
.

Proof of Theorem 1.2 Suppose first that m is even. By assumption,

ŒVk � � ŒL0�D ŒVk � � ŒL1� mod 2

for all k . Lemma 4.3 then implies that HF�.L0;L1/¤ 0. One extends the argument
to odd m by embedding Qn

m ,!Qn
mC1

, which is possible by Lemma 3.6.

Proof of Theorem 1.4 Again, we may assume without loss of generality that m is
even. Take two objects L0;L1 of Fuk.Q/, both of which have the same underlying
Lagrangian submanifold L and Spin structure, but where the first one carries the trivial
representation, and the second one the given representation � . From (3-14) one sees
that

dim HF�.Vk ;L0/� dim HF�.Vk ;L1/ mod 2

for all k . By the same argument as in the proof of Theorem 1.2, this implies that
HF�.L0;L1/¤ 0, contradicting (3-15).

Proof of Theorem 1.5 Without loss of generality, assume that m � 2. Let L0 be
the object obtained by taking our Lagrangian submanifold and equipping it with the
representation � . By arguing as in the proof of Theorem 1.1, one sees that there is a
Lagrangian sphere L1 such that HF�.L0;L1/ is one-dimensional. But that contradicts
(3-14).

Especially in view of possible extensions to other symplectic manifolds, it may be
interesting to see how far one can get without appealing to Proposition 3.5. This will
be the subject of the next section (however, since the discussion there is not essential
for the results of this paper, we will allow a more sketchy treatment).
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5 A variant approach

5.1 Hochschild homology

For an A1–algebra A one defines the Hochschild homology H�.A;A/ as the coho-
mology of the chain complex

(5-1)

C�.A;A/D
M
l�0

AŒ1�˝l
˝A;

@C�.A;A/.xal ˝ � � �˝ xa1˝ a/

D

X
i;j

.�1/jajCjxa1jC���Cjxai j�i
xal ˝ � � �˝�

j
A
.xaiCj ; : : : ; xaiC1/˝ � � �˝ xa1˝ a

�

X
i;j

.�1/.jxal�jC1jC���Cjxal j�j/.jajCjxa1jC���Cjxal�j jCl�jC1/

� xal�j ˝ � � �˝ xaiC1˝�
1CiCj
A

.xai ; : : : ; a; xal ; : : : ; xal�jC1/:

(In spite of being written as a subscript, this is a cohomological grading in our conven-
tions, so @C�.A;A/ has degree C1). This easily generalises to A1–categories (using
composable closed chains of morphisms), which is the context we will work in from
now on. For any twisted complex C we have a canonical map

(5-2) homAtw.C;C / �! C�.A;A/:

Explicitly, let

(5-3) C D
M
f 2F

Xf ; ıC D
�
ıC;f1;f0

2 hom1
A.Xf0

;Xf1
/
�
;

where F is some finite set, and the Xf are objects of A (this is not quite the most general
form of a twisted complex, since we have not shifted the Xf ; however, including shifts
just introduces some additional signs). Then (5-2) takes an endomorphism aD .af1;f0

/

of C to the Hochschild chain

(5-4)
X

l

X
f0;:::;fl2F

ıC;fl ;fl�1
˝ � � �˝ ıC;f1;f0

˝ af0;fl

(the sum terminates at some value of l because of the upper triangularity condition on
ıC , which is part of the definition of a twisted complex). One application is to consider a
cohomology level idempotent endomorphism Œa�2H 0.homAtw.C;C //. After applying
the embedding Atw!Aperf , this endomorphism defines a direct summand of C , which
is a perfect module M unique up to quasi-isomorphism. We denote the image of Œa�
under (5-2) by

(5-5) ŒM �alg 2H0.A;A/:
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Lemma 5.1 ŒM �alg depends only on the isomorphism class of M in H 0.Aperf /.

Sketch of proof Consider first a simpler special case, namely that of an idempotent
endomorphism Œa� of an object X of A itself. In that case, (5-2) reduces to the map
homA.X;X /! C�.A;A/ given by inclusion of the l D 0 term into the Hochschild
complex. Take two objects Xk (k D 0; 1) and idempotent endomorphisms Œak � which
define quasi-isomorphic direct summands. One then has cocycles b0 2 hom0

A.X0;X1/,
b1 2 hom0

A.X1;X0/, and auxiliary cochains ck 2 hom�1
A .Xk ;Xk/, such that

(5-6)

(
�2

A.b1; b0/C�
1
A.c0/D a0;

�2
A.b0; b1/C�

1
A.c1/D a1:

In the Hochschild complex, this yields

(5-7) @C�.A;A/.b1˝ b0C c0� c1/

D �1
A.c0/��

1
A.c1/��

2
A.b0; b1/C�

2
A.b1; b0/D a0� a1;

which shows that the Hochschild homology classes of the ak coincide. One can prove
the general case of Lemma 5.1 by a similarly explicit computation, but it is maybe
better understood as follows. As part of the general theory of derived invariance of
Hochschild homology, we have a chain map C�.A

tw;Atw/! C�.A;A/ which is a
quasi-inverse to the inclusion C�.A;A/!C�.A

tw;Atw/. From that viewpoint, (5-2) is
the composition of that map with the inclusion homAtw.C;C /! C�.A

tw;Atw/. Then
applying (5-7) to Atw proves Lemma 5.1.

Remark 5.2 One can approach (5-5) from a more abstract viewpoint. M gives rise
to a class in K0.A

perf /, and there is a Chern character type map (more appropriately
called the Dennis trace) from that to H�.A

perf ;Aperf /. Finally, a stronger version of
derived invariance shows that H�.A;A/ŠH�.A

perf ;Aperf /. We refer to [31] for an
introduction to Chern characters in noncommutative geometry, to [18] for derived
invariance, and to [48] for a more extensive discussion of the Hochschild classes
associated to perfect modules.

5.2 The Cardy condition

Let Q be a 2n–dimensional exact symplectic manifold which is convex at infinity. This
is a common setup (see [45, Section 3a], to pick one of many occurrences). It means
first of all that Q carries a one-form �Q such that !QD d�Q is symplectic. Moreover,
we have a compatible almost complex structure JQ with the property that Q has an
exhaustion by relatively compact subsets whose closures are JQ –holomorphically
convex. We will additionally assume that Q is symplectically Calabi–Yau, hence
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admits a JQ –complex volume form �Q . Objects of the Fukaya category Fuk.Q/
are closed Lagrangian submanifolds L�Q which are exact with respect to �Q , and
equipped with additional structures as before (a grading with respect to �Q , a Spin
structure, and a flat complex vector bundle).

The Fukaya category comes with a canonical open-closed string map from its Hochschild
homology to the homology of the symplectic manifold,

(5-8) ˆW H�.Fuk.Q/;Fuk.Q// �!H�Cn
cpt .QIC/ŠHn��.QIC/:

The existence of this map, for the case of a closed symplectic manifold, was already im-
plicit in [25]. Related ideas appear in various places in the Floer cohomology literature.
We refer to [1, Section 5] for a more extensive discussion (which is more sophisticated
than what we need here, since it includes nonclosed Lagrangian submanifolds and
their wrapped Floer cohomology), and only give a schematic description. Fix a Morse
function (and Riemannian metric) which can be used to define a Morse complex C �.Q/

underlying ordinary cohomology. Suppose that we are given objects .L0; : : : ;Ld / (as-
sumed to come with trivial flat bundles for simplicity), generators xi 2 CF�.Li�1;Li/

(where we set L�1 DLd ) which correspond to (perturbed) intersection points, and a
generator y 2 C �.Q/ which corresponds to a critical point. One then gets a number
ndC1.y;x0; : : : ;xd / 2 Z by counting (perturbed) pseudoholomorphic maps which
have asymptotics xi at the boundary marked points, and whose evaluation at the interior
marked point lies on the unstable manifold of y (see Figure 1). These numbers form
the coefficients of a map (not by itself a chain map)

(5-9) C �.Q/˝CF�.Ld ;L0/˝CF�.Ld�1;Ld /˝� � �˝CF�.L0;L1/�!CŒ�n�d �:

The collection of such maps for all d and .L0; : : : ;Ld / forms the chain map underlying
(5-8) (up to an obvious dualisation).

L0L1

L2 L3

Figure 1
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By combining (5-8) with (5-2) for a twisted complex C , one obtains a map

(5-10) ˆC W H
�.homFuk.Q/tw.C;C // �!Hn��.QIC/:

The simplest example is when C is a single Lagrangian submanifold L equipped with
a flat bundle � , in which case (5-10) recovers the classical (purely topological) map

(5-11) HF�.L;L/ŠH�.LIEnd.�//
trace
��!H�.LIC/

ŠHn��.LIC/ �!Hn��.QIC/:

In particular, the image of the identity ŒeL� 2 HF0.L;L/ is rank.�/ times the usual
homology class ŒL�. Similarly, given a twisted complex C , the image of ŒeC � can be
computed from the homology classes of the Lagrangian submanifolds that enter into
C . More generally, for any object M of Fuk.Q/perf , one can take the image of (5-5)
under (5-8), and thereby obtain a quasi-isomorphism invariant, which we write as

(5-12) ŒM � 2Hn.QIC/:

There is no a priori reason why (5-12) should be an integer class. However, one can
obtain some restrictions on it from the following:

Proposition 5.3 Suppose that we have two twisted complexes Ck (k D 0; 1), each of
which comes with an endomorphism Œak � 2H�.homFuk.Q/tw.Ck ;Ck//. Then

(5-13) ˆC1
.Œa1�/�ˆC0

.Œa0�/D .�1/n.nC1/=2Str
�
Œa� 7�! .�1/jaj�ja1jŒa1��Œa��Œa0�

�
2C:

On the left side, we have the standard intersection pairing on homology. The right
hand side is the supertrace of the endomorphism of H�.homFuk.Q/tw.C0;C1// given
by composition with the two given Œak �, with the additional sign as indicated (note that
either side can be nonzero only if ja0jC ja1j D 0).

This is a form of the Cardy condition, which a general feature of two-dimensional
topological field theories involving both open strings (Floer cohomology for Lagrangian
submanifolds, in our case) and closed strings (the homology of Q). For an occurrence
in another context see for instance [10, Theorem 15]. Suppose first that Ck DLk are
just Lagrangian submanifolds. In that situation, the gluing and deformation argument
underlying (5-13) becomes very simple; we summarise it in Figure 2. The general case
is fundamentally parallel, except that the surfaces carry additional marked boundary
points where one inserts the boundary operators of the twisted complexes. We do not
carry out that general argument here; the intermediate level of generality, where one
of the two objects involved is a Lagrangian submanifold and the other is a twisted
complex, is discussed in detail in [1] (even though the intended application there is
different).
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L0 L1

Œa0� Œa1�

L0 L1

Œa0� Œa1�

L0

L1

Œa0� Œa1�

L0

L0

L1

Œa0�
L0

L1

L1

Œa1�

gluing

deformation

gluing

Figure 2

Remark 5.4 We will not attempt to justify the signs in (5-13), but if the reader wants
to check their plausibility, the following considerations might be useful. Suppose as
before that the Ck DLk are Lagrangian submanifolds. If the Œak � are identity elements,
we recover (3-14). Next, if we switch a0 and a1 (restricting to the nontrivial case
ja0jC ja1j D 0), the left hand side changes by .�1/nCja0j . On the right hand side, for
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.a0; a1/ and .a1; a0/ we would be considering the sum of the traces of the maps

(5-14)

HFk.L0;L1/ �! HFk.L0;L1/;

Œa� 7�! .�1/kja1jCk Œa1� � Œa� � Œa0�;

HFn�k.L1;L0/ �! HFn�k.L1;L0/;

Œa0� 7�! .�1/.n�k/ja0jC.n�k/Œa0� � Œa
0� � Œa1�:

Under the “Poincaré duality” in Lagrangian Floer cohomology, these maps are dual up
to a factor of .�1/kja1jCkC.n�k/ja0jC.n�k/C.n�ja0j/ja1j D .�1/nCja0j .

Returning to our discussion of (5-12), Proposition 5.3 implies that

(5-15) ŒM1� � ŒM0�D .�1/n.nC1/=2�.H�.homFuk.Q/perf .M0;M1/// 2 Z;

where � is the Euler characteristic. In particular:

Corollary 5.5 Suppose Hn.QIZ/=torsion is generated by homology classes of ob-
jects in the Fukaya category. Let L0 be an object of Fuk.Q/, carrying a flat vector bun-
dle of rank r0 , and M1 an object of Fuk.Q/perf . Suppose H�.homFuk.Q/perf .L0;M1//

has odd total dimension. Then r0ŒL0� 2Hn.QIZ/=torsion is not divisible by 2 (and
hence in particular nonzero).

Proof Let V1; : : : ;Vm be a collection of objects in Fuk.Q/ whose homology classes
generate Hn.QIZ/=torsion. From (5-15) we know that ŒVk � � ŒM1� 2 Z for all k .
Arguing by contradiction, suppose that r0ŒL0� is divisible by 2, hence can be written
as r0ŒL0�D d1ŒV1�C � � � dmŒVm�, where the di are even integers. Then

r0ŒL0� � ŒM1�D d1ŒV1� � ŒM1�C � � �C dmŒVm� � ŒM1�

is also even, contradicting (5-15).

5.3 The .Am/ Milnor fibre revisited

We now return to our example of QDQn
m , for some m� 1 and n� 2.

Lemma 5.6 For any object M of Fuk.Q/perf , ŒM � 2Hn.QIC/ is integral.

Sketch of proof The simplest approach would be to enlarge Fuk.Q/ by allowing
some noncompact Lagrangian submanifolds, and use an appropriate generalisation
of Proposition 5.3. Instead, one can use the following technically less demanding
workaround. Let zQDQn

mC1
, with its .AmC1/–configuration . zV 1; : : : ; zV mC1/. We
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know that there is a symplectic embedding Q! zQ, which sends Vk to zV k for k �m.
This induces a cohomologically full and faithful embedding Fuk.Q/! Fuk. zQ/. The
associated open-closed string maps fit into a commutative diagram

(5-16)

H�.Fuk.Q/;Fuk.Q//

��

// Hn��.QIC/

��

H�.Fuk. zQ/;Fuk. zQ// // Hn��. zQIC/:

Let M be our object, and zM its image in Fuk. zQ/perf . We then know that Œ zM � is
the image of ŒM � under the map Hn.QIC/!Hn. zQIC/, which is just the inclusion
Zm D Zm � f0g ,! ZmC1 . Moreover, by Proposition 5.3, Œ zM � � Œ zVk � 2 Z for all k

including k DmC 1. It is easy to see, by inspection of the intersection forms (1-2)
and (1-3), that this implies the integrality of ŒM �.

The following is a weak version of Lemma 4.1, whose proof is independent of the
results of [16; 17]:

Lemma 5.7 Suppose that m is even. Let M0 be an object of Fuk.Q/perf whose
endomorphism ring is isomorphic to H�.SnIC/. Then H�.homFuk.Q/perf .Vk ;M0//

has odd total dimension for some k .

Sketch of proof As in our original proof of Lemma 4.1, one can use general equivari-
ance arguments to reduce the problem to the case nD 2, which we will exclusively
consider from now on. From Lemma 5.6 we know that ŒM0� 2H2.QIZ/. Since M0

is spherical, Proposition 5.3 implies that ŒM0� � ŒM0�D �2, hence ŒM0� is primitive
and in particular nonzero mod 2. Since m is even, the intersection form (1-2) has
odd determinant, hence ŒM0� � ŒVk � is odd for some k . Applying Proposition 5.3 again
implies the desired result.

This directly leads to a weaker version of Theorem 1.1, which states that if L�Q is a
rational homology sphere and Spin, then ŒL� is not divisible by 2 (and therefore in
particular nonzero). There is also an analogous weak version of Theorem 1.5, which
only excludes the existence of representations � satisfying (1-5) whose rank r is even.
On the other hand, similar arguments yield the full strength of Theorems 1.2 and
1.4. For that, one replaces the given proof of Lemma 4.3 by an argument based on
Lemma 5.6 and Proposition 5.3.
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6 More algebraic background

6.1 Group cohomology

We now start the more abstract discussion of equivariance issues. We will only be
considering the ground field C , and the multiplicative group G D Gm D C� . Let
CŒG�ŠCŒz; z�1� be the ring of regular functions on G as an affine algebraic variety,
with its usual (pointwise) multiplication. This also carries a coproduct, coming from
the group structure on G . Rational representations of G are those which are direct
sums of finite-dimensional representations. They can also be identified with comodules
over the coalgebra CŒG� (respecting the counit). While arbitrary direct sums of rational
representations are rational, the same is not true for products.

Let V be a rational representation of G . The bar resolution of V is a chain complex
of rational G –modules concentrated in degrees � 0,

(6-1) Br .G;V /DCŒG�˝rC1
˝V;

where G acts only on the leftmost CŒG� factor. To write down the differential, we prefer
to think of elements of (6-1) as maps bW GrC1! V . Explicitly, f1˝ � � �˝frC1˝ v

corresponds to b.grC1; : : : ;g1/D f1.g1/ : : : frC1.grC1/v . In these terms,

(6-2) .ıB�.G;V /b/.grC1; : : : ;g1/D
X

q

.�1/qb.grC1; : : : ;gqC1gq; : : : ;g1/

C .�1/rC1grC1b.gr ; : : : ;g1/;

which is equivariant for the G –action .g �b/.grC1; : : : ;g1/D b.grC1; : : : ;g1g/. One
needs to check that this preserves the subspace of functions of the form (6-1), and
that is done by rewriting (6-2) in coalgebra terms (the same will be true in parallel
situations later on).

Lemma 6.1 The comultiplication V ! CŒG�˝ V D B0.G;V / induces an isomor-
phism V ŠH�.B.G;V //.

Similarly, the group cochain complex with coefficients in V is

(6-3)

C r .G;V /DCŒG�˝r
˝V;

.ıC�.G;V /c/.gr ; : : : ;g1/D
X

q

.�1/qc.gr ; : : : ;gqC1gq; : : : ;g1/

C .�1/r gr c.gr�1; : : : ;g1/C c.gr ; : : : ;g2/:

Lemma 6.2 The inclusion V G ,! V D C 0.G;V / induces an isomorphism V G Š

H�.C.G;V //.

While Lemma 6.1 is a general fact about linear algebraic groups, Lemma 6.2 relies on
the semisimplicity of G . Of course, both results are classical, see [14].
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6.2 Families of modules

We return to the discussion of A1–structures from Section 2.1, in order to mention a
less familiar aspect, namely the theory of families of A1–modules [38, Section 1]. Let
A be a strictly unital A1–algebra. Take a smooth affine variety X , with coordinate
ring CŒX �. A family of A–modules over X is given by a graded CŒX �–module N

such that each N k is projective, together with structure maps

(6-4) �dC1
N
W N ˝C A˝d

�!N Œ1� d �

which are CŒX �–linear and satisfy the usual conditions. It may be useful to recall
that over rings with finite global dimension, such as CŒX �, unbounded complexes of
projective modules are well-behaved [11]. Families of modules over X form a dg
category linear over CŒX �, which we denote by Amod=X .

The simplest example is the trivial (or constant) family associated to an A–module M ,
which is CŒX �˝M with the A1–module structure of M extended CŒX �–linearly.
Take an A1–module M and an arbitrary family of modules N . We then have

(6-5) homAmod=X .CŒX �˝M;N /Š homAmod.M;N /:

On the right hand side, we forget the CŒX �–module structure of N (so this forgetting
is adjoint to the operation of constructing a constant family). In the special case of two
constant families, we have a natural map

(6-6) CŒX �˝ homAmod.M0;M1/ �! homAmod=X .CŒX �˝M0;CŒX �˝M1/:

If M0 is perfect, one can use (6-5) and (2-4) to conclude that this map is a quasi-
isomorphism. Returning to the general situation, a family of A1–modules is called
perfect if, up to quasi-isomorphism, it can be constructed from the trivial family
CŒX �˝A by a finite sequence of the usual operations (shifts, mapping cones, and
finally passing to a direct summand). In particular, if M is a perfect module then
CŒX �˝M is a perfect family.

Lemma 6.3 Suppose N0 is a perfect family, and that N1 is a family such that H�.N1/

is a finitely generated CŒX �–module in each degree. Then H�.homAmod=X .N0;N1//

is again finitely generated over CŒX � in each degree.

Proof This is a tautology if N0 DCŒX �˝A, and the general case follows from that
by going through suitable long exact sequences.
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We will also need to recall the definition of a connection on a family N [38, Section 1h].
We first introduce the more general notion of preconnection. Such a preconnection is a
sequence of maps

(6-7) r= dC1
N
W N ˝C A˝d

�!�X ˝CŒX �N Œ�d �;

where �X is the module of Kähler differentials. The first term should be of the form
r= 1

N .n/ D .�1/jnjDN n, where DN is an ordinary connection on the graded CŒX �–
module N . The higher order terms r= dC1

N , d > 0, are CŒX �–linear. The failure of
this to be compatible with the A1–module structure is expressed by the deformation
cocycle

(6-8) defN D �
1
Amod=X .r=N / 2 hom1

Amod=X .N; �X ˝CŒX �N /:

Here, we apply the usual formula for �1
Amod=X

, which is the differential on morphisms
in the category of (families of) A1–modules, to r=N , irrespectively of the fact that
r= 1

N
is not CŒX �–linear. Explicitly, we follow the sign conventions in [43, Section 1j],

so

(6-9)

def 1
N .n/D .id�X

˝�1
N /.DN n/�DN .�

1
N .n//;

def 2
N .n; a/D .�1/jnjCjaj�1.id�X

˝�1
N /.r=

2
N .n; a//C .id�X

˝�2
N /.DN n; a/

�DN�
2
N .n; a/C .�1/jnjr= 2

N .�
1
N .n/; a/

C .�1/jnjCjaj�1
r= 2

N .n; �
1
A.a//;

and so on.

Because of cancellation between the terms involving DN , def d
N is indeed CŒX �–linear

in n (recall that a is an element of A, hence is constant over X ). By construction,
�1

Amod=X
.defN /D 0, and the class

(6-10) DefN D ŒdefN � 2H 1.homAmod=X .N; �X ˝CŒX �N //

is independent of the choice of r=N . In particular, to compute that class one may choose
a preconnection whose higher order terms vanish, in which case (6-8) simplifies to

(6-11) def dC1
N

.n; ad ; : : : ; a1/

D .id�X
˝�dC1

N
/.DN n; ad ; : : : ; a1/�DN�

dC1
N

.n; ad ; : : : ; a1/;

measuring the compatibility of DN with the A1–module structure. A connec-
tion rN is a preconnection such that defN D 0. Connections exist if and only if
DefN D 0; and in that case, homotopy classes of connections are parametrised by
H 0.homAmod=X .N; �X ˝CŒX �N //. If N0 and N1 are families equipped with connec-
tions, then the graded CŒX �–module H�.homAmod=X .N0;N1// carries a connection
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in the ordinary sense of the word, denoted by DN0;N1
(see again [38, Section 1h] for

the definition). In particular, if this module is finitely generated (in some degree), it is
necessarily projective (in that degree) [5]. Moreover, these connections are compatible
with the categorical structure in the following sense: if the families Nk all carry
connections, then

(6-12) DN0;N2
.Œn2�Œn1�/DDN1;N2

.Œn2�/Œn1�C .id�X
˝ Œn2�/DN0;N1

.Œn1�/;

for Œnk � 2H�.homAmod=X .Nk�1;Nk//.

7 Weakly equivariant modules

7.1 Setup

From now on, suppose that our A1–algebra A carries a rational action of G DC� .
This should be understood in a naive sense: we have a rational action of G on the
underlying graded vector space, such that all the �d

A
are equivariant.

Given an A1–module M and some h 2 G , one can define the pullback module
h�M , which has the same underlying graded vector space as M , but with the twisted
A1–module structure

(7-1) �dC1
h�M

.m; ad ; : : : ; a1/D �
dC1
M

.m; h.ad /; : : : ; h.a1//:

Pullback by h is an automorphism of the category of A–modules, whose action on
morphisms is

(7-2)
h�W homAmod.M0;M1/ �! homAmod.h�M0; h

�M1/;

.h��/dC1.m; ad ; : : : ; a1/D �
dC1.m; h.ad /; : : : ; h.a1//:

There is also an infinitesimal version of pullback. Namely, define the Killing cocycle

(7-3)
kiM 2 hom1

Amod.M; g�˝M /;

kidC1
M

.m; ad ; : : : ; a1/D�
X

k

z�˝�dC1
M

.m; ad ; : : : ; z.ak/; : : : ; a1/:

Here, g D C is the Lie algebra of G D C� . We picked a nonzero element z 2 g

along with its dual z� 2 g� . The notation z.ak/ stands for the infinitesimal action
of g on A. The cohomology class KiM D ŒkiM � 2 H 1.homAmod.M; g� ˝M // is
a quasi-isomorphism invariant. As will be explained below, this is the infinitesimal
obstruction to equivariance.
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Because of the structure of G as an algebraic group, it is often better to think in terms of
families parametrised by G . The category Amod=G has a CŒG�–linear automorphism
 � , which acts by g� on the fibre over g2G . We start with the trivial family CŒG�˝M ,
and define the orbit family to be N D  �.CŒG�˝M /. The graded CŒG�–module
underlying N is still CŒG�˝M , but the A1–module structure has been modified.
In the special case where M D A is the free module, one can use the G–action to
trivialise the associated orbit family, meaning that  �.CŒG�˝A/ŠCŒG�˝A. From
this it follows that, for any perfect module M , the associated orbit family N is a
perfect family.

We will now relate this construction to the previously introduced infinitesimal ob-
struction. By combining (6-5) and the pullback  � , we get an isomorphism of chain
complexes

(7-4) homAmod.M;CŒG�˝ g�˝M /D homAmod=G.CŒG�˝M; �G ˝M /

�

��! homAmod=G.N; �G ˝CŒG�N /:

A simple computation shows that the image of kiM 2 homAmod.M; g�˝M / under (7-4)
is the deformation class associated to the trivial preconnection r=N (the one obtained
by identifying the underlying CŒG�–module with CŒG�˝M ). Since the inclusion
of constants, homAmod.M; g�˝M / ,! homAmod.M;CŒG�˝ g�˝M /, is injective on
cohomology, N admits a connection if and only if KiM D 0. More concretely, a choice
of coboundary �1

Amod.˛/D kiM yields a connection rN on N , given by

(7-5)
r

1
N .n/.g/D .�1/jnjdn.g/�˛1.n.g//;

r
dC1
N

.n; ad ; : : : ; a1/.g/D�˛
dC1.n.g/;g.ad /; : : : ;g.a1// for d > 0.

Here, we think of n 2N ŠCŒG�˝M as a function on G with values in M ; and of
rn 2�G˝CŒG�N Š�G˝M ŠCŒG�˝ g�˝M as a function on G with values in
g�˝M .

Remark 7.1 The orbit family has a symmetry property, which is intuitively obvious
but whose formal statement requires a bit of effort. Let’s temporarily suppose that N

is an arbitrary family of A–modules over G . Given some fixed h 2G , we can form
h�N , which is the pullback (7-2) applied equally to all the fibres. On the other hand,
we can use the right multiplication map rh�1 W G ! G , rh�1.g/ D gh�1 , and push
forward the family N in the geometric sense, forming rh�1;�N . The reader will have
noticed the unhappy proximity in notation between these two quite different operations
(h� changes the A1–module structure, whereas rh�1;� changes the CŒG�–module
structure). To clarify the situation, we write things down explicitly: the graded vector
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space underlying h�N and rh�1;�N is equal to that of N , and the CŒG�–module
structure and A1–module structure are given by

(7-6)

.f � h�N n/.g/D f .g/n.g/;

�dC1
h�N

.n; ad ; : : : ; a1/D �
dC1
N

.n; h.ad /; : : : ; h.a1//;

.f � r
h�1;�

N n/.g/D f .gh�1/n.g/;

�dC1
r

h�1;�
N
.n; ad ; : : : ; a1/D �

dC1
N

.n; ad ; : : : ; a1/:

In the case of the orbit family, it follows that n.g/ 7!n.gh/ is an isomorphism (of CŒG�–
modules, and strictly compatible with the A1–module structure) rh�1;�N ! h�N .
Note also that any connection on N induces ones on h�N and rh�1;�N , which are
different in general. However, for (7-5) those two connections are related by the
isomorphism which we have just introduced.

7.2 Naive actions

The notion of action on a module directly corresponding to the one we’ve adopted for
A1–algebras is:

Definition 7.2 A naive G–action on an A–module M is a rational action of G on
the underlying graded vector space, such that all the �dC1

M
are equivariant.

Example 7.3 Suppose that A comes from a graded algebra (only �2
A

is nonzero).
Then it carries a G –action which has weight i precisely on the degree i part. Suppose
that M carries a naive G –action, and write M i;j for the part of M iCj on which the
action has weight j . Then the bigraded space M with its operations �dC1

M
is precisely

an object of the category Amod considered in Section 2.1.

If M carries a naive G–action, then KiM is trivial, since the cocycle kiM is the
coboundary of the linear endomorphism m 7! .�1/jmjz�˝z.m/ (in the contrapositive,
if KiM is nonzero, not only does M not carry a naive G –action, but neither can any
other quasi-isomorphic module). From a more geometric viewpoint, a naive action
gives rise to an isomorphism CŒG�˝M ŠN , which takes m.g/ to nD gm.g/. The
existence of such an isomorphism implies that the deformation class of N must vanish,
which as explained before is equivalent to the vanishing of KiM .

In spite of the apparently obvious nature of the definition, there are some points of cau-
tion. For instance, if M0 and M1 carry naive G –actions, the space homAmod.M0;M1/

carries a G–action, but that may not be rational in general (because the definition
involves a direct product).
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Lemma 7.4 Suppose that M0 and M1 carry naive G –actions, and that M0 is equiv-
ariantly perfect. This means that in the category of modules with naive G–actions
(and equivariant maps), M0 is quasi-isomorphic to a direct summand of an object
produced from A by the following operations: changing the group actions by tensoring
with a character; shifting the grading; and mapping cones. Then homAmod.M0;M1/ is
G –equivariantly quasi-isomorphic to a chain complex of rational G –modules.

Proof This is elementary if M0 can be constructed as an equivariant twisted complex,
which means without taking a direct summand. The general case follows from the fact
that the derived category of rational G –modules admits countable direct sums, hence
is closed under homotopy retracts [32, Proposition 2.2].

7.3 Strict actions

Instead of asking for G to act on M linearly, one can allow higher order terms. What
one then wants is, for each g 2G , a homomorphism

(7-7) �1.g/ 2 hom0
Amod.M;g�M /:

There is a unitality condition, which says that this should be the identity if g D e . We
also need a cocycle condition which is formulated in terms of pullbacks, namely

(7-8) �2
Amod.g

�
1�

1.g2/; �
1.g1//D �

1.g2g1/ 2 hom0
Amod.M;g�1g�2M /:

It may be worth while to spell this out a little. The condition that �1.g/ should be a
module homomorphism, meaning that �1

Amod.�
1.g//D 0, yields an infinite sequence

of equations

(7-9)
X

i

.�1/jaiC1jC���Cjad jCjmjCd�i

��iC1
M

.�1;dC1�i.g;m; ad ; : : : ; aiC1/;g.ai/; : : : ;g.a1//

C

X
i

.�1/jaiC1jC���Cjad jCjmjCd�i

� �1;iC1.g; �d�iC1
M

.m; ad ; : : : ; aiC1/; ai ; : : : ; a1/

C

X
i;j

.�1/jaiC1jC���Cjad jCjmjCd�i

� �1;dC2�j .g;m; ad ; : : : ; aiCjC1;

�
j
A
.aiCj ; : : : ; aiC1/; ai ; : : : ; a1/D 0;

of which the two simplest ones are

(7-10) �1
M .�1;1.g;m//C �1;1.g; �1

M .m//D 0;
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and

(7-11) �1
M .�1;2.g;m; a//C .�1/jaj�1�1;2.g; �1

M .m/; a/C �1;2.g;m; �1
A.a//

C .�1/jaj�1�2
M .�1;1.g;m/;g.a//C �1;1.g; �2

M .m; a//D 0:

(7-10) implies that for each g , the map

(7-12) m 7�! .�1/jmj�1;1.g;m/

is an endomorphism of M as a chain complex. (7-11) says that the map on cohomology
induced by (7-12) is a homomorphism from the H.A/–module H.M / to the pullback
module g�H.M /. The other requirement is (7-8), which yields

(7-13)
�X

i

.�1/jaiC1jC���Cjad jCjmjCd�i

� �1;iC1.g2; �
1;dC1�i.g1;m; ad ; : : : ; aiC1/;g1.ai/; : : : ;g1.a1//

�
� �1;dC1.g2g1;m; ad ; : : : ; a1/D 0:

The simplest of these equations is

(7-14) .�1/jmj�1;1.g2; �
1;1.g1;m//� �

1;1.g2g1;m/D 0;

which says that the maps (7-12) are strictly compatible with the group structure of G .
On the cohomology level, the outcome is that H.M / is an equivariant H.A/–module
in the classical sense.

So far, we have treated G as a discrete group. To take its algebraic nature into account,
we further impose a rationality condition, namely that the maps �1;dC1.g/ for varying
g should be specialisations of a single linear map

(7-15) �1;dC1
W M ˝A˝d

�!CŒG�˝M Œ�d �:

Rationality becomes more natural from a geometric viewpoint. Spelling out (6-5) yields

(7-16) homAmod=G.CŒG�˝M;N /Š
Y
d

homC.M ˝AŒ1�˝d ;CŒG�˝M /;

hence can think of (7-15) as a single element

(7-17) �1
2 homAmod=G.CŒG�˝M;N /;

which then satisfies �1
Amod=G

.�1/D 0.

To formulate the cocycle condition in a similar way, it is convenient to introduce some
higher-dimensional families related to N (even if that makes the notation somewhat
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more cumbersome). Let Gr be the product of r copies of G , so CŒGr �D CŒG�˝r .
These products come with projection and multiplication maps

(7-18)

pj ;i W G
r
�!Gr�jCi ;

pj ;i.gr ; : : : ;g1/D .gr ; : : : ;gjC1;gi�1; : : : ;g1/;

mj ;i W G
r
�!Gr�jCiC1;

mj ;i.gr ; : : : ;g1/D .gr ; : : : ;gj gj�1 � � �giC1gi ;gi�1; : : : ;g1/:

Let N r be the pullback of the orbit family by the total multiplication map mr;1W G
r!

G (this includes the case r D 1, where N 1 D N ; and the degenerate case r D 0,
where N 0 DM considered as a family over a point). Equivalently, let  �

k
be the

automorphism of Amod=Gr which acts by g�k on the fibre over .gr ; : : : ;g1/. Then N r

is the image of the trivial family p�r;1N 0DCŒGr �˝M under  �1 � � � 
�
r . Generalising

the r D 1 case from (7-16), one has an isomorphism of graded CŒGr �–modules

(7-19) homAmod=Gr .p�r;1N 0;N r /Š
Y
d

homC.M ˝AŒ1�˝d ;CŒG�˝r
˝M /;

and can then rewrite (7-8) as an equation lying in the r D 2 case of that space,

(7-20) m�2;1�
1
D �2

Amod=G2.
�
1 p�1;1�

1;p�2;2�
1/ 2 homAmod=G2.p�2;1N 0;N 2/:

The m� and p� are geometric pullbacks, which change the parameter space of a family
(hence the underlying graded vector space), while  �

1
affects only the A1–module

structure. Let’s summarise the discussion so far:

Definition 7.5 A strict G –action on an A–module M is given by a family of maps
�1.g/ satisfying the appropriate unitality, cocycle and rationality conditions. Equiva-
lently, it is given by a homomorphism of families of modules �1 as in (7-17), whose
restriction to the fibre at e is the identity map, and such that (7-20) holds.

Given a naive G –action on M , one can define a strict G –action by setting �1;1.g;m/D

.�1/jmjgm and �1;dC1.g;m; ad ; : : : ; a1/D 0 for d > 0. In converse direction one
has:

Lemma 7.6 A strict group action on M induces a naive group action on the quasi-
isomorphic module M ˝A A.

This is quite straightforward to prove: the �1.g/ and the G –action on A induce linear
maps g�.M ˝A A/!M ˝A A, and these satisfy all the conditions for a naive group
action. Unfortunately, the outcome of this discussion is that strict actions are not
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fundamentally more general than naive actions. Indeed, we have mentioned them
mainly because they represent a natural stepping-stone towards another notion, which
we will introduce next.

7.4 Weak actions

The previous discussion suggests another, more substantial, generalisation of the notion
of group action on an A1–module, which is to require all the relevant conditions to
hold only on the level of the cohomological category H 0.Amod/. More precisely:

Definition 7.7 A weak G–action on M is given by a homomorphism (7-17) of
families of A1–modules (assumed to be closed with respect to �1

Amod=G as before),
whose restriction to the fibre at e 2G represents the identity in H 0.homAmod.M;M //,
and such that the equality (7-20) holds in H 0.homAmod=G2.p�2;1N 0;N 2//.

This means that there is another map �2 2 hom�1
Amod=G2.p

�
2;1

N 0;N 2/ such that

(7-21) �1
Amod=G2.�

2/C�2
Amod=G2.

�
1 p�1;1�

1;p�2;2�
1/�m�2;1�

1
D 0:

When written out explicitly in terms of (7-19) for r D 2, the components of �2 are
maps

(7-22) �2;dC1
W M ˝A˝d

�!CŒG�˝2
˝M Œ�d � 1�;

and (7-21) says that

(7-23)
X

i

.�1/jaiC1jC���Cjad jCjmjCd�i

��iC1
M

.�2;dC1�i.g2;g1;m; ad ; : : : ; aiC1/;g2g1.ai/; : : : ;g2g1.a1//

C

X
i

.�1/jaiC1jC���Cjad jCjmjCd�i

� �2;iC1.g2;g1; �
d�iC1
M

.m; ad ; : : : ; aiC1/; ai ; : : : ; a1/

C

X
i;j

.�1/jaiC1jC���Cjad jCjmjCd�i

� �2;dC2�j .g2;g1;m; ad ; : : : ; aiCjC1;

�
j
A
.aiCj ; : : : ; aiC1/; ai ; : : : ; a1/

C

X
i

.�1/jaiC1jC���Cjad jCjmjCd�i

� �1;iC1.g2; �
1;dC1�i.g1;m; ad ; : : : ; aiC1/;g1.ai/; : : : ;g1.a1//

� �1;dC1.g2g1;m; ad ; : : : ; a1/D 0:
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The simplest of these equations is

�1
M .�2;1.g2;g1;m//C �

2;1.g2;g1; �
1
M .m//

C �1;1.g2; �
1;1.g1;m//� �

1;1.g2g1;m/D 0:

This means that the chain maps (7-12) are compatible with the group structure of G

only up to chain homotopies, which are given by �2;1 . Of course, on the level of
cohomology the outcome is still that H.M / is an equivariant H.A/–module in the
standard sense.

We need to further discuss the implications of having a weak G–action, since these
are maybe not as obvious as for the previously discussed notions of group action.
Specialising to the fibre over g 2 G yields �1.g/ 2 hom0

Amod.M;g�M /, and these
satisfy the analogue of (7-8) on the cohomology level. In particular, each �1.g/ is
an isomorphism in the category H 0.Amod/. As a consequence, we get an induced
G –action (in the ordinary sense of linear action) on the space H�.homAmod.M;M //.
This is defined by filling in the diagram (up to chain homotopy)

(7-24)

homAmod.M;M /
�2

Amod .�
1.g/; � /

//

���
�
�

homAmod.M;g�M /

homAmod.M;M /
g� // homAmod.g�M;g�M /:

�2
Amod . � ;�

1.g//

OO

We can get slightly stronger versions of these statements by working uniformly over
G , which means in terms of families.

Lemma 7.8 A weak G –action on M yields an isomorphism CŒG�˝M !N in the
category H 0.Amod=G/.

Proof Take (7-23) and pull the equality back via .id; i/W G ! G2 , where i is the
inverse map i.g/D g�1 . The result is

(7-25) �1
Amod=G..id; i/

��2/C�2
Amod=G.

�i��1; �1/� id

D 0 2 homAmod=G.CŒG�˝M;CŒG�˝M /:

It follows that �1 has a left inverse in H 0.Amod=G/. Since i� and  � are isomor-
phisms, it has a right inverse as well.

Lemma 7.9 If M is a perfect module and carries a weak G–action, the induced
G –action on the graded space H�.homAmod.M;M // is rational.

Geometry & Topology, Volume 16 (2012)



2380 Paul Seidel

Proof We start with a version of (7-24) with variable g , namely

(7-26)
hom.CŒG�˝M;CŒG�˝M /

�2
Amod=G

.�1; � /
//

���
�
�

hom.CŒG�˝M;N /

hom.CŒG�˝M;CŒG�˝M /
� // hom.N;N /;

�2
Amod=G

. � ;�1/

OO

where all hom are homAmod=G . Lemma 7.8 shows that the composition with �1 on
either side is a chain homotopy equivalence, and of course  � is an isomorphism. If
M is perfect, the cohomology groups in the left column of (7-26) are isomorphic to
H.homAmod.M;M //˝CŒG�. By restricting to constants, we get a C–linear map

(7-27) H.homAmod.M;M // �!H.homAmod.M;M //˝CŒG�;

which is the CŒG�–comodule structure corresponding to the desired rational represen-
tation.

Lemma 7.8 again implies that if a module admits a weak action, then its Killing class
must vanish. More interestingly, one can obtain a partial converse. Take an A–module
M such that KiM D 0. Choose a bounding cochain ˛ for the underlying cocycle
kiM , and associate to it a connection rN as in (7-5). Equip N 2 Dm�2;1N with the
pullback connection m�2;1rN , and all the constant families of modules with their trivial
connections.

Lemma 7.10 Suppose that

(7-28) Œ�1� 2H 0.homAmod=G.CŒG�˝M;N //DH 0.homAmod=G.p
�
1;1N 0;N 1//

is covariantly constant for the induced connection. Then the class

(7-29) Œm�2;1�
1
��2

Amod=G2.
�
1 p�1;1�

1;p�2;2�
1/� 2H 0.homAmod=G2.p�2;1N 0;N 2//

has the property that its restriction to each slice G � fg1g �G2 is covariantly constant.

Proof By definition of the connections involved, m�2;1�
1 is covariantly constant on the

whole of G2 . Consider the other summand and restrict it to G � fg1g. The restriction
can be written as the composition of the following two terms:

(7-30)
Œg�1�

1� 2H 0.homAmod=G.CŒG�˝g�1M;g�1N //;

ŒidCŒG�˝ �
1.g1/� 2H 0.homAmod=G.CŒG�˝M;CŒG�˝g�1M //:

The second of these terms is clearly covariantly constant (it is constant in the remaining
variable g D g2 , and all the connections involved are trivial). The first is covariantly
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constant if we equip N 2jG � fg1g Š g�1N with the connection g�1rN . That’s not
exactly how we described the process — we used the geometric pullback r�g1

rN D

rg�1
1
;�rN instead — but the result coincides with g�1rN , as discussed in Remark 7.1.

We now know that both expressions (7-30) are covariantly constant, hence so is their
product by (6-12).

Lemma 7.11 Suppose that A is weakly proper, and that M is a perfect A–module.
Take a Œ�1� as in the previous Lemma, with the additional assumption that its value at
g D e should be the identity. Then Œ�1� is automatically a weak action.

Proof Weak properness implies that H.N r / is a finitely generated CŒGr �–module
in each degree. The constant family p�r;1N 0 is perfect, hence (by Lemma 6.3)
H�.homAmod=Gr .p�

r;1
N 0;N r // is again finitely generated in each degree. Moreover,

it admits a connection, hence is projective. We want to show that (7-29) vanishes. It
suffices to show that its restriction to each slice G � fg1g is zero. We know that each
such restriction is covariantly constant, and that its value at .e;g1/ is

(7-31) Œ�1.g1/��
2
Amod.g

�
1�

1.e/; �1.g1//�D 0:

These two facts together imply the necessary vanishing result.

Here is one concrete consequence of the discussion so far:

Lemma 7.12 Suppose that A is weakly proper, and that M is a perfect A–module
which is rigid and simple, meaning that it satisfies the analogue of (1-6) in Amod . Then
M can be equipped with a weak G –action.

Proof KiM necessarily vanishes, which means that H 0.homAmod=G.CŒG�˝M;N //

carries a connection, hence is locally free of rank 1. It is therefore necessarily free
as a CŒG�–module. When choosing a coboundary ˛ for kiM , we have the freedom
of adding any scalar multiple of idM to it, and that changes the induced connection
on H 0.homAmod=G.CŒG�˝M;N // by the corresponding scalar factor. By adjusting
that factor, one can achieve that the monodromy is trivial (here we use the surjectivity
of the exponential map, hence the fact that our ground field is C ), and then there is a
covariantly constant section as required by Lemma 7.11.

8 Homotopy actions

8.1 Definition

Starting from the notion of weak action, one is naturally led to introduce higher
homotopies following the familiar simplicial pattern. We will now explain the resulting
notion. As before, A is an A1–algebra carrying a rational action of G DC� .
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Let M be an A–module. A homotopy action of G on M is given by maps

(8-1) �r;dC1.gr ; : : : ;g1/W M ˝A˝d
�!M Œ1� d � r �

for r � 1, gr ; : : : ;g1 2 G , and d � 0, which satisfy conditions which we will now
gradually introduce. Most importantly, the cocycle condition says that

(8-2)
X

i

.�1/jaiC1jC���Cjad jCjmjCd�i�iC1
M

.�r;dC1�i.gr ; : : : ;g1;m; ad ; : : : ; aiC1/;

gr � � �g1.ai/; : : : ;gr � � �g1.a1//

C

X
i

.�1/jaiC1jC���Cjad jCjmjCd�i

� �r;iC1.gr ; : : : ;g1; �
d�iC1
M

.m; ad ; : : : ; aiC1/; ai ; : : : ; a1/

C

X
i;j

.�1/jaiC1jC���Cjad jCjmjCd�i

� �r;dC2�j .gr ; : : : ;g1;m; ad ; : : : ; aiCjC1;

�
j
A
.aiCj ; : : : ; aiC1/; ai ; : : : ; a1/

C

X
q;i

.�1/jaiC1jC���Cjad jCjmjCd�i

� �r�q;iC1.gr ; : : : ;gqC1; �
q;dC1�i.gq; : : : ;g1;m; ad ; : : : ; aiC1/;

gq � � �g1.ai/; : : : ;gq � � �g1.a1//

C

X
q

.�1/q�r�1;dC1.gr ; : : : ;gqC1gq; : : : ;gi ;m; ad ; : : : ; a1/D 0:

The r D 1 and r D 2 cases simply reproduce (7-9) and (7-23). For each .gr ; : : : ;g1/,
one can consider the collection f�r;dC1.gr ; : : : ;g1; : : : /gd�0 as an element

(8-3) �r .gr ; : : : ;g1/ 2 hom1�r
Amod.M;g�1 : : :g

�
r M /;

and then (8-2) can be rewritten in the same way as in (7-8):

(8-4) �1
Amod.�

r .gr ; : : : ;g1//

C

X
q

�2
Amod.g

�
1 : : :g

�
q�

r�q.gr ; : : : ;gqC1/; �
q.gq; : : : ;g1//

C

X
q

.�1/q�r�1.gr ; : : : ;gqC1gq; : : : ;g1/D 0:

The unitality condition is the same as for weak actions, saying that Œ�1.e/� D id in
H 0.Amod/. The rationality condition says that if we fix d , the �r;dC1.gr ; : : : ;g1; : : : /

for different .gr ; : : : ;g1/ should be specialisations of a single map

(8-5) �r;dC1
W M ˝A˝d

�!CŒGr �˝M Œ1� d � r �:
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Using (7-19) this can be thought of as a morphism in the A1–category Amod=Gr ,

(8-6) �r
2 hom1�r

Amod=Gr .p
�
r;1N 0;N r /;

and then (8-4) can be written in analogy to (7-21) as

(8-7) �1
Amod=Gr .�

r /C
X

q

�2
Amod=Gr .

�
1 : : : 

�
q p�q;1�

r�q;p�r;qC1�
q/

C

X
q

.�1/qm�qC1;q�
r�1
D 0:

We summarise the discussion:

Definition 8.1 A homotopy action of G on M is a collection of maps (8-5) satisfying
the unitality and cocycle conditions.

8.2 Turning homotopy actions into naive ones

Given a homotopy G–action on M , we can construct another A1–module M naive

whose underlying graded vector space is

(8-8) M naive
D

Y
r�0

CŒG�˝rC1
˝M Œ�r �:

If we think of elements as collections of maps ˇrC1W GrC1!M , then the differential
is defined to be

(8-9) �1
M naive.ˇ/

rC1.grC1; : : : ;g1/

D �1
M .ˇrC1.grC1; : : : ;g1//

C

X
q

�rC1�q;1.grC1; : : : ;gqC1; ˇ
q.gq; : : : ;g1//

C

X
q

.�1/qCjˇjˇr .grC1; : : : ;gqC1gq; : : : ;g1/;

and the other A1–module structures as

(8-10) �dC1
M naive.ˇ; ad ; : : : ; a1/

rC1.grC1; : : : ;g1/

D �dC1
M

.ˇrC1.grC1; : : : ;g1/;grC1 : : :g1.ad /; : : : ;grC1 : : :g1.a1//

C

X
q

�rC1�q;d
�
grC1; : : : ;gqC1; ˇ

q.gq; : : : ;g1/;

gq � � �g1.ad /; : : : ;gq � � �g1.a1/
�
:
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Take the (complete decreasing) filtration of M naive by r . The associated spectral
sequence has Er�

1
D CŒG�˝rC1˝H.M /. The next differential takes a given repre-

sentative Œˇr � to

(8-11) .grC1; : : : ;g1/ 7�! .�1/jˇ.gr ;:::;g1/jCr�1�1;1.grC1; ˇ
r .gr ; : : : ;g1//

C

X
q

.�1/qˇr .gr ; : : : ;gqC1gq; : : : ;g1/;

hence is precisely the differential (6-2) for the G –action on H.M / induced by �1;1 .
It follows that the only nonvanishing term on the next page is E0�

2
ŠH.M /. In fact,

by applying Lemma 6.1 and a spectral sequence comparison theorem, one sees that the
module homomorphism � 2 homAmod.M;M naive/ given by

(8-12) �dC1.m; ad ; : : : ; a1/.grC1; : : : ;g1/

D �rC1;dC1.grC1; : : : ;g1;m; ad ; : : : ; a1/

is a quasi-isomorphism. One also has a quasi-isomorphism in inverse direction, which
is linear, and takes ˇ to mD ˇ1.e/.

M naive carries a G–action on the underlying graded vector space, where g maps
ˇ.grC1; : : : ;g1/ to ˇ.grC1; : : : ;g1g/. This is compatible with all the A1–operations.
Because of the direct product in (8-8), this is not in general a rational representation.
However, if M is bounded below as a graded vector space, then each graded piece of
M naive is a finite product, hence the problem does not arise:

Lemma 8.2 Suppose that M is bounded below. Then if it carries a homotopy G–
action, there is a quasi-isomorphic module which carries a naive G –action.

8.3 Obstruction theory

We will now consider the issue of extending a weak action to a homotopy action. Fix
some M and some s � 3. Suppose that we are given maps �r for all r < s , satisfying
the unitality condition as well as those equations (8-7) in which no higher order maps
appear. Temporarily set �s D 0. Then the failure of the order s equation (8-7) to hold
is measured by a collection of maps

(8-13) �s.gs; : : : ;g1/D
X

q

�2
Amod.g

�
1 : : :g

�
q�

r�q.gr ; : : : ;gqC1/; �
q.gq; : : : ;g1//

C

X
q

.�1/q�r�1.gr ; : : : ;gqC1gq; : : : ;g1/

2 hom2�s
Amod.M;g�1 : : :g

�
s M /:
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A straightforward computation starting with (8-7) shows that these are �1
Amod –closed,

hence actual module homomorphisms. Moreover,

(8-14) ��2
Amod.g

�
1 : : :g

�
s �

1.gsC1/; �
s.gs; : : : ;g1//

C�2
Amod.g

�
1�

s.gsC1; : : : ;g2/; �
1.g1//

C

X
q

.�1/q�s.gsC1; : : : ;gqC1gq; : : : ;g1/D �
1
Amod.something/:

Equivalently, one can consider the class

(8-15) Es.gs; : : : ;g1/D .g
�1
1 � � �g

�1
s /�.Œ�s.gs; : : : ;g1/� � Œ�

1.gs : : :g1/�
�1/

2H 2�s.homAmod.M;M //:

Taking into account the sign changes (2-1) when passing to the cohomological category,
composition with Œ�1.gsC1 : : :g1/�

�1 and pullback turns (8-14) into

(8-16) .�1/sC1g�sC1.Œ�
1.gsC1/�E

s.gs; : : : ;g1/Œ�
1.gsC1/�

�1/

CEs.gsC1; : : : ;g2/C
X

q

.�1/qEs.gsC1; : : : ;gqC1gq; : : : ;g1/D 0:

The first term is the action of gsC1 on Es.gs; : : : ;g1/ 2 H 2�s.homAmod.M;M //

(modulo sign) as defined in (7-24). Considering that cohomology group as a G –module,
we may write (8-16) as a group cocycle equation

(8-17) ıC�.G;H 2�s.homAmod .M;M ///.E
s/D 0:

To make this argument precise, we need to work with varying elements of G , which
means that we consider the error term and its associated cohomology class as elements

(8-18)
�s
2 hom2�s

Amod=Gs .p
�
s;1N 0;N s/;

Es
2H 2�s.homAmod.M;M ˝CŒGs �//:

Assume at this point that M is perfect. Using (2-4) one can rewrite the second term
above as

(8-19) Es
2H 2�s.homAmod.M;M //˝CŒG�˝s;

which is a cocycle of degree s in the complex C �.G;H 2�s.homAmod.M;M /// by
(8-16). A computation similar to the previous ones (and whose details we therefore
omit) shows that, by adding a cocycle in homAmod=Gs�1.p�s�1;1

N 0;N s�1/ to �s�1 ,
one can change Es by an arbitrary coboundary, without affecting the validity of the
equations (8-7) for r < s .
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We know from Lemma 6.2 that the group cochain complex is acyclic in the relevant
degree. This means that by adjusting �s�1 , one can get Es to become zero, which
means that �s is a coboundary. After that, one can choose a �s so that the order s

equation (8-7) is satisfied. Induction then shows the following:

Lemma 8.3 Every weak G–action on a perfect M can be extended to a homotopy
G –action.

We can now state and prove a slightly more general version of Theorem 1.10.

Corollary 8.4 Let A be an A1–algebra with a rational G –action, such that H.A/ is
finite-dimensional in each degree (weak properness) and bounded below. Let M be a
perfect A1–module over A satisfying the analogue of (1-6) in Amod . Then there is a
quasi-isomorphic A1–module which carries a naive G –action.

Proof Using standard Perturbation Lemma arguments, we can replace A by a quasi-
isomorphic A1–algebra which is minimal (has vanishing differential). This works
equivariantly with respect to G , so we will assume from now on that A itself is minimal.
Similarly, we can replace M by a quasi-isomorphic module which is minimal, and we
will assume that this has been done as well. Since M is perfect, it then follows that it
must be finite-dimensional in each degree and bounded below. One uses Lemma 7.12
to equip M with a weak G –action; Lemma 8.3 to extend that to a homotopy G –action;
and finally Lemma 8.2 to convert that into a naive G–action on a quasi-isomorphic
module.
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