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Obstructions to stably fibering manifolds

WOLFGANG STEIMLE

Is a given map between compact topological manifolds homotopic to the projection
map of a fiber bundle? In this paper obstructions to this question are introduced with
values in higher algebraic K–theory. Their vanishing implies that the given map
fibers stably. The methods also provide results for the corresponding uniqueness
question; moreover they apply to the fibering of Hilbert cube manifolds, generalizing
results by Chapman and Ferry.

19J10, 55R10; 57N20

1 Introduction

Given a map f W M !B between closed manifolds, is f homotopic to the projection
map of a fiber bundle of closed manifolds? Can the different ways of fibering f be
classified? These questions have a long tradition in geometric topology. In the research
on high-dimensional manifolds, the investigation of these questions has accompanied
the development of the subject since its beginnings: The fibering theorem of Browder
and Levine [3] was an early application of surgery techniques and the h–cobordism
theorem. Further results have been obtained by Farrell [10] and Siebenmann [26] for
B D S1 , using the s–cobordism theorem and computations of the Whitehead group of
semidirect products G Ì˛ Z.

Casson [6] pioneered the study of fibering questions for higher-dimensional base mani-
folds by considering BDSn , applying techniques of surgery theory. Quinn [24] was the
first to systematically describe block structure spaces using the L–theoretic assembly
map and to develop a general obstruction theory to “block fibering” a given map.

In the Q–manifold world, Chapman and Ferry [8] obtained the most general results
available so far. Most recently, in the finite-dimensional case, joint work of the author
with Farrell and Lück [11] shows how the obstructions defined by Farrell and Sieben-
mann over S1 can be generalized to arbitrary base spaces (where, however, they stop
being a complete set of obstructions).

In the light of the development of parametrized h–cobordism theory since the 1970s,
this work refocuses on the role of algebraic K–theory in fibering questions. As we will
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see, higher algebraic K–theory of spaces provides obstructions for both questions of
existence and uniqueness. Moreover, the vanishing of these obstructions has a concrete
geometric meaning: The obstructions constructed in this work form a complete set of
obstructions to fibering manifolds stably. Here stabilization refers to crossing the total
space with disks of sufficiently high dimension, thus leaving the category of closed
manifolds. In fact, the theory of stably fibering manifolds is best formulated and proved
entirely in the world of compact manifolds with boundary (which we call compact
manifolds for short).

More concretely, let f W M ! B be a map between compact topological manifolds.
Then, by definition, f stably fibers if, for some n 2N , the composite

f ıProjW M �Dn
!M ! B

is homotopic to the projection map of a fiber bundle whose fibers are compact topolog-
ical manifolds. The following questions will be dealt with:

� When does f stably fiber?

� How many different ways are there for f to stably fiber? Denote by C the
set of all bundle maps gW M �Dn! B for some n which are homotopic to
f ı Proj. We define two elements to be equivalent, and write g � g0 , if after
further stabilizing there is a bundle homeomorphism i W M �DN !M �DN

from g to g0 (ie i ıg D g0 ), such that i is homotopic to the identity map. The
precise question is then: How can C=� be described?

Factor f into a homotopy equivalence � followed by a fibration p . Under a finiteness
assumption on the fiber F of p , two obstructions will be defined:

� Wall.p/ 2 H 0.BIWh.F //, which is an obstruction to reducing p to a fiber
bundle of compact manifolds. Here the term Wh is used to denote the (connective
topological) Whitehead spectrum as defined by Waldhausen. It is defined in terms
of algebraic K–theory of spaces and is closely connected to the classification
of parametrized h–cobordisms. The term H 0.BIWh.Fb// denotes a specific
generalized cohomology group of B with respect to the Whitehead spectrum
of the fibers, where the coefficients are twisted according to the data of the
fibration p .

� If Wall.p/ vanishes, then there is a second obstruction o.f / lying in the cokernel
of a specific map

�0.ˇ/W H
0.BI�Wh.F //!Wh.�1M /:

See Section 2 for a precise explanation of terms.
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Theorem 1.1 (Existence) The map f stably fibers if and only if the fibers of p are
finitely dominated, Wall.p/D 0 and o.f /D 0.

Theorem 1.2 (Classification) If f stably fibers, then the set C=� is in bijection
with the kernel of the map �0.ˇ/.

In a sense, this paper is a companion paper to our work [29] since Theorems 1.1 and 1.2
are rather formal consequences of the results from that paper in combination with the
“Riemann–Roch theorem with converse” by Dwyer, Weiss and Williams [9]. After
defining the obstructions (in Section 2) we prove Theorems 1.1 and 1.2 in Section 3.
In the sequel we provide several examples, emphasizing the “change of total space
problem” where the more complicated Wall obstruction does not play a role. In Section 7
we show that the results of Chapman and Ferry [8] on fibering compact Q–manifolds
over compact ANRs can be viewed as special cases of the results presented here. The
content of Section 8 is to compare the obstructions defined here with those of Farrell,
Lück and the author [11]. An appendix collects the results needed to relate the stable
fibering problem presented here with the Q–manifold fibering problem.

Acknowledgements This work is part of my PhD thesis, written at the University
of Münster. I thank my advisor Wolfgang Lück for his constant encouragement and
support and Bruce Williams for drawing my interest to the stable fibering problem and
sharing his ideas. Moreover I am grateful to Arthur Bartels, Diarmuid Crowley, Bruce
Hughes, Matthias Kreck and Tibor Macko for many discussions and suggestions.

2 Definition of the obstructions

Throughout this section, let f W M ! B be a map between compact topological
manifolds, and let f D p ı� be a factorization into a homotopy equivalence followed
by a fibration pW E! B .

A functor from spaces to spaces is called homotopy invariant if it sends homotopy
equivalences to homotopy equivalences. Given such a functor Z and a fibration
pW E!B , with fiber F , Dwyer, Weiss and Williams [9] define a fibration ZB.E/!B ,
with fiber Z.F /, essentially by applying Z “fiber-wise” to p . As Waldhausen’s
functor A.X / is homotopy invariant, this construction leads to a fibration AB.E/!B .

Suppose that the fiber F of p is finitely dominated (see below). In this situation
the “parametrized A–theory characteristic” [9] defines a section of the fibration
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AB.E/! B , up to homotopy:

�.p/ 2 �

 AB.E/

#

B

!

The natural transformation from A.X / to the connective topological Whitehead spec-
trum Wh.X / induces a map

�

 AB.E/

#

B

!
! �

 WhB.E/

#

B

!
:

Definition 2.1 The parametrized Wall obstruction

Wall.p/ 2 �0�

 WhB.E/

#

B

!
DWH 0.BIWh.F //

of the fibration p is the image of the parametrized A–theory characteristic under this
map.

The parametrized Wall obstruction only depends of the fiber homotopy type of p in
the following sense: If 'W p! p0 is a fiber homotopy equivalence between fibrations
with fibers F and F 0 respectively, then the induced isomorphism

'�W H
0.BIWh.F //!H 0.BIWh.F 0//

sends Wall.p/ to Wall.p0/. In this sense, Wall.p/ only depends on f rather than on
the choice of factorization f D p ı�.

It follows from the “Riemann–Roch theorem with converse” [9]:

Theorem 2.2 The parametrized Wall obstruction is zero if and only if there is a
factorization f D p ı � where � is a homotopy equivalence and p is a fiber bundle,
with fibers compact manifolds.

Suppose now that we are given such a factorization. Suppose for simplicity that B is
connected and consider the composite

ˇW �

 �WhB.E/

#

B

!
!�Wh.F /

�.B/�i�
�����!�Wh.E/;

where the first map is the restriction map onto a chosen base point of b and the second
map is induced by the inclusion F WD p�1.b/!E followed by multiplication with
the Euler characteristic �.B/ 2 Z.
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Definition 2.3 The fibering obstruction o.f / is the class of the Whitehead torsion �.�/
in the cokernel of

�0.ˇ/W H
0.BI�Wh.F //! �0�Wh.E/ŠWh.�1E/:

Remark 2.4 (i) Recall that a space X is called finitely dominated if there is a finite
CW–complex Y together with maps i W X ! Y and r W Y !X such that r ı i ' idX .

(ii) If X is not connected, then the group Wh.�1X / should be read as the direct sum
of the Whitehead groups of �1.C / for all path components C of X .

(iii) If B is not connected, the map ˇ is defined as the sum of the corresponding
maps for the individual components.

(iv) See Section 3 for a proof that the fibering obstruction does not depend on the
choice of factorization f D p ı�.

We finish this section by a spectral sequence analysis of the parametrized Wall obstruc-
tion.

Theorem 2.5 (i) Let E ! B be a fibration over a CW–complex, with fiber Fb

over b . There is a 4–th quadrant spectral sequence

E
p;q
2
DH p.BI��q Wh.Fb//H)H pCq.BIWh.Fb//;

where the E2 –term consists of ordinary cohomology with twisted coefficients in
the system of abelian groups fb 7! ��q Wh.Fb/g.

(ii) If B is d –dimensional, d <1, then the corresponding filtration

� � � � Fp;q
� FpC1;q�1

� � � �

of H pCq.BIWh.Fb// is finite, and the spectral sequence converges in the
strongest possible sense, ie we have

F0;n
DH n.BIWh.Fb// for all n;

FdC1;n�d�1
D 0 for all n;

Fp;q=FpC1;q�1
ŠE

p;q
1 for all p; q:

(iii) Under the edge homomorphism

eW H 0.BIWh.Fb//!H 0.BI�0 Wh.Fb//�
Y

Œb�2�0B

zK0.ZŒ�1Fb �/;

the image of Wall.p/ is the finiteness obstruction of the fiber.
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(iv) Suppose that all the fibers are homotopy equivalent to finite CW–complexes, so
that e.Wall.p//D 0. Let  W S1!B be a loop. The naturally defined secondary
homomorphism

ker.e/!H 1.BI�1 Wh.Fb//;

followed by the restriction map

 �W H 1.BI�1 Wh.Fb//!H 1.S1
I�1 Wh.Fb//ŠWh.�1Fb/�1.S1/

(coinvariants under the �1.S
1/–action) sends Wall.p/ to the element defined

by the Whitehead torsion of the fiber transport t along  .

Remark 2.6 In the situation of (iv), the Whitehead torsion �.t / 2 Wh.�1Fb/ is
not well-defined, since Fb comes with no CW structure. However, after choosing a
homotopy equivalence hW X ! Fb from some CW–complex X , one may consider the
Whitehead torsion

h��.h
�1
ı t ı h/ 2Wh.�1Fb/I

it is not hard to see its class in Wh.�1Fb/�1.S1/ is independent of the choice of X and h.

Proof of Theorem 2.5 For part (i) and (ii), assume that B is the geometric realization
of a simplicial set B� . The rule which assigns to a simplex � of B� the pullback
E� WD j� j

�E defines a functor on the simplex category simp B� . There is a weak
homotopy equivalence [9]

�

 WhB.E/

#

B

!
' holim
�2simp B�

Wh.E� /:

The spectral sequence in question is the Bousfield–Kan spectral sequence of the right-
hand side. Part (iii) and (iv) follow from a close examination of the homomorphisms
in question and the identification of the higher Whitehead torsion with the classical
one in the unparametrized setting [29]. For more details, consult [28].

3 Proof of Theorems 1.1 and 1.2

Given a fibration pW E! B , the structure space Sn.p/ is defined as the geometric
realization of the simplicial set Sn.p/� , where a k –simplex is given by a commutative
diagram:

(1)

E0

q
##

�

'
// E ��k

p�id
�kyy

B ��k

Geometry & Topology, Volume 16 (2012)
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in which q is a bundle of compact topological manifolds and � is a (fiber) homotopy
equivalence. The simplicial operations are induced by pullback. (Strictly speaking
we always have to assume that E0 is a subset of B � U for a chosen “universe” U .
See [29] for more details.)

If B is a point, then we write Sn.E/ for Sn.p/. In the case where B is a compact
topological k –manifold, the geometric assembly map

˛W Sn.p/! SnCk.E/

is essentially given by “forgetting B ”. More precisely it sends a simplex .q; �/ as in
the diagram (1) to the simplex .q0; �/ where q0W E0!�k is the composite of q with
the projection, and � is now considered as a fiber homotopy equivalence over �k only.

Here is the key observation that connects the fibering question with the geometric
assembly map.

Lemma 3.1 let f W M nCk ! Bk be a map between compact topological manifolds,
and let f D p ı� be a factorization of f into a homotopy equivalence, followed by a
fibration pW E! B .

(i) The fibration p is fiber homotopy equivalent to a bundle of compact topological
n–manifolds if and only if Sn.p/ is nonempty.

(ii) f is homotopic to a bundle of n–manifolds if and only if the element defined by
�W M !E is in the image of the map �0.˛/W �0Sn.p/! �0SnCk.E/.

(iii) If g;g0W M !B are two fiber bundle projections homotopic to f , say that they
are equivalent if there is a commutative diagram

M
i

Š
//

g
  

M

g0~~

B

where i is a homeomorphism which is homotopic to the identity. Then, the
equivalence classes of fiber bundle projections homotopic to f are in bijection
to the preimage of Œ�� under the map ˛W �0Sn.p/! �0SnCk.E/.

Proof (i) is true by definition, and (ii) follows from (iii). Statement (iii) is basically a
close examination of the definition.

Geometry & Topology, Volume 16 (2012)
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Indeed, as Sn.p/� is Kan, an element in the preimage of Œ�� under �0.˛/ is given by
a commutative diagram

(2)
N

q
  

'

'
// E

p
~~

B

with q a bundle of compact n–manifolds, such that N is homeomorphic to M via a
map under which ' corresponds to � up to homotopy. It defines the same element as
the diagram

N 0

q0   

'0

'
// E

p
��

B

if and only if both elements form the boundaries of a similar diagram over B�I . This
means that both diagrams extend to a diagram

N 0

q0
''

i

Š
//

'0

&&

N

q

��

'
// E

p
xx

B

with i a homeomorphism of bundles over B , such that the lower triangles commute
strictly and the upper triangle commutes up to a homotopy over B .

Suppose that f is homotopic to a bundle g of n–manifolds. Then a choice of homotopy
from f to g induces a fiber homotopy equivalence 'W M !E from g to p together
with a homotopy from ' to �. Setting in the diagram (2) N WDM and q WD g we
obtain a corresponding element in the preimage of Œ�� under ˛ . It is not hard to see that
this rule induces a bijection between equivalence classes of fiber bundle projections
homotopic to f and the preimage of Œ��.

Denote by I the unit interval and by p � I the obvious fibration E � I ! B . The
stabilization map

� W Sn.p/! SnC1.p� I/

sends .q; �/ to .q � I; �� idI /; let

S1.p/ WD hocolim
n

Sn.p� In/:

Geometry & Topology, Volume 16 (2012)
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Clearly the geometric assembly map extends to a stable version

˛W S1.p/! S1.E/:

Here is a stabilized version of Lemma 3.2. It follows from Lemma 3.2 together with
the fact that

colim
n

�0Sn.p/
Š
�! �0 hocolim

n
Sn.p/:

Lemma 3.2 (i) The fibration p is fiber homotopy equivalent to a bundle of compact
topological manifolds if and only if S1.p/ is nonempty.

(ii) A map f W M !B stably fibers if and only if the element defined by �W M !E

is in the image of the map �0.˛/W �0S1.p/! �0S1.E/.
(iii) Recall the set C=� from the introduction. There is a bijection from C=� to the

preimage of Œ�� under the map ˛W �0S1.p/! �0S1.E/.

The main result of [29] was the construction of a “parametrized Whitehead torsion”

� W S1.p/! �

 �WhB.E/

#

B

!

whenever p is a bundle of compact manifolds, such that the following holds:

Theorem 3.3 The diagram

S1.p/
�

//

˛

��

�

 �WhB.E/

#

B

!
ˇ

��

S1.E/
�

// �Wh.E/

is a weak homotopy pullback, with ˇ as in Section 2.

Moreover, if M is a compact topological manifold, the map

�0.�/W S1.M /! �1 Wh.M /ŠWh.�1M /

agrees with the classical Whitehead torsion, sending the class of a homotopy equivalence
f W N !M to its Whitehead torsion �.f /.

Proof of Theorem 1.1 Assumption (i) is clearly necessary while assumption (ii) is
necessary by Theorem 2.2.

Geometry & Topology, Volume 16 (2012)
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Now suppose that assumptions (i) and (ii) hold, such that we can factor f Dp0ı�0 where
p0 is a fiber bundle of compact topological manifolds and �0 a homotopy equivalence.
Denote by F 0

b
the fiber of p0 over b and consider the following commutative diagram

(3)

�0S1.p0/

�0.˛
0/

��

�
// H 0.BIWh.F 0

b
//

�0.ˇ
0/

��

�0S1.E0/
�

// Wh.�1E0/

which is �0 of the pullback square from Theorem 3.3, applied to the bundle p0 .

By Lemma 3.2, f is homotopic to a bundle of compact manifolds if and only if the
element defined by �0 in the lower left-hand corner comes from an element in the
upper left-hand corner. Using the pullback property, this is equivalent to saying that the
corresponding element �.Œ�0�/ in the lower right-hand corner comes from an element
in the upper right-hand corner. Thus, if we define o.f / as the class of �.Œ�0�/ in the
cokernel of ˇ0 , f fibers stably if and only if o.f /D 0. As the fibrations p and p0

are fiber homotopy equivalent, the cokernels of �0.ˇ/ and �0.ˇ
0/ are isomorphic. So

we may think of o.f / as an element in the cokernel of �0.ˇ/.

Finally we have to show that o.f / is well-defined. Indeed suppose that we choose
another factorization f D xp0 ı x�0 with xp0W xE0! B a fiber bundle of compact man-
ifolds. Then by the composition rule the resulting torsion changes by the torsion of
�0 ı x�0�1W xE0!E0 , which is in the image of ˛0 since it comes from a fiber homotopy
equivalence. Thus, when passing to the cokernel of �0.ˇ/, the element o.f / is not
affected.

Proof of Theorem 1.2 We saw in Lemma 3.2 that the set C=� is in bijection with
�0.˛

0/�1.Œ��/, which by square (3) is in bijection to �0.ˇ
0/�1Œ�.�/� and thus to the

kernel of �0.ˇ
0/ as ˇ0 is an infinite loop map. Now use that the kernels of �0.ˇ/ to

�0.ˇ
0/ are isomorphic.

4 Change of base and total space

The two problems of “change of base” and “change of total space” are interesting
special cases where the parametrized Wall obstruction does not play a role. We first
consider them in the light of the general theory. After that we offer a second, more
geometric perspective using families of h–cobordisms. This second perspective makes
it easier to find an estimate for a stable range.

Geometry & Topology, Volume 16 (2012)
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Theorem 4.1 (Change of total space) Let pW M ! B be a fiber bundle of compact
topological manifolds over a compact topological manifold, and let N be another
compact topological manifold, equipped with a homotopy equivalence f W N !M :

N
f

'
//

pf
''

M

p

��

B

Then pf stably fibers if and only if the Whitehead torsion �.f / lies in the image of

�0.ˇ/W H
0.BI�Wh.Fb//!Wh.�1M /

for p .

Theorem 4.2 (Change of base) Let pW M ! B be a fiber bundle of compact topo-
logical manifolds over a compact topological manifold, and let C be another compact
topological manifold, equipped with a homotopy equivalence f W B! C :

M

p

��

fp

''

B
f

'
// C

Then fp stably fibers if and only if the image of the Whitehead torsion f �1
� �.f / 2

Wh.�1B/ under the transfer homomorphism

p�W Wh.�1B/!Wh.�1M /

lies in the image of �0.ˇ/.

In particular, if the fiber F of p is connected, �1.B/ acts trivially on F , and fp stably
fibers, then

�e.F / � �.f /D 0 2Wh.�1C /:

Proof of Theorem 4.1 Notice that pf is already a factorization into a homotopy
equivalence followed by a fiber bundle. So, conditions (i) and (ii) of Theorem 1.1
are satisfied, and the torsion obstruction o.f ıg/ is just the image of the Whitehead
torsion of f in the cokernel.

Proof of Theorem 4.2 Denote by kW C !B a homotopy inverse of f , and consider
the pullback

k�M //

k�p

��

M

p

��

C
k

// B:
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Now f induces a map xf W M ! k�M such that f ıp D k�p ı xf is a factorization
of f ıp into a homotopy equivalence followed by a fiber bundle. Thus o.f ıp/ is
given by the class of xf �1

� �. xf /, which satisfies

xf �1
� �. xf /D p�f �1

� �.f /

by the geometric definition of the transfer map from Anderson [1].

Now suppose that F is connected and �1.B/ acts trivially. In this case the composite
p� ıp� is just multiplication with the Euler characteristic of F [21]. We saw that if
f ıp stably fibers, then p�f �1

� �.f / comes from some element � 2Wh.�1F / under
the map induced by the inclusion i W F!M . As the composite p ı i is nullhomotopic,
we have

0D p�i�� D p�p
�f �1
� �.f /D �e.F / �f

�1
� �.f / 2Wh.�1B/:

Using the relation between the parametrized torsion and higher h–cobordism theory,
we now give a second perspective on the change of total space problem. Under
smoothability conditions, this approach allows to estimate a stable range using the
stability results of Igusa [17].

In the change of total space problem as in Theorem 4.1, suppose for simplicity that B is
connected. Denote by k the smallest dimension of a CW–complex homotopy equivalent
to B , and by n the smallest dimension of a CW–complex homotopy equivalent to the
fibers.

Theorem 4.3 In the situation of Theorem 4.1, suppose that M , N , and the fibers
of f are smoothable. If �.f / is in the image of �0.ˇ/, then the composite

xN WDN � I l Proj
��!N

f
�!M

p
�! B

fibers as soon as

dim xN �maxf2.nC k/C 1; dim M C nC k; dim M C kC 2;

dim BC 2kC 6; dim BC 3kC 2; dim N C 3g:

Proof The first step is to replace f W N ! M by xf W N ! SM which is a stably
tangential homotopy equivalence, ie xf �T SM Š TN stably.

Therefore recall that M and N are supposed to be smoothable, so we may choose a
vector bundle reduction

.f �1/�TN �TM W M ! BO

Geometry & Topology, Volume 16 (2012)
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of the topological tangent bundle. It actually has a further reduction to a O.nCk/–
bundle, the inclusion BO.N /! BO being N –connected. Let therefore qW SM !M

be a disk bundle of this .nCk/–dimensional vector bundle. We obtain

T SM jM Š TM ˚TfibqjM Š TM ˚ q Š .f �1/�TN

stably, so if we let xf W N ! SM be f followed by the zero-section, then xf is a stable
tangential homotopy equivalence.

Notice that the map xp D p ı q still is a fiber bundle of compact smoothable manifolds
(with a fiber we denote by xFb ), and that

dim SM D dim M C .nC k/:

Now suppose �. xf /D �.f / disassembles, ie there is an element � 2H 0.BI�Wh. xFb//

such that �0.˛/.�/D �.f /. By [29, Corollary 9.3], the element � is the parametrized
torsion obtained from gluing a fiberwise h–cobordism E along the vertical boundary
bundle @ xp , provided that both

KC 1� k; l � 1� k;

where K is the concordance stable range of @ xFb and l is the connectivity of the pair
. xFb; @ xFb/. The following lemma (whose proof is an exercise using the Blakers–Massey
theorem) shows that l � nC k � 1.

Lemma 4.4 If xF ! F is an L–disk bundle over a compact manifold, and the pair
.F; @F / is N –connected, then . xF ; @ xF / is .NCL/–connected.

By our assumptions the manifold @ xFb is smoothable, so Igusa’s stability result [17] (see
Weiss and Williams [34, Theorem 1.3.4] for the topological range) says that k�1�K

whenever
dim @ xFb �maxf.2.k � 1/C 7; 3.k � 1/C 4g:

Thus, stabilizing further if necessary, we obtain a parametrized h–cobordism E over @ xp
such that the torsion of the projection

SSM WD SM [@ xp E! SM

is precisely � . Notice that

dim SSM Dmaxfdim M C nC k; dim M C kC 2; dim BC 2kC 6; dim BC 3kC 2g:

By the composition rule, the composite

xxf W N ! SM ! SSM

Geometry & Topology, Volume 16 (2012)
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has torsion zero (and is still stably tangential). Now stabilize N to obtain xN WDN �I l

such that l � 3 (so that xN is � –� ) and dim xN � 2.nCk/C1, and stabilize either xN
or SSM further so that the dimensions agree. Letting K be a finite .nCk/–dimensional
CW–complex simple homotopy equivalent to xN , it follows that both xN and SSM define
thickenings of K in the sense of Wall [33]. It is known that stably, thickenings are
classified by their tangent bundle. Now the dimension of the thickenings we consider
exceeds 2.nC k/, so we are in the stable range. But xxg is stably tangential, hence the
thickenings agree. Thus xxg is homotopic to a homeomorphism.

Summarizing all the necessary stabilizations, we see that pf fibers as soon as

dim xN �maxf2.nC k/C 1; dim N C 3; dim M C nC k;

dim M C kC 2; dim BC 2kC 6; dim BC 3kC 2g:

5 Examples I: Elementary applications

In this section we give some immediate applications of our results on the stable fibering
problem. The first one characterizes simple homotopy equivalences between compact
manifolds as the homotopy equivalences that stably fiber. After that we give some
implications for closed manifolds.

Proposition 5.1 A homotopy equivalence f W M !N between compact manifolds
stably fibers if and only if �.f /D 0.

If M and N are closed smoothable of dimension k and �.f /D 0, then f fibers after
at most maxf2kC 6; 3kC 2g stabilizations.

Proof of Proposition 5.1 This is a simple application of our results in the following
change of total space problem:

M
f

'
//

f
''

N

id
��

N

As the fibers of the identity are contractible, their Whitehead group vanishes. So �0.ˇ/

is the zero map and its cokernel is Wh.�1M /, thus o.f /Df �1
� �.f /2Wh.�1M /.

Now we turn to closed manifolds and consider the change of total space problem:

M
f

'
//

g
''

N

p

��

B
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If g stably fibers, ie for some n� 0, M �DnC1! B fibers, then we may restrict to
the boundary to see that

xgW M �Sn
!M

g
�! B

fibers for large enough n. So our theory gives sufficient conditions for M � Sn to
fiber over B .

On the other hand, if xg fibers, then it certainly stably fibers.

Proposition 5.2 (i) A necessary condition for M �S2N !B to fiber for large N

is that
2o.g/D 0:

(ii) A sufficient condition for M �S2N ! B to fiber for large N is that

o.g/D 0:

(iii) The sufficient condition is not necessary in general.

Proof (i) We have �.f � idS2N / D �.S2N / � �.f / D 2�.f /, and its class in the
cokernel of �0.˛/ defines the obstruction o.xg/ for xg to stably fiber.

(ii) Apply the results on the change of total space problem and restrict to the boundary.

(iii) Choose a homotopy equivalence f W M !K�S1 between closed manifolds such
that �.f /¤ 0 and 2�.f /D 0, and let pW K�S1! S1 denote the projection. Hence
o.pf /¤ 0; in contrast, if qW M �S2N !M is the projection, then o.pf q/D 0.

We will show in Theorem 8.1 that for B D S1 , the stable fibering obstruction o.pf q/

and the obstructions �fib.pf q/ defined in [11] agree. Now Farrell’s fibering theorem
together with the comparison of the different obstructions [11, Theorem 8.1] shows
that pf q fibers.

Proposition 5.3 If f W M!B is any map between closed manifolds whose homotopy
fiber is finitely dominated, then the composite

M �S1
�S1

�SN Proj
��!M

f
�! B

fibers for large enough N .

Proof The parametrized Wall obstruction becomes zero after taking product with S1

(see eg [34, Corollary 5.2.5]). Hence for the map M �S1!B , the fibering obstruction
is defined. As it is given by a Whitehead torsion, it becomes zero after taking product
with another S1 . Therefore M �S1 �S1 �DNC1! B fibers. Now restrict to the
boundary.
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6 Examples II: Stable vs. unstable and block fibering and
TOP vs. DIFF

In this section we give examples of maps f W M !B that fiber stably but not unstably.
Of course, if the dimension of M and B agree then fibering f unstably just means
deforming the map to a homeomorphism, whereas f stably fibers if and only if it is a
simple homotopy equivalence (Proposition 5.1): This gives obvious examples.

More interestingly, we will consider two types of situations of arbitrarily high codi-
mension. The first one considers the tangential data; supposing that a recent conjecture
of Reis and Weiss on topological rational Pontryagin classes holds, we obtain a lower
bound on the number of stabilizations needed. The second one applies surgery theory
to produces an example which actually does not even block fiber.

We also consider certain maps to spheres with spherical fibers where unstable fibering
and block fibering are equivalent and we expand on an example of Klein and Williams
to produce examples that fiber stably in TOP but not in DIFF.

6.1 Bundle theory

Let Z be an exotic complex projective space equipped with a homotopy equivalence

hW Z!CP2nC1

such that, for some k ¤ 0, the L–genus satisfies

(4) .h�/�1L.Z/D L.CP2nC1/ � .1C 8ke2n/ 2H�.CP2nC1/ŠQŒe�=.e2nC2/:

(Take all the cohomology rings with rational coefficients.) We will show below that
such objects exist.

Conjecture 6.1 (Reis–Weiss [25]) If � is a TOP.n/–bundle over B , then the i –th
rational Pontryagin class pi.�/ 2H 4i.BIQ/ vanishes provided i > n=2.

Proposition 6.2 (i) The composite

Z �SN �
�!Z

h
�!CP2nC1

of h with the projection fibers stably. If Z is smoothable then it fibers even
unstably whenever N � 12nC 7.

(ii) If Conjecture 6.1 holds, then for N � 2n� 1, the map from (i) does not fiber
(unstably).
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Proof (i) This is an application of the change of total space problem.

(ii) Let pW Z �SN !CP2nC1 be a fiber bundle homotopic to the map of (i). Then

T .Z �SN /Š p�T .CP2nC1/˚ �

for an N –dimensional bundle �. Hence

L.Z �SN /D p�L.CP2nC1/ �L.�/:

But L.Z �SN /D ��L.Z/D p�.h�/�1L.Z/ as the sphere is stably parallelizable.
It follows that

L.�/D p�
�
L.CP2nC1/�1

� .h�/�1L.Z/
�
D 1C 8kp�.e/2n

using (4) for the last equality. Hence, since p� is injective, the L–genus of � is nonzero
in degree 4n. Inductively one concludes

pi.�/D 0 .i < n/; pn.�/¤ 0;

using the fact that the coefficient of pi in Li is nonzero for all i [14, I.1.(11)]. So �
must be at least 2n–dimensional: N � 2n.

We now indicate why a homotopy equivalence

hW Z!CP2nC1

with the property (4) exists. This construction is due to Madsen and Milgram [22].
Let f W X ! CP2n be a topological degree one normal map corresponding to the
composite

CP2n
!CP2n=CP2n�1

Š S4n
!G=TOP;

where the last map represents k times a generator of �4n.G=TOP/ŠZ. Let E!CP2n

be the disk bundle of the tautological vector bundle. We may pull back the normal
map f to E . By the � –� –theorem, this pulled-back normal map is cobordant to a map
gW Y !E which is a homotopy equivalence and restricts to a homotopy equivalence
over the boundary @E D S4nC1 . The Poincaré conjecture implies that @Y Š S4nC1

homeomorphically. Thus we may cone off g at the boundaries to obtain a topological
manifold Z and a homotopy equivalence hW Z!CP2nC1 .

We have to show that (4) holds. To do that, we will use the characteristic classes

K4n 2H 4n.G=TOPIQ/
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given uniquely by the property that if  W M ! G=TOP is a normal invariant on a
closed 4k –manifold, then its simply connected surgery obstruction is given by the
formula [22, Theorem 4.9]

s.M;  /D

�
L.M / �

�X
i�1

 �.K4i/

�
; ŒM �

�
:

Now the surgery obstructions of hjCP i for i <2n are zero while the surgery obstruction
of hjCP2n is k , hence inductively one concludes that

 �.K4i/D 0 .4i < 2n/;  �.K4n/D ke2n
2H 4n.CP2nC1/:

Denote by L2H�.BTOPIQ/ the L–class of the universal bundle. Its restriction along
G=TOP!BTOP is given by 1C8K , where KDK4CK8C� � � [22, Corollary 4.22].
Hence

.h�/�1L.Z/D L.CP2nC1/ �  �.1C 8K/D L.CP2nC1/ � .1C 8ke2n/;

as claimed.

Remark 6.3 To the knowledge of the author, it is unknown in general which of these
fake CP2nC1 are smoothable. The following argument shows that there are infinitely
many smoothable examples for even n.

For each n there exists a number An such that the normal invariant f is smoothable
if and only if k is a multiple of An . (In fact An is the order of the generator of
�4n.G=TOP/ in the torsion group �4n�1.TOP=O/.) Hence the subgroup of all smooth
normal invariants of CP2n satisfying (4) is infinite.

Using the � –� –theorem in the smooth setting, we obtain a map

ŒCP2n;G=O �Š ŒE;G=O �Š SDIFF.E/! SDIFF.@E/D �4nC1

from the smooth normal invariants of CP2n to the group of homotopy spheres. By
Brumfiel [4, Corollary 6.6], this map is a group homomorphism if n is even. Hence in
this case it has an infinite kernel.

If f W X !CP4n is a smooth normal map of degree one which represents an element
in the kernel, this means the following: The pullback of f to E is cobordant to a
normal map gW Y !E which restricts to a diffeomorphism on the boundary. In this
case the coning procedure yields a homotopy equivalence hW Z!CP4nC1 where Z

is smooth.
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6.2 Surgery theory

Now we come to the surgery-theoretic example. Let  W X ! G=TOP be a normal
invariant on a closed manifold X , let M be a closed manifold and let hW M !X �Sk

be a simple homotopy equivalence which, considered as a normal invariant, restricts
to  over X � f�g. (Such a simple homotopy equivalence can be obtained as follows:
Pull-back of  defines a normal invariant on X �DkC1 which, by the � –� theorem,
can be represented by a simple homotopy equivalence of pairs .k; h/W .N;M / !

X � .DkC1;Sk/.)

Proposition 6.4 If the surgery obstruction of  is nonzero, then the composite

f W M
h
�!X �Sk Proj

��! Sk

does not fiber. It always fibers stably.

Proof The composite fibers stably by Theorem 4.1. Suppose there exists a fiber bundle

F !M
p
�! Sk

homotopic to f . Then we can lift the homotopy to obtain a homotopy

H W M � I !X �Sk
� I

over Sk which restricts to h at M � 0 and which is a fiber homotopy equivalence
F !X �Sk over 1. Taking a transverse preimage over the base point of Sk yields a
degree one normal cobordism

.W IN;F /! .X �Sk
� I IX �Sk

� 0;X �Sk
� 1/

whose restriction over 1 is a homotopy equivalence. The restriction over 0 corresponds
to the element  , which thus has surgery obstruction 0, contradicting the assumption.

6.3 Spherical fibrations over spheres

Proposition 6.5 Let f W M ! S2k be a map between closed topological manifolds
whose homotopy fiber is a 2n–sphere, where 2n� 4k . Suppose that dim M � 6.

(i) f always fibers stably.

(ii) The following are equivalent:
(a) f fibers unstably.
(b) f block-fibers.
(c) For a regular preimage F of a point in S2k , the degree one normal map

F ! S2n given by the inclusion of the fiber into the homotopy fiber has
surgery obstruction zero.
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Remark 6.6 Casson [6] showed that (b) and (c) are equivalent in the smooth case; in
the topological case this equivalence can be deduced from Quinn’s thesis [24].

Addendum If, in the situation of Proposition 6.5, the number n D 2l is even, the
following conditions are equivalent and equivalent to the ones from part (ii):

(d) For a regular preimage F of a point in S2k , the signature �.F / is zero.

(e) The l –th Pontryagin class pl.M / 2H 4l.M IQ/ is zero.

The proof of Proposition 6.5 will make use of the following lemma, which is due
to Siebenmann [18, Essay V, Section 5] for n¤ 4 and to Freedman and Quinn [12,
Theorem 8.7A] for nD 4:

Lemma 6.7 The stabilization map BTOP.n/! BTOP is n–connected.

Proof of Proposition 6.5 (i) Let f D p ı � be a factorization into a homotopy
equivalence followed by a fibration. Since �2k�1G=TOPD 0 and we are in the stable
range, we may assume that p is the sphere bundle of a TOP.2nC1/–bundle �. Hence
we are in a change of total space situation, and the result follows since E is simply
connected.

(ii) The implication from (a) to (b) is obvious. The argument for the implication from
(b) to (c) is very similar to the proof of Proposition 6.4: a homotopy from f to the
projection map of a block bundle g induces a normal bordism between the degree one
normal map F D f �1.�/! S2n and the identity map on S2n .

Suppose now that (c) holds. Again factor f D p ı� as in (i). Again we can and will
assume that p is the sphere bundle of a TOP.2nC1/–bundle �.

By the dimension assumptions, p has a section sW S2k !E , up to homotopy. Denote
by i W S2n ! E the inclusion of the homotopy fiber. Collapsing the lower skeleta
defines a map

� W E! S2nC2k :

Homotopy-theoretic calculations show that the sequence

ŒS2nC2k ;G=TOP�
��

��! ŒE;G=TOP�
i�˚s�

����! ŒS2n;G=TOP�˚ ŒS2k ;G=TOP�

is exact.

Lemma 6.8 The map �� is split by the surgery obstruction

ŒE;G=TOP�!L2nC2k.Z/Š ŒS
2nC2k ;G=TOP�:
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Let x WD j .�/ where
j W S.E/! ŒE;G=TOP�

is the canonical map from the surgery structure set to the set of normal invariants. As
the surgery obstruction map ŒS2n;G=TOP�!L2n.Z/ is an isomorphism, condition (c)
says that i�.x/D 0. The element s�.x/ is represented by some TOP.2kC1/–bundle �
over S2k and a fiber homotopy trivialization t W S.�/! S."/ of the corresponding
sphere bundle.

Since 2n� 4k , we can split off the bundle � a .2kC1/–dimensional trivial bundle ",
so that �Š �0˚ " and we can consider the homotopy equivalence

�W S.�0˚ �/! S.�0˚ "/Š S.�/DE

induced by the identity on �0 and the trivialization t .

Lemma 6.9 The homotopy equivalence �, considered as a normal invariant on E ,
agrees with p�s�.x/.

Now, p�s�.x/ and x agree after applying s� but also after applying i� (when both are
zero). It follows from the exact sequence above that the difference p�s�.x/�x lifts
over the map �� , which is split by the surgery obstruction. But the surgery obstruction
of both x and p�s�.x/ is zero since they are represented by homotopy equivalences.
Hence p�s�.x/D x . By the surgery exact sequence, the map j is injective, so the
manifold structures � and � agree as well. But p ı� is a fiber bundle projection.

Proof of Lemma 6.8 Let ˛W S2nC2k!G=TOP represent a generator, corresponding
to a degree one normal map gW N !S2nC2k . We claim that the normal invariant ��g
is represented by the degree one normal map id ] gW E ]N ! E ]S2nC2k D E . In
fact if ˛ is given by the TOP–bundle � and a proper fiber homotopy trivialization
t W �! ", then g is obtained by taking a regular preimage of S2nC2k � " under t (see
[22, Theorem 2.23]).

We may assume that t is a bundle isomorphism over the lower hemisphere which
contains the point1 and that around1, g is the homeomorphism from the zero section
in � to the zero section in ". Since � maps E �D2nC2k to the point 12 S2nC2k ,
the map q�t W q��! q�" is then already transverse to E �D2nC2k and E ]N is a
regular preimage.

Since the simply connected surgery obstruction is additive under connected sum and
the surgery obstruction of f is a generator in L2nC2k.Z/, it follows that the surgery
obstruction of ��˛ is also a generator.
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Proof of Lemma 6.9 The homotopy equivalence � extends to a homotopy equivalence

x�W D.�0˚ �/!D.�0˚ "/

between disk bundles, which is the pullback of the homotopy equivalence xt W D.�/!
D."/ under the bundle projection D.�0˚ "/!D."/.

The restriction of xt over a regular preimage of S2k 2D."/ is classified by s�.x/W E!

G=TOP. Since the inclusion S2k � D."/ is a homotopy equivalence, the normal
invariant xt is classified by the composite of s�.x/ with the projection D."/! S2k .
From the pullback property it follows that x� is classified by the composite

D.�/DD.�0˚ "/! S2k s�.x/
���!G=TOP:

Now restrict to the boundary.

Proof of Addendum Suppose that f is a fiber bundle with fiber S4l . By the
Poincaré conjecture, the fiber is actually a sphere. We can extend f to a disk bundle
xf W SM ! S2k . Now

TM Š
stably

T SM jM ;

so pl.M / is the restriction of pl. SM /2H 4l. SM /ŠH 4l.S2k/D0. Hence pl.M /D0.

Now suppose that pl.M /D 0. Denote by F a regular preimage of a point � 2 S2k

under f . Then F is framed in M , hence, for all i ,

pi.F /D pi.M /jF

and in particular pl.F /D 0. Moreover the inclusion F !M factors, up to homotopy,
over S4l , so all the Pontryagin classes of F vanish except for p0 . Hence L.F /D 1.
The Hirzebruch signature formula yields �.F /D 0.

Finally �.F /��.S4l/ is a multiple of the surgery obstruction (in L4l.Z/ŠZ) of the
degree one normal map F!S4l . As �.S4l/D 0, the vanishing of �.F / is equivalent
to the vanishing of the surgery obstruction.

6.4 DIFF vs. TOP

Proposition 6.10 Let x 2 �s
4iC1

such that �2x is in the image of the J –homomor-
phism and let pW E!S4iC2 be a based n–spherical fibration (n> 4iC3) correspond-
ing to x 2 �4iC1Cn Š �4iC2BFn , where Fn is the monoid of pointed self-homotopy
equivalences of Sn . If M is a compact smooth manifold and �W M!E is a homotopy
equivalence, then

(i) p ı� fibers stably in TOP,
(ii) p ı� does not fiber stably in DIFF.
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Proof of Proposition 6.10 (i) Since n> 4i C 3, the stabilization map

�4iC1Gn=TOPn! �4iC1G=TOP

is an isomorphism. But �4iC1G=TOPD 0. Hence the fibration p is the sphere bundle
of a TOPn –bundle and we are in a change of total space situation. Thus, p ı� fibers
stably as E is simply connected.

(ii) The following argument follows the lines of Klein and Williams [19]. Suppose
that p ı� fibers stably in DIFF. Then by [9], the parametrized A–theory characteristic

�.p/ 2H 0.S4iC2
IA.Sn//

becomes zero in H 0.S4iC2IWhDIFF.Sn//. Calling y the image of �.p/ under the
projection

H 0.S4iC2
IWhDIFF.Sn//!H 0.S4iC2

IWhDIFF.�//Š �4iC2 WhDIFF.�/;

we conclude that y D 0.

As explained in [19, Section 8], y is the image of x under the composite

�4iC2BG
F
�! �4iC2A.�/! �4iC2 WhDIFF.�/

where F is the map defined by Waldhausen [31]. But it was shown by Bökstedt and
Waldhausen [2] that the image of x is nonzero.

It would be interesting to have an example of a map that fibers in TOP where the smooth
Wall obstruction is zero, but the smooth fibering obstruction is not. This would probably
require a deeper analysis of the higher homotopy type of WhPL.F / and WhDIFF.F /

for a suitable F whose fundamental group has nonvanishing Whitehead group.

7 Examples III: Results of Chapman–Ferry

The obstruction theory developed in this chapter allows us to reinterpret obstructions
obtained by Chapman and Ferry [8] on fibering compact Q–manifolds over com-
pact ANRs. Explicitly, Chapman–Ferry deal with the cases where B is a wedge of
copies of S1 and where B is n–dimensional and the fibers are n–connected. We will
see that in both cases the spectral sequence can be used to analyze our obstructions
further.

By definition, a Q–manifold is a separable metric space which is locally homeomorphic
to open subsets of the Hilbert cube QD…1

iD1
I . The fibering problem for Q–manifolds

asks whether a given a map f W M ! B from a compact Q–manifold to a compact
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ANR is homotopic to a fiber bundle projection whose fibers are compact Q–manifolds
again. (Since the projection Q� I !Q is homotopic to a homeomorphism, there is
no difference between the stable and the unstable fibering problem.)

It will be shown in Appendix A that the obstruction theory for fiber fibering compact
Q–manifolds over a compact ANR agrees with the obstruction theory for compact
topological manifolds developed so far. Hence all the fibering results may be applied
in either context.

Lemma 7.1 Let pW E! B be a fibration. If the base space is homotopy equivalent
to a CW–complex of dimension at most n, and all the fibers Fb are n–connected, then
H 0.BIWh.Fb//D 0. Hence Wall.p/D 0 when defined.

In the case n D 1, it is enough to suppose Wh.�1Fb/ D 0. In the case n D 2, it is
enough to suppose that Fb is 1–connected.

Proof If a map X ! Y is n–connected, then the induced map A.X /! A.Y / is
n–connected by [30] and so is Wh.X /! Wh.Y / by a five-lemma type argument.
As Wh.�/ is contractible, it follows that Wh.X / is n–connected whenever X is n–
connected. If X is 1–connected, then Wh.X / is 2–connected (see [13, Section 3],
with the correction in [16]). Therefore the spectral sequence for H 0.BIWh.Fb// has
vanishing E2 page.

If the fibration p has a section, then this result can be considerably strengthened:

Theorem 7.2 (Klein–Williams [19]) If p has a section, all the fibers are n–connected
and B is homotopy equivalent to a CW–complex of dimension at most 2n, then the
map

H 0.BIA.Fb//!H 0.BIWh.Fb//

is zero. Hence, Wall.p/D 0 when defined.

Example 7.3 A two-connected map f W M ! S2 stably fibers. In fact, such a map is
split up to homotopy, so Theorem 7.2 applies. The homotopy fiber F has the homotopy
type of a CW–complex by Milnor [23]. Moreover H�.F / is finitely generated. In fact,
the E2 –term of the Atiyah–Hirzebruch spectral sequence

E2
pq DHp.S

2;Hq.F //)HpCq.M /

consists of two columns only, so there is an exact sequence

0!E12;n�1!E2
2;n�1!E2

0;n!E10;n! 0
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with
E2

2;n�1 DHn�1.F /; E2
0;n DHn.F /:

The E1–page is finitely generated (since H�.M / is); one concludes by induction
that Hn.F / is also finitely generated.

As �1.F /D 0, it follows [32] that F is homotopy finite. So Wall.p/ is defined and
zero. Moreover o.f /D 0 as M is simply connected.

Let always f W M ! B be a map either between compact topological manifolds, or
from a compact Q–manifold to a compact ANR. In the Q–manifold setting, the
following results are due to Chapman–Ferry.

Proposition 7.4 Suppose B is homotopy equivalent to a finite n–complex (n� 1). If
the homotopy fiber F of f is homotopy finitely dominated and n–connected, then the
torsion obstruction o.f / 2Wh.�1M / is defined and vanishes if and only if f stably
fibers.

If n D 1, we can replace the assumption “F 1–connected” by “Wh.�1F / D 0”. If
nD 2, we can replace the assumption “F 2–connected” by “F 1–connected”.

Proof By the assumptions and Lemma 7.1, the parametrized Wall obstruction is
defined and zero. Moreover, the map ˇW H 0.BIWh.Fb//!Wh.�1E/ is zero since
it factors through Wh.�1Fb/D 0.

Proposition 7.5 (i) Suppose that B is homotopy equivalent to a wedge of n copies
of S1 (n � 1), and suppose that the homotopy fiber F of f is connected
and homotopy equivalent to a finite complex. Then, Wall.p/ is an element ofL

n Wh.�1F /˛n
(coinvariants under the action of the fiber transport along the

corresponding copy of S1 ).

(ii) The torsion obstruction (whenever defined) is an element in the quotient

Wh.�1M /=.n� 1/ �Wh.�1F /�1B:

In particular, if nD 1, the torsion obstruction lives in Wh.�1M /.

Proof (i) By the spectral sequence, there is an exact sequence

0!H 1.BI�1 Wh.Fb//!H 0.BIWh.Fb//
e
�!H 0.BI�0 Wh.Fb//! 0;

and the image of Wall.p/ under the edge homomorphism e is given by the finiteness
obstruction of the fiber, which is zero by assumption. Therefore, Wall.p/ lifts to

H 1.BI�1 Wh.Fb//Š
M

n

H 1.S1
I�1 Wh.Fb//Š

M
n

Wh.�1Fb/˛n
:
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(ii) The map ˇ factors as

H 0.BI�Wh.Fb//!H 0.BIWh.�1Fb//ŠWh.�1Fb/
�1B �e.B/�i�
������!Wh.�1M /;

where the first map is a surjection and the Euler characteristic of B is n� 1.

Proposition 7.6 Let f;gW M ! B be two homotopic projections of bundles of com-
pact manifolds. Suppose that B is homotopy equivalent to a wedge of n copies of S1 .
Denote by F the homotopy fiber of f , which is homotopy equivalent to the homotopy
fiber of g . The obstruction group A for f and g being equivalent (in the sense of the
introduction) fits into the following exact sequence:

0!
M

n

�2 Wh.F /˛n
!A!Wh.�1F /�1B .n�1/�i�

������!Wh.�1M /

Proof By Theorem 1.2, A is given by the kernel of

ˇW H 0.BI�Wh.Fb//

�!H 0.BIWh.�1F //ŠWh.�1F /�1B .n�1/�i�

������!Wh.�1M /:

By the spectral sequence, we have

0!H 1.BI�2 Wh.Fb//!H 0.BI�Wh.Fb//

�!H 0.BI�1 Wh.Fb//! 0:

Thus
ker  ŠH 1.BI�2 Wh.Fb//Š

M
n

�2 Wh.F /˛n
:

Since  is surjective, there is a short exact sequence

0! ker  !A! ker..n� 1/ � i�/! 0:

The claim follows.

8 Comparison with the obstructions by Farrell, Lück and
Steimle

The content of the author’s Diploma thesis [27] was to define Whitehead torsion
obstructions to fibering a manifold over another manifold. See [11] for a published and
extended version. The goal of this section is to compare these obstructions.

Given a map f W M ! B of topological manifolds, factor as usual as f D p ı �, a
homotopy equivalence followed by a fibration. In [11], two obstructions for f to be
homotopic to a fiber bundle are defined:
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(i) An element �.f /2H 1.BIWh.�1M // which is defined whenever the homotopy
fiber F of f is homotopy finite (an obvious necessary condition). It is defined
by the rule that whenever  W S1! B is a loop in B , then under the restriction
map

H 1.BIWh.�1M //
�

��!H 1.S1
IWh.�1M //ŠWh.�1M /

�.f / maps to i�.�/, where � is the Whitehead torsion of the fiber transport
on p along  (choosing an arbitrary simple structure on the fiber F ).

(ii) If �.f /D 0, there is defined an element

�fib.f / 2 coker.Wh.�1F /
�e.B/�i�
������!Wh.�1M //;

where i W F!M is the inclusion of the homotopy fiber, and �e.B/ denotes the
Euler characteristic. It is defined as follows: Choose a simple structure on the
homotopy fiber of f and perform a certain construction (inductively over the
cells of B ) to obtain a simple structure on E . Then �fib.f / is the image of the
Whitehead torsion of �W M !E , which is well-defined in the quotient.

Theorem 8.1 (i) The image of Wall.p/ under the restriction

H 0.BIWh.Fb//!H 0.fbgIWh.Fb//Š zK0.ZŒ�Fb �/

is the finiteness obstruction of the fiber.

(ii) Suppose that F is homotopy finite. The image of the Wall obstruction Wall.p/
under the secondary homomorphism

ker
�
H 0.BIWh.Fb//!H 0.BI�0 Wh.Fb//

�
!H 1.BIWh.�1Fb//

i�
�!H 1.BIWh.�1M //

is �.f /.

(iii) Suppose that Wall.p/D 0. The definition of the map ˇ as a composite

H 0.BI�Wh.Fb//!Wh.�1Fb/
�e.B/�i�
������!Wh.�1E/ŠWh.�1M /

induces a map

coker.�0.ˇ//! coker
�

Wh.�1F /
�e.B/�i�
������!Wh.�1M /

�
under which o.f / maps to �fib.f /. In particular, if �e.B/D 0 or Wh.�1F /D 0,
then

o.f /D �fib.f / 2Wh.�1M /:
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Proof (i) and (ii) were proved in Theorem 2.5.

(iii) If Wall.p/D 0, then we may assume that p is a bundle of compact topological
manifolds, and it follows from [11, Lemma 3.19] that the simple structure on E is just
the canonical simple structure of the topological manifold E . Therefore both o.f /

and �fib.f / are given by the respective classes of the Whitehead torsion of �.

Appendix A Fibering Q–manifolds

The goal of this appendix is to show that the obstruction theory for both existence and
uniqueness developed in this paper also applies to fibering compact Q–manifolds over
compact ANRs.

Here is a collection of results from the theory of Q–manifolds (see [7]):

(i) If X is a locally compact ANR (eg a topological manifold), then X �Q is a
Q–manifold.

(ii) Every compact Q–manifold is of the form X �Q, where X is a compact
polyhedron.

(iii) A map f W X ! Y between compact CW–complexes is a simple homotopy
equivalence if and only if f � idQW X �Q! Y �Q is homotopic to a home-
omorphism. This property may be taken as a definition of simple homotopy
equivalence between compact ANRs.

(iv) Any cell-like map [20] between Q–manifolds is arbitrarily close to a homeo-
morphism. This also shows that M �QŠQ.

A compact Q–manifold bundle is a fiber bundle whose fibers are compact Q–manifolds.
Given a fibration pW E!B over a paracompact spaces, the structure space SQ.p/ of
compact Q–manifold bundles is defined in analogy to the structure space Sn.p/.

Facts (i) and (iv) show that the total space of a compact Q–manifold bundle over
a compact ANR is a compact Q–manifold. As a consequence there is a geometric
assembly map

˛W SQ.p/! SQ.E/

whenever B is a compact ANR. Of course, the reinterpretation of the fibering problem
in terms of the geometric assembly map (Lemma 3.1) remains valid in the Q–manifold
setting.

The relation between the fibering problem for compact Q–manifolds and the fibering
problem of compact topological manifolds is given by the map

.�Q/W Sn.p/! SQ.p/
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which sends a simplex .q; �/ to .q �Q; �0/ there �0 is the obvious composite of
�� idQ with the projection E �Q! E . Since Q� I ŠQ, it factors canonically
through S1.p/.

Theorem A.1 If B is a compact topological manifold and pW E ! B is a bundle
of compact topological manifolds, then the following diagram is a weak homotopy
pullback:

S1.p/
.�Q/

//

˛

��

SQ.p/

˛

��

S1.E/
.�Q/

// SQ.E/

Proof The diagram commutes up to homotopy. Moreover the vertical tangent bundle
defines a map

T v
W S1.p/!map.E;BTOP/

such that the following diagram commutes up to homotopy (see [29, Proposition 8.3]
for the T v–component):

S1.p/
..�Q/;T v/

//

˛

��

SQ.p/�map.E;BTOP/

˛�.Cp�TB/

��

S1.E/
..�Q/;T v/

// SQ.E/�map.E;BTOP/

Since the map .Cp�TB/ is an equivalence, we can proof the theorem by showing that
the horizontal lines in the diagram are weak homotopy equivalences.

To do that, denote by S fr
n .p/ the space of framed manifold structures on p : It is the

geometric realization of a simplicial set where a k –simplex is a commutative diagram

E0

q
!!

'

'
// E ��k

p
zz

B ��k

together with a bundle map T vq ! � from the vertical tangent bundle of q to the
trivial bundle n–dimensional over E ��k which covers ' . The usual stabilization
procedure produces a space S fr

1.p/.
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The forgetful map from S fr
1.p/ to S1.p/ fits into a commutative diagram:

(5)

S fr
1.p/

//

.�Q/
((

S1.p/
T v

//

.�Q/

��

map.E;BTOP/

SQ.p/

The proof is now a consequence of the following two claims:

Claim (i) The horizontal line in (5) is a weak homotopy fibration sequence.

Claim (ii) The diagonal arrow in (5) is a weak homotopy equivalence.

Claim (i) is [15, Proposition 1.2.1]. To prove claim (ii), we will use the notation and
results from [29, Section 2]. The structure space Sn.p/ is weakly homotopy equivalent
to a space of lifts in the diagram

Bunn.�IF /

��

B
p

//

66

Fib.�IF /

where F is the fiber of p . Since B is compact, it follows that

S1.p/' Lift

0@ Bun1.�IF /
#

B
p
�! Fib.�IF //

1A
with Bun1.�IF / WD colimn Bunn.�IF /, the colimit over the stabilization.

For a space X , let Fibfr
n.X IF / be the category where an object is a fibration pW E!X

with fiber F together with a TOP.n/–bundle over E , and a morphism is a fiber homo-
topy equivalence of fibrations which is covered by a bundle map. Let BunQ.X IF / be
the category of bundles of compact Q–manifolds over X where the fibers are homotopy
equivalent to F , with bundle homeomorphisms as morphisms. The arguments from
[29, Section 2] produce classifying spaces Fibfr

n.�IF / and BunQ.�IF /. Letting

Fibfr
1.�IF / WD colim

n
Fibfr

n.�IF /;
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the colimit over the stabilization of the Euclidean bundle, we obtain homotopy equiva-
lences

S fr
1.p/' Lift

0@ Bun1.�IF /
#

B
.p;�/
�! Fibfr

1.�IF /

1A ; SQ.p/' Lift

0@ BunQ.�IF /

#

B
p
�! Fib.�IF /

1A ;
where F denotes the fiber of p .

Hence, claim (ii) follows from:

Claim (ii 0 ) The diagram

Bun1.�IF /
.�Q/

//

��

BunQ.�IF /

��

Fibfr
1.�IF /

// Fib.�IF /

is homotopy cartesian.

We will show claim (ii 0 ) by considering the horizontal homotopy fibers. Again by the
arguments of [29, Section 2], the lower horizontal fiber is given by the mapping space
map.F;BTOP/.

On the other hand, the upper homotopy fiber over the point determined by a Q–
manifold N is the stable structure space of compact topological manifolds M equipped
with a homeomorphism M �Q! N . The path components of this space, in view
of property (iii) above, are the stable homeomorphism classes of compact topological
manifolds equipped with a simple homotopy equivalence to N . There are in bijection
to ŒF;BTOP� by an argument involving the h–cobordism theorem (see eg [33, Propo-
sition 5.1]). To determine the higher homotopy groups of this structure space, recall
that Bun1.�IF / and BunQ.�IF / are disjoint unions of classifying spaces, and use
the homotopy fibration sequence [34, page 171]

colim
n

TOP.M �Dn/! TOP.M �Q/!map.M;BTOP/

for a compact topological manifold M , which is due to Chapman and Ferry [8] and
Burghelea [5].

This theorem shows that for a given map f W M ! B between compact topological
manifolds, the fibering problem for f and the one for M �Q! B are equivalent.
Since by result (ii) above, every compact Q–manifold is of the form M �Q, this
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reduces the fibering problem for Q–manifolds to the one for topological manifolds
provided the base space is a topological manifold.

The case where B is a compact ANR which is not a topological manifold follows by
the following “change of base” result [8]:

Proposition A.2 Let f W M ! B a map from a compact Q–manifold to a compact
ANR, and let hW B!B0 be a simple homotopy equivalence between compact ANRs.
Then, f fibers if and only if h ı f fibers. Moreover, the equivalence classes of Q–
manifold fiber bundle projections homotopic to f are in bijection to those homotopic
to h ıf .

Proof Properties (i) and (iv) above allow a reduction to the case where B is a compact
Q–manifold. But in this case the claim is obvious since we may assume that h is a
homeomorphism.
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