Small generating sets for the Torelli group

ANDREW PUTMAN

Proving a conjecture of Dennis Johnson, we show that the Torelli subgroup \mathcal{I}_g of the genus g mapping class group has a finite generating set whose size grows cubically with respect to g. Our main tool is a new space called the handle graph on which \mathcal{I}_g acts cocompactly.

20F05; 20F38, 57M07, 57N05

1 Introduction

Let $\Sigma_{g,n}$ be a compact connected oriented genus g surface with n boundary components. The mapping class group of $\Sigma_{g,n}$, denoted $\operatorname{Mod}_{g,n}$, is the group of orientation-preserving homeomorphisms of $\Sigma_{g,n}$ that fix the boundary pointwise modulo isotopies that fix the boundary pointwise. We will often omit the n if it vanishes. For $n \leq 1$, the *Torelli group*, denoted $\mathcal{I}_{g,n}$, is the kernel of the action of $\operatorname{Mod}_{g,n}$ on $\operatorname{H}_1(\Sigma_{g,n};\mathbb{Z})$. The Torelli group has been the object of intensive study ever since the seminal work of Dennis Johnson in the early '80's. See [10] for a survey of Johnson's work.

Finite generation of Torelli One of Johnson's most celebrated theorems says that $\mathcal{I}_{g,n}$ is finitely generated for $g \ge 3$ and $n \le 1$ (see [9]). This is a surprising result – though $\operatorname{Mod}_{g,n}$ is finitely presentable, $\mathcal{I}_{g,n}$ is an infinite-index normal subgroup of $\operatorname{Mod}_{g,n}$, so there is no reason to hope that $\mathcal{I}_{g,n}$ has any finiteness properties. Moreover, McCullough and Miller [13] proved that $\mathcal{I}_{2,n}$ is *not* finitely generated for $n \le 1$, and later Mess [14] proved that \mathcal{I}_2 is an infinite rank free group.

Johnson's generating set Johnson's generating set for $\mathcal{I}_{g,n}$ when $g \ge 3$ and $n \le 1$ is enormous. Indeed, for \mathcal{I}_g (resp. $\mathcal{I}_{g,1}$), it contains $9 \cdot 2^{2g-3} - 4g^2 + 2g - 6$ (resp. $9 \cdot 2^{2g-3} - 4g^2 + 4g - 5$) elements. In [11], Johnson proved that the abelianization of \mathcal{I}_g (resp. $\mathcal{I}_{g,1}$) has rank $\frac{1}{3}(4g^3 + 5g + 3)$ (resp. $\frac{1}{3}(4g^3 - g)$). These give large lower bounds on the size of generating sets for $\mathcal{I}_{g,n}$; however, there is a huge gap between this cubic lower bound and Johnson's exponentially growing generating set. At the end of [9] and in [10, page 168], Johnson conjectures that there should be a generating set for $\mathcal{I}_{g,n}$ whose size grows cubically with respect to the genus. Later, in

[4, Problem 5.7] Farb asked whether there at least exists a generating set whose size grows polynomially.

Main theorem In this paper, we prove Johnson's conjecture. Our main theorem is as follows.

Theorem A For $g \ge 3$, the group \mathcal{I}_g has a generating set of size at most $57\binom{g}{3}$ and the group $\mathcal{I}_{g,1}$ has a generating set of size at most $57\binom{g}{3} + 2g + 1$.

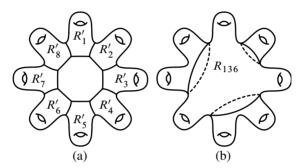


Figure 1: (a) The subsurfaces $R'_i \cong \Sigma_{1,1}$ To avoid cluttering the picture, the portion of the boundaries of the R'_i which lie on the back side the figure are not drawn. (b) A subsurface isotopic to R_{136}

The generating set we construct was conjectured to generate $\mathcal{I}_{g,n}$ by Brendle and Farb [2]. To describe it, we must introduce some notation. As in Figure 1(a), let R'_1, \ldots, R'_g be g subsurfaces of Σ_g each homeomorphic to $\Sigma_{1,1}$ such that the following hold. Interpret all indices modulo g.

- If $1 \le i < j \le g$ satisfy $i \notin \{j-1, j+1\}$, then $R'_i \cap R'_j = \emptyset$.
- For all $1 \le i \le g$, the intersection $R'_i \cap R'_{i+1}$ is homeomorphic to an interval.

For $1 \le i < j < k \le g$, define a subsurface R_{ijk} of Σ_g by $R_{ijk} = \overline{\Sigma_g \setminus \bigcup_{l \ne i, j, k} R'_l}$. Thus R_{ijk} is a genus 3 surface with at most 3 boundary components such that $R'_i, R'_j, R'_k \subset R_{i,j,k}$ (see Figure 1(b)).

If S is a subsurface of Σ_g , define $Mod(\Sigma_g, S)$ to be the subgroup of Mod_g consisting of mapping classes that can be realized by homeomorphisms supported on S and $\mathcal{I}(\Sigma_g, S)$ to equal $\mathcal{I}_g \cap Mod(\Sigma_g, S)$. The key result for the proof of Theorem A is the following theorem. **Theorem B** For $g \ge 3$, the group \mathcal{I}_g is generated by the set

$$\bigcup_{1 \le i < j < k \le g} \mathcal{I}(\Sigma_g, R_{ijk}).$$

Using Johnson's work, it is easy to see that $\mathcal{I}(\Sigma_g, R_{ijk})$ is finitely generated by a generating set with at most 57 generators (see Lemma 2.2). Also, standard techniques (see Lemma 2.1) show that if \mathcal{I}_g has a generating set with k elements, then $\mathcal{I}_{g,1}$ has a generating set with k + 2g + 1 elements. Since there are $\binom{g}{3}$ subsurfaces R_{ijk} , Theorem A follows from Theorem B.

Remark To illustrate the relative sizes of our generating sets, Johnson's generating set for \mathcal{I}_{20} contains more than one trillion elements while our generating set for \mathcal{I}_{20} has 64980 elements.

New proof of Johnson's theorem Our deduction of Theorem A from Theorem B depends on Johnson's theorem that \mathcal{I}_3 is finitely generated. However, Hain [6] has recently announced a direct conceptual proof that \mathcal{I}_3 is finitely generated. Hain's proof uses special properties of the moduli space of genus 3 Riemann surfaces and cannot be easily generalized to g > 3. Combining this with our paper, we obtain a new proof that $\mathcal{I}_{g,n}$ is finitely generated for $g \ge 3$ and $n \le 1$.

Our new proof is more conceptual than Johnson's original one. To illustrate this, we will sketch Johnson's proof. He starts by writing down an enormous finite subset $S \subset \mathcal{I}_{g,n}$ which is known (from work of Powell [15]) to normally generate $\mathcal{I}_{g,n}$ as a subgroup of $\operatorname{Mod}_{g,n}$. Letting T be a standard generating set for $\operatorname{Mod}_{g,n}$, Johnson then proves via a laborious computation that for $t \in T$ and $s \in S$, the element $tst^{-1} \in \mathcal{I}_{g,n}$ can be written as a word in S. This implies that the subgroup Γ of $\mathcal{I}_{g,n}$ generated by S is a normal subgroup of $\operatorname{Mod}_{g,n}$, and thus that $\Gamma = \mathcal{I}_{g,n}$.

Remark Our proof of Theorem B appeals to a theorem of [17] whose proof depends on Johnson's theorem. However, Hatcher and Margalit [12] have recently given a new proof of this result that is independent of Johnson's work.

Nature of generators Some basic elements of $\mathcal{I}_{g,n}$ are as follows (see, eg [16]). If x is a simple closed curve on $\Sigma_{g,n}$, then denote by $T_x \in \text{Mod}_{g,n}$ the Dehn twist about x. If x is a separating simple closed curve, then $T_x \in \mathcal{I}_{g,n}$; these are called *separating twists*. If x and y are disjoint homologous nonseparating simple closed curves, then $T_x T_y^{-1} \in \mathcal{I}_{g,n}$; these are called *bounding pair maps*. Following work

of Birman [1], Powell [15] proved that $\mathcal{I}_{g,n}$ is generated by bounding pair maps and separating twists for $g \ge 1$ and $n \le 1$ (see [16] and [12] for alternate proofs). Johnson's finite generating set for $\mathcal{I}_{g,n}$ for $g \ge 3$ and $n \le 1$ consists entirely of bounding pair maps. It follows easily from our proofs of Lemma 2.1 and 2.2 that our generating set consists of bounding pair maps and separating twists; see the remark after Lemma 2.2.

The handle graph Our proof of Theorem B is topological. To prove that a group G is finitely generated, it is enough to find a connected simplicial complex upon which G acts cocompactly with finitely generated stabilizers. We use a variant on the curve complex. If γ is an oriented simple closed curve on Σ_g , then denote by $[\gamma] \in H_1(\Sigma_g; \mathbb{Z})$ its homology class. Also, if γ_1 and γ_2 are isotopy classes of simple closed curves on Σ_g , then denote by $i_g(\gamma_1, \gamma_2)$ their geometric intersection number, ie the minimal possible number of intersections between two curves in the isotopy classes of γ_1 and γ_2 . Finally, denote by $i_a(\cdot, \cdot)$ the algebraic intersection pairing on $H_1(\Sigma_g; \mathbb{Z})$.

Definition Let $a, b \in H_1(\Sigma_g; \mathbb{Z})$ satisfy $i_a(a, b) = 1$. The *handle graph* associated to *a* and *b*, denoted $\mathcal{H}_{a,b}$, is the graph whose vertices are isotopy classes of oriented simple closed curves on Σ_g that are homologous to either *a* or *b* and where two vertices γ_1 and γ_2 are joined by an edge exactly when $i_g(\gamma_1, \gamma_2) = 1$.

We will show that $\mathcal{H}_{a,b}/\mathcal{I}_g$ consists of a single edge (see Lemma 5.2) and that $\mathcal{H}_{a,b}$ is connected for $g \geq 3$ (see Lemma 3.1).

A complication It would appear that we have all the ingredients in place to use the space $\mathcal{H}_{a,b}$ to prove that \mathcal{I}_g is finitely generated. However, there is one remaining complication. Namely, we do not know the answer to the following question.

Question 1.1 For some $g \ge 4$, let γ be the isotopy class of a nonseparating simple closed curve on Σ_g . Is the stabilizer subgroup $(\mathcal{I}_g)_{\gamma}$ of γ finitely generated?

In other words, we do not know if the vertex stabilizer subgroups of the action of \mathcal{I}_g on $\mathcal{H}_{a,b}$ are finitely generated. Nonetheless, in Section 4 we will prove a weaker statement that suffices to prove Theorem B. The proof of Theorem B is in Section 5.

Smaller generating sets A positive answer to Question 1.1 would likely lead to a smaller generating set for \mathcal{I}_g , though of course this depends on the nature of the finite generating sets for the stabilizer subgroups. Let us describe one way this could work. For $g \ge 3$, let σ_g be the smallest cardinality of a generating set for \mathcal{I}_g . Consider

 $g \geq 4$, and fix an edge $\{\alpha, \beta\}$ of $\mathcal{H}_{a,b}$. The proof of Theorem B shows that \mathcal{I}_g is generated by $(\mathcal{I}_g)_{\alpha} \cup (\mathcal{I}_g)_{\beta}$. Let *S* be a subsurface of Σ_g such that $S \cong \Sigma_{g-1,1}$ and $\alpha \cup \beta \subset \Sigma_g \setminus S$. We have $\mathcal{I}(\Sigma_g, S) \cong \mathcal{I}_{g-1,1}$ (see Section 2) and $\mathcal{I}(\Sigma_g, S) \subset (\mathcal{I}_g)_{\alpha}$ and $\mathcal{I}(\Sigma_g, S) \subset (\mathcal{I}_g)_{\beta}$. Assume that there exists a finite set V_{α} (resp. V_{β}) such that $(\mathcal{I}_g)_{\alpha}$ (resp. $(\mathcal{I}_g)_{\beta}$) is generated by $\mathcal{I}(\Sigma_g, S) \cup V_{\alpha}$ (resp. $\mathcal{I}(\Sigma_g, S) \cup V_{\beta}$). The group \mathcal{I}_g is then generated by $\mathcal{I}(\Sigma_g, S) \cup V_{\alpha} \cup V_{\beta}$. Lemma 2.1 says that $\mathcal{I}(\Sigma_g, S) \cong \mathcal{I}_{g-1,1}$ can be generated by $\sigma_{g-1} + 2g + 1$ elements. Moreover, it seems likely that there exists some relatively small *K* such that $|V_{\alpha}|, |V_{\beta}| \leq Kg^2$. This would imply that

$$\sigma_g \le \sigma_{g-1} + 2g + 1 + 2Kg^2.$$

Iterating this, we would get that

$$\sigma_g \le \sigma_3 + \sum_{i=4}^{g} (2i + 1 + 2Ki^2)$$

for $g \ge 4$. This bound is cubic in g (as it needs to be), but as long as K is not too large it is much smaller than $57\binom{g}{3}$.

Finite presentability Perhaps the most important open question about the combinatorial group theory of \mathcal{I}_g is whether or not it is finitely presentable for $g \ge 3$. One way of proving that a group G is finitely presentable is to construct a simply-connected simplicial complex X upon which G acts cocompactly with finitely presentable stabilizer subgroups (see, eg [3]). For example, Hatcher and Thurston use this technique in [7] to prove that the mapping class group is finitely presentable.

The handle graph $\mathcal{H}_{a,b}$ appears to be the first example of a useful space upon which \mathcal{I}_g acts cocompactly (of course, there are trivial non-useful examples of such spaces; for example, the Cayley graph of \mathcal{I}_g or a 1-point space). Unfortunately, while $\mathcal{H}_{a,b}$ is connected for $g \geq 3$, it is not simply connected. Indeed, it does not even have any 2-cells (and is not a tree). However, one could probably attach 2-cells to $\mathcal{H}_{a,b}$ to obtain a simply connected complex upon which \mathcal{I}_g acts cocompactly. This would not be enough, however – one would also have to prove that the simplex stabilizer subgroups were finitely presentable. In other words, this complex would provide the inductive step in a proof that \mathcal{I}_g was finitely presentable, but one would still need a base case.

A complex that does not work We close this introduction by discussing an approach to Theorem B that does not work. One might think of trying to prove Theorem B using the following complex. Let $a \in H_1(\Sigma_g; \mathbb{Z})$ be a primitive vector. Define C_a to be the graph whose vertices are isotopy classes of oriented simple closed curves γ on Σ_g such that $[\gamma] = a$ and where two vertices γ and γ' are joined by an edge if $i_g(\gamma, \gamma') = 0$. It is known ([17, Theorem 1.9]; see [12] for an alternate proof) that C_a is connected for $g \ge 3$. Moreover, \mathcal{I}_g acts transitively on the vertices of C_a . However, it does *not* act cocompactly; indeed, there are infinitely many edge orbits. To see this, consider edges $e_1 = \{\gamma_1, \gamma'_1\}$ and $e_2 = \{\gamma_2, \gamma'_2\}$ of C_a . Assume that there exists some $f \in \mathcal{I}_g$ such that $f(e_1) = e_2$. Since γ_1 is homologous to γ'_1 , the multicurve $\gamma_1 \cup \gamma'_1$ divides Σ_g into two subsurfaces S_1 and S'_1 . Similarly, $\gamma_2 \cup \gamma'_2$ divides Σ_g into two subsurfaces S_2 and S'_2 . Relabeling if necessary, we have $f(S_1)$ isotopic to S_2 and $f(S'_1)$ isotopic to S'_2 . Since $f \in \mathcal{I}_g$, the images of $H_1(S_1; \mathbb{Z})$ and $H_1(S_2; \mathbb{Z})$. It is easy to see that infinitely many such images occur for different edges of C_a , so there must be infinitely many edges orbits. We remark that Johnson proved in [8, Corollary to Lemma 9 on page 250] that the images of $H_1(S_1; \mathbb{Z})$ and $H_1(S'_1; \mathbb{Z})$ in $H_1(\Sigma_g; \mathbb{Z})$ are a complete invariant for the edge orbits.

Acknowledgments I wish to thank Tara Brendle, Benson Farb, and Dan Margalit for their help. I also wish to thank an anonymous referee for a very helpful referee report. The author is supported in part by NSF grant DMS-1005318.

2 The Torelli group on subsurfaces

We will need to understand how the Torelli group restricts to subsurfaces. For a general discussion of this, see [16]. In this section, we will extract from [16] results on two kinds of subsurfaces. In Section 2.1, we will show how to analyze subsurfaces like the subsurfaces R_{ijk} from Section 1. In Section 2.2, we will show how to analyze stabilizers of nonseparating simple closed curves (which are supported on the subsurface obtained by taking the complement of a regular neighborhood of the curve).

2.1 Analyzing the subsurfaces R_{ijk}

We begin by defining groups $\mathcal{I}_{g,n}$ for $n \ge 2$. There is a map $\operatorname{Mod}_{g,n} \to \operatorname{Mod}_{g}$ induced by gluing discs to the boundary components of $\Sigma_{g,n}$ and extending homeomorphisms by the identity. Define $\mathcal{I}_{g,n}$ to be the kernel of the resulting action of $\operatorname{Mod}_{g,n}$ on $\operatorname{H}_1(\Sigma_g; \mathbb{Z})$. For the case n = 1, the map $\operatorname{H}_1(\Sigma_{g,1}; \mathbb{Z}) \to \operatorname{H}_1(\Sigma_g; \mathbb{Z})$ is an isomorphism, so this agrees with our previous definition of $\mathcal{I}_{g,1}$.

Remark In [16], the different definitions of the Torelli group on a surface with boundary are parametrized by partitions of the boundary components. The above definition of $\mathcal{I}_{g,n}$ corresponds to the discrete partition $\{\{\beta_1\},\ldots,\{\beta_n\}\}$ of the set $\{\beta_1,\ldots,\beta_n\}$ of boundary components of $\Sigma_{g,n}$.

In [16, Theorem 1.2], a version of the Birman exact sequence is proven for the Torelli group. For $\mathcal{I}_{g,n}$ with $g \ge 2$, it takes the form

(1)
$$1 \longrightarrow \pi_1(U\Sigma_{g,n}) \longrightarrow \mathcal{I}_{g,n+1} \longrightarrow \mathcal{I}_{g,n} \longrightarrow 1.$$

Here $U\Sigma_{g,n}$ is the unit tangent bundle of $\Sigma_{g,n}$. The subgroup $\pi_1(U\Sigma_{g,n})$ of $\mathcal{I}_{g,n+1}$ is often called the "disc-pushing subgroup" – the mapping class associated to $\gamma \in \pi_1(U\Sigma_{g,n})$ "pushes" a fixed boundary component around γ while allowing it to rotate. The following is an immediate consequence of (1) and the fact that $\pi_1(U\Sigma_g)$ can be generated by 2g + 1 elements.

Lemma 2.1 $\mathcal{I}_{g,1}$ can be generated by k + 2g + 1 elements if \mathcal{I}_g can be generated by k elements.

Now assume that $S \cong \Sigma_{h,n}$ is an embedded subsurface of Σ_g and that all the boundary components of S are non-nullhomotopic separating curves in Σ_g . For example, Scould be one of the surfaces R_{ijk} from Section 1. Letting Mod(S) be the mapping class group of S, the induced map Mod(S) \rightarrow Mod_g is an injection. This gives a natural identification of Mod(S) with Mod(Σ_g, S). The group $\mathcal{I}(\Sigma_g, S)$ is thus naturally a subgroup of Mod(S) \cong Mod_{h,n}, and in [16, Theorem 1.1] it is proven that $\mathcal{I}(\Sigma_g, S) = \mathcal{I}_{h,n}$. Johnson [9] proved that \mathcal{I}_3 can be generated by 35 elements. Applying (1) repeatedly, we see that $\mathcal{I}_{3,1}$ can be generated by 42 elements, $\mathcal{I}_{3,2}$ by 49 elements, and $\mathcal{I}_{3,3}$ by 57 elements. Since $R_{ijk} \cong \Sigma_{3,k}$ with $k \leq 3$, we obtain the following.

Lemma 2.2 For all $1 \le i < j < k \le g$, the group $\mathcal{I}(\Sigma_g, R_{ijk})$ can be generated by 57 elements.

Remark It is well-known (see, eg [16, Section 2.1]) that the mapping classes corresponding to the generators of $\pi_1(U\Sigma_{g,n})$ used to prove Lemmas 2.1 and 2.2 can be chosen to be bounding pair maps and separating twists. Additionally, Johnson's minimal-size generating set for \mathcal{I}_3 consists entirely of bounding pair maps, so the generating set for $\mathcal{I}(\Sigma_g, R_{ijk})$ in Lemma 2.2 can be taken to consist of bounding pair maps and separating twists.

2.2 Stabilizers of nonseparating simple closed curves

Let γ be a nonseparating simple closed curve on Σ_g . Define $\Sigma_{g,\gamma}$ to be the result of cutting Σ_g along γ , so $\Sigma_{g,\gamma} \cong \Sigma_{g-1,2}$. Letting $\operatorname{Mod}_{g,\gamma}$ be the mapping class group of $\Sigma_{g,\gamma}$, the natural map $\Sigma_{g,\gamma} \to \Sigma_g$ induces a map *i*: $\operatorname{Mod}_{g,\gamma} \to \operatorname{Mod}_g$. Define $\mathcal{I}_{g,\gamma} = i^{-1}(\mathcal{I}_g)$. The map *i* restricts to a surjection $\mathcal{I}_{g,\gamma} \to (\mathcal{I}_g)_{\gamma}$, where $(\mathcal{I}_g)_{\gamma}$ is the stabilizer subgroup of γ .

Remark In the notation of [16], the group $\mathcal{I}_{g,\gamma}$ corresponds to the Torelli group of $\Sigma_{g-1,2}$ with respect to the "indiscrete partition" $\{\{\beta, \beta'\}\}\$ of the boundary components β and β' of $\Sigma_{g,\gamma}$. Also, the kernel of the map $\mathcal{I}_{g,\gamma} \to (\mathcal{I}_g)_{\gamma}$ is isomorphic to \mathbb{Z} and is generated by $T_{\beta}T_{\beta'}^{-1}$, where T_{β} and $T_{\beta'}$ are the Dehn twists about β and β' , respectively.

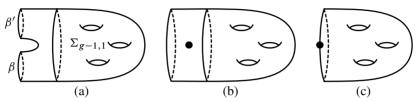


Figure 2: (a) The surface $\Sigma_{g,\gamma}$ and the subsurface $\Sigma_{g-1,1}$ of $\Sigma_{g,\gamma}$ such that the induced map $\mathcal{I}_{g-1,1} \to \mathcal{I}_{g,\gamma}$ splits the exact sequence (2) (b) The basepoint for $\pi_1(\Sigma_{g-1,1})$ is obtained from $\Sigma_{g,\gamma}$ by collapsing the boundary component β to a point. (c) The surface in b deformation retracts to $\Sigma_{g-1,1}$ such that the basepoint ends up on the boundary component.

In [16, Theorem 1.2], it is proven that for $g \ge 2$ there is a short exact sequence

(2)
$$1 \longrightarrow K_{g,\gamma} \longrightarrow \mathcal{I}_{g,\gamma} \longrightarrow \mathcal{I}_{g-1,1} \longrightarrow 1.$$

Here $K_{g,\gamma} \cong [\pi_1(\Sigma_{g-1,1}), \pi_1(\Sigma_{g-1,1})]$. This exact sequence splits via the inclusion $\mathcal{I}_{g-1,1} \hookrightarrow \mathcal{I}_{g,\gamma}$ induced by the inclusion $\Sigma_{g-1,1} \hookrightarrow \Sigma_{g,\gamma}$ indicated in Figure 2(a). In other words, the following holds.

Lemma 2.3 $\mathcal{I}_{g,\gamma} = K_{g,\gamma} \ltimes \mathcal{I}_{g-1,1}$ for $g \ge 3$ and γ a simple closed nonseparating curve on Σ_g .

The group $\mathcal{I}_{g-1,1}$ acts on $K_{g,\gamma} < \pi_1(\Sigma_{g-1,1})$ as follows. As is clear from [16, Theorem 1.2], the basepoint for $\pi_1(\Sigma_{g-1,1})$ is as indicated in Figure 2(b). As shown in Figure 2(c), the surface $\Sigma_{g-1,1}$ deformation retracts onto the surface $\Sigma_{g-1,1}$ on which $\mathcal{I}_{g-1,1}$ is supported. After this deformation retract, the basepoint ends up on $\partial \Sigma_{g-1,1}$. Summing up, $\mathcal{I}_{g-1,1}$ acts on $K_{g,\gamma} < \pi_1(\Sigma_{g-1,1})$ via the action of $\operatorname{Mod}_{g-1,1}$ on $\pi_1(\Sigma_{g-1,1})$, where the basepoint for $\pi_1(\Sigma_{g-1,1})$ is on $\partial \Sigma_{g-1,1}$.

3 The handle graph is connected

In this section, we prove the following.

Lemma 3.1 Fix $g \ge 3$. Let $a, b \in H_1(\Sigma_g; \mathbb{Z})$ satisfy $i_a(a, b) = 1$. Then $\mathcal{H}_{a,b}$ is connected.

We will need two lemmas. In the first, if ϵ is an oriented arc in a surface, then ϵ^{-1} denotes the arc obtained by reversing the orientation of ϵ .

Lemma 3.2 Let the boundary components of $\Sigma_{g,2}$ be δ_0 and δ_1 . Choose points $v_i \in \delta_i$ for i = 0, 1 and let ϵ be an oriented properly embedded arc in $\Sigma_{g,2}$ whose initial point is v_0 and whose terminal point is v_1 . Then for any $h \in H_1(\Sigma_{g,2}; \mathbb{Z})$, there exists an oriented properly embedded arc ϵ' in $\Sigma_{g,2}$ whose initial point is v_0 and whose terminal point $\Sigma_{g,2}$ whose initial point is v_0 and whose terminal point ε' in $\Sigma_{g,2}$ whose initial point is v_0 and whose terminal point ε' in $\Sigma_{g,2}$ whose initial point is v_0 and whose terminal point ε' in $\Sigma_{g,2}$ whose initial point is v_0 and whose terminal point ε' in $\Sigma_{g,2}$ whose initial point is v_0 and whose terminal point ε' in $\Sigma_{g,2}$ whose initial point is v_0 and whose terminal point ε' in $\Sigma_{g,2}$ whose initial point is v_0 and whose terminal point ε' is v_0 and $\varepsilon' \cdot \varepsilon^{-1}$ is h.

Proof Gluing (δ_0, v_0) to (δ_1, v_1) , we obtain a surface $S \cong \Sigma_{g+1}$. Let α and \ast be the images of δ_0 and v_0 in S, respectively. The image of ϵ in S is an oriented simple closed curve β with $i_g(\alpha, \beta) = 1$. There is a natural isomorphism $H_1(\Sigma_{g,2}; \mathbb{Z}) \cong [\alpha]^{\perp}$, where the orthogonal complement is taken with respect to $i_a(\cdot, \cdot)$. Under this identification, we can apply [16, Lemma A.3] to find an oriented simple closed curve β' on S such that $[\beta'] = [\beta] + h$ and such that $\alpha \cap \beta' = \{\ast\}$. Cutting S open along α , the curve β' becomes the desired arc ϵ' .

Lemma 3.3 Let $a, b \in H_1(\Sigma_g; \mathbb{Z})$ satisfy $i_a(a, b) = 1$. Let α_1 and α_2 be disjoint oriented simple closed curves on Σ_g such that $[\alpha_i] = a$ for i = 1, 2. There then exists some oriented simple closed curve β on Σ_g such that $[\beta] = b$ and $i_g(\alpha_i, \beta) = 1$ for i = 1, 2.

Proof Let β' be any simple closed curve on Σ_g such that $i(\alpha_i, \beta') = 1$ for i = 1, 2. Orient β' so that its intersections with α_1 and α_2 are positive. Let X_1 and X_2 be the two subsurfaces of Σ_g that result from cutting Σ_g along $\alpha_1 \cup \alpha_2$. For i = 1, 2, the surface X_i has 2 boundary components and the intersection of β' with X_i is an oriented properly embedded arc ϵ_i running between these boundary components. Also, the induced map $H_1(X_i; \mathbb{Z}) \to H_1(\Sigma_g; \mathbb{Z})$ is an injection, and we will identify $H_1(X_i; \mathbb{Z})$ with its image in $H_1(\Sigma_g; \mathbb{Z})$. The orthogonal complement to a with respect to the algebraic intersection pairing is spanned by $H_1(X_1; \mathbb{Z}) \cup H_1(X_2; \mathbb{Z})$. Since $i_a(a, b) = i_a(a, [\beta'])$, the homology class $b - [\beta']$ is orthogonal to a. There thus exist $h_i \in H_1(X_i; \mathbb{Z})$ for i = 1, 2 such that $b = [\beta'] + h_1 + h_2$. Lemma 3.2 says that for i = 1, 2 there exists an oriented properly embedded arc ϵ'_i in X_i with the same endpoints as ϵ_i such that the homology class of the loop $\epsilon'_i \cdot \epsilon'_i^{-1}$ equals h_i . Letting β be the loop $\epsilon'_1 \cdot \epsilon'_2$, it follows that $[\beta] = [\beta'] + h_1 + h_2 = b$, as desired.

Proof of Lemma 3.1 Let δ and δ' be vertices of $\mathcal{H}_{a,b}$. We will construct a path in $\mathcal{H}_{a,b}$ from δ to δ' . Without loss of generality, $[\delta] = [\delta'] = a$. By [17, Theorem 1.9] (see [12] for an alternate proof), we can find a sequence

$$\delta = \alpha_1, \alpha_2, \ldots, \alpha_n = \delta'$$

of isotopy classes of oriented simple closed curves on Σ_g such that $[\alpha_i] = a$ for $1 \le i \le n$ and $i_g(\alpha_i, \alpha_{i+1}) = 0$ for $1 \le i < n$ (this is where we use the condition $g \ge 3$). Lemma 3.3 implies that there exist isotopy classes $\beta_1, \ldots, \beta_{n-1}$ of oriented simple closed curves on Σ_g such that $[\beta_i] = b$ and $i_g(\alpha_i, \beta_i) = i_g(\alpha_{i+1}, \beta_i) = 1$ for $1 \le i < n$. Since β_i is adjacent to both α_i and α_{i+1} in $\mathcal{H}_{a,b}$, the desired path from δ to δ' is thus

$$\delta = \alpha_1, \beta_1, \alpha_2, \beta_2, \dots, \beta_{n-1}, \alpha_n = \delta'.$$

4 Generating the stabilizer of a nonseparating simple closed curve

Let the subsurfaces R'_i of Σ_g be as in the introduction. Define $S_i = \overline{\Sigma_g \setminus R'_i}$. The goal of this section is to prove the following lemma.

Lemma 4.1 Assume that $g \ge 4$. Let γ be the isotopy class of a simple closed nonseparating curve on Σ_g that is contained in R'_1 . Then the subgroup $(\mathcal{I}_g)_{\gamma}$ of \mathcal{I}_g stabilizing γ is contained in the subgroup of \mathcal{I}_g generated by $\bigcup_{i=1}^g \mathcal{I}(\Sigma_g, S_i)$.

Before proving this, we need a technical lemma. Set $\pi = \pi_1(\Sigma_{g,1}, *)$, where $* \in \partial \Sigma_{g,1}$. Let T'_1, \ldots, T'_g be disjoint subsurfaces of $\Sigma_{g,1}$ such that $T'_i \cong \Sigma_{1,1}$ and $T'_i \cap \partial \Sigma_{g,1} = \emptyset$ for $1 \le i \le g$ (see Figure 3(a)). Define $T_i = \overline{\Sigma_{g,1} \setminus T'_i}$. We have $T_i \cong \Sigma_{g-1,2}$ and $* \in T_i$ for $1 \le i \le g$. The maps $\pi_1(T_i, *) \to \pi_1(\Sigma_{g,1}, *)$ and $H_1(T'_i; \mathbb{Z}) \to$ $H_1(\Sigma_{g,1}; \mathbb{Z})$ are injective; we will identify $\pi_1(T_i, *)$ and $H_1(T'_i; \mathbb{Z})$ with their images in $\pi_1(\Sigma_{g,1}, *)$ and $H_1(\Sigma_g; \mathbb{Z})$, respectively. Define $K_i = [\pi, \pi] \cap \pi_1(T_i, *)$. We then have the following.

Lemma 4.2 For $g \ge 3$, the group $[\pi, \pi]$ is generated by the $\mathcal{I}_{g,1}$ -orbits of the set $\bigcup_{i=1}^{g} K_i$.

The proof of this will have two ingredients. The first is the following theorem of Tomaszewski. As notation, if G is a group and $a, b \in G$, then $[a, b] := a^{-1}b^{-1}ab$ and $a^b := b^{-1}ab$.

Theorem 4.3 (Tomaszewski, [20]) Let F_n be the free group on $\{x_1, \ldots, x_n\}$. Then the set

 $\{[x_i, x_j]^{x_i^{k_i} x_{i+1}^{k_{i+1}} \dots x_n^{k_n}} \mid 1 \le i < j \le n \text{ and } k_m \in \mathbb{Z} \text{ for all } i \le m \le n\}$

is a free basis for $[F_n, F_n]$.

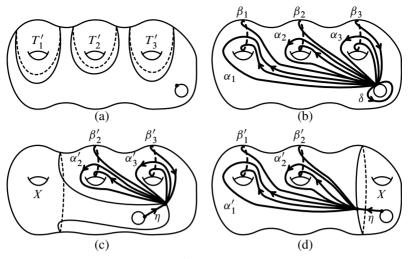


Figure 3: (a) The subsurfaces T'_i (b) The standard basis for π (c) The surface X when i = 1 (d) The surface X when i = g

The second is the following lemma about the action of $\mathcal{I}_{g,1}$ on π . Choose a standard basis $\{\alpha_1, \beta_1, \ldots, \alpha_g, \beta_g\}$ for π (as in Figure 3(b)) such that α_i and β_i are freely homotopic into T'_i for $1 \le i \le g$. Our proof of Lemma 4.2 would be much simpler if the image of $\operatorname{Mod}_{g,1}$ in $\operatorname{Aut}(\pi)$ contained the inner automorphisms – since inner automorphisms act trivially on homology, this would imply that the \mathcal{I}_g -orbits of $\{[x, y] \mid x, y \in \{\alpha_1, \beta_1, \ldots, \alpha_g, \beta_g\}\}$ generate $[\pi, \pi]$. However, the image of $\operatorname{Mod}_{g,1}$ in $\operatorname{Aut}(\pi)$ does not contain the inner automorphisms since $\operatorname{Mod}_{g,1}$ fixes the loop $\delta = [\alpha_1, \beta_1] \cdots [\alpha_g, \beta_g]$ depicted in Figure 3(b). The following lemma is a weak replacement for this.

Lemma 4.4 Let *i* be either 1 or *g*. Consider $h \in H_1(T'_i; \mathbb{Z})$. There then exists some $w \in \langle \alpha_i, \beta_i, \delta \rangle$ and $f \in \mathcal{I}_{g,1}$ such that [w] = h and such that $f(a_j) = a_j^w$ and $f(b_j) = b_j^w$ for $1 \le j \le g$ with $j \ne i$.

Proof Let X be a regular neighborhood of the curves $\alpha_i \cup \beta_i \cup \partial \Sigma_{g,1}$ depicted in Figure 3(b). Thus $X \cong \Sigma_{1,2}$, the surface T'_i is homotopic into X, and the image of $\pi_1(X, *)$ in π is $\langle \alpha_i, \beta_i, \delta \rangle$. Let $Y = \overline{\Sigma_{g,1} \setminus X}$, so $Y \cong \Sigma_{g-1,1}$ and $X \cap Y \cong S^1$. The key property of X is as follows (this is where we use the assumption that *i* is either 1 or *g*). There exists some $*' \in X \cap Y$, a properly embedded arc η in X from * to *', and elements

$$\{\alpha'_j,\beta'_j \mid 1 \le j \le g, \ j \ne i\} \subset \pi_1(Y,*')$$

such that $\alpha_j = \eta \cdot \alpha'_j \cdot \eta^{-1}$ and $\beta_j = \eta \cdot \beta'_j \cdot \eta^{-1}$ for $1 \le j \le g$ with $j \ne i$. See Figure 3(c) for the case i = 1 and Figure 3(d) for the case i = g.

By Lemma 3.2, there exists an oriented properly embedded arc η' in X whose endpoints are the same as those of η such that the homology class of $w := \eta \cdot (\eta')^{-1} \in \pi$ in $H_1(\Sigma_g; \mathbb{Z})$ is h. Observe that $w \in \langle \alpha_i, \beta_i, \delta \rangle$. Also,

$$\eta' \cdot \alpha'_j \cdot (\eta')^{-1} = w^{-1} \cdot \eta \cdot \alpha'_j \cdot \eta^{-1} \cdot w = \alpha^w_j$$

for $j \neq i$, and similarly for β_j . It is thus enough find some $f \in \mathcal{I}(\Sigma_g, X)$ such that $f(\eta) = \eta'$.

The "change of coordinates principle" from [5, Section 1.3] implies that there exists some $f' \in Mod(\Sigma_g, X)$ such that $f'(\eta) = \eta'$. Briefly, an Euler characteristic calculation shows that cutting X open along either η or η' results in a surface homeomorphic to $\Sigma_{1,1}$. Choosing an orientation-preserving homeomorphism between these two cutopen surfaces and gluing the boundary components back together in an appropriate way, we obtain some $f' \in Mod(\Sigma_g, X)$ such that $f'(\eta) = \eta'$. See [5, Section 1.3] for more details and many other examples of arguments of this form.

The mapping class f' need not lie in Torelli; however, it satisfies $f'([\alpha_j]) = [\alpha_j]$ and $f'([\beta_j]) = [\beta_j]$ for $j \neq i$ and $f'(H_1(T'_i; \mathbb{Z})) = H_1(T'_i; \mathbb{Z})$. Since the image of $Mod(T'_i)$ in $Aut(H_1(T'_i; \mathbb{Z})) = Aut(\mathbb{Z}^2)$ is $SL_2(\mathbb{Z})$, we can choose some $f'' \in$ $Mod(\Sigma_g, T'_i)$ such that $f'([\alpha_i]) = f''([\alpha_i])$ and $f'([\beta_i]) = f''([\beta_i])$. It follows that $f := f' \cdot (f'')^{-1}$ lies in $\mathcal{I}(\Sigma_g, X)$ and satisfies $f(\eta) = \eta'$, as desired. \Box

Proof of Lemma 4.2 The generating set for $[F_n, F_n]$ in Theorem 4.3 depends on an ordering of the generators for F_n . It seems hard to prove the lemma using the generating set corresponding to the standard ordering

$$(x_1, x_2, \dots, x_{2g}) = (\alpha_1, \beta_1, \dots, \alpha_g, \beta_g)$$

of the generators for $\pi \cong F_{2g}$. However, consider the following nonstandard ordering on the generators for π :

$$(x_1, x_2, \ldots, x_{2g}) = (\alpha_2, \beta_2, \alpha_1, \beta_1, \alpha_3, \beta_3, \alpha_4, \beta_4, \ldots, \alpha_g, \beta_g).$$

Let S be the generating set for $[\pi, \pi]$ given by Theorem 4.3 using this ordering of the generators. All the elements of S lie in K_2 except for

(3)
$$[\alpha_2, \zeta]^{\alpha_2^{n_2} \beta_2^{m_2} \alpha_1^{n_1} \beta_1^{m_1} \alpha_3^{n_3} \dots \beta_g^{m_g}}$$
 and $[\beta_2, \zeta']^{\beta_2^{m_2} \alpha_1^{n_1} \beta_1^{m_1} \alpha_3^{n_3} \dots \beta_g^{m_g}};$

here $\zeta \in \{\beta_2, \alpha_1, \beta_1, \alpha_3, \dots, \beta_g\}$ and $\zeta' \in \{\alpha_1, \beta_1, \alpha_3, \dots, \beta_g\}$ and $n_i, m_i \in \mathbb{Z}$. Letting $T \subset S$ be the elements in (3), we must show that every $t \in T$ can be expressed as a product of elements in the $\mathcal{I}_{g,1}$ -orbit of the set $\bigcup_{i=1}^g K_i$. Consider $t \in T$, so either $t = [\alpha_2, \zeta]^{\alpha_2^{n_2} \beta_2^{m_2} \alpha_1^{n_1} \beta_1^{m_1} \alpha_3^{n_3} \dots \beta_g^{m_g}}$ or $t = [\beta_2, \zeta]^{\beta_2^{m_2} \alpha_1^{n_1} \beta_1^{m_1} \alpha_3^{n_3} \dots \beta_g^{m_g}}$. There are two cases.

Case 1 $\zeta \notin \{\alpha_1, \beta_1\}.$

We will do the case where $t = [\alpha_2, \zeta]^{\alpha_2^2 \beta_2^{m_2} \alpha_1^{n_1} \beta_1^{m_1} \alpha_3^{n_3} \cdots \beta_g^{m_g}}$; the other case is treated in a similar way. Set $t' = [\alpha_2, \zeta]^{\alpha_2^{n_2} \beta_2^{m_2} \alpha_3^{n_3} \cdots \beta_g^{m_g}}$, so $t' \in K_1$. By Lemma 4.4, there exists some $w \in \{\alpha_1, \beta_1, \delta\}$ and $f \in \mathcal{I}_{g,1}$ such that $[w] = [\alpha_1^{n_1} \beta_1^{m_1}]$ and such that $f(a_j) = a_j^w$ and $f(b_j) = b_j^w$ for j > 1. This implies that $f(t') = [\alpha_2, \zeta]^{\alpha_2^{n_2} \beta_2^{m_2} \alpha_3^{n_3} \cdots \beta_g^{m_g} w}$. Now, $\alpha_3^{n_3} \cdots \beta_g^{m_g} w$ and $\alpha_1^{n_1} \beta_1^{m_1} \alpha_3^{n_3} \cdots \beta_g^{m_g}$ are homologous, so there exists some $\theta \in [\pi, \pi]$ such that $\alpha_3^{n_3} \cdots \beta_g^{m_g} w \theta = \alpha_1^{n_1} \beta_1^{m_1} \alpha_3^{n_3} \cdots \beta_g^{m_g}$. Moreover, since $w \in \langle a_1, b_1, \delta \rangle$ we have $\theta \in K_2$. Observe now that

$$\theta^{-1} \cdot f(t') \cdot \theta = [\alpha_2, \zeta]^{\alpha_2^{n_2} \beta_2^{m_2} \alpha_3^{n_3} \cdots \beta_g^{m_g} w \theta} = [\alpha_2, \zeta]^{\alpha_2^{n_2} \beta_2^{m_2} \alpha_1^{n_1} \beta_1^{m_1} \alpha_3^{n_3} \cdots \beta_g^{m_g}} = t$$

We have thus found the desired expression for t.

Case 2 $\zeta' \in \{\alpha_1, \beta_1\}.$

This case is similar to Case 1. The only difference is that the $\alpha_g^{n_g} \beta_g^{m_g}$ term of *t* is deleted to form *t'* instead of the $\alpha_1^{n_1} \beta_1^{m_1}$ term.

Proof of Lemma 4.1 Let *I* be the subgroup of \mathcal{I}_g generated by $\bigcup_{i=1}^g \mathcal{I}(\Sigma_g, S_i)$. Using the notation of Section 2, there is a surjection $\rho: \mathcal{I}_{g,\gamma} \to (\mathcal{I}_g)_{\gamma}$ induced by a continuous map $\phi: \Sigma_{g,\gamma} \to \Sigma_g$. Define $X = \phi^{-1}(S_1)$, so $X \cong \Sigma_{g-1,1}$. Letting $\mathcal{I}(X)$ be the Torelli group of *X*, Lemma 2.3 gives a decomposition $\mathcal{I}_{g,\gamma} = K_{g,\gamma} \ltimes \mathcal{I}(X)$. Clearly $\rho(\mathcal{I}(X)) = \mathcal{I}(\Sigma_g, S_1) \subset I$. Also, Lemma 4.2 implies that $K_{g,\gamma}$ is generated by the $\mathcal{I}(X)$ -conjugates of a set $S \subset K_{g,\gamma}$ such that $\rho(S) \subset I$. We conclude that $\rho(\mathcal{I}_{g,\gamma}) \subset I$, as desired.

5 Proof of main theorem

We finally prove our main theorem. The key is the following standard lemma, whose proof is similar to that given in [19, (1) of Appendix to Section 3] and is thus omitted.

Lemma 5.1 Consider a group *G* acting without inversions on a connected graph *X*. Assume that X/G consists of a single edge \overline{e} . Let *e* be a lift of \overline{e} to *X* and let *v* and *v'* be the endpoints of *e*. Then *G* is generated by $G_v \cup G_{v'}$.

To apply this, we will need the following lemma.

Lemma 5.2 Let $a, b \in H_1(\Sigma_g; \mathbb{Z})$ satisfy $i_a(a, b) = 1$. Then $\mathcal{H}_{a,b}/\mathcal{I}_g$ is isomorphic to a graph with a single edge.

The proof is similar to the proofs of [16, Lemma 6.2] and [18, Lemma 6.9], and is thus omitted.

Proof of Theorem B Let R'_1, \ldots, R'_g and R_{ijk} be the subsurfaces of Σ_g from the introduction. Let Γ be the subgroup of \mathcal{I}_g generated by $\bigcup_{1 \le i < j < k \le g} \mathcal{I}(\Sigma_g, R_{ijk})$. Our goal is to prove that $\Gamma = \mathcal{I}_g$.

The proof will be by induction on g. The base case g = 3 is trivial, so assume that $g \ge 4$ and that the theorem is true for all smaller g such that $g \ge 3$. Choose simple closed curves α and β in R'_1 such that $i_g(\alpha, \beta) = 1$. Observe that R'_1 is a closed regular neighborhood of $\alpha \cup \beta$. Set $a = [\alpha]$ and $b = [\beta]$. Clearly \mathcal{I}_g acts on $\mathcal{H}_{a,b}$ without inversions. Lemmas 3.1 and 5.2 show that the action of \mathcal{I}_g on $\mathcal{H}_{a,b}$ satisfies the other conditions of Lemma 5.1. We deduce that \mathcal{I}_g is generated by the union $(\mathcal{I}_g)_{\alpha} \cup (\mathcal{I}_g)_{\beta}$ of the stabilizer subgroups of α and β .

Recall that $S_i = \overline{\Sigma_g \setminus R'_i}$ for $1 \le i \le g$. By Lemma 4.1, both $(\mathcal{I}_g)_{\alpha}$ and $(\mathcal{I}_g)_{\beta}$ are contained in the subgroup generated by $\bigcup_{i=1}^{g} \mathcal{I}(\Sigma_g, S_i)$. We must prove that $\mathcal{I}(\Sigma_g, S_i) \subset \Gamma$ for $1 \le i \le g$. We will do the case i = g; the other cases are similar. We have a Birman exact sequence

$$1 \longrightarrow \pi_1(U\Sigma_{g-1}) \longrightarrow \mathcal{I}(\Sigma_g, S_g) \longrightarrow \mathcal{I}_{g-1} \longrightarrow 1.$$

By induction, the subset $\bigcup_{1 \le i < j < k \le g-1} \mathcal{I}(\Sigma_g, R_{ijk})$ of $\mathcal{I}(\Sigma_g, S_g)$ projects to a generating set for \mathcal{I}_{g-1} . Also, it is clear that the disc-pushing subgroup $\pi_1(U\Sigma_{g-1})$ of $\mathcal{I}(\Sigma_g, S_g)$ is generated by elements that lie in $\bigcup_{1 \le i < j < g} \mathcal{I}(\Sigma_g, R_{ijg})$. We conclude that $\mathcal{I}(\Sigma_g, S_g) \subset \Gamma$, as desired.

References

- [1] JS Birman, On Siegel's modular group, Math. Ann. 191 (1971) 59–68 MR0280606
- [2] T Brendle, B Farb, personal communication
- KS Brown, Presentations for groups acting on simply-connected complexes, J. Pure Appl. Algebra 32 (1984) 1–10 MR739633
- [4] B Farb, Some problems on mapping class groups and moduli space, from: "Problems on mapping class groups and related topics", Proc. Sympos. Pure Math. 74, Amer. Math. Soc., Providence, RI (2006) 11–55 MR2264130
- [5] B Farb, D Margalit, A Primer on Mapping Class Groups, to be published by Princeton University Press
- [6] **R** Hain, *Fundamental groups of branched coverings and the Torelli group in genus 3*, in preparation

- [7] A Hatcher, W Thurston, A presentation for the mapping class group of a closed orientable surface, Topology 19 (1980) 221–237 MR579573
- [8] D Johnson, Conjugacy relations in subgroups of the mapping class group and a group-theoretic description of the Rochlin invariant, Math. Ann. 249 (1980) 243–263 MR579104
- [9] D Johnson, The structure of the Torelli group. I. A finite set of generators for I, Ann. of Math. (2) 118 (1983) 423–442 MR727699
- [10] D Johnson, A survey of the Torelli group, from: "Low-dimensional topology (San Francisco, Calif., 1981)", Contemp. Math. 20, Amer. Math. Soc., Providence, RI (1983) 165–179 MR718141
- [11] **D Johnson**, *The structure of the Torelli group. III. The abelianization of* \mathcal{T} , Topology 24 (1985) 127–144 MR793179
- [12] D Margalit, A Hatcher, Generating the Torelli group, in preparation
- [13] D McCullough, A Miller, *The genus 2 Torelli group is not finitely generated*, Topology Appl. 22 (1986) 43–49 MR831180
- [14] G Mess, The Torelli groups for genus 2 and 3 surfaces, Topology 31 (1992) 775–790 MR1191379
- [15] J Powell, Two theorems on the mapping class group of a surface, Proc. Amer. Math. Soc. 68 (1978) 347–350 MR0494115
- [16] A Putman, Cutting and pasting in the Torelli group, Geom. Topol. 11 (2007) 829–865 MR2302503
- [17] A Putman, A note on the connectivity of certain complexes associated to surfaces, Enseign. Math. (2) 54 (2008) 287–301 MR2478089
- [18] A Putman, An infinite presentation of the Torelli group, Geom. Funct. Anal. 19 (2009) 591–643 MR2545251
- [19] J-P Serre, Trees, Springer, Berlin (1980) MR607504 Translated from the French by John Stillwell
- [20] **W Tomaszewski**, *A basis of Bachmuth type in the commutator subgroup of a free group*, Canad. Math. Bull. 46 (2003) 299–303 MR1981684

Department of Mathematics, Rice University, MS 136, 6100 Main St Houston, TX 77005, USA

andyp@rice.edu

http://www.math.rice.edu/~andyp/

Proposed: Joan Birman Seconded: Danny Calegari, Ronald Stern Received: 24 June 2011 Revised: 11 August 2011