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Small generating sets for the Torelli group

ANDREW PUTMAN

Proving a conjecture of Dennis Johnson, we show that the Torelli subgroup Ig of the
genus g mapping class group has a finite generating set whose size grows cubically
with respect to g . Our main tool is a new space called the handle graph on which Ig

acts cocompactly.

20F05; 20F38, 57M07, 57N05

1 Introduction

Let †g;n be a compact connected oriented genus g surface with n boundary compo-
nents. The mapping class group of †g;n , denoted Modg;n , is the group of orientation-
preserving homeomorphisms of †g;n that fix the boundary pointwise modulo isotopies
that fix the boundary pointwise. We will often omit the n if it vanishes. For n � 1,
the Torelli group, denoted Ig;n , is the kernel of the action of Modg;n on H1.†g;nIZ/.
The Torelli group has been the object of intensive study ever since the seminal work of
Dennis Johnson in the early ’80’s. See [10] for a survey of Johnson’s work.

Finite generation of Torelli One of Johnson’s most celebrated theorems says that
Ig;n is finitely generated for g � 3 and n � 1 (see [9]). This is a surprising result –
though Modg;n is finitely presentable, Ig;n is an infinite-index normal subgroup of
Modg;n , so there is no reason to hope that Ig;n has any finiteness properties. Moreover,
McCullough and Miller [13] proved that I2;n is not finitely generated for n� 1, and
later Mess [14] proved that I2 is an infinite rank free group.

Johnson’s generating set Johnson’s generating set for Ig;n when g � 3 and n� 1

is enormous. Indeed, for Ig (resp. Ig;1 ), it contains 9 � 22g�3� 4g2C 2g� 6 (resp.
9 � 22g�3 � 4g2C 4g� 5) elements. In [11], Johnson proved that the abelianization
of Ig (resp. Ig;1 ) has rank 1

3
.4g3C 5gC 3/ (resp. 1

3
.4g3 � g/). These give large

lower bounds on the size of generating sets for Ig;n ; however, there is a huge gap
between this cubic lower bound and Johnson’s exponentially growing generating set.
At the end of [9] and in [10, page 168], Johnson conjectures that there should be a
generating set for Ig;n whose size grows cubically with respect to the genus. Later, in

Published: 2 January 2012 DOI: 10.2140/gt.2012.16.111

http://www.ams.org/mathscinet/search/mscdoc.html?code=20F05,(20F38, 57M07, 57N05)
http://dx.doi.org/10.2140/gt.2012.16.111
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[4, Problem 5.7] Farb asked whether there at least exists a generating set whose size
grows polynomially.

Main theorem In this paper, we prove Johnson’s conjecture. Our main theorem is as
follows.

Theorem A For g � 3, the group Ig has a generating set of size at most 57
�
g
3

�
and

the group Ig;1 has a generating set of size at most 57
�
g
3

�
C 2gC 1.
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Figure 1: (a) The subsurfaces R0i Š†1;1 To avoid cluttering the picture,
the portion of the boundaries of the R0i which lie on the back side the figure
are not drawn. (b) A subsurface isotopic to R136

The generating set we construct was conjectured to generate Ig;n by Brendle and Farb
[2]. To describe it, we must introduce some notation. As in Figure 1(a), let R0

1
; : : : ;R0g

be g subsurfaces of †g each homeomorphic to †1;1 such that the following hold.
Interpret all indices modulo g .

� If 1� i < j � g satisfy i 62 fj � 1; j C 1g, then R0i \R0j D∅.

� For all 1� i � g , the intersection R0i \R0
iC1

is homeomorphic to an interval.

For 1� i < j < k � g , define a subsurface Rijk of †g by Rijk D†g n
S

l¤i;j ;k R0
l
.

Thus Rijk is a genus 3 surface with at most 3 boundary components such that
R0i ;R

0
j ;R

0
k
�Ri;j ;k (see Figure 1(b)).

If S is a subsurface of †g , define Mod.†g;S/ to be the subgroup of Modg consisting
of mapping classes that can be realized by homeomorphisms supported on S and
I.†g;S/ to equal Ig \Mod.†g;S/. The key result for the proof of Theorem A is
the following theorem.
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Small generating sets for the Torelli group 113

Theorem B For g � 3, the group Ig is generated by the set[
1�i<j<k�g

I.†g;Rijk/:

Using Johnson’s work, it is easy to see that I.†g;Rijk/ is finitely generated by a
generating set with at most 57 generators (see Lemma 2.2). Also, standard techniques
(see Lemma 2.1) show that if Ig has a generating set with k elements, then Ig;1 has
a generating set with k C 2gC 1 elements. Since there are

�
g
3

�
subsurfaces Rijk ,

Theorem A follows from Theorem B.

Remark To illustrate the relative sizes of our generating sets, Johnson’s generating
set for I20 contains more than one trillion elements while our generating set for I20

has 64980 elements.

New proof of Johnson’s theorem Our deduction of Theorem A from Theorem B
depends on Johnson’s theorem that I3 is finitely generated. However, Hain [6] has
recently announced a direct conceptual proof that I3 is finitely generated. Hain’s proof
uses special properties of the moduli space of genus 3 Riemann surfaces and cannot
be easily generalized to g > 3. Combining this with our paper, we obtain a new proof
that Ig;n is finitely generated for g � 3 and n� 1.

Our new proof is more conceptual than Johnson’s original one. To illustrate this, we
will sketch Johnson’s proof. He starts by writing down an enormous finite subset
S � Ig;n which is known (from work of Powell [15]) to normally generate Ig;n as a
subgroup of Modg;n . Letting T be a standard generating set for Modg;n , Johnson then
proves via a laborious computation that for t 2 T and s 2 S , the element tst�1 2 Ig;n

can be written as a word in S . This implies that the subgroup � of Ig;n generated by
S is a normal subgroup of Modg;n , and thus that � D Ig;n .

Remark Our proof of Theorem B appeals to a theorem of [17] whose proof depends
on Johnson’s theorem. However, Hatcher and Margalit [12] have recently given a new
proof of this result that is independent of Johnson’s work.

Nature of generators Some basic elements of Ig;n are as follows (see, eg [16]). If
x is a simple closed curve on †g;n , then denote by Tx 2 Modg;n the Dehn twist
about x . If x is a separating simple closed curve, then Tx 2 Ig;n ; these are called
separating twists. If x and y are disjoint homologous nonseparating simple closed
curves, then TxT �1

y 2 Ig;n ; these are called bounding pair maps. Following work
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of Birman [1], Powell [15] proved that Ig;n is generated by bounding pair maps and
separating twists for g� 1 and n� 1 (see [16] and [12] for alternate proofs). Johnson’s
finite generating set for Ig;n for g � 3 and n� 1 consists entirely of bounding pair
maps. It follows easily from our proofs of Lemma 2.1 and 2.2 that our generating set
consists of bounding pair maps and separating twists; see the remark after Lemma 2.2.

The handle graph Our proof of Theorem B is topological. To prove that a group
G is finitely generated, it is enough to find a connected simplicial complex upon
which G acts cocompactly with finitely generated stabilizers. We use a variant on
the curve complex. If 
 is an oriented simple closed curve on †g , then denote by
Œ
 � 2 H1.†gIZ/ its homology class. Also, if 
1 and 
2 are isotopy classes of simple
closed curves on †g , then denote by ig.
1; 
2/ their geometric intersection number,
ie the minimal possible number of intersections between two curves in the isotopy
classes of 
1 and 
2 . Finally, denote by ia.�; �/ the algebraic intersection pairing on
H1.†gIZ/.

Definition Let a; b 2 H1.†gIZ/ satisfy ia.a; b/D 1. The handle graph associated
to a and b , denoted Ha;b , is the graph whose vertices are isotopy classes of oriented
simple closed curves on †g that are homologous to either a or b and where two
vertices 
1 and 
2 are joined by an edge exactly when ig.
1; 
2/D 1.

We will show that Ha;b=Ig consists of a single edge (see Lemma 5.2) and that Ha;b

is connected for g � 3 (see Lemma 3.1).

A complication It would appear that we have all the ingredients in place to use the
space Ha;b to prove that Ig is finitely generated. However, there is one remaining
complication. Namely, we do not know the answer to the following question.

Question 1.1 For some g � 4, let 
 be the isotopy class of a nonseparating simple
closed curve on †g . Is the stabilizer subgroup .Ig/
 of 
 finitely generated?

In other words, we do not know if the vertex stabilizer subgroups of the action of
Ig on Ha;b are finitely generated. Nonetheless, in Section 4 we will prove a weaker
statement that suffices to prove Theorem B. The proof of Theorem B is in Section 5.

Smaller generating sets A positive answer to Question 1.1 would likely lead to a
smaller generating set for Ig , though of course this depends on the nature of the finite
generating sets for the stabilizer subgroups. Let us describe one way this could work.
For g � 3, let �g be the smallest cardinality of a generating set for Ig . Consider
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Small generating sets for the Torelli group 115

g � 4, and fix an edge f˛; ˇg of Ha;b . The proof of Theorem B shows that Ig is
generated by .Ig/˛ [ .Ig/ˇ . Let S be a subsurface of †g such that S Š†g�1;1 and
˛[ˇ �†g nS . We have I.†g;S/Š Ig�1;1 (see Section 2) and I.†g;S/� .Ig/˛
and I.†g;S/� .Ig/ˇ . Assume that there exists a finite set V˛ (resp. Vˇ ) such that
.Ig/˛ (resp. .Ig/ˇ ) is generated by I.†g;S/[V˛ (resp. I.†g;S/[Vˇ ). The group
Ig is then generated by I.†g;S/[V˛[Vˇ . Lemma 2.1 says that I.†g;S/Š Ig�1;1

can be generated by �g�1C 2gC 1 elements. Moreover, it seems likely that there
exists some relatively small K such that jV˛j; jVˇj �Kg2 . This would imply that

�g � �g�1C 2gC 1C 2Kg2:

Iterating this, we would get that

�g � �3C

gX
iD4

.2i C 1C 2Ki2/

for g � 4. This bound is cubic in g (as it needs to be), but as long as K is not too
large it is much smaller than 57

�
g
3

�
.

Finite presentability Perhaps the most important open question about the combinato-
rial group theory of Ig is whether or not it is finitely presentable for g � 3. One way
of proving that a group G is finitely presentable is to construct a simply-connected
simplicial complex X upon which G acts cocompactly with finitely presentable stabi-
lizer subgroups (see, eg [3]). For example, Hatcher and Thurston use this technique in
[7] to prove that the mapping class group is finitely presentable.

The handle graph Ha;b appears to be the first example of a useful space upon which
Ig acts cocompactly (of course, there are trivial non-useful examples of such spaces;
for example, the Cayley graph of Ig or a 1–point space). Unfortunately, while Ha;b

is connected for g � 3, it is not simply connected. Indeed, it does not even have any
2–cells (and is not a tree). However, one could probably attach 2–cells to Ha;b to
obtain a simply connected complex upon which Ig acts cocompactly. This would
not be enough, however – one would also have to prove that the simplex stabilizer
subgroups were finitely presentable. In other words, this complex would provide the
inductive step in a proof that Ig was finitely presentable, but one would still need a
base case.

A complex that does not work We close this introduction by discussing an approach
to Theorem B that does not work. One might think of trying to prove Theorem B
using the following complex. Let a 2 H1.†gIZ/ be a primitive vector. Define Ca to
be the graph whose vertices are isotopy classes of oriented simple closed curves 

on †g such that Œ
 �D a and where two vertices 
 and 
 0 are joined by an edge if
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ig.
; 

0/D 0. It is known ([17, Theorem 1.9]; see [12] for an alternate proof) that Ca

is connected for g � 3. Moreover, Ig acts transitively on the vertices of Ca . However,
it does not act cocompactly; indeed, there are infinitely many edge orbits. To see this,
consider edges e1 D f
1; 


0
1
g and e2 D f
2; 


0
2
g of Ca . Assume that there exists some

f 2 Ig such that f .e1/D e2 . Since 
1 is homologous to 
 0
1

, the multicurve 
1[ 

0
1

divides †g into two subsurfaces S1 and S 0
1

. Similarly, 
2[ 

0
2

divides †g into two
subsurfaces S2 and S 0

2
. Relabeling if necessary, we have f .S1/ isotopic to S2 and

f .S 0
1
/ isotopic to S 0

2
. Since f 2 Ig , the images of H1.S1IZ/ and H1.S2IZ/ in

H1.†gIZ/ must be the same, and similarly for H1.S
0
1
IZ/ and H1.S

0
2
IZ/. It is easy

to see that infinitely many such images occur for different edges of Ca , so there must
be infinitely many edges orbits. We remark that Johnson proved in [8, Corollary to
Lemma 9 on page 250] that the images of H1.S1IZ/ and H1.S

0
1
IZ/ in H1.†gIZ/

are a complete invariant for the edge orbits.
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2 The Torelli group on subsurfaces

We will need to understand how the Torelli group restricts to subsurfaces. For a general
discussion of this, see [16]. In this section, we will extract from [16] results on two
kinds of subsurfaces. In Section 2.1, we will show how to analyze subsurfaces like
the subsurfaces Rijk from Section 1. In Section 2.2, we will show how to analyze
stabilizers of nonseparating simple closed curves (which are supported on the subsurface
obtained by taking the complement of a regular neighborhood of the curve).

2.1 Analyzing the subsurfaces Rijk

We begin by defining groups Ig;n for n� 2. There is a map Modg;n!Modg induced
by gluing discs to the boundary components of †g;n and extending homeomorphisms
by the identity. Define Ig;n to be the kernel of the resulting action of Modg;n on
H1.†gIZ/. For the case nD1, the map H1.†g;1IZ/!H1.†gIZ/ is an isomorphism,
so this agrees with our previous definition of Ig;1 .

Remark In [16], the different definitions of the Torelli group on a surface with
boundary are parametrized by partitions of the boundary components. The above
definition of Ig;n corresponds to the discrete partition ffˇ1g; : : : ; fˇngg of the set
fˇ1; : : : ; ˇng of boundary components of †g;n .
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In [16, Theorem 1.2], a version of the Birman exact sequence is proven for the Torelli
group. For Ig;n with g � 2, it takes the form

(1) 1 �! �1.U†g;n/ �! Ig;nC1 �! Ig;n �! 1:

Here U†g;n is the unit tangent bundle of †g;n . The subgroup �1.U†g;n/ of Ig;nC1

is often called the “disc-pushing subgroup” – the mapping class associated to 
 2
�1.U†g;n/ “pushes” a fixed boundary component around 
 while allowing it to rotate.
The following is an immediate consequence of (1) and the fact that �1.U†g/ can be
generated by 2gC 1 elements.

Lemma 2.1 Ig;1 can be generated by kC2gC1 elements if Ig can be generated by
k elements.

Now assume that S Š†h;n is an embedded subsurface of †g and that all the boundary
components of S are non-nullhomotopic separating curves in †g . For example, S

could be one of the surfaces Rijk from Section 1. Letting Mod.S/ be the mapping
class group of S , the induced map Mod.S/ ! Modg is an injection. This gives
a natural identification of Mod.S/ with Mod.†g;S/. The group I.†g;S/ is thus
naturally a subgroup of Mod.S/ Š Modh;n , and in [16, Theorem 1.1] it is proven
that I.†g;S/D Ih;n . Johnson [9] proved that I3 can be generated by 35 elements.
Applying (1) repeatedly, we see that I3;1 can be generated by 42 elements, I3;2 by
49 elements, and I3;3 by 57 elements. Since Rijk Š†3;k with k � 3, we obtain the
following.

Lemma 2.2 For all 1� i < j < k � g , the group I.†g;Rijk/ can be generated by
57 elements.

Remark It is well-known (see, eg [16, Section 2.1]) that the mapping classes cor-
responding to the generators of �1.U†g;n/ used to prove Lemmas 2.1 and 2.2 can
be chosen to be bounding pair maps and separating twists. Additionally, Johnson’s
minimal-size generating set for I3 consists entirely of bounding pair maps, so the
generating set for I.†g;Rijk/ in Lemma 2.2 can be taken to consist of bounding pair
maps and separating twists.

2.2 Stabilizers of nonseparating simple closed curves

Let 
 be a nonseparating simple closed curve on †g . Define †g;
 to be the result of
cutting †g along 
 , so †g;
 Š†g�1;2 . Letting Modg;
 be the mapping class group
of †g;
 , the natural map †g;
 ! †g induces a map i W Modg;
 ! Modg . Define
Ig;
 D i�1.Ig/. The map i restricts to a surjection Ig;
 ! .Ig/
 , where .Ig/
 is
the stabilizer subgroup of 
 .
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Remark In the notation of [16], the group Ig;
 corresponds to the Torelli group of
†g�1;2 with respect to the “indiscrete partition” ffˇ; ˇ0gg of the boundary components
ˇ and ˇ0 of †g;
 . Also, the kernel of the map Ig;
 ! .Ig/
 is isomorphic to Z
and is generated by TˇT �1

ˇ0 , where Tˇ and Tˇ0 are the Dehn twists about ˇ and ˇ0 ,
respectively.

ˇ

ˇ0

†g�1;1

(a) (b) (c)
Figure 2: (a) The surface †g;
 and the subsurface †g�1;1 of †g;
 such
that the induced map Ig�1;1!Ig;
 splits the exact sequence (2) (b) The
basepoint for �1.†g�1;1/ is obtained from †g;
 by collapsing the boundary
component ˇ to a point. (c) The surface in b deformation retracts to
†g�1;1 such that the basepoint ends up on the boundary component.

In [16, Theorem 1.2], it is proven that for g � 2 there is a short exact sequence

(2) 1 �!Kg;
 �! Ig;
 �! Ig�1;1 �! 1:

Here Kg;
 Š Œ�1.†g�1;1/; �1.†g�1;1/�. This exact sequence splits via the inclusion
Ig�1;1 ,! Ig;
 induced by the inclusion †g�1;1 ,!†g;
 indicated in Figure 2(a). In
other words, the following holds.

Lemma 2.3 Ig;
 DKg;
 Ë Ig�1;1 for g � 3 and 
 a simple closed nonseparating
curve on †g .

The group Ig�1;1 acts on Kg;
 < �1.†g�1;1/ as follows. As is clear from [16,
Theorem 1.2], the basepoint for �1.†g�1;1/ is as indicated in Figure 2(b). As shown in
Figure 2(c), the surface †g�1;1 deformation retracts onto the surface †g�1;1 on which
Ig�1;1 is supported. After this deformation retract, the basepoint ends up on @†g�1;1 .
Summing up, Ig�1;1 acts on Kg;
 < �1.†g�1;1/ via the action of Modg�1;1 on
�1.†g�1;1/, where the basepoint for �1.†g�1;1/ is on @†g�1;1 .

3 The handle graph is connected

In this section, we prove the following.

Lemma 3.1 Fix g � 3. Let a; b 2 H1.†gIZ/ satisfy ia.a; b/ D 1. Then Ha;b is
connected.
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We will need two lemmas. In the first, if � is an oriented arc in a surface, then ��1

denotes the arc obtained by reversing the orientation of � .

Lemma 3.2 Let the boundary components of †g;2 be ı0 and ı1 . Choose points
vi 2 ıi for i D 0; 1 and let � be an oriented properly embedded arc in †g;2 whose
initial point is v0 and whose terminal point is v1 . Then for any h 2 H1.†g;2IZ/,
there exists an oriented properly embedded arc �0 in †g;2 whose initial point is v0 and
whose terminal point is v1 such that the homology class of the loop �0 � ��1 is h.

Proof Gluing .ı0; v0/ to .ı1; v1/, we obtain a surface S Š†gC1 . Let ˛ and � be the
images of ı0 and v0 in S , respectively. The image of � in S is an oriented simple closed
curve ˇ with ig.˛; ˇ/D 1. There is a natural isomorphism H1.†g;2IZ/Š Œ˛�

? , where
the orthogonal complement is taken with respect to ia.�; �/. Under this identification,
we can apply [16, Lemma A.3] to find an oriented simple closed curve ˇ0 on S such
that Œˇ0�D Œˇ�C h and such that ˛\ˇ0 D f�g. Cutting S open along ˛ , the curve ˇ0

becomes the desired arc �0 .

Lemma 3.3 Let a; b 2 H1.†gIZ/ satisfy ia.a; b/ D 1. Let ˛1 and ˛2 be disjoint
oriented simple closed curves on †g such that Œ˛i �D a for i D 1; 2. There then exists
some oriented simple closed curve ˇ on †g such that Œˇ�D b and ig.˛i ; ˇ/D 1 for
i D 1; 2.

Proof Let ˇ0 be any simple closed curve on †g such that i.˛i ; ˇ
0/D 1 for i D 1; 2.

Orient ˇ0 so that its intersections with ˛1 and ˛2 are positive. Let X1 and X2 be
the two subsurfaces of †g that result from cutting †g along ˛1 [ ˛2 . For i D 1; 2,
the surface Xi has 2 boundary components and the intersection of ˇ0 with Xi is
an oriented properly embedded arc �i running between these boundary components.
Also, the induced map H1.Xi IZ/! H1.†gIZ/ is an injection, and we will identify
H1.Xi IZ/ with its image in H1.†gIZ/. The orthogonal complement to a with
respect to the algebraic intersection pairing is spanned by H1.X1IZ/[H1.X2IZ/.
Since ia.a; b/D ia.a; Œˇ

0�/, the homology class b� Œˇ0� is orthogonal to a. There thus
exist hi 2 H1.Xi IZ/ for i D 1; 2 such that b D Œˇ0�C h1C h2 . Lemma 3.2 says that
for i D 1; 2 there exists an oriented properly embedded arc �0i in Xi with the same
endpoints as �i such that the homology class of the loop �0i � �

�1
i equals hi . Letting ˇ

be the loop �0
1
� �0

2
, it follows that Œˇ�D Œˇ0�C h1C h2 D b , as desired.

Proof of Lemma 3.1 Let ı and ı0 be vertices of Ha;b . We will construct a path in
Ha;b from ı to ı0 . Without loss of generality, Œı�D Œı0�D a. By [17, Theorem 1.9]
(see [12] for an alternate proof), we can find a sequence

ı D ˛1; ˛2; : : : ; ˛n D ı
0
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of isotopy classes of oriented simple closed curves on †g such that Œ˛i � D a for
1 � i � n and ig.˛i ; ˛iC1/ D 0 for 1 � i < n (this is where we use the condition
g � 3). Lemma 3.3 implies that there exist isotopy classes ˇ1; : : : ; ˇn�1 of oriented
simple closed curves on †g such that Œˇi �D b and ig.˛i ; ˇi/D ig.˛iC1; ˇi/D 1 for
1� i < n. Since ˇi is adjacent to both ˛i and ˛iC1 in Ha;b , the desired path from ı

to ı0 is thus
ı D ˛1; ˇ1; ˛2; ˇ2; : : : ; ˇn�1; ˛n D ı

0:

4 Generating the stabilizer of a nonseparating simple closed
curve

Let the subsurfaces R0i of †g be as in the introduction. Define Si D †g nR0i . The
goal of this section is to prove the following lemma.

Lemma 4.1 Assume that g � 4. Let 
 be the isotopy class of a simple closed
nonseparating curve on †g that is contained in R0

1
. Then the subgroup .Ig/
 of Ig

stabilizing 
 is contained in the subgroup of Ig generated by [g
iD1

I.†g;Si/.

Before proving this, we need a technical lemma. Set �D�1.†g;1;�/, where �2@†g;1 .
Let T 0

1
; : : : ;T 0g be disjoint subsurfaces of †g;1 such that T 0i Š†1;1 and T 0i\@†g;1D∅

for 1 � i � g (see Figure 3(a)). Define Ti D †g;1 nT 0i . We have Ti Š †g�1;2

and � 2 Ti for 1 � i � g . The maps �1.Ti ;�/! �1.†g;1;�/ and H1.T
0
i IZ/!

H1.†g;1IZ/ are injective; we will identify �1.Ti ;�/ and H1.T
0
i IZ/ with their images

in �1.†g;1;�/ and H1.†gIZ/, respectively. Define Ki D Œ�; ��\�1.Ti ;�/. We then
have the following.

Lemma 4.2 For g � 3, the group Œ�; �� is generated by the Ig;1 –orbits of the set
[

g
iD1

Ki .

The proof of this will have two ingredients. The first is the following theorem of
Tomaszewski. As notation, if G is a group and a; b 2G , then Œa; b� WD a�1b�1ab and
ab WD b�1ab .

Theorem 4.3 (Tomaszewski, [20]) Let Fn be the free group on fx1; : : : ;xng. Then
the set

f Œxi ;xj �
x

ki
i

x
kiC1
iC1

���x
kn
n j 1� i < j � n and km 2 Z for all i �m� ng

is a free basis for ŒFn;Fn�.
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T 0
1

T 0
2

T 0
3

(a)

˛1

˛2 ˛3

ˇ1 ˇ2 ˇ3

ı

(b)

X

�

˛0
2

˛0
3

ˇ0
2

ˇ0
3

(c)

X

�
˛0

1

˛0
2

ˇ0
1

ˇ0
2

(d)

Figure 3: (a) The subsurfaces T 0i (b) The standard basis for �
(c) The surface X when i D 1 (d) The surface X when i D g

The second is the following lemma about the action of Ig;1 on � . Choose a standard
basis f˛1; ˇ1; : : : ; ˛g; ˇgg for � (as in Figure 3(b)) such that ˛i and ˇi are freely
homotopic into T 0i for 1 � i � g . Our proof of Lemma 4.2 would be much simpler
if the image of Modg;1 in Aut.�/ contained the inner automorphisms – since inner
automorphisms act trivially on homology, this would imply that the Ig –orbits of
f Œx;y� j x;y 2 f˛1; ˇ1; : : : ; ˛g; ˇggg generate Œ�; ��. However, the image of Modg;1

in Aut.�/ does not contain the inner automorphisms since Modg;1 fixes the loop
ı D Œ˛1; ˇ1� � � � Œ˛g; ˇg� depicted in Figure 3(b). The following lemma is a weak
replacement for this.

Lemma 4.4 Let i be either 1 or g . Consider h 2 H1.T
0
i IZ/. There then exists

some w 2 h˛i ; ˇi ; ıi and f 2 Ig;1 such that Œw�D h and such that f .aj /D awj and
f .bj /D bwj for 1� j � g with j ¤ i .

Proof Let X be a regular neighborhood of the curves ˛i [ˇi [ @†g;1 depicted in
Figure 3(b). Thus X Š†1;2 , the surface T 0i is homotopic into X , and the image of
�1.X;�/ in � is h˛i ; ˇi ; ıi. Let Y D †g;1 nX , so Y Š †g�1;1 and X \ Y Š S1 .
The key property of X is as follows (this is where we use the assumption that i is
either 1 or g ). There exists some �0 2X \Y , a properly embedded arc � in X from
� to �0 , and elements

f˛0j ; ˇ
0
j j 1� j � g , j ¤ i g � �1.Y;�

0/

such that j̨ D � � ˛0j � �
�1 and ǰ D � � ˇ0j � �

�1 for 1 � j � g with j ¤ i . See
Figure 3(c) for the case i D 1 and Figure 3(d) for the case i D g .
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By Lemma 3.2, there exists an oriented properly embedded arc �0 in X whose endpoints
are the same as those of � such that the homology class of w WD � � .�0/�1 2 � in
H1.†gIZ/ is h. Observe that w 2 h˛i ; ˇi ; ıi. Also,

�0 �˛0j � .�
0/�1
D w�1

� � �˛0j � �
�1
�w D ˛wj

for j ¤ i , and similarly for ǰ . It is thus enough find some f 2 I.†g;X / such that
f .�/D �0 .

The “change of coordinates principle” from [5, Section 1.3] implies that there exists
some f 0 2Mod.†g;X / such that f 0.�/D �0 . Briefly, an Euler characteristic calcula-
tion shows that cutting X open along either � or �0 results in a surface homeomorphic
to †1;1 . Choosing an orientation-preserving homeomorphism between these two cut-
open surfaces and gluing the boundary components back together in an appropriate
way, we obtain some f 0 2Mod.†g;X / such that f 0.�/D �0 . See [5, Section 1.3] for
more details and many other examples of arguments of this form.

The mapping class f 0 need not lie in Torelli; however, it satisfies f 0.Œ j̨ �/ D Œ j̨ �

and f 0.Œ ǰ �/ D Œ ǰ � for j ¤ i and f 0.H1.T
0
i IZ// D H1.T

0
i IZ/. Since the image

of Mod.T 0i / in Aut.H1.T
0
i IZ// D Aut.Z2/ is SL2.Z/, we can choose some f 00 2

Mod.†g;T
0
i / such that f 0.Œ˛i �/D f

00.Œ˛i �/ and f 0.Œˇi �/D f
00.Œˇi �/. It follows that

f WD f 0 � .f 00/�1 lies in I.†g;X / and satisfies f .�/D �0 , as desired.

Proof of Lemma 4.2 The generating set for ŒFn;Fn� in Theorem 4.3 depends on
an ordering of the generators for Fn . It seems hard to prove the lemma using the
generating set corresponding to the standard ordering

.x1;x2; : : : ;x2g/D .˛1; ˇ1; : : : ; ˛g; ˇg/

of the generators for � Š F2g . However, consider the following nonstandard ordering
on the generators for � :

.x1;x2; : : : ;x2g/D .˛2; ˇ2; ˛1; ˇ1; ˛3; ˇ3; ˛4; ˇ4; : : : ; ˛g; ˇg/:

Let S be the generating set for Œ�; �� given by Theorem 4.3 using this ordering of the
generators. All the elements of S lie in K2 except for

(3) Œ˛2; ��
˛

n2
2
ˇ

m2
2
˛

n1
1
ˇ

m1
1
˛

n3
3
���ˇ

mg
g and Œˇ2; �

0�ˇ
m2
2
˛

n1
1
ˇ

m1
1
˛

n3
3
���ˇ

mg
g I

here �2fˇ2; ˛1; ˇ1; ˛3; : : : ; ˇgg and �02f˛1; ˇ1; ˛3; : : : ; ˇgg and ni ;mi 2Z. Letting
T � S be the elements in (3), we must show that every t 2 T can be expressed as a
product of elements in the Ig;1 –orbit of the set [g

iD1
Ki . Consider t 2 T , so either

t D Œ˛2; ��
˛

n2
2
ˇ

m2
2
˛

n1
1
ˇ

m1
1
˛

n3
3
���ˇ

mg
g or t D Œˇ2; ��

ˇ
m2
2
˛

n1
1
ˇ

m1
1
˛

n3
3
���ˇ

mg
g . There are two

cases.
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Case 1 � 62 f˛1; ˇ1g.

We will do the case where t D Œ˛2; ��
˛

n2
2
ˇ

m2
2
˛

n1
1
ˇ

m1
1
˛

n3
3
���ˇ

mg
g ; the other case is treated in

a similar way. Set t 0D Œ˛2; ��
˛

n2
2
ˇ

m2
2
˛

n3
3
���ˇ

mg
g , so t 0 2K1 . By Lemma 4.4, there exists

some w2f˛1; ˇ1; ıg and f 2Ig;1 such that Œw�D Œ˛n1

1
ˇ

m1

1
� and such that f .aj /Dawj

and f .bj /D bwj for j > 1. This implies that f .t 0/D Œ˛2; ��
˛

n2
2
ˇ

m2
2
˛

n3
3
���ˇ

mg
g w . Now,

˛
n3

3
� � �ˇ

mg

g w and ˛n1

1
ˇ

m1

1
˛

n3

3
� � �ˇ

mg

g are homologous, so there exists some � 2 Œ�; ��
such that ˛n3

3
� � �ˇ

mg

g w� D ˛
n1

1
ˇ

m1

1
˛

n3

3
� � �ˇ

mg

g . Moreover, since w 2 ha1; b1; ıi we
have � 2K2 . Observe now that

��1
�f .t 0/ � � D Œ˛2; ��

˛
n2
2
ˇ

m2
2
˛

n3
3
���ˇ

mg
g w�

D Œ˛2; ��
˛

n2
2
ˇ

m2
2
˛

n1
1
ˇ

m1
1
˛

n3
3
���ˇ

mg
g D t:

We have thus found the desired expression for t .

Case 2 �0 2 f˛1; ˇ1g.

This case is similar to Case 1. The only difference is that the ˛ng

g ˇ
mg

g term of t is
deleted to form t 0 instead of the ˛n1

1
ˇ

m1

1
term.

Proof of Lemma 4.1 Let I be the subgroup of Ig generated by [g
iD1

I.†g;Si/.
Using the notation of Section 2, there is a surjection �W Ig;
 ! .Ig/
 induced by a
continuous map �W †g;
!†g . Define X D��1.S1/, so X Š†g�1;1 . Letting I.X /
be the Torelli group of X , Lemma 2.3 gives a decomposition Ig;
 DKg;
 Ë I.X /.
Clearly �.I.X //D I.†g;S1/� I . Also, Lemma 4.2 implies that Kg;
 is generated
by the I.X /–conjugates of a set S � Kg;
 such that �.S/ � I . We conclude that
�.Ig;
 /� I , as desired.

5 Proof of main theorem

We finally prove our main theorem. The key is the following standard lemma, whose
proof is similar to that given in [19, (1) of Appendix to Section 3] and is thus omitted.

Lemma 5.1 Consider a group G acting without inversions on a connected graph X .
Assume that X=G consists of a single edge e . Let e be a lift of e to X and let v and
v0 be the endpoints of e . Then G is generated by Gv [Gv0 .

To apply this, we will need the following lemma.

Lemma 5.2 Let a; b 2H1.†gIZ/ satisfy ia.a; b/D 1. Then Ha;b=Ig is isomorphic
to a graph with a single edge.
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The proof is similar to the proofs of [16, Lemma 6.2] and [18, Lemma 6.9], and is thus
omitted.

Proof of Theorem B Let R0
1
; : : : ;R0g and Rijk be the subsurfaces of †g from the

introduction. Let � be the subgroup of Ig generated by
S

1�i<j<k�g I.†g;Rijk/.
Our goal is to prove that � D Ig .

The proof will be by induction on g . The base case g D 3 is trivial, so assume that
g � 4 and that the theorem is true for all smaller g such that g � 3. Choose simple
closed curves ˛ and ˇ in R0

1
such that ig.˛; ˇ/ D 1. Observe that R0

1
is a closed

regular neighborhood of ˛ [ ˇ . Set a D Œ˛� and b D Œˇ�. Clearly Ig acts on Ha;b

without inversions. Lemmas 3.1 and 5.2 show that the action of Ig on Ha;b satisfies
the other conditions of Lemma 5.1. We deduce that Ig is generated by the union
.Ig/˛ [ .Ig/ˇ of the stabilizer subgroups of ˛ and ˇ .

Recall that Si D †g nR0i for 1 � i � g . By Lemma 4.1, both .Ig/˛ and .Ig/ˇ
are contained in the subgroup generated by [g

iD1
I.†g;Si/. We must prove that

I.†g;Si/� � for 1� i � g . We will do the case i D g ; the other cases are similar.
We have a Birman exact sequence

1 �! �1.U†g�1/ �! I.†g;Sg/ �! Ig�1 �! 1:

By induction, the subset
S

1�i<j<k�g�1 I.†g;Rijk/ of I.†g;Sg/ projects to a
generating set for Ig�1 . Also, it is clear that the disc-pushing subgroup �1.U†g�1/ of
I.†g;Sg/ is generated by elements that lie in

S
1�i<j<g I.†g;Rijg/. We conclude

that I.†g;Sg/� � , as desired.
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