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Some remarks on the size of tubular neighborhoods in
contact topology and fillability

KLAUS NIEDERKRÜGER

FRANCISCO PRESAS

The well-known tubular neighborhood theorem for contact submanifolds states that
a small enough neighborhood of such a submanifold N is uniquely determined by
the contact structure on N , and the conformal symplectic structure of the normal
bundle. In particular, if the submanifold N has trivial normal bundle then its tubular
neighborhood will be contactomorphic to a neighborhood of N � f0g in the model
space N �R2k .

In this article we make the observation that if .N; �N / is a 3–dimensional overtwisted
submanifold with trivial normal bundle in .M; �/ , and if its model neighborhood is
sufficiently large, then .M; �/ does not admit a symplectically aspherical filling.

57R17; 53D35

In symplectic geometry, many invariants are known that measure in some way the
“size” of a symplectic manifold. The most obvious one is the total volume, but this is
usually discarded, because one can change the volume (in case it is finite) by rescaling
the symplectic form without changing any other fundamental property of the manifold.
The first non-trivial example of an invariant based on size is the symplectic capacity
(see Gromov [15]). It relies on the fact that the size of a symplectic ball that can be
embedded into a symplectic manifold does not only depend on its total volume but also
on the volume of its intersection with the symplectic 2–planes.

Contact geometry does not give a direct generalization of these invariants. The main
difficulties stem from the fact that one is only interested in the contact structure, and not
in the contact form, so that the total volume is not defined, and to make matters worse
the whole Euclidean space R2nC1 with the standard structure can be compressed by a
contactomorphism into an arbitrarily small open ball in R2nC1 .

A more successful approach consists in studying the size of the neighborhood of
submanifolds. This can be considered to be a generalization of the initial idea since
contact balls are just neighborhoods of points. In the literature this idea has been
pursued by looking at the tubular neighborhoods of transverse circles. Let .N; ˛N / be
a closed contact manifold. The product N �R2k carries a contact structure given as
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the kernel of the form ˛N C
Pk

jD1.xj dyj �yj dxj /, where .x1; : : : ;xk ;y1; : : : ;yk/

are the coordinates of the Euclidean space. If .N; ˛N / is a contact submanifold of a
manifold .M; ˛/ that has trivial (conformal symplectic) normal bundle, then one knows
by the tubular neighborhood theorem that N has a small neighborhood in M that is
contactomorphic to a small neighborhood of N � f0g in the product space N �R2k .

The contact structure on a solid torus V in S1 � R2 depends in an intricate way
on the radius of V (see Eliashberg [6]): The solid tori S1 �DR , and S1 �DR0 �

.S1 �R2; d� C r2 d�/ are contactomorphic if and only if 1
R2 �

1
.R0/2

2 Z. Later,
examples of transverse knots in 3–manifolds were found whose maximal neighborhood
is only contactomorphic to a small disk bundle in S1�R2 (see Etnyre and Honda [11]).
This is proved by measuring the slope of the characteristic foliation on the boundary of
these neighborhoods.

A different approach has been taken by Eliashberg, Kim and Polterovich [8]. There it
has been shown that a solid torus of large radius around S1 � f0g in S1 �R2k cannot
be “squeezed” into a solid torus of small radius, if k � 2. However note that squeezing
in the context of [8] is different from the naive definition, and refers to the question of
whether one subset of a contact manifold can be deformed by a global contact isotopy
into another one.

The present article is based on the observation that sufficiently large neighborhoods of
N � f0g in N �R2k contain a generalized plastikstufe (for a definition of the GPS
see Section 3) if N is an overtwisted 3–manifold. The construction of a GPS in a
tubular neighborhood is explained in Section 4. In Section 5, we show that the existence
of a GPS implies nonfillability, and so we can deduce the main result of this article
(Corollary 13) that an overtwisted contact manifold that is embedded into a fillable
manifold cannot have a “large” neighborhood.

Unfortunately, the definition of “large” is rather subtle and does not lead to a numerical
invariant, because such an invariant would depend on the contact form on the submani-
fold. One could simply multiply any contact form ˛N C

Pk
jD1.xj dyj �yj dxj / by a

constant �> 0, and then rescale the radii in the plane by a transformation rj 7! rj=
p
�

to change such a numerical invariant.
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1 Examples

First we give an easy example that shows that embedding an overtwisted 3–manifold
into a higher dimensional fillable contact manifold does not pose a fundamental problem.
Embedding a contact 3–manifold into a contact manifold of dimension 7 or higher
restricts by using the h–principle (see Gromov [16] and Eliashberg–Mishachev [9,
Section 12.3]) and a general position argument to a purely topological question.
Example 1 (a) Let M be an arbitrary orientable closed 3–manifold. Its unit

cotangent bundle S
�
T �M

�
ŠM � S2 has a contact structure defined by the

canonical 1–form �can . The cotangent bundle T �M together with the form
d�can is an exact symplectic filling (and in fact, it can even be turned into a
Stein filling).
Any non-vanishing 1–form ˇ on M can be normalized so that kˇk D 1 every-
where, and defines then a section �ˇW M ! S

�
T �M

�
with ��

ˇ
�canD ˇ . If ˛ is

a normalized contact form on M , then �˛W M ! S
�
T �M

�
defines an contact

embedding. This means that every (and in particular also every overtwisted)
contact 3–manifold can be embedded into a Stein fillable contact 5–manifold.

(b) Now we will show that every contact 5–manifold .M; ˛/ contains closed over-
twisted submanifolds of dimension 3 (see also Remark 2). The proof works in
two steps.
The 3–sphere S3 �C2 supports an overtwisted contact structure given as the
kernel of the 1–form

˛� D i

2X
jD1

�
zj dxzj �xzj dzj

�
� i

�
f d xf � xf df

�
with f .z1; z2/D z2

1
Cz2

2
. In Example 5, we will describe some of the properties

of
�
S3; ˛�/ in more detail. For now consider the map

ˆW S3 ,!C3; .z1; z2/ 7!
�
z1; z2; xf .z1; z2/

�
:
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It clearly is an embedding, because the projection onto the first two coordinates
in C3 already is. We will show that its image lies in a hypersurface of C3

contactomorphic to the standard contact 5–sphere. The pull-back of the standard
Liouville form ˛0 D i

P3
jD1.zj dxzj �xzj dzj / of C3 gives back ˆ�˛0 D ˛� .

We have to show that ˆ.S3/ is contained in the boundary of a star-shaped
domain in C3 centered at 0, because the restriction of the Liouville form to such
a boundary is contactomorphic to the standard contact structure on the 5–sphere.
With the help of the function F W S5 ! R; .z1; z2; z3/ 7!

p
1Cjz3j

2 we can
define a smooth embedding of the 5–sphere

.z1; z2; z3/ 7! F.z1; z2; z3/ �
�
z1; z2; z3

�
;

that bounds a star-shaped domain. This submanifold contains the image of ˆ,
and thus we have shown that the standard contact 5–sphere admits a contact
embedding of .S3; ˛�/.
Since .S2N�1; ˛0/ with one point removed is contactomorphic to R2N�1 with
standard contact structure (see for example Geiges [12, Proposition 2.13]) and
since it is possible to embed the whole R2N�1 into an arbitrary small Darboux
chart (see for example Chekanov–van Koert–Schlenk [4, Proposition 3.1]), it
follows that every 5–dimensional contact manifold .M; ˛/ contains embeddings
of the overtwisted 3–sphere .S3; ˛�/.

Remark 2 Atsuhide Mori proved that all contact 3–manifolds can be immersed by a
contactomorphism into the standard 5–sphere [20]. He told us that if the 3–manifold
in question admits a compatible planar open book decomposition, then his construction
even yields an embedding. In particular, by a result of J Etnyre [10], every overtwisted
manifold has a planar open book decomposition, so that every overtwisted contact
manifold can be embedded into a 5–dimensional Darboux chart.

The next examples show that contact submanifolds can have infinitely large tubular
neighborhoods.

Example 3 (a) Let .M; ˛/ be an arbitrary contact manifold, and let .S2n�1; �0/

be the standard contact sphere. If dim M D 2nC 2k � 1, then it is easy to give
a contact embedding�

S2n�1
�R2k ; ˛0C

kX
jD1

.xj dyj �yj dxj /

�
,!

�
M; ˛

�
:
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The proof works in two steps. For the embedding (to avoid confusion, we use
below the notation ˛0.N / for the standard contact form on the .2N �1/–sphere)�
S2n�1

�R2k ; ˛0.n/C

kX
jD1

.xj dyj �yj dxj /

�
,!

�
S2nC2k�1; ˛0.nC k/

�
simply use the map

.z1; : : : ; znIx1;y1; : : : ;xk ;yk/ 7!
.z1; : : : ; zn;x1C iy1; : : : ;xk C iyk/p

1Ckxk2Ckyk2
;

where xD .x1; : : : ;xk/ and yD .y1; : : : ;yk/. As in Example 1(b), use the fact
that .S2N�1; ˛0/ with one point removed is contactomorphic to the standard
contact Euclidean space R2N�1 , and since it is possible to embed the whole
R2N�1 into an arbitrary small Darboux chart, it follows that every .2nC2k�1/–
dimensional contact manifold .M; ˛/ contains embeddings of�

S2n�1
�R2k ; ˛0C

kX
jD1

.xj dyj �yj dxj /

�
:

(b) A generalization is obtained by choosing a contact manifold .N; ˛N / that has
an exact symplectic filling .W; ! D d�/. The Liouville field XL on W (see
Section 2.1) is globally defined, and we can use its negative flow to find an
embedding of the lower half of the symplectization .�1; 0��N into W such
that � pulls back to et ˛N . The manifold S1 �W together with the 1–form
d� C� is a contact manifold.
The standard model .N �R2; ˛N C r2 d�/ can be glued outside the 0–section
onto S1�W , and this construction yields a closed contact manifold that contains
the embedding of N �R2 . This example represents an open book with binding
N , page W , and trivial monodromy.

Not much is known about the different contact structures on R2nC1 for n� 2. There
exist the standard contact structure �0 , and many different constructions to produce
structures that are not isomorphic to the standard one (for example Bates–Peschke [1],
Muller [21] and Niederkrüger [22]). Unfortunately we do not have any effective
techniques to decide whether these exotic contact structures are different from each other.
A contact structure � on R2nC1 is called standard at infinity (see Eliashberg [7]), if there
exists a compact subset K of R2nC1 and a number R> 0 such that

�
R2nC1�K; �

�
is contactomorphic to

�
R2nC1�DR; �0

�
for a closed disk of radius R. A contact

structure � on R2nC1 only admits a one-point compactification to a contact structure on
the sphere, if � is standard at infinity. For most exotic contact structures it is not known
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whether they are standard at infinity or not. The only exception known so far to us was
given in Niederkrüger–van Koert [23], where by removing one point from the sphere,
we obtained an exotic contact structure �PS on R2nC1 that is standard at infinity (but
see also Example 5 for a further example on R5 ). A rather crude way of producing a
contact structure that is not standard at infinity consists in taking the standard structure
on R2nC1 , and do the connected sum at every point .0; : : : ; 0; k/ 2R2nC1 with k 2Z
with the sphere .S2nC1; �PS /. Corollary 13 yields a much nicer and very explicit way
to construct an exotic contact structure that is not standard at infinity.

Example 4 The contact manifold�
R3
�Ck ; ˛�C

kX
jD1

r2
j d�j

�
;

where .rj ; �j / are polar coordinates on the j –th factor of Ck , contains a GPS, and by
Corollary 13 it cannot be embedded into any .2kC 3/–dimensional contact manifold
that has an exact filling. In particular it does not embed into the standard sphere,
and is hence not contactomorphic to the standard contact structure on R2kC3 . Let
K � R3 �Ck be an arbitrary compact subset. Again it is easy to see that

�
R3 �

Ck � K; ˛� C
P

j r2
j d�j

�
also contains a GPS, so it cannot be embedded into a

“punctured” set U �fpg �
�
R2kC3; ˛0

�
with the standard contact structure. It follows

that
�
R3 �Ck ; ˛�C

P
j r2

j d�j
�

is “non standard at infinity”.

Let .M; ˛/ be a closed contact manifold that contains a contact submanifold N

of codimension 2 with trivial normal bundle. A k –fold contact (cyclic) branched
covering over M consists of a closed manifold �M , and a smooth surjective map
f W �M !M such that the map f is a k –fold covering over M �N , and there is an
open neighborhood zU � �M of f �1.N / diffeomorphic to N �D� , and a neighborhood
U �M of N diffeomorphic to N �D�k such that the map f can be written as

f W N �D�!N �D�k ; .p; z/ 7! .p; zk/ ;

when restricted to zU (see Gromov [16] or Geiges [13, Section 7.5]).

Using the branched covering, it is easy to define a contact structure on �M . First isotope
˛ in such a way that it takes the form ˛jTN C r2 d� on a subset N �Dık �N �D�k

for some ı with 0 < ı < � . The pull-back z̨ WD f �˛ defines on �M a 1–form that
satisfies everywhere away from f �1.N / the contact property. In a neighborhood of
f �1.N / we find a subset contained in zU that is diffeomorphic to N �Dı on which
z̨ evaluates to ˛jTN C kr2k d� .
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Remove the fiber N � f0g from zU and glue in N �Dık via the map F W .p; rei�/ 7!

.p; k
p

r ei�/ along N �
�
Dı�f0g

�
. The pull-back F� z̨ yields ˛jTN Ckr2 d� on the

punctured disk bundle, which we can easily extend to the whole patch we are gluing in.
We denote this slightly modified contact form again by z̨ . By using a linear stretch
map on the disk, we finally see that the submanifold f �1.N /ŠN has a neighborhood
in . �M ; z̨/ that is of size

p
k ık with respect to the model form�

N �R2; ˛jTN C r2 d�
�
:

Example 5 (a) There is an interesting contact structure on the odd dimensional
spheres S2n�1 �Cn given as the kernel of the 1–form

˛� D i

nX
jD1

�
zj dxzj �xzj dzj

�
� i

�
f d xf � xf df

�
with f .z1; : : : ; zn/D z2

1
C� � �Cz2

n . This form is compatible with the open book
with binding B D f �1.0/, and fibration map � D xf =jf j. In abstract terms,
this contact structure is given by the open book with page P Š T �Sn�1 and
monodromy map corresponding to the negative Dehn-Seidel twist.
An interesting feature of these spheres is that they can be stacked into each other
via the natural inclusions S3 ,! S5 ,! S7 ,! � � � respecting the contact form,
and that .S3; ˛�/ is overtwisted.
We find a contact branched cover f W S5! .S5; ˛�/ given by

f .z1; z2; z3/D

�
z1; z2; z

k
3

�

�z1; z2; z
k
3

�


that is branched along S3 . By choosing k large enough, we will obtain with
the construction described above a contact structure on S5 that contains an
embedding of .S3; ˛�/ with large neighborhood. According to Corollary 13
and Theorem 11, this contact structure will not admit a symplectically aspherical
filling.
This result is not completely satisfactory, since we do not get an explicit value
for k . In fact, we expect that .S3; ˛�/ already has a large neighborhood in all
of the spheres .S2n�1; ˛�/ so that taking a branched covering should not really
be necessary (the non-fillability has been proved by Bourgeois and van Koert [3]
using contact homology).

(b) A second class of examples is obtained by embedding an overtwisted contact
3–manifold .M; ˛/ into its unit cotangent bundle S.T �M / as explained in
Example 1(a). If the embedding �˛ is homotopic to a constant section M �fp0g

in the trivialization S.T �M /ŠM�S2 , then we can construct a k –fold covering
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of the unit cotangent bundle branched over ˙�˛ by simply covering the 2–sphere
k –times. Note that the diffeomorphism type of the manifold does not change,
but for sufficiently large k , the covering will not be symplectically aspherically
fillable, in contrast to the covered manifold.

2 Preliminaries

2.1 Fillability

In this section, we will briefly present some standard definitions and properties regarding
fillability and J –holomorphic curves.

Definition A Liouville field XL is a vector field on a symplectic manifold .W; !/ for
which LXL

! D ! .

If .W; !/ is a symplectic manifold with boundary M WD @W , and if XL is a Liouville
field defined in a neighborhood of @W that is transverse to M , then the kernel of the
1–form

˛ WD
�
�XL

!
�ˇ̌

TM

defines a contact structure on M .

Definition A symplectic manifold .W; !/ is called symplectically aspherical ifZ
S2

u�! D 0

for any smooth map uW S2!W .

Definition Let .M; �/ be a closed contact manifold. A compact symplectic manifold
.W; !/ with boundary @W D M is called a strong (symplectic) filling of .M; �/,
if there exists a Liouville field XL in a neighborhood of the boundary M pointing
outwards through M such that

�
�XL

!
�ˇ̌

TM
defines a contact form for � . If .W; !/

is symplectically aspherical, we call it a symplectically aspherical filling, and if the
vector field XL is defined globally on W , we speak of an exact symplectic filling.

In particular it follows that an exact symplectic filling is also symplectically aspherical.

Remark 6 In a symplectic filling, we can always find a neighborhood of M that is
of the form .��; 0��M by using the flow ˆt of XL to define

.��; 0��M !W; .t;p/ 7!ˆt .p/ :
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Denote the hypersurfaces ftg �M by Mt , and the 1–form �XL
! by y̨ . It is clear

that y̨ defines on every hypersurface Mt a contact structure. The Reeb field XReeb is
the unique vector field on .��; 0��M that is tangent to the hypersurfaces Mt , and
satisfies both !.XReeb;Y /D 0 for every Y 2 TMt , and !.XL;XReeb/D 1. This field
restricts on any hypersurface Mt to the usual Reeb field for the contact form y̨jTMt

.
Below we will show that the “height” function hW .��; 0� �M ! R; .t;p/ 7! t is
plurisubharmonic with respect to certain almost complex structures.

In the context of this article we will use the term “adapted almost complex structure”
in the following sense.

Definition Let .W; !/ be a symplectic filling of a contact manifold .M; ˛/. An almost
complex structure J is a smooth section of the endomorphism bundle End.T W / such
that J 2 D�1. We say that J is adapted to the filling, if it is compatible with ! in the
usual sense, which means that for all X;Y 2 TpW

!.JX;J Y /D !.X;Y /

holds, and

g.X;Y / WD !.X;J Y /

defines a Riemannian metric. Additionally, we require J to satisfy close to the boundary
M D @W the following properties: For the two vector fields XL and XReeb introduced
above, J is defined as

JXL DXReeb and JXReeb D�XL ;

and J leaves the subbundle �t D TMt \ ker y̨ invariant.

Proposition 7 Let U be an open subset of C , and let uW U ! .��; 0� �M be a
J –holomorphic map. The function h ıuW U !R is subharmonic.

Proof A short computation shows that y̨ D �dh ıJ , and then we get

0� u�! D u�d �XL
! D u�d y̨ D u�d

�
�dh ıJ

�
D�u�ddch

D�ddc.h ıu/D

�
@2h ıu

@x2
C
@2h ıu

@y2

�
dx ^ dy

which completes the proof.

If uW †! .��; 0��M is a J –holomorphic curve that lies in a level set h�1.t/ of the
height function, then the image of u is everywhere tangent to �t , and so its energy
E.u/D

R
† u�! D

R
@† u� y̨ vanishes, which implies that u has to be constant.
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Corollary 8 By the strong maximum principle and the boundary point lemma (for ex-
ample Gilbarg and Trudinger [14]), any connected J –holomorphic curve uW .†; @†/!

.W; @W / is either constant or it touches M D @W only at its boundary @†, and this
intersection is transverse. Furthermore, if u is non constant, then the boundary curve
uj@† has to intersect the contact structure � on @W in positive Reeb direction.

Let �W N #M be an immersion of a manifold N in M . We define the self-intersection
set of N as

NG WD
˚
p 2N

ˇ̌
9p0 ¤ p with �.p/D �.p0/

	
:

2.2 The tubular neighborhood theorem for contact submanifolds

Let N be a contact submanifold of .M; ˛/. The contact structure � D ker˛ can be
split along N into the two subbundles

�jN D �N ˚ �
?
N ;

where �N is the contact structure on N given by �N D TN \ �jN D ker ˛jTN , and
�?

N
is the symplectic orthogonal of �N inside �jN with respect to the form d˛ . Note

that �?
N

carries a symplectic structure given by d˛ , but neither �?
N

nor the associated
conformal symplectic structure depend on the contact form ˛ chosen on M . The
bundle �?

N
can be identified with the normal bundle of N .

The standard neighborhood theorem for contact submanifolds states that �?
N

determines
a small neighborhood of N completely.

Theorem 9 Let .N; �N / be a contact submanifold of both .M1; �1/ and .M2; �2/.
Assume that the two normal bundles .�1/?N and .�2/?N are isomorphic as conformal
symplectic vector bundles. Then there exists a small neighborhood of N in M1 that is
contactomorphic to a small neighborhood of N in M2 .

If N has trivial conformal symplectic normal bundle �?
N

, then we call the product
space N �R2k with contact structure ˛N C

Pk
jD1.xj dyj � yj dxj / the standard

model for neighborhoods of N .

3 The generalized plastikstufe (GPS)

Definition Let .M; ˛/ be a .2nC 1/–dimensional contact manifold, and let S be a
closed .n�1/–dimensional manifold. A generalized plastikstufe (GPS) is an immersion

ˆW S �D # M;
�
s; rei�

�
!ˆ

�
s; rei�

�
;
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such that the pull-back ˆ�˛ reduces to the form f .r/ d� with f �0 that only vanishes
for r D 0, and r D 1. Furthermore there is an � > 0 such that self-intersections may
only happen between points of the form .s; rei�/, and .s0; r 0ei�/ with r; r 0 2 .�; 1��/

that have equal �–coordinate. Finally there must be an open set joining S � f0g with
S � @D that does not contain any self-intersection points.

We call S � f0g (or also its image) the core of the GPS, and S � @D (or again the
image) its boundary. We denote S �

�
D�f0g� @D

�
by GPS� and call it the interior

of the GPS.

Remark 10 The contact structure induces a foliation on GPS� , and the leaves are
given by the sets f� D constg. We are hence requiring that self-intersections only
happen between points lying on the same leaf. A different way to state this requirement
consists in saying that there is a continuous map

� W ˆ
�
GPS�

�
! S1

such that �
�
ˆ.s; rei�/

�
D � .

The main implication of the existence of a GPS is given by the following theorem
which we will prove in Section 5.

Theorem 11 A closed contact manifold .M; ˛/ that contains a GPS does not admit a
symplectically aspherical filling.

Remark 12 A more precise analysis of bubbling (as in Ivashkovich–Shevchishin [17])
should make it possible to prove that a GPS is an obstruction to finding even a (semi-
positive) strong symplectic filling. In Remark 15, we sketch how the proof would have
to be modified. Note though that to apply [17], we would also have to require that the
self-intersections of the GPS are clean.

4 Constructing immersed plastikstufes in neighborhoods of
contact submanifolds

4.1 Local construction in codimension two

The overtwisted contact structure given as the standard example in the literature is R3

with the structure induced by the contact form

˛� D cos r dzC r sin r d� ;
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written in cylindrical coordinates .r; �; z/ such that x D r cos� , y D r sin� , and
z D z . Any plane fz D constg contains an overtwisted disk of radius r D � centered
at the origin. From the classification in Eliashberg [7], it follows that .R3; ˛�/ is up to
contactomorphism the unique contact structure on R3 that is overtwisted at infinity,
and hence any sufficiently small contractible neighborhood of an overtwisted disk in a
contact 3–manifold is contactomorphic to .R3; ˛�/.

The Reeb field XReeb associated to ˛� is given by

XReeb D
1

r C sin r cos r

�
sin r @� C .sin r C r cos r/ @z

�
:

Its flow ˆt is linear, because it does not change r , and the coefficients of the z– and
the �–directions only depend on the r –coordinate. The Reeb field is only tangent
to the overtwisted disk along the circle of radius r0 with r0 D� tan r0 (r0 � 2:029).
Inside this circle, XReeb has a positive z–component, outside it has a negative one.
This means the overtwisted disk DOT and its translation by the Reeb flow ˆt .DOT/ for
a time t ¤ 0 only intersect along the circle of radius r0 (see Figure 1). More precisely,
the Reeb field reduces on the circle of radius r0 to XReeb D 1=.r0 sin r0/ @� , so that it
defines a rotation with period T D 2�r0 sin r0 � 11:4.

DOT

ˆt

�
DOT

�

Figure 1: The overtwisted disk and its image under the Reeb flow only
intersect along a circle of radius r0 .

Define now on R3 �R2 the contact form ˛�CR2 d� , where .R; �/ are polar co-
ordinates of R2 . To construct a GPS in R3 �R2 , we will use the first step of the
construction in Presas [24]. For this we interpret R3 �R2 as a contact fibration over
the plane.

Definition Let � W P ! B be a fiber bundle that is endowed with a hyperplane
distribution �� TP . We call .P;B; �; �/ a contact fibration, if � restricts on every
fiber Fp WD �

�1.p/, p 2 B to a contact structure �p WD TFp \ �.

For more details see Lerman [18]. A contact fibration carries a natural parallel transport
given as follows: Choose a 1–form ˇ on P such that � D kerˇ . Let p be a point
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in the base manifold, and zp 2 Fp an arbitrary point in the fiber over p . Then we
define for a vector v 2 TpB a unique lift zv 2 T zpP by the conditions that D�.zv/D v ,
that zv 2 �, and that dˇ.zv; �/ vanishes on �p . One can easily check that the lift zv is
independent of the choice of the 1–form ˇ .

Choose a path 
 W Œ0; 1�! B in the base manifold. The parallel transport of the fiber
F
.0/ consists in lifting the vectors P
 .t/ to all the points in the corresponding fibers,
and integrating the flow to obtain a 1–parameter family of maps �t W F
.0/! F
.t/ .
The main property of this construction is that �t induces a contactomorphism between
the fibers .F
.0/; �
.0// and .F
.t/; �
.t//.

It is obvious that the projection of .R3�R2; ˛�CR2 d�/ onto the last two coordinates
is a contact fibration. We will trace a closed path 
 W S1 �C!R2 that has the shape
of a figure-eight, with the double point at the origin, and such that both loops of the
eight enclose equal area with respect to the area form 2R dR^d� (twice the standard
area form). Start at the origin of the disk, at 
 .1/D 0 on this closed loop, and consider
the overtwisted disk DOT described above in the fiber R3 � f0g. By using the parallel
transport of DOT along the path 
 , we are able to construct an immersed plastikstufe.
The parallel transport reduces in the fibers to the flow of the vector field �c XReeb with
c D j
 j2 d�. P
 /, so that the monodromy of a closed loop is just given by the Reeb flow
ˆ�T for a time T that is equal to the algebraic area enclosed by the loop. The total
area of the figure-eight 
 vanishes, because on one part of the eight, we are turning
in positive direction, on the other in the opposite one, and the area of both parts was
chosen to be equal.

x
y

R3




Figure 2: Parallel transport of the overtwisted disk along a figure-eight path
yields an immersed plastikstufe.

We will describe the construction more explicitly to better understand the self-intersec-
tion set. The parallel transport of the overtwisted disk defines an immersion

DOT �S1 # R3
�R2;

�
.x;y; 0/; ei�

�
7!
�
ˆ�T .�/.x;y; 0/; 
 .e

i� /
�
;
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where T .�0/ D
R �0

0 j
 .s/j
2 d�. P
 .s// ds . The map is well defined, because T .� C

2�/D T .�/. It is also easy to see that this map is an immersion.

The only self-intersection points may lie over the crossing 
 .1/D 
 .�1/ in the figure-
eight, and in fact, since the Reeb flow moves the interior of the overtwisted disk up,
and the outer part down, self-intersections only happen between the two circles˚

.r0 cos�; r0 sin�; 0/
	
� f�1; 1g �DOT �S1 :

Denote the area enclosed by one of the petals of the figure-eight path by A. The images
of two points

�
.r0 cos�; r0 sin�; 0/; 1

�
and

�
.r0 cos.� � t0/; r0 sin.� � t0/; 0/;�1

�
are only identical if t0 DA=.r0 sin r0/.

If the size of 
 is chosen in such a way that AD 2�r0 sin r0 , then pair of points for
which the plastikstufe intersects itself lie on equal rays of the overtwisted disk, and we
have constructed a GPS. The figure-eight path has to enclose a sufficiently large area,
but such a path 
 cannot be realized in a disk DR of radius R<

p
2r0 sin r0 � 1:91.

4.2 Higher codimension

Use the same contact structure on .R3; ˛�/ as above, and extend it to a contact structure
on R3 �Ck with contact form

˛�C

kX
jD1

r2
j d�j ;

where .rj ; �j / are polar coordinates for the j –th C–factor in Ck . Take the following
k –fold product of figure-eight loops of different sizes, and group them into a map

�W Tk # Ck ; .ei�1 ; : : : ; ei�k / 7!
�

 .ei�1/; 21=2 
 .ei�2/; : : : ; 2.k�1/=2 
 .ei�k /

�
:

This map is an immersion with self-intersection set

Tk
G
D
˚
.ei�1 ; : : : ; ei�k / 2 Tk

ˇ̌
at least one of the �j lies in �Z

	
:

Define functions Tj .�/ WD2j�1
R �

0 

�
�
r2 d�

�
, and T .ei�1 ; : : : ; ei�k /D

Pk
jD1 Tj .�j /.

Then the immersion

DOT �Tk
!R3

�Ck ;�
.x;y; 0/I .ei�1 ; : : : ; ei�k /

�
7!
�
ˆ�T .�1;:::;�k/.x;y; 0/I �.e

i�1 ; : : : ; ei�k /
�
;

where ˆt denotes the Reeb flow in R3 , is a GPS. Obviously the self-intersection
points of this map are contained in DOT �Tk

G
. Consider two points .ei�1 ; : : : ; ei�k /
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and .ei 1 ; : : : ; ei k / that have the same image under � . It follows for each pair
.�j ;  j / that either �j D  j or that both �j ;  j 2 �Z. The disks lying over such
points are given by ˆ�T .���/.DOT/ and ˆ�T .   /.DOT/ respectively, where DOT D˚
.x;y; 0/

ˇ̌
k.x;y; 0/k � �

	
. The Reeb flow is �–invariant and preserves the distance

of the points .x;y; 0/ from the z–axis. Hence by comparing the z–coordinates, the
equation ˆ�T .���/.x;y; 0/ D ˆ�T .   /.x

0;y0; 0/ implies for two points .x;y; 0/, and
.x0;y0; 0/ 2 DOT with k.x;y; 0/k D k.x0;y0; 0/k ¤ r0 , that T .���/ D T .   / has to
hold. The coefficients chosen for the paths in � are such that T is injective on
the subset f.�a1; : : : ; �ak/g with all aj 2 f0; 1g. This implies that ��� D    , and
also .x;y; 0/ D .x0;y0; 0/, so that no self-intersections can happen for points with
k.x;y; 0/k ¤ r0 .

Self-intersections of DOT �Tk can hence only exist for points where the distance of
.x;y/ from the origin is equal to r0 , and because both of the disks enclosed by the
figure-eight loop 
 have area AD 2�r0 sin r0 , the holonomy will always correspond
to a rotation by a multiple of 2� so that intersecting points always lie on the same leaf
of the foliation, and all conditions of a GPS are met by this immersion.

4.3 Application to contact submanifolds

Let .N; ˛N / be an overtwisted contact 3–manifold. We will show that the product
manifold

�
N �Ck ; ˛N C

Pk
jD1 r2

j d�j
�
, where .rj ; �j / are polar coordinates on the

j –th factor of Ck , contains a GPS.

Consider a small contractible neighborhood of an overtwisted disk DOT in N . This
neighborhood is contactomorphic to .R3; ˛�/, because it is overtwisted at infinity.
Choose a large ball B in R3 (so large that the Reeb flow for ˛� restricted to the
overtwisted disk exists for long enough times), then there is a function f W N !R>0

such that the chosen ball .B; ˛�/ can be embedded by a strict contactomorphism
(that means preserving the contact form) into .N; f ˛N /. The contact form f ˛N CPk

jD1 f r2
j d�j on the product manifold N � Ck can be transformed by the map

.pI z1; : : : ; zk/ 7!
�
pI z1=

p
f ; : : : ; zk=

p
f
�

into�
N �Ck ; f ˛N C

kX
jD1

r2
j d�j

�
:

This contains a subset of the form
�
B �Ck ; ˛� C

Pk
jD1 r2

j d�j
�

in which we can
perform the construction explained above.
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Corollary 13 Let .M; ˛/ be a closed .2nC 1/–dimensional contact manifold that
contains an overtwisted contact 3–dimensional submanifold N with trivial contact nor-
mal bundle. There is a neighborhood of N that is contactomorphic to a neighborhood
U of N � f0g in the product space

�
N �Ck ; ˛N C

Pk
jD1 r2

j d�j
�
.

If the neighborhood U contains a sufficiently large disk bundle of N � f0g, then it
follows that M does not admit a symplectically aspherical filling.

Proof By the construction just described
�
N �Ck ; ˛N C

Pk
jD1 r2

j d�j
�

contains a
GPS. Since the GPS is compact, it is contained in some disk bundle around N �f0g. If
the neighborhood of N is contactomorphic to this disk bundle, then .M; ˛/ contains a
GPS, and hence by Theorem 11 it cannot have a symplectically aspherical filling.

Remark 14 A natural question to ask is if Corollary 13 can be modified for contact
manifolds that admit the embedding of large tubular neighborhoods of PS –overtwisted
manifolds (that means manifolds that contain a plastikstufe or even a GPS). The proof
for submanifolds containing a proper plastikstufe should reduce to finding a standard
neighborhood theorem for the plastikstufe, and then trying to rescale the contact form
in such a way that the Reeb flow will exist for sufficiently large times. Afterward it
should be straightforward to apply the same reasoning as in Section 4.

5 Proof of Theorem 11

5.1 Sketch of the proof

The proof is based on Niederkrüger [22] (which in turn is ultimately based on Eliash-
berg [5] and Gromov [15]), and it is very helpful to have a good understanding of this
first article. Assume that .M; ˛/ admits a symplectically aspherical filling .W; !/. We
choose an adapted almost complex structure J on W that has in a neighborhood of
the core S � f0g the special form described in [22, Section 3], and in a neighborhood
of the boundary S � @D the particular form described in Section 5.3 below.

The chosen almost complex structure allows us to explicitly write down the members of
a Bishop family around the core of the GPS, so that we find a non-empty moduli space
M of holomorphic disks uW .D; @D/! .W;GPS�/ with a marked point z0 2 @D . The
boundary of each holomorphic disk u intersects every regular leaf of the GPS exactly
once, in other words the composition � ıuj@D W S

1! S1 defines a diffeomorphism
on the circle. The image of the Bishop family in the moduli space is canonically
diffeomorphic to a neighborhood of the core S � f0g via the evaluation map

evz0
WM! GPS�; u 7! u.z0/ :
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We can apply similar intersection arguments for the boundary S � @D of the GPS
(Section 5.3), and for the core ([22, Section 3]), showing that there exists a neighborhood
of @GPS that has empty intersection with any holomorphic disk, and that the only disks
that come close to the core are the ones lying in the Bishop family.

Choose now a smooth generic path 
 �S�D that avoids the self-intersection points of
the GPS, and that connects the core S � f0g with the boundary of the GPS. In Section
5.2, we prove that the moduli space M
 WD ev�1

z0
.
 / is a smooth 1–dimensional

manifold. From now on, we will further restrict M
 to the connected component
of the moduli space that contains the Bishop family. Then in fact M
 has to be
diffeomorphic to an open interval. The compactification at one of the ends of the
interval simply consists in decreasing the size of the disks in the Bishop family until
they collapse to the point 
 .0/ on the core of the GPS.

Our aim will be to understand the possible limits at the other end of the interval M
 ,
and to deduce a contradiction to the fillability of M . The energy of all disks u 2M


is bounded by 2� maxf , where ˛ D f .r/ d� on the GPS. By requiring that the GPS
has only clean intersections, we could apply the compactness theorem in Ivashkovich–
Shevchishin [17] to deduce even a contradiction for the existence of a semipositive
filling (see Remark 15). Instead of merely referring to that result, we have decided to
give a full proof of compactness in our situation that shows that no type of bubbling
is possible (see Section 5.4). This way we can drop the stringent conditions on the
self-intersections of the GPS, and the required proof is in fact significantly shorter than
the full proof of the compactness theorem.

It then follows that for any sequence of disks uk 2M
 , we find a family of re-
parametrizations �k W D! D such that uk ı �k contains a subsequence converging
uniformly with all derivatives to a disk u1 2M
 . This means that the closure of M


is compact, and in fact homeomorphic to a closed interval, but since we know at the
same time that the limit element u1 lies in M
 , u1 has a small neighborhood in
M
 homeomorphic to an open interval, it follows that u1 is not a boundary point of
M
 . Compactness contradicts thus the existence of the filling.

Remark 15 We will briefly sketch how [17] could be used to prove even the non-
existence of a semipositive filling, if the GPS is cleanly immersed.

The limit of a sequence of holomorphic disks can be described as the union of
finitely many holomorphic spheres u1

S
; : : : ;uK

S
and finitely many holomorphic disks

v1; : : : ; vN . The holomorphic disks vj W .D; @D/! .W;GPS/ are everywhere smooth
with the possible exception of boundary points that lie on self-intersections of the GPS.
Here vj will still be continuous though (this behavior can be visualized by taking the
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baby-example of a figure-eight path in the complex plane C . By the Riemann mapping
theorem, there is a holomorphic disk enclosed into each of the loops, but these disks
cannot be smooth on their boundary at the self-intersection point of the eight).

We will now first prove that the limit curve of a sequence in M
 is only composed
of a single disk, which then necessarily has to be smooth. Assume we would have a
decomposition into several disks v1; : : : ; vN . The boundary of each of these disks vj
is a continuous path in GPS� , we can hence combine the disks with the projection
� defined in Remark 10 to obtain a continuous map � ı vj

ˇ̌
@D W S

1! S1 . Thus we
can associate to each of the disks vj a degree. In fact it follows that deg � ı vj

ˇ̌
@D >

0, because almost all points on the boundary of vj are smooth, and for them vj
has to intersect, by Corollary 8, all leaves of the foliation of the GPS in positive
direction. Finally assume that there are still several disks, each one necessarily with
deg � ı vj

ˇ̌
@D � 1. This means that the composition of the maps � ı vj

ˇ̌
@D will cover

the circle several times, but this is not possible for the limit of injective maps � ıuk

ˇ̌
@D .

There is hence only a single disk in the limit. Using Theorem 19 below it finally also
follows that this disk is smooth, and has a boundary that lifts to a smooth loop in S�D .

The reason why there are no holomorphic spheres as bubbles is a genericity argument.
Since the disk and all spheres are regular smooth holomorphic objects, we can compute
the dimension of the moduli space in which the bubble tree would lie. By the assumption
of semi-positivity, it follows that the dimension would be negative.

5.2 The moduli space

The aim of this section is to define the moduli space of holomorphic disks and to prove
that it is a smooth manifold. Care has to be taken, because the boundary condition
considered in this article is not a properly embedded, but only an immersed submanifold.
The main idea is to restrict to those holomorphic curves whose boundary lies locally
on embedded subsets of the immersed submanifold. We can then easily adapt standard
results.

Let .W;J / be an almost complex manifold, and let L be a compact manifold with
dim LD 1=2 dim W .

Definition An immersed totally real submanifold is an immersion �W L # W such
that �

D� �TxL
�
˚
�
J �D� �TxL

�
D T�.x/W

at every x 2L.
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Let �W L # W be a totally real immersed submanifold with self-intersection set LG ,
and let † be a Riemann surface with N boundary components @†1; : : : ; @†N . Then
define B.†IL/ to be the set of Sobolev W k;p –maps with k � 1 and p > 2 (by the
Sobolev embedding theorem these maps are continuous)

uW .†; @†/!
�
W; �.L/

�
for which the boundary circles uj@† can be lifted to continuous loops uLW @†!L

such that � ıuL D uj@† , and such that each of the N components of uL intersects
the complement of LG .

Note that with our conditions the lift of the boundary circles uj@† is unique, because
if there were two different loops uL; yuLW @†j ! L with � ı uL D � ı yuL , both
uL.@†j / and yuL.@†j / would intersect the complement of LG , and then it follows
that the set

˚
z 2 @†j

ˇ̌
uL.z/D yuL.z/

	
is non-empty. Furthermore this set is closed,

because it is the preimage of the diagonal 4W WD f.p;p/jp 2 W g under the map
uL � yuLW @†j � @†j !W �W intersected with the diagonal 4@†j . Finally, L can
be covered with open sets on each of which the immersion � is injective, and hence if
uL.z/D yuL.z/ there is also an open neighborhood of z on which both paths coincide.
It follows that uL and yuL are equal.

We have to prove that B.†IL/ is a Banach manifold by finding a suitable atlas. To
define a chart around a map u0 2 B.†IL/, construct first a Banach space Bu0

by
considering the space of W k;p –sections � in E WD u�

0
T W satisfying the following

boundary condition: Take the unique collection of loops uL
0

such that � ıuL
0
D u0j@† .

We can define a subbundle F � Ej@† over the boundary of the surface by pushing
TuL

0
.z/L with D� into E . We require the sections � W †!E to lie along the boundary

@† in the subbundle F .

Our aim will be to map these sections in a suitable way into B.†IL/. For this, choose
first an embedding z� of L into some Euclidean space RN , and lift then the immersion
�W L!W to a map � � z�W L ,!W �RN whose image we will denote by zL (see
Figure 3).

Introduce on a small collar neighborhood of the boundary of the domain † the co-
ordinates .t;p/ 2 .��; 0�� @†, and choose a smooth function F W †! Œ0; 1� whose
support is contained in this collar .��; 0� � @†, and that is equal to 1 in a smaller
neighborhood of @†. We can easily lift maps uW .†; @†/!

�
W; �.L/

�
in B.†IL/

to maps

zuW .†; @†/!
�
W �RN ; zL

�
Geometry & Topology, Volume 14 (2010)
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Figure 3: Eliminate the self-intersection points of L by lifting all objects to
W �RN .

by setting

zu.z/D

(�
u.z/; 0

�
z 62 supp F�

u.z/;F.z/ � z�.uL.p//
�

z D .t;p/ 2 .��; 0�� @† :

It is clear that the projection of zu onto the first factor gives back the original map
u, and that the boundary of zu is mapped into zL. Similarly, we can lift any section
� 2 Bu0

to a section of zu�
0
T
�
W �RN

�
by

z�.z/D

(�
�.z/; 0

�
z 62 supp F�

�.z/;F.z/ �D z� � �.uL
0
.p//

�
z D .t;p/ 2 .��; 0�� @† :

Note that z� is tangent to zL along @†.

Choose now a Riemannian metric g on W �RN that makes zL totally geodesic. We
define a map Expu0

from the Banach space Bu0
to B.†IL/ by associating to a section

� 2 Bu0
its lift z� , then applying to z� the geodesic exponential map, and projecting

the resulting map back into W . If � is sufficiently small, then the image Expu0
.�/

will lie in B.†IL/, because the complement of LG is an open set so that for small
� the map Expu0

.�/ will also intersect the complement of LG . To see that Expu0

is injective, assume that Expu0
.�/ D Expu0

.� 0/ for two sections �; � 0 2 Bu0
. All

considerations reduce to pointwise conditions for every z 2†. The vectors z�.z/ and
z� 0.z/ lie in a subspace of Tzu0.z/.W �RN / that is a linear graph over Tu0.z/W . The
geodesic exponential map of this subspace is a graph �u0.z/ � W � RN over W

in a neighborhood of u0.z/, and because exp.z�.z// and exp.z� 0.z// have the same
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projection to W , it follows that z�.z/D z� 0.z/, and since this holds for every z 2 †,
we obtain that � D � 0 .

To check that Expu0
is surjective, consider a map u2B.†IL/ that lies as a W k;p –map

close to u0 , and whose boundary lift uLW †! L also lies close to uL
0

. Lift u to
zuW †!W �RN . Then the curves zu0 and zu will still be close to each other, and we
can project zu pointwise along RN onto the graphs �u0.z/ spanned by the geodesic
exponential maps applied to the lifts z�.z/ of sections � 2 Bu0

. This way, we obtain a
section � 2 Bu0

such that Expu0
.�/D u.

Since we do not see locally the other intersection branches it follows that the Cauchy-
Riemann equation defines a Fredholm operator on B.†IL/. For a generic adapted
almost complex structure J , we can make sure that the space of solutions

zM.†IL/D
˚
u 2 B.†IL/

ˇ̌
x@J uD 0, and u is somewhere injective

	
is a smooth manifold (in fact, we have to use an argument as in McDuff–Salamon [19,
Remark 3.2.3], because J is chosen to look on one open subset of W as in Proposition
17, and on another one as in Niederkrüger [22, Section 3], but this poses no problem, be-
cause we have a precise control over the curves that intersect these model neighborhoods,
and perturbing J outside of these neighborhoods suffices to achieve transversality).
Also, we can apply standard regularity results to see that the holomorphic curves
u 2 zM.†IL/ are not just W k;p –maps, but can be represented by smooth maps.

In our case, we set †DD , and add a marked point z0 2 @D , then we choose a path

 that lies in the complement of LG , and require the evaluation map at z0 to always
lie on 
 . The evaluation map is smooth, and so for a generic 
 , the space of such
disks will be a smooth submanifold in zM.†IL/ of codimension dim L � 1. The
automorphism group G WDAut.D; z0/ of the disk with a marked point on its boundary
is 2–dimensional, and so we obtain with the index computation in [22, Section 3.3]
that M
 WD

zM.DIGPSI 
 /=G is a 1–dimensional manifold.

5.3 The boundary of the GPS

The definition of the plastikstufe in [22] requires the boundary @PS.S/ to be a regular
leaf of the foliation. That way, PS.S/�

�
S �f0g

�
is a totally real manifold, and gives

thus a Fredholm boundary condition for regarding holomorphic disks. At the same time
smooth holomorphic disks in the moduli space have to be transverse to the foliation so
that they cannot touch the boundary.

The compactness proof in this article relies on the assumption that once we remove
a neighborhood of the core, any two leaves of the foliation on the GPS have positive

Geometry & Topology, Volume 14 (2010)



740 Klaus Niederkrüger and Francisco Presas

distance. Unfortunately then in our definition of the GPS, S �D is along its boundary
S �@D tangent to the contact structure. In this section, we will show by an intersection
argument that there is a neighborhood of the boundary which blocks any holomorphic
curve from entering it. Our definition thus implies at this point effectively the same
statement as the standard one.

Proposition 16 Let .M; ˛/ be a contact .2nC 1/–manifold, and let F be a subman-
ifold of M that looks like the collar neighborhood of the boundary of a GPS, that
means F Š S �S1 � Œ0; ı/, where S is a closed manifold of dimension n� 1, and the
restriction of ˛ to F takes the form f .r/ d� for coordinates .ei� ; r/ on S1 � Œ0; ı/,
and a function f W Œ0; ı/!R that vanishes for r D 0, and is otherwise positive. Then
there is a neighborhood U of the boundary @F WD S �S1 � f0g in M that is (strictly)
contactomorphic to an open subset of�

R�T �S �S1
�R; dzC�canC r d�

�
such that U \F lies in this model in f0g �S �S1 � Œ0; �/.

Proof The proof is based on a variation of the Moser trick. It is fairly standard, but
for completeness we have decided to include it in Appendix A.

To describe the behavior of holomorphic curves, we have to expand the above model
to include a neighborhood in the symplectization. Take the symplectic manifold�

T �.T2
�S/Š T �T2

�T �S; ! WD d.�px dqx �py dqy C�can/
�
;

where .qx; qy/ are the coordinates on the torus T2 D R2=Z2 , px and py are the
directions in the cotangent bundle associated with qx and qy respectively, and �can D

�p dq is the canonical 1–form on T �S .

Choose on the manifold S a Riemannian metric, and let F be the function

F W T �S !R; .q;p/ 7! 1
2
kpk2 :

The unit cotangent bundle˚
.qx; qy ;px;py Iq;p/ 2 T �T2

�T �S
ˇ̌
.p2

xCp2
y/=2CF.q;p/D 1

	
has a natural contact structure given as the kernel of the canonical 1–form � D

�px dqx �py dqy C�can . Its natural symplectic filling is the disk bundle in T �T2 �

T �S .

We can introduce on T �T2 �T �S the almost complex structure

J WD i ˚J0 ;
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where J0 is the d�can –compatible almost complex structure on T �S constructed in
Niederkrüger [22, Appendix B], and i is the standard complex structure on T �T2 ,
that is, the one defined by i @qx

D @px
, and i @qy

D @py
. It is easy to check that this J

is compatible with ! , and that

� ıJ D px dpxCpy dpy C�can ıJ0 D
1
2

d.p2
xCp2

y/C dF ;

where we used (see the reference above) that dF D �can ıJ0 .

Thus if we set h.qx; qy ;px;py Iq;p/ WD .p2
x C p2

y/=2 C F.q;p/, we obtain that
�D�dh ıJ . We can embed S �S1 � Œ0; �/ into T �T2 �T �S by using the map

S �S1
� Œ0; �/! T �T2

�T �S;

.q; e2�i� ; r/ 7! .qx; qy ;px;py Iq;p/D
�
0; �;

p
2� r2; r Iq; 0

�
:

The image of this map lies in the contact boundary h�1.1/, and the contact form pulls
back to the required form to apply Proposition 16, so that we have found a model for a
neighborhood of the boundary @GPS in the symplectization.

We summarize these findings in the following proposition.

Proposition 17 Let .W; !/ be a strong filling of a contact manifold .M; ˛/ that
contains a GPS. There is a neighborhood U of @GPS in W that is isomorphic to the
set

W 0 WD
˚
.qx; qy ;px;py Iq;p/ 2 T �T2

�T �S
ˇ̌

h.qx; qy ;px;py Iq;p/� 1; qx 2 .��; �/; px >
p

2� �
	
� T �T2

�T �S ;

for a small � > 0 such that U \GPS corresponds to˚�
0; �;

p
2� r2; r Iq; 0

�
2W 0

ˇ̌
0� r <

p
�
	
:

The function h.qx; qy ;px;py Iq;p/ WD .p2
x C p2

y/=2CF.q;p/ is plurisubharmonic
with respect to the almost complex structure J given by

J D i ˚J0

that is adapted to the contact manifold .M; ˛/.

Proposition 18 Let .W; !/ be a strong filling of a contact manifold .M; ˛/ that
contains a GPS. If we choose the adapted almost complex structure J described in
Proposition 17 on a small neighborhood U of @GPS, and we extend J to an adapted
almost complex structure on all of W , then no J –holomorphic curve uW .†; @†/!
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.W;GPS/ whose boundary components are all contractible in GPS, may intersect the
neighborhood U .

Proof Choose for the neighborhood U of @GPS the model described in Proposition
17 together with the almost complex structure J given there. This J can be extended
over the whole filling .W; !/. Note that the neighborhood U is foliated by J –complex
codimension 2 submanifolds of the form

N.Cq;Cp/ WD
˚
.Cq; qy ;Cp;py/�T �S

ˇ̌
h.Cq; qy ;Cp;py Iq;p/� 1

	
for fixed values Cq 2 .��; �/ and Cp 2 .

p
2� �;

p
2/.

Let now uW .†; @†/! .W;GPS/ be a holomorphic curve with boundary components
that are all contractible in GPS, and assume that u intersects the model neighborhood
U . Write the restriction of u to V WD u�1.U /�† as

ujV W V ! T �T2
�T �S; z 7!

�
uqx

.z/;uqy
.z/;upx

.z/;upy
.z/Iuq.z/;up.z/

�
:

First, we will show that the coordinates .qx;px/ are constant. If this were not the
case, then the image of .uqx

;upx
/ contains an open set, and by Sard’s Theorem we

find regular values .Cq;Cp/ with Cq ¤ 0, such that
˚
.uqx

;upx
/D .Cq;Cp/

	
consists

of finitely many points at which the differential of .uqx
.z/;upx

.z// is regular, and so
N.Cq;Cp/ has finitely many transverse intersection points with u. By our assumption,
it is possible to cap off the holomorphic curve u by adding disks that lie inside the
GPS. Consider the codimension 1 submanifold (with boundary and corners)

zN .Cq;Cp/ WD
˚
.Cq; qy ;px;py Iq;p/

ˇ̌
px � Cp; h.Cq; qy ;px;py Iq;p/� 1

	
:

One of its boundaries is N.Cq;Cp/, and because Cq¤0, the intersection of zN .Cq;Cp/

with M gives a submanifold that is disjoint from GPS, and this submanifold together
with N.Cq;Cp/ represents the trivial homology class in H2n�2.W /.

The only intersections between the capped off holomorphic curve and @ zN .Cq;Cp/

lie in the subsets, where both classes are represented by J –holomorphic manifolds.
Hence the intersection number is positive, but since @ zN .Cq;Cp/ represents the trivial
homology class, this is clearly a contradiction.

It follows that .uqx
;upx

/ have to be constant, and this in turn means that the holo-
morphic curve is completely contained in N.uqx

;upx
/ which is contained in the

neighborhood U so that u also lives in our model neighborhood U . In particular, it
follows by the boundary condition of u that uqx

D 0.

Project now the holomorphic curve uW †!T �T2�T �S onto its T �S –part to obtain
a J0 –holomorphic curve in the cotangent bundle. Since the boundary of u sits on
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the GPS, it follows that the boundary of the T �S –part lies in the zero-section of
T �S , and so it has no energy, and is thus constant. So far, it follows that u.z/ can be
written as u.z/D

�
0;uqy

.z/;Cp;upy
.z/Iq0; 0

�
, where .uqy

;upy
/W †! T �S1 is an

i –holomorphic curve that satisfies upy
.z/DC

q
2�C 2

p for every z 2 @†. We will
prove that .uqy

;upy
/ is constant by showing that its energy is also zero. First note that

the energy is given by
R
† d�can D

R
@† �can , where �can denotes here the canonical

1–form on T �S1 . Along @† the 1–form �can D �py dqy is identical to the closed
1–form �

q
2�C 2

p dqy , but since @† represents a trivial class in homology, it follows
that Z

@†

�can D�

q
2�C 2

p

Z
@†

dqy D 0 ;

as we wanted to show, and so .uqy
;upy

/ is also constant.

Finally, note that a J chosen in such a way still gives enough freedom for achieving
transversality of the Cauchy-Riemann operator: No curves are allowed to enter U , so
we do not need to perturb J in that neighborhood to achieve regularity.

5.4 Bubbling analysis

To obtain compactness of our moduli space, we need to distinguish two cases: Either
the first derivatives of the sequence are from the beginning on uniformly bounded, and
we have a subsequence with a clean limit, or otherwise if the first derivatives explode,
we show that we can reparametrize the disks in a suitable way after which we do find a
global uniform bound on the derivatives.

Theorem 19 Let † be a Riemann surface that does not need to be compact, and may
or may not have boundary. Let �k �† be a family of increasing open sets that exhaust
†, that is, [

k

�k D† and �k ��k0 for k � k 0 .

Define @�k WD �k \ @†. Let .W;J / be a compact almost complex manifold that
contains a totally real immersion �W L # W of a compact manifold L, and let uk be
a sequence of holomorphic maps uk W

�
�k ; @�k

�
!
�
W; �.L/

�
whose derivatives are

uniformly bounded on compact sets, that is, for every compact set K �†, we find a
constant C.K/ > 0 such that

kDuk.z/k � C.K/

for all k and all z 2 �k \ K . Additionally assume that the restriction of uk to
the boundary @�k lifts to a collection of smooth paths uL

k
W @�k ! L such that

� ıuL
k
D uk j@�k

.
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Then there exists a subsequence of uk that converges on any compact subset uniformly
with all derivatives to a holomorphic curve u1W .†; @†/!

�
W; �.L/

�
, whose bound-

ary lifts to a collection of smooth paths uL
1W @†!L, and the boundary paths uL

k
also

converge locally uniformly to uL
1 .

Proof The theorem is well-known in case that @†D∅ or that �.L/ is an embedded
totally real submanifold (see for example McDuff–Salamon [19, Theorem 4.1.1]). In
fact, our situation can be reduced to one, where we can apply this standard result.
Using Arzelà–Ascoli it is easy to find a subsequence uk that converges uniformly in
C 0 on any compact set to a continuous map u1 , and such that the lifts uL

k
W @�k!L

converge in C 0 on any compact set to a lift uL
1W @†!L with � ıuL

1 D u1j@† .

Let K �† be a compact set on which we want to show uniform C1–convergence. If
@K WDK\@† is empty, then the uniform convergence for the derivatives follows from
the standard result. If @K is non-empty, then cover uL

1.@K/ with a finite collection of
open sets V1; : : : ;VN such that the restrictions �jVj are embeddings. We can choose
slightly smaller open subsets V 0j � Vj for which the closure V 0j is also contained in
Vj , and whose union V 0

1
[ � � � [V 0

N
still covers uL

1.@K/.

Cover also K itself with open sets Un that either do not intersect the boundary @K
or if Un \ @K ¤ ∅, then there is a V 0j such that uL

1.Un \ @K/ � V 0j . Only finitely
many Un are needed to cover K . We get for every Un\K uniform C1–convergence,
because now if Un intersects @K we can use the standard result: For k large enough
uk.Un \ @K \ �k/ will be contained in the larger subset Vj , on which � is an
embedding.

Theorem 20 (Gromov compactness) Let

uk W .D; @D/! .W;GPS�/

be a sequence of holomorphic disks that represent elements in the moduli space M
 .

There exists a family �k W D! D of biholomorphisms such that uk ı �k contains a
subsequence converging uniformly in C1 to a holomorphic disk

u1W .D; @D/! .W;GPS�/

that represents again an element in M
 . Note in particular that the boundary of u1
also lies in the interior of the GPS.

Proof Choose the metric on W that is compatible with both J and ! , and endow
the disk D �C with the restriction of the standard metric g0 on the complex plane.
Denote by kDuk.z/kD the norm of the differential of uk at a point z 2D with respect
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to g0 on the disk, and the chosen metric on W . If kDukkD is uniformly bounded for
all k 2N and all z 2D , then by Theorem 19 we are done.

So assume this to be false, then there exists (by going to a subsequence if necessary) a
sequence zk 2D such that

kDuk.zk/kD !1 ;

and in fact by rotating the disk, we may assume that all zk lie on the ray Œ0; 1�.

Let H � C be the upper half plane fz 2 Cj Im z � 0g endowed with the Euclidean
metric, and denote by kDv.z/kH the norm of the differential of a map vW H!W at
a point z 2H with respect to the Euclidean metric on the half plane, and the chosen
metric on W . We can map the half plane into the unit disk using the biholomorphism

ˆW H!D�f�1g; z 7!
i � z

i C z
;

and use this to pull-back the sequence of disks to uH
k
WD uk ıˆW .H;R/! .W;GPS/.

Introduce also the notation zH
k
WD ˆ�1.zk/, D.z0/ WD

˚
z 2 C

ˇ̌
jz� z0j < 1

	
, and

Dr .z0/ WD
˚
z 2C

ˇ̌
jz� z0j< r

	
. The map ˆ is not an isometry, but on compact sets

of the upper half plane, ˆ�g0 is equivalent to the Euclidean metric. Hence it follows
that also the sequence kDuH

k
.zH

k
/k

H
cannot be bounded.

Apply the Hofer Lemma (see for example [19, Lemma 4.6.4] and Figure 4) for fixed
k , and ıD 1=2, that means, restrict kDuH

k
k

H
to the unit disk D.zH

k
/\H . There is a

positive �k with �k � 1=2, and a yk 2D1=2.z
H
k
/\H such that

kDuH
k .z

H
k /kH � 2�k kDuH

k .yk/kH and kDuH
k .z/kH � 2 kDuH

k .yk/kH

for all z 2D�k
.yk/\H .

Figure 4: Using the Hofer Lemma we find in the unit disk around zH
k

a
smaller domain D�k .yk/ that can be rescaled to recover a bubble.
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Set ck WD kDuH
k
.yk/kH . First we will show that for large k , all the disks D�k

.yk/

intersect the boundary @HDR of the half plane. Even stricter, there exists a constant
K > 0 such that ck Im.yk/ < K for all k (if the disks intersect the real line, we
have Im yk < �k , multiplying with ck on both sides would still allow the left side
to be unbounded). Suppose that such a constant did not exist, so that by going to a
subsequence, ck Im yk converges monotonously to 1. Define Hk WD fz 2Cj Im z �

�ck Im ykg, and a sequence of biholomorphisms

�k W D�kck
\Hk !D�k

.yk/\H; z 7!
z

ck

Cyk :

Pulling back, we find holomorphic maps yuk WD uH
k
ı �k W D�kck

\Hk ! W with
kDyuk.0/k D 1, and kDyukk � 2 everywhere else. Using Theorem 19 (or just for
example [19, Theorem 4.1.1]), proves that there exists a subsequence that converges
locally uniformly with all derivatives to a non-constant map yu1W C!W . The standard
removal of singularity theorem yields then a non-constant holomorphic sphere, but this
is a contradiction, because in a symplectically aspherical manifold its energy would
have to be zero. Thus there is a constant K > 0 such that ck Im.yk/ <K .

Now we slightly modify the charts used above to achieve that the reparametrized
domains lie inside the upper half plane, and that their boundary lies in the real line. Set
y0

k
WD ck Im yk and rk WD �kck , and consider the following sequence of biholomor-

phisms

 k W Drk
.iy0k/\H!D�k

.yk/\H; z 7!
z

ck

CRe yk :

Note that the intersection of D�k
.yk/ with the real line is given by the interval

D�k
.yk/\R�D.zH

k /\R� .�1; 1/ :

The image of the interval .�1; 1/ under ˆ is the segment on the boundary of the unit
disk enclosed between the angles .��=2; �=2/. This means that the boundary part of
the disk that is affected by the reparametrization lies on the right half of the complex
plane.

On the domain of the reparametrized maps yuk WD uH
k
ı k W Drk

.iy0
k
/\H!W we

have kDyukk � 2, and kDyuk.iy
0
k
/k D 1. We can also find a subsequence of yuk with

increasing domains, that is, Drk
.iy0

k
/ � Drl

.iy0
l
/ for all l � k , by using that the

y0
k

are all bounded while the radii of the disks rk become arbitrarily large. Then
Theorem 19 provides a subsequence of the yuk that converges locally uniformly with
all derivatives to a holomorphic map yu1W .H;R/! .W;GPS/. To see that yu1 is
not constant, take a subsequence such that y0

k
converges to y01 . The norm of the

derivative of u1 at iy1 is kDyu1.iy01/kD 1, because kDyu1.iy01/�Dyuk.iy
0
k
/k�
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kDyu1.iy
0
1/�Dyu1.iy

0
k
/k C kDyu1.iy

0
k
/�Dyuk.iy

0
k
/k becomes arbitrarily small.

The first term is small, because the differential of yu1 is continuous, the second can be
estimated by using that the convergence of yuk to yu1 is uniform on a small compact
neighborhood of iy01 .

Let us come back to the initial family of disks uk W .D; @D/! .W;GPS/. The maps
 k induce reparametrizations of the whole disk by z k WDˆ ı k ıˆ

�1 . The image
of a compact subset of D � f�1g under ˆ�1 is a compact subset in H , so that we
get on any compact subset of D � f�1g uniform C1–convergence of uk ı

z k to
u1 WD yu1 ıˆ

�1 . To complete the proof of our compactness theorem, we have to
show that the first derivatives of uk ı

z k are also uniformly bounded in a neighborhood
of f�1g. We will do this by showing that if the derivatives were not bounded, then the
curves uk ı

z k would intersect many leaves of the foliation on the GPS twice.

Recall that there is a continuous map � W GPS� ! S1 that labels the leaves of the
foliation on GPS� bijectively. The holomorphic curve�

H�f0g; .�1; 0/[ .0;1/
�
! .W;GPS/; z 7! u1

�
�ˆ.z/

�
has finite energy, and because it intersects every leaf of the foliation of GPS� at
most once (the maps � ıuk ı

z k

ˇ̌̌
@D

are all bijective), we can apply the removal of

singularity theorem in the form described in Theorem 21. The consequence for u1 is
that the composition � ıu1j@D�f�1g extends to a continuous map S1! S1 that is
strictly monotonous. In fact, � ıu1j@D�f�1g covers the whole circle with exception
of the point

ei �1 WD lim
�!˙�

� ıu1.e
i�/ ;

and so for any �–neighborhood U� � S1 of ei �1 , we find a ı > 0 such that
˚
� ıuk ı

z k.e
i�/

ˇ̌
� 2 .�� C ı; � � ı/

	
covers for any sufficiently large k the complement

S1�U� of U� .

Let KC be the arc
˚
ei�

ˇ̌
� 2 .��=2; �=2/

	
, that is, the right half of the unit circle.

Remember that the z k.KC/ exhaust @D�f�1g, and so it follows in particular that
because the derivatives kDukkD were not uniformly bounded on the ray Œ0; 1��D ,
the original unparametrized disks uk W .D; @D/ ! .W;GPS/ intersect on KC for
sufficiently large k almost all leaves of the foliation of the GPS.

Assume now that the first derivatives of the reparametrized disks uk ı
z k are not

uniformly bounded in a neighborhood of f�1g. By the same reasoning as above,
it follows that the uk ı

z k intersect almost all leaves of the GPS on the segment
K�D

˚
ei�

ˇ̌
� 2 .�=2; 3�=2/

	
, that is, on the left half of the circle. With “almost all”,
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we mean that we find an ei�1 2 S1 such that for any neighborhood U � S1 of ei�1

there exists a kU > 0 for which all � ıuk ı
z k.K�/ with k > kU cover S1�U .

This leads to a contradiction, because if the segments � ıuk ı
z k.K�/ intersect almost

all leaves of the foliation, it follows that in the limit almost no leaves will be intersected
by � ıuk ı

z k.KC/. But we know that � ıu1jS1 is not constant in a neighborhood
of 1 (because u1 is not constant), and so because of the local uniform convergence,
we find an open set U � S1 that is contained in the images � ıuk ı

z k.KC/ for any
k that is sufficiently large.

In our special situation, we only need the following very weak form of removal of
singularity, which states that the punctured boundary of a holomorphic curve approaches
from both sides of the puncture the same leaf of the foliation of the GPS.

Theorem 21 (Removal of singularity) Let .W; !/ be a compact symplectic manifold
with convex boundary @W D .M; ˛/. Assume that M contains a GPS S �D # M ,
and choose an adapted almost complex structure J on W . Let

uW
�
D� \H�f0g; .��; 0/[ .0; �/

�
!
�
W;GPS�

�
be a non-constant holomorphic curve that has finite energy, and let � W GPS�! S1 be
the continuous map that labels bijectively the leaves of the foliation on GPS� . Assume
additionally that u intersects every leaf at most a finite number of times.

Then we find a continuous path ycW .��; �/! S1 with

ycj.��;0/[.0;�/ D � ıuj.��;0/[.0;�/ :

A more geometric way to state this result is to say that the boundary segments of the
holomorphic curve approach the same leaf from both sides of the origin asymptotically.

Proof Denote the segments composing the map � ıuj.��;0/[.0;�/ by c�W .��; 0/!

S1 , and cCW .0; �/! S1 . By Corollary 8, both maps c˙ are strictly increasing, and
from our assumption it follows that the c˙ are bounded close to 0 (in the sense that
they do not turn infinitely often as z ! 0), because u intersects every leaf only a
finite number of times, so that we find continuous extensions yc�W .��; 0�! S1 , and
ycCW Œ0; �/! S1 . Assume for the limits yc�.0/¤ ycC.0/, contrary to what we want to
show.
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One of the basic ingredients in all proofs of this type is the following estimate for the
energy of u

E.u/D

Z
D�\H�f0g

u�! D

Z �

0

Z �

0

ˇ̌̌
@�u.rei�/

ˇ̌̌2
r2

r dr ^ d�

�

Z �

0

�Z �

0

ˇ̌̌
@�u.rei�/

ˇ̌̌
d�

�2
dr

�r
D

Z �

0

L.
r /
2

�r
dr ;

where 
r is the image
˚
u.rei�/

ˇ̌
� 2 Œ0; ��

	
of the half-circle of radius r in the

hyperbolic plane, and L.
r / is its length with respect to the compatible metric on W .
It is clear that L.
r / cannot be bounded from below, because the energy E.u/ is finite.

Choose a small ı > 0, such that the ı–neighborhoods U�;UC � S1 around yc�.0/ and
ycC.0/ respectively do not overlap. Then there is an �0> 0 for which the segment Œ0; �0/
is contained in yc�1

C .UC/, and .��0; 0� is contained in yc�1
� .U�/, and by the geometry

of the foliation on the GPS, all the points in u
�
.0; �0/

�
are at distance more than C > 0

from the points in u
�
.��0; 0/

�
. In particular it follows that the length L.
r / for any

r 2 .0; �0/ is larger than C , and so by the energy inequality given above, we get a
contradiction to yc�.0/¤ ycC.0/.

6 Outlook and open questions

6.1 Definition of a capacity invariant for contact manifolds

One obvious application of the observations made in this paper is the definition of a
capacity invariant for higher dimensional contact manifolds. Unfortunately, we were
not able to measure the “size” efficiently in a numerical way so that our invariant is
rather rough.

To measure the capacity, we choose a contact manifold .N; �N / that will serve as the
“testing probe”. Then we can define for any contact manifold .M; �/ with dim M D

2kC dim N , and k � 1, an invariant C�N
defined as follows:

C�N
.M; �/D

8̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
:̂

0 if .N; �N / cannot be embedded with trivial
normal bundle into M ;

1 if N �R2k with the standard contact form
can be embedded into M ;

1 otherwise, that means .N; �N / can be embedded
with trivial normal bundle into M , but not with
the full neighborhood.
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This way, we obtain for the standard sphere
�
S2n�1; �0

�
that C�0

.M; �/ D 1 for
any contact manifold .M; �/, see Example 3(a). If

�
N; ��

�
is an overtwisted contact

3–manifold, and if .M; �/ is a manifold with exact symplectic filling, then it follows
from Corollary 13 that C��.M; �/ <1.

The most important problem in this context would be to find examples of contact
manifolds that do allow the embedding of an overtwisted contact manifold N with the
full model neighborhood N �R2k , because otherwise it is so far unclear whether the
capacity C�N

is able to distinguish any manifolds at all. Possible candidates to check
are the following:

Question 22 Let .M; ˛/ be a closed contact manifold. F Bourgeois described in [2]
a construction of a contact structure on M � T2 for which every fiber M � fpg

with p 2 T2 is contactomorphic to the initial manifold. How large is the tubular
neighborhood of such a fiber?

Question 23 E Giroux conjectures that contact manifolds of arbitrary dimension
obtained from the negative stabilization of an open book should be “overtwisted”. The
simplest example of such a manifold is a sphere .S2n�1; ˛�/ constructed by taking
the cotangent bundle T �Sn�1 for the pages, and a negative Dehn-Seidel twist as
the monodromy map (see Example 5(a)). How large is the tubular neighborhood of
.S3; ˛�/ in a higher dimensional sphere?

6.2 Contact structures on R2nC1

In Example 4 it was shown that a sufficiently large neighborhood of R3 � f0g in�
R3 �Ck ; ˛�C

Pk
jD1 r2

j d�j
�

and a sufficiently small one are not contactomorphic
because small neighborhoods can be embedded into Darboux charts.

Question 24 Are all sufficiently small contractible neighborhoods of R3 � f0g in
R3 �Ck contactomorphic to each other. In particular it would be interesting to see
whether these spaces are contactomorphic to

�
R2kC3; �0

�
, because otherwise it would

mean that R2kC3 contains contractible subsets with exotic contact structures.

6.3 Wall’s embedding theorem for contact manifolds

By a theorem of C T C Wall, every closed 3–manifold can be embedded into S5 . In
view of Remark 2, the following question would be interesting:

Question 25 Is it possible to embed every closed contact 3–manifold by a contacto-
morphism into the standard 5–sphere? If not, an intriguing problem would be to find
obstructions.
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Appendix A Proof of Proposition 16

Proposition 16 Let .M; ˛/ be a contact .2nC 1/–manifold, and let F be a subman-
ifold of M that looks like the collar neighborhood of the boundary of a GPS, that
means F Š S �S1 � Œ0; ı/, where S is a closed manifold of dimension n� 1, and the
restriction of ˛ to F takes the form f .r/ d� for coordinates .ei� ; r/ on S1 � Œ0; ı/,
and a function f W Œ0; ı/!R that vanishes for r D 0, and is otherwise positive. Then
there is a neighborhood U of the boundary @F WD S �S1 � f0g in M that is (strictly)
contactomorphic to an open subset of�

R�T �S �S1
�R; dzC�canC r d�

�
such that U \F lies in this model in f0g �S �S1 � Œ0; �/.

Proof The restriction of the contact form to F can be written as

˛jTF D f d�

with a smooth non-negative function f that only depends on the coordinate of Œ0; ı/,
and only vanishes on the boundary @F WDS�S1�f0g. The 2–form d˛ is a symplectic
form on the .2n/–dimensional kernel � D ker˛ , so in particular d˛jTF cannot vanish
at any point p 2 @F of the boundary, because otherwise TpF would be an .nC 1/–
dimensional isotropic subspace of .�p; d˛/. It follows that the radial derivative of f
has to be positive on @F , and so we can find a collar neighborhood of the boundary @F
diffeomorphic to S�S1� Œ0; �/ with coordinates .s; ei� ; r/ such that f .s; ei� ; r/D r ,
by using the flow of the vector field X Drf=krf k2 for a gradient rf defined with
respect to any Riemannian metric g . If g is chosen to be �–invariant, then ˛ restricts
on this collar neighborhood to r d� .

Consider now the normal bundle of F in M . A trivialization can be obtained by
realizing first that the Reeb field XReeb is transverse to a collar neighborhood of @F ,
because TF j@F lies in the contact structure, so that there is a small neighborhood, where
XReeb is transverse to F . Choose now an almost complex structure J on � D ker˛
that is compatible with d˛ such that J leaves the subbundle over @F spanned by
h@r ; @�i invariant. The submanifolds S.ei� ;r/ WD S � f.ei� ; r/g, with .ei� ; r/ fixed,
are all tangent to the contact structure, and it follows that J �TS.ei� ;r/ is transverse to
F , because if there were a direction X 2 TS , such that JX 2 TF , then

0< d˛.X;JX /D dr ^ d�.X;JX /D 0 :

The normal bundle of the collar is isomorphic to the sum of the trivial bundle spanned
by the Reeb field, and the bundle J �TS.ei� ;r/ . With the tubular neighborhood theorem
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it follows that there is an open set around @F diffeomorphic to R�T �S�S1�.��; �/,
and the collar neighborhood of @F lies in f0g �S �S1 � Œ0; �/.

In the final step, we use a version of the Moser trick explained for example by Geiges [12,
Theorem 2.24] to find a vector field Xt that isotopes the given contact form ˛0D˛ into
the desired one ˛1 D dzC�canC r d� . Let ˛t , t 2 Œ0; 1�, be the linear interpolation
between both 1–forms. Note that the 1–forms ˛0 and ˛1 , and the 2–forms d˛0 and
d˛1 are identical along F , so that all ˛t are contact forms if we restrict to a sufficiently
small neighborhood of @F . We wish to construct an isotopy  t defined around @F
such that  �t ˛t D ˛0 . The field Xt generating such an isotopy has to satisfy the
equation

LXt
˛t C P̨ t D 0 :

By writing Xt DHt Rt CYt , where Ht is a smooth function, Rt is the Reeb vector
field of ˛t , and Yt 2 ker˛t , we obtain plugging then Rt into the equation above

dHt .Rt /D� P̨ t .Rt / :

The vector field Yt is completely determined by Ht , because Yt satisfies the equations

�Yt
˛t D 0 ;

�Yt
d˛t D�dHt � P̨ t ;

hence it suffices to find a suitable function Ht . Consider the 1–parameter family of
Reeb fields Rt as a single vector field on the manifold Œ0; 1��

�
R�T �S �S1 �R

�
.

Since Rt is just @z along Œ0; 1��S �S1 � Œ0; �/, it is transverse to the submanifold
N WD Œ0; 1� �

�
f0g � T �S � S1 � R

�
(on a small neighborhood of Œ0; 1� � @F in

Œ0; 1��F ), and it is possible to define a solution Ht to dHt .Rt /D� P̨ t .Rt /, such that
Ht jN � 0. In fact, because P̨ t jF D 0, it follows that dHt jF D 0, and so the vector
field Xt DHt Rt CYt vanishes on the collar of @F . Hence Xt can be integrated on a
small neighborhood of the collar @F � Œ0; �/ up to time 1, and the collar itself is not
moved under the flow, which finishes the proof of the proposition.
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