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Plane sextics via dessins d’enfants

ALEX DEGTYAREV

We develop a geometric approach to the study of plane sextics with a triple singular
point. As an application, we give an explicit geometric description of all irreducible
maximal sextics with a type E7 singular point and compute their fundamental groups.
All groups found are finite; one of them is nonabelian.

14H45; 14H30, 14H50

1 Introduction

1.1 Motivation

The subject of this paper is singular complex plane projective algebraic curves of
degree six (sextics), considered up to equisingular deformation. Throughout the paper
we assume that all curves involved have at worst simple singularities. Formally, the
classification of plane sextics can be reduced to a purely arithmetical problem (see Degt-
yarev [6]), which can be solved in many interesting cases (see, eg, I Shimada’s list [26]
of maximal sextics, the classification of classical Zariski pairs by A Özgüner [23] or the
list of special sextics by A Degtyarev [5]); the general impression is that one can answer
any reasonable particular question, although the complete classification would require
an enormous amount of work. Furthermore, this arithmetical approach, based on the
theory of K3 surfaces, does solve a number of problems concerning the geometry of
plane sextics (see, eg, the solution to M Oka’s conjecture [13] in Degtyarev [5] and
Ishida and Tokunaga [19], the classification of Z–splitting curves in Shimada [25] or
the classification of stable symmetries of irreducible sextics in Degtyarev [7]).

However, more subtle questions, such as the computation of the fundamental group
of the complement of a sextic, still remain unanswered, as they require a much more
thorough understanding of the topology of the curve. A great deal of effort has been
made lately (see Degtyarev [9; 4; 8], Degtyarev and Oka [12] and Eyral and Oka [16;
14; 15]; more references can be found in [15]) in order to compute the fundamental
groups of relatively few curves. Each time, the main achievement is discovering a way
to visualize a particular curve and its braid monodromy; once this is done, computing
the group is a technicality.
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Apart from a few curves given by explicit equations, most approaches to the visualization
of plane sextics found in the literature rely, in one way or another, to an elliptic pencil
in the covering K3 surface. One such approach was suggested in Degtyarev [7]: one
uses a stable symmetry and represents the sextic as a double covering of an appropriate
trigonal curve. In the present paper, we suggest another approach, which is also based
on the study of trigonal curves; in the long run, we anticipate being able to use this
correspondence to handle all sextics with a triple singular point. Here, we deal with
the type E7 singular points and prepare the background for types E6 and E8 , which
are to be the subject of a forthcoming paper.

It is worth mentioning that, by now, the approach suggested in [7] is almost exhausted,
at least if one tries to confine oneself to irreducible maximal trigonal curves: the only
case that has not been considered yet is that of sextics with two type E8 singular points.
In my next paper, it will be shown that any such sextic has abelian fundamental group.
Jumping a few steps ahead, I can announce that the only irreducible maximal sextic with
a type E8 singular point and nonabelian fundamental group has the set of singularities
E8˚A4˚A3˚ 2A2 ; its group is a semidirect product of its abelianization Z6 and its
commutant SL.2;F5/.

1.2 Principal results

Recall that a plane sextic B is called maximal (sometimes, maximizing), if the total
Milnor number �.B/ of the singular points of B takes the maximal possible value,
which is 19 (see Persson [24], where the term was introduced). Maximal sextics are
projectively rigid; they are always defined over algebraic number fields.

1.2.1 Theorem Up to projective transformation (equivalently, up to equisingular
deformation), there are 19 maximal irreducible plane sextics B � P2 with simple
singularities only and with at least one type E7 singular point; they realize 11 sets of
singularities (see Table 3).

This theorem is proved in Section 6.1, where all sextics are constructed explicitly using
trigonal curves. Alternatively, the statement of the theorem follows from combining
the results of J-G Yang [27] (the existence) and I Shimada [26] (the enumeration of the
sets of singularities realized by more than one deformation family). In this respect, it
is worth emphasizing that our proof is purely geometric; although not writing down
explicit equations, we provide a means to completely recover the topology of the pair
.P2;B/ and even the topology of the projection .P2;B/! P1 from the type E7

singular point. (For the description of the topology of a trigonal curve in terms of
its skeleton, see Degtyarev, Itenberg and Kharlamov [11] or Degtyarev [10].) As
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an application of this geometric construction, we compute the fundamental groups
�1.P

2 rB/ of all curves involved and study their perturbations.

1.2.2 Theorem With one exception, the fundamental group �1.P
2 rB/ of a plane

sextic B � P2 as in Theorem 1.2.1 is abelian. The exception is the (only) sextic with
the set of singularities E7˚ 2A4˚ 2A2 ; its group is given by

G D
˝
˛1; ˛2; ˛3

ˇ̌
Œ˛2; ˛3�D Œ˛i ; �

3�D Œ˛i ; ˛
2
2˛3�D 1; i D 1; 2; 3;

�2˛1 D ˛2; .˛1˛2/
2˛1 D ˛2.˛1˛2/

2; .˛1˛3/
2˛1 D ˛3.˛1˛3/

2
˛
;

where � D ˛1˛2˛3 . One can represent this group G as a semidirect product of its
abelianization Z6 and its commutant ŒG;G�Š SL.2;F19/, which is the only perfect
group of order 6840.

1.2.3 Theorem For any proper perturbation B0 of any plane sextic B as in Theorem
1.2.1, the fundamental group �1.P

2 rB0/ is abelian.

Theorems 1.2.2 and 1.2.3 are proved in Section 6.2 and Section 7.2, respectively.

Although we do not treat systematically reducible sextics (the principal reason being
the fact that GAP [18] does not work well with infinite groups), the following by-product
of our calculation seems worth mentioning (see Section 6.4 for the proof).

1.2.4 Proposition Let B be a plane sextic splitting into two irreducible cubics and
having one of the following five sets of singularities †:

2E7˚A5; E7˚D12; E7˚D5˚A7;

E7˚A11˚A1; E7˚A9˚A2˚A1:

Let G D �1.P
2 rB/. Then, for †D 2E7˚A5 or E7˚A11˚A1 , the commutant

ŒG;G� is a central subgroup of order 3; in the other three cases, G is abelian.

1.2.5 Corollary For any irreducible sextic B0 obtained by a perturbation from a
sextic B as in Proposition 1.2.4, the group �1.P

2 rB0/Š Z6 is abelian.

Theorems 1.2.2 and 1.2.3 and Corollary 1.2.5 provide further evidence to substantiate
my conjecture that the fundamental group of an irreducible sextic that is not of torus
type (ie, not given by a polynomial of the form p3C q2 ) is finite.

Altogether, Theorem 1.2.3 gives rise to about 250 new sets of singularities that are
realized by sextics with abelian fundamental groups, and Corollary 1.2.5 adds about 70

more. (Recall that, according to Degtyarev [9], any induced subgraph of the combined
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Dynkin graph of a sextic B with simple singularities can be realized by a perturbation
of B ; in other words, the singular points of B can be perturbed independently.) Of
special interest are the eleven (mentioning only the new ones) sets of singularities listed
in Table 1. The corresponding curves are included into the so called classical Zariski
pairs, ie, pairs of plane sextics that share the same set of singularities but differ by the
Alexander polynomial. Together with the previously known results (see Degtyarev [8]
and Eyral and Oka [13]), this makes 46 out of the 51 (see Özgüner [23]) classical
Zariski pairs. In each of these 46 pairs, the groups of the two curves are Z2 �Z3

and Z6 . (For the curves with nonabelian groups, see Degtyarev [8] and references
there. Note that, formally, all classical Zariski pairs are known, one of them being
in fact a triple [23], but not all curves have been constructed explicitly, hence not all
fundamental groups have been computed yet.)

3E6

2E6˚A5˚A1

2E6˚A5

E6˚A11˚A1

E6˚A8˚A2˚A1

E6˚ 2A5˚A1

E6˚ 2A5

A11˚A5˚A1

A8˚A5˚A2˚ 2A1

3A5˚A1

3A5

Table 1: “New” classical Zariski pairs

Another interesting example is the set of singularities 3A6 , which is obtained by
a perturbation of E7 ˚ 2A6 . The corresponding curve Bns has a so called special
counterpart, ie, a sextic Bsp with the set of singularities 3A6 and �1.P

2 r Bsp/ Š

Z3�D14 , where D14 is the dihedral group of order 14. (The latter group was computed
in Degtyarev and Oka [12].) Another, very explicit, construction of a nonspecial
sextic Bns with the set of singularities 3A6 was recently discovered in Eyral and
Oka [15], where the group of Bns was also shown to be abelian. The pair .Bsp;Bns/

constitutes a so called Alexander equivalent Zariski pair: the Alexander polynomials
of both curves are trivial. We refer to [15] for the further discussion of special sextics
and the current state of the subject.

1.3 Tools and further results

Our principal tool is to blow up the type E7 point of the sextic and, after a series of
elementary transformations, to consider the result as a trigonal curve in a ruled rational
surface. We show that maximal sextics correspond to maximal trigonal curves, and the
latter can be effectively studied using Grothendieck’s dessins d’enfants (skeletons in the
terminology of the paper). In fact, it turns out that a great deal of relevant statements is
already scattered across Degtyarev [10; 7], and we merely bring these results together
and draw conclusions.
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The following intermediate statement seems to be of independent interest: it gives an
estimate on the total Milnor number � of a nonisotrivial trigonal curve and characterizes
maximal curves as those maximizing �. We refer to Section 2 for the terminology and
notation, and to Section 2.6 for the proof.

1.3.1 Theorem Let xB be a trigonal curve in the Hirzebruch surface †k , and assume
that xB is not isotrivial and that all singularities of xB are simple. Then the total Milnor
number �. xB/ of the singular points of xB is subject to the inequality

�. xB/6 5k � 2� #funstable fibers of xB g;

which turns into an equality if and only if xB is maximal.

It is Theorem 1.3.1 that explains the relation between maximal sextics and maximal
trigonal curves: both maximize the total Milnor number.

1.3.2 Remark The estimate given by Theorem 1.3.1 does not always hold for isotrivial
trigonal curves, where �. xB/ can be at least as large as � 48k=5. Besides, each
nonsimple singular point increases the upper bound by 1.

Certainly, the crucial property of the sextics in question is the fact that they have a
singular point of multiplicity d�3, where d is the degree of the curve, and our approach
is an immediate generalization of a similar (although much simpler) study of curves with
a singular point of multiplicity d � 2 (see, eg, Degtyarev [2; 3]). The approach should
work equally well for all sextics with a triple singular point, and we lay the foundation
for a further development by completing the necessary preliminary calculations for the
singular points of type E8 and E6 . The precise statements concerning these two types
will appear in a subsequent paper; the case of a D–type point will be considered later.

1.4 Contents of the paper

In Section 2, we recall a few basic facts concerning the classification of maximal
trigonal curves in Hirzebruch surfaces. The new result proved here is Theorem 1.3.1.

Section 3 introduces the principal tool used in the paper: the trigonal model of a plane
sextic with a distinguished E–type singular point. Keeping in mind further development
of the subject, in addition to type E7 appearing in the principal results (Theorems
1.2.1–1.2.3), in the auxiliary Sections 3–5 we consider as well sextic with a singular
point of type E6 or E8 .

In Section 4, we outline the strategy used to compute the fundamental groups, cite
a few statements from Degtyarev [10] concerning the braid monodromy of trigonal

Geometry & Topology, Volume 14 (2010)



398 Alex Degtyarev

curves, and compute two “universal” relations present in the group of each curve: the
so called relation at infinity and monodromy at infinity. As a further extension of this
analysis of local canonical forms, in Section 5 we compute the homomorphism induced
by the inclusion of a Milnor ball about an E–type singular point.

Theorems 1.2.1 and 1.2.2 are proved in Section 6: we enumerate the trigonal models
of sextics with a type E7 singular point by listing their skeletons (mainly, the problem
is reduced to a previously known classification found in Degtyarev [7]); then, we use
the skeletons obtained to compute the fundamental groups.

The concluding Section 7 deals with Theorem 1.2.3: first, we (re-)compute the fun-
damental groups of the perturbations of a type E7 singular point (using the same
techniques involving trigonal curves and skeletons), and then we apply these results,
the inclusion homomorphism of Section 5, and the presentations obtained in Section 6
to prove the theorem.

Acknowledgements This paper was conceived during my participation in the special
semester on Real and Tropical Algebraic Geometry held at the Centre Interfacultaire
Bernoulli, École polytechnique fédérale de Lausanne. I am thankful to the organizers
of the semester and to the administration of CIB.

2 Trigonal curves

In this section, we cite a few results concerning the classification and properties of
maximal trigonal curves in Hirzebruch surfaces. The principal reference is [10].

2.1 Maximal trigonal curves

Recall that the Hirzebruch surface †k , k > 0, is a geometrically ruled rational surface
with an exceptional section E of square �k . (Sometimes, the fibers of the ruling
are referred to as vertical lines in †k .) A trigonal curve is a curve xB �†k disjoint
from E and intersecting each generic fiber at three points.

In this paper, we consider trigonal curves with simple singularities only.

A singular fiber (sometimes also called a vertical tangent) of a trigonal curve xB �†k

is a fiber of the ruling of †k intersecting xB geometrically at less than three points.
Locally, xB is the ramification locus of the Weierstraß model of a Jacobian elliptic
surface, and to describe the (topological) type of a singular fiber we use (one of) the
standard notation for the singular elliptic fibers, referring to the extended Dynkin graph
of the corresponding configuration of the exceptional divisors. The types are as follows:
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� zA�
0

: a simple vertical tangent;

� zA��
0

: a vertical inflection tangent;

� zA�
1

: a node of xB with one of the branches vertical;

� zA�
2

: a cusp of xB with vertical tangent;

� zAp , zDq , zE6 , zE7 , zE8 : a simple singular point of xB of the same type with
minimal possible local intersection index with the fiber.

For the relation to Kodaira’s classification of singular elliptic fibers and a few other
details, see Table 2; further details and references are found in [10].

Type of F j .F / Vertex Valency

zAp.zDpC5/;p > 1 IpC1 .I�pC1
/ 1 �– pC 1

zA�
0
.zD5/ I1 .I�1/ 1 �– 1

zA��
0
.zE6/ II .IV�/ 0 �– 1 mod 3

zA�
1
.zE7/ III .III�/ 1 ı– 1 mod 2

zA�
2
.zE8/ IV .II�/ 0 �– 2 mod 3

Table 2: Types of singular fibers. Fibers of type zA0 (Kodaira’s I0 ) are
not singular; fibers of type zD4 (Kodaira’s I�0 ) are not detected by the j –
invariant. Fibers of type zA0 or zD4 with complex multiplication of order 2

(respectively, 3) are over the ı–vertices of valency 0 mod 2 (respectively,
over the �–vertices of valency 0 mod 3). The types shown parenthetically
in the table are obtained from the corresponding zA–types by an elementary
transformation (see Section 2.2); the pairs are not distinguishable by the
j –invariant.

The type zA��
0

, zA�
1

, and zA�
2

singular fibers of a trigonal curve are called unstable, and
all other singular fibers are called stable. Informally, a fiber is unstable if its type does
not need to be preserved under equisingular, but not necessarily fiberwise, deformations
of the curve.

A trigonal curve is called stable if all its singular fibers are stable.

The (functional) j –invariant j D j xBW P
1!P1 of a trigonal curve xB �†2 is defined

as the analytic continuation of the function sending a point b in the base P1 of †2 to
the j –invariant (divided by 123 ) of the elliptic curve covering the fiber F over b and
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ramified at F \ . xBCE/. The curve xB is called isotrivial if j xB D const. Such curves
can easily be enumerated; see, eg, Degtyarev [10].

2.1.1 Definition A nonisotrivial trigonal curve xB is called maximal if it has the
following properties:

(1) xB has no singular fibers of type zD4 ;

(2) j D j xB has no critical values other than 0, 1, and 1;

(3) each point in the pullback j�1.0/ has ramification index at most 3;

(4) each point in the pullback j�1.1/ has ramification index at most 2.

The maximality of a nonisotrivial trigonal curve xB � †2 can easily be detected by
applying the Riemann–Hurwitz formula to the map j xBW P

1! P1 ; it depends only
on the (combinatorial) set of singular fibers of xB ; see Degtyarev [10] for details. An
alternative criterion, based on the total Milnor number, is given by Theorem 1.3.1
proved in this paper. The classification of such curves reduces to a combinatorial
problem (see Theorem 2.3.1 below); a partial classification of maximal trigonal curves
in †2 is found in [7]. An important property of maximal trigonal curves is their
rigidity [10]: any small deformation of such a curve xB is isomorphic to xB .

2.2 Elementary transformations

An elementary transformation (sometimes, Nagata elementary transformation) of †p

is a birational transformation †pÜ†pC1 consisting in blowing up a point P in the
exceptional section of †p followed by blowing down (the proper transform of) the
fiber F through P . (In the sequel, we often omit the reference to “the proper transform
of” when it is understood.) The inverse transformation †pC1Ü†p is also called an
elementary transformation; it consists in blowing up a point P 0 not in the exceptional
section of †pC1 followed by blowing down the fiber F 0 through P 0 .

Pick affine charts .xp;yp/ in †p and .xpC1;ypC1/ in †pC1 so that the exceptional
sections are given by yp D1 and ypC1 D1, respectively, the fiber F to be blown
down is given by xp D 0, and the image of F is the origin xpC1 D ypC1 D 0. Then,
under the appropriate choice of .xpC1;ypC1/, the elementary transformation is the
change of coordinates

.2:2:1/ xp D xpC1; yp D ypC1=xpC1:

Let xB�†k be a generalized trigonal curve, ie, a curve intersecting each generic fiber of
the ruling at three points but possibly not disjoint from the exceptional section E . Then,
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by a sequence of elementary transformations, one can resolve the points of intersection
of xB and E and obtain a true trigonal curve xB0 �†k0 , k 0 > k , birationally equivalent
to xB . Alternatively, given a trigonal curve xB �†k with triple singular points, one can
apply a sequence of elementary transformations to obtain a trigonal curve xB0 �†k0 ,
k 0 6 k , birationally equivalent to xB and with zA type singular fibers only.

The j –invariant j xB , being defined as an analytic continuation, does not change under
elementary transformations. One can use this observation to define the j –invariant
and all related objects (see next section) for generalized trigonal curves, as well as for
trigonal curves with triple points, not necessarily simple.

2.3 Dessins and skeletons

The concept of the dessin of a trigonal curve is a modification of Grothendieck’s idea
of dessin d’enfant; it is due to S Orevkov [22], with a further development in [11; 10].

The dessin � xB of a nonisotrivial trigonal curve xB �†k is defined as the planar map
j�1
xB
.P1

R/ � S2 D P1 , enhanced with the following decorations: the pullbacks of 0,
1, and 1 are called, respectively, �–, ı–, and �–vertices of � xB , and the connected
components of the pullbacks of .0; 1/, .1;C1/, and .�1; 0/ are called, respectively,
bold, dotted, and solid edges of � xB . Clearly, the dessin is invariant under elementary
transformations of the curve and, up to elementary transformation and isomorphism,
the dessin determines the curve uniquely (see, eg, Degtyarev [10]; it is essential that
the dessin is considered in the topological sphere S2 ; the analytic structure on S2 is
recovered using the Riemann existence theorem).

The relation between the vertices of the dessin � xB and the singular fibers of xB is
shown in Table 2 (see also Convention 2.3.2 concerning the valencies). The �–vertices
of valency 0 mod 3 and ı–vertices of valency 0 mod 2 are called nonsingular; the
other �– and ı–vertices are called singular, as they correspond to singular fibers of
the curve.

The skeleton Sk xB of a trigonal curve xB is the planar map obtained from the dessin � xB
by removing all �–vertices and solid and dotted edges and ignoring all bivalent ı–
vertices. (Thus, Sk xB is Grothendieck’s dessin d’enfant j�1

xB
.Œ0; 1�/, with the bivalent

pullbacks of 1 ignored.) Skeletons are especially useful in the study of maximal curves.
The skeleton Sk xB of any maximal curve xB has the following properties:

(1) Sk xB is connected;

(2) each �–vertex of Sk xB has valency 1, 2, or 3; each ı–vertex has valency 1 and
is connected to a �–vertex.
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Conversely, any planar map Sk xB � S2 satisfying (1), (2) above extends to a unique,
up to orientation preserving diffeomorphism of S2 , dessin of a maximal trigonal curve:
one inserts a ı–vertex in the middle of each edge connecting two �–vertices, places a
�–vertex uR inside each region R of Sk xB , and connects uR by disjoint solid (dotted)
edges to all �– (respectively, ı–) vertices in the boundary @R.

According to the following theorem, proved in [10], skeletons classify maximal trigonal
curves. For further applications of this concept, see Section 4.2 and Degtyarev [10].

2.3.1 Theorem The fiberwise deformation classes (or, equivalently, isomorphism
classes) of maximal trigonal curves xB � †k with t triple points are in a one-to-one
correspondence with the orientation preserving diffeomorphism classes of skeletons (ie,
planar maps Sk� S2 satisfying conditions (1), (2) above) satisfying the count given
by Corollary 2.5.5.

2.3.2 Convention It is important to emphasize that the skeleton Sk is merely a
convenient way to encode the dessin � of a maximal curve; Sk is a subgraph of � ,
with some vertices and edges removed and some vertices ignored. For this reason,
in the further exposition we freely switch between skeletons and dessins; if only a
skeleton is given, we extend it to the dessin of a maximal curve as explained above.
Convenient in general, this practice may cause a confusion concerning the valencies
of the vertices. To avoid this confusion, by the valency of a vertex v we mean one
half of the conventional valency of v regarded as a vertex of � . In other words, we
only count the edges of one of the two kinds present at v . The number thus defined
is the conventional valency of v in Sk (if v is a vertex of Sk); it is also equal to the
ramification index of j xB at v .

2.4 Markings

Recall that a marking at a trivalent �–vertex v of a skeleton Sk (or dessin � ) is a
counterclockwise ordering fe1; e2; e3g of the three edges (respectively, bold edges)
attached to v . A marking is uniquely defined by assigning index 1 to one of the three
edges. Given a marking, the indices of the edges are considered defined modulo 3, so
that e4 D e1 , e5 D e2 , etc.

A marking at v defines as well an ordering fe0
1
; e0

2
; e0

3
g of the three solid edges attached

to v : we let e0i to be the solid edge opposite to ei .

A marking of the skeleton Sk is a collection of markings at all its trivalent �–vertices.
Given a marking, one can assign a type Œi; j �, i; j 2Z3 , to each edge e of Sk connecting
two trivalent vertices, according to the indices of the two ends of e . A marking of a
skeleton without singular �–vertices is called splitting if it satisfies the following two
conditions:
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(1) the types of all edges are Œ1; 1�, Œ2; 3� or Œ3; 2�;

(2) an edge connecting a �–vertex v and a singular ı–vertex has index 1 at v .

The following statement is proved in [10].

2.4.1 Proposition A maximal trigonal curve xB � †k is reducible if and only if its
skeleton has no singular �–vertices and admits a splitting marking. (Moreover, each
splitting marking defines a component of xB that is a section of †k .)

2.4.2 Remark Proposition 2.4.1 is proved by reducing the braid monodromy (see
Section 4.2 below) to the symmetric group S3 . A marking at a vertex v gives rise to
a natural ordering fp1;p2;p3g of the three points of the intersection Fv \ xB , where
Fv is the fiber over v , and to a canonical basis f˛1; ˛2; ˛3g for the fundamental
group �1 of the curve; see Section 4.2 or Degtyarev [10] for more details. For a
splitting marking, the point p1 over each vertex v belongs to a separate component,
and in the abelianization �1=Œ�1; �1� there is no relation of the form ˛1 D ˛2 or
˛1 D ˛3 . The latter observation, combined with the relation at infinity (see Section 4.3
below) gives one an easy way to find the degree of the corresponding component.

2.5 The vertex count

Given a nonisotrivial trigonal curve xB , denote by #� the total number of �–vertices
(where �– stands for either �–, or ı–, or �–) in the dessin of xB , let #�.i/, i 2N , be
the number of �–vertices of valency i , and let #�.i mod N /, i 2 ZN , be the number
of �–vertices of valency i mod N .

Assume that xB�†k has double singular points only. Then one has (see Degtyarev [10])

deg j xB D
X
i>0

i#�.i/D
X
i>0

i#ı.i/D
X
i>0

i#�.i/;.2:5:1/

6k D deg j xBC 2#�.1 mod 3/C 3#ı.1 mod 2/C 4#�.2 mod 3/;.2:5:2/
#�C #ıC #� > deg j xBC 2;.2:5:3/

the latter inequality turning into an equality if and only if j xB has no critical values
other than 0, 1, and 1, ie, if xB satisfies condition (2) of Definition 2.1.1.

2.5.4 Remark In [11], the number 3k is called the degree deg� xB of the dessin.
(The reason is the fact that generic dessins of degree 3 correspond to plane cubics,
regarded as trigonal curves in †1 .) We define the degree of a skeleton as the degree of
its extension to the dessin of a maximal curve. In general, for a curve xB �†k with t
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(simple) triple points, one has deg� xB D 3.k � t/, cf Section 2.2. In this notation, one
can replace 6k with 2 deg� xB in (2.5.2) and lift the assumption that xB should have
double singular points only.

The next statement is an immediate consequence of (2.5.1)–(2.5.3).

2.5.5 Corollary Let xB � †k be a maximal trigonal curve. Then the numbers of
vertices in its skeleton are subject to the identity

#�C #ı.1/C #�.2/D 2.k � t/;

where t is the number of triple singular points of xB .

Proof By a sequence of elementary transformations one can convert xB to another
maximal trigonal curve xB0 �†k�t (see Section 2.2), which has double singular points
only and has the same dessin as B . Then, it suffices to substitute to (2.5.2) the first
expression for deg j xB from (2.5.1), collect (partially for i D 2) the terms with #�.i/,
i D 1; 2; 3, and divide by 3.

2.6 Proof of Theorem 1.3.1

First, assume that xB has double singular points only. Then

�. xB/D
X
i>0

.i � 1/#� .i/C #ı.1 mod 2/C 2#�.2 mod 3/

(see Table 2). Substituting to (2.5.3) the third expression for deg j xB from (2.5.1), one
obtains the estimate

.2:6:1/ �. xB/6 #�C #ıC #ı.1 mod 2/C 2#�.2 mod 3/� 2;

which is sharp if and only if xB satisfies condition (2) of Definition 2.1.1. Substituting
to (2.5.2) the first two expressions for deg j xB and replacing the valencies of �– and
ı–vertices with their residues modulo 3 (in the range f1; 2; 3g) and 2 (in the range
f1; 2g), respectively, one obtains the inequalities

2k > #�C #ı.1 mod 2/C #�.2 mod 3/;.2:6:2/
3k > #ıC #�.1 mod 3/C #ı.1 mod 2/C 2#�.2 mod 3/;.2:6:3/

which turn into equalities if and only if the dessin of xB has no �–vertices of valency
greater than 3 (for (2.6.2)) or no ı–vertices of valency greater than 2 (for (2.6.3)), ie,
if xB satisfies conditions (3) or (4) of Definition 2.1.1, respectively. Combining this
with (2.6.1) and taking into account that #�.1 mod 3/C #ı.1 mod 2/C #�.2 mod 3/

Geometry & Topology, Volume 14 (2010)
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is the number of unstable fibers of xB , one obtains the desired inequality. The equality
holds if and only if xB is maximal, as the remaining condition (1) of Definition 2.1.1
holds automatically.

If xB has triple points, one can remove them one by one and use induction. Let xP be
a triple point of xB and let xB0 �†k�1 be the curve obtained from xB by the inverse
elementary transformation centered at xP . If xP is of type D4 (and hence xB is not
maximal), then �. xB/D�. xB0/C4 and the inequality for xB0 turns into a strict inequality
for xB . In all other cases, xB and xB0 are or are not maximal simultaneously. If xP
is of type Dp , p > 5, then �. xB/ D �. xB0/C 5 and the unstable fibers of xB0 are in
a one-to-one correspondence with those of xB . If xP is of type E6 , E7 , or E8 , then
�. xB/D �. xB0/C 6 and, on the other hand, xB0 has one extra unstable fiber compared
to xB (of type zA��

0
, zA�

1
, or zA�

2
, respectively). In both cases, the defect in the inequality

for xB0 is the same as the defect in the resulting inequality for xB , and the statement
follows.

3 Plane sextics

The bulk of this section deals with the trigonal models of plane sextics, which are the
principal tool in both the classification and the computation of the fundamental group.
To facilitate the classification, we also prove Proposition 3.1.1, restricting the sets of
singularities of irreducible maximal sextics.

3.1 Irreducible maximal sextics

Recall that a plane sextic B is called maximal if its total Milnor number �.B/ takes
the maximal possible value 19.

3.1.1 Proposition An irreducible maximal plane sextic cannot have a singular point
of type D2k , k > 2 or more than one singular point from the following list: A2kC1 ,
k > 0, D2kC1 , k > 2, or E7 .

Proof Formally, one can derive the statement from Yang’s list [27] of the sets of
singularities realized by irreducible maximal sextics. For a more conceptual proof,
consider the double covering of the plane ramified at the sextic and denote by X its
minimal resolution of singularities. It is a K3 surface. Let LDH2.X /, let † � L

be the sublattice spanned by the classes of the exceptional divisors contracted by the
projection X !P2 , and let S D†˚hhi, where h is the class realized by the pullback
of a generic line. One has h2 D 2 and † is the direct sum of (negative definite)
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irreducible root systems of the same type (A–D–E) as the singular points of the sextic.
Let zS � S be the primitive hull of S in L. As shown in [6], the quotient zS=S is free
of 2–torsion. Hence, the 2–torsion of the discriminant groups discr S D discr†˚Z2

and discr zS coincide. On the other hand, discr zS Š discr S? and, since rk S? D 2,
the 2–torsion of discr† must be a cyclic group.

3.2 Trigonal models: the statements

In Propositions 3.2.1, 3.2.2 and 3.2.4, we introduce certain trigonal curves birationally
equivalent to plane sextics; these curves will be called the trigonal models of the
corresponding sextics. Proofs are given in Sections 3.3–3.5 below.

3.2.1 Proposition There is a natural bijection � , invariant under equisingular defor-
mations, between the following two sets:

(1) plane sextics B with a distinguished type E8 singular point P , and

(2) trigonal curves xB �†3 with a distinguished type zA�
1

singular fiber F .

A sextic B is irreducible if and only if so is xB D �.B/ and, with one exception, B is
maximal if and only if xB is maximal and has no unstable fibers other than F . (The
exception is the reducible sextic B with the set of singularities E8 ˚ E7 ˚ D4 ; in
this case, �.B/ is isotrivial.) Furthermore, for each pair B , xB D �.B/, there is a
diffeomorphism

P2 r .B [L/Š†3 r . xB [E [F /;

where L is the line tangent to B at P and E is the exceptional section.

3.2.2 Proposition There is a natural bijection � , invariant under equisingular defor-
mations, between Zariski open (in each equisingular stratum) subsets of the following
two sets:

(1) plane sextics B with a distinguished type E7 singular point P and without linear
components through P , and

(2) trigonal curves xB � †3 with a distinguished type zA1 singular fiber F and a
distinguished branch at the corresponding type A1 singular point of xB .

A sextic B is irreducible if and only if so is xB D �.B/, and B is maximal if and
only if xB is maximal and stable. Furthermore, for each pair B , xB D �.B/, there is a
diffeomorphism

P2 r .B [L/Š†3 r . xB [E [F /;

where L is the line tangent to B at P and E is the exceptional section.
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3.2.3 Remark Thus, one should expect that, in many cases, a maximal stable pair
. xB;F / as in Proposition 3.2.2(2) would correspond to two deformation classes of
sextics. This is indeed the case; see the sets of singularities marked with a � in Table 3
in Section 6.1. Arithmetically, this phenomenon is probably due to the fact that the
discriminant group discr S has two essentially different copies of h1

2
i, namely, those

coming from discr E7 and from discrhhi. For details, see Degtyarev [6].

3.2.4 Proposition There is a natural bijection � , invariant under equisingular defor-
mations, between Zariski open (in each equisingular stratum) subsets of the following
two sets:

(1) plane sextics B with a distinguished type E6 singular point P , and

(2) trigonal curves xB �†4 with a distinguished type zA5 singular fiber F .

A sextic B is irreducible if and only if so is xB D �.B/, and B is maximal if and
only if xB is maximal and stable. Furthermore, for each pair B , xB D �.B/, there is a
diffeomorphism

P2 r .B [L/Š†4 r . xB [E [F /;

where L is the line tangent to B at P and E is the exceptional section.

3.2.5 Remark There are statements similar to Propositions 3.2.1, 3.2.2, and 3.2.4
for sextics with a distinguished type D singular point. In this case, one would need to
keep track of two (three in the case D4 ) singular fibers of xB .

3.2.6 Remark Informally, the relation between maximal sextics and maximal trigonal
curves follows from the fact that both objects are rigid, ie, curves are isomorphic to
their small equisingular deformations. Formal proofs are given below.

3.3 Proof of Proposition 3.2.1

The bijection � and the diffeomorphism in the statement are given by a birational
transformation P2Ü†3 , so that xB is the proper transform of B : one blows up the
distinguished type E8 point P to get a generalized trigonal curve B0�†1 with a cusp
tangent to the exceptional section of †1 (the exceptional divisor of the blow-up), and
then one applies two elementary transformations to make the curve disjoint from the
exceptional section; see Section 2.2.

Pick affine coordinates .u; v/ in P2 centered at the distinguished singular point P

and with the v–axis along the line L in the statement. By the Bézout theorem, B
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intersects L at one more point vD a¤ 0. Hence, up to higher order terms, B is given
by a polynomial of the form

.3:3:1/ .u3
� v5/.v� a/:

In appropriate affine coordinates .x;y/D .x3;y3/ in †3 , cf Section 2.2, the transfor-
mation is given by the coordinate change

.3:3:2/ uD x3=y; v D x2=y;

(in particular, it restricts to a biholomorphism P2 r L! †3 r .E [ F /), and the
proper transform xB of B is given by

.3:3:3/ .y2
�x/.x2

� ay/:

One can see that F D fx D 0g is a type zA�
1

singular fiber of xB .

The construction is obviously invertible: given a trigonal curve xB �†3 with a type zA�
1

singular fiber F , one can apply two elementary transformations centered at (the trans-
form of) the branch of xB not tangent to F and then blow down the exceptional section
of the resulting Hirzebruch surface †1 ; the result is a sextic with a type E8 singular
point.

Since the curves xB and B are proper transforms of each other, it is immediate that
xB is irreducible if and only if so is B . The assertion on maximal curves follows
from Theorem 1.3.1. Indeed, the total Milnor numbers of B and xB are related via
�. xB/D �.B/� 7: the singular points of B are in a one-to-one correspondence with
those of xB , which are of the same type, except that the type E8 point P corresponds
to the type A1 singular point of xB in the fiber F . Hence, B is maximal if and only if
�. xB/D 12. If xB is not isotrivial (the isotrivial case is treated in the next paragraph),
then, taking into account the fact that xB does have an unstable fiber F , Theorem 1.3.1
implies that the latter equality holds if and only if xB is maximal and has no other
unstable fibers.

If xB is isotrivial, then j xB� 1 (as jF D 1; see Table 2) and, in appropriate affine coordi-
nates .x;y/, the curve is given by the Weierstraß equation of the form y3�yxp.x/D0,
deg pD 5 and p.0/¤ 0. (We assume that xD 0 is the distinguished type zA�

1
fiber F .)

Such a curve has singular points of types A1 , D4 , and E7 (corresponding, respectively,
to simple, double, and triple roots of the equation xp.x/D 0), and the only such set of
singularities with the total Milnor number 12 is E7˚D4˚A1 , the type A1 point being
located in F . (This set of singularities cannot be realized by a maximal nonisotrivial
curve; see Definition 2.1.1(1).) All other statements are straightforward.
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3.4 Proof of Proposition 3.2.2

As in the previous proof, the bijection � and the diffeomorphism are given by a
birational transformation P2Ü†3 : one blows up the distinguished type E7 point P

to get a generalized trigonal curve B0 �†1 that has a node with one of the branches
tangent to the exceptional section of †1 ; then, two elementary transformations centered
at this branch produce a trigonal curve xB �†3 ; see Section 2.2. In appropriate affine
coordinates .u; v/ in P2 and .x;y/ in †3 , such that L is the v–axis and F is the
y –axis, the transformation is given by (3.3.2). Up to higher order terms, the defining
polynomial of a typical (see below) sextic B as in the statement has the form

.3:4:1/ .u2
� v3/.u� bv2/.v� a/;

a; b D const (the smooth branch of B at P is tangent to L and B intersects L at one
more point v D a), and the transform xB of B is given by the polynomial

.3:4:2/ .y � 1/.y � bx/.x2
� ay/:

One can see that F D fx D 0g is a type zA1 singular fiber of xB and xP D .0; 0/ is
a type A1 singular point. The branch x2 D ay of xB at xP is the transform of the
“separate” branch v D a of B ; thus, it is distinguished.

The inverse construction consists in applying two elementary transformations centered
at (the transform of) the distinguished branch of xB at xP , followed by blowing down
the exceptional section of the resulting Hirzebruch surface †1 .

The assertion on the correspondence between irreducible and maximal curves is proved
similar to Section 3.3. This time, one has �. xB/ D �.B/� 6 (the type E7 singular
point P is replaced with the type A1 singular point xP ); hence, B is maximal if and
only if �. xB/ D 13, and Theorem 1.3.1 implies that the latter identity holds if and
only if xB is maximal and stable. Note that xB cannot be isotrivial, as it has a singular
fiber F of type zA1 and j xB.F /D1; see Table 2.

It remains to show that � is defined on a Zariski open subset of each equisingular
stratum. The only extra degeneration that a sextic B within a given stratum may have
is that the smooth branch of B at P may become inflection tangent to L. Then, the
singular fiber F of xB is of type zA2 rather than zA1 . However, from the theory of
trigonal curves it follows that such a fiber can be perturbed to a fiber of type zA1 and a
close fiber of type zA�

0
; this perturbation can obviously be followed by a one-parameter

family of inverse birational transformations †3Ü P2 and hence by an equisingular
deformation of sextics.
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3.4.3 Remark At the end of the proof, we essentially show, using deformations
of trigonal curves, that a line inflection tangent to the smooth branch of a type E7

singular point of a plane sextic cannot be stable under equisingular deformations of
the sextic. Alternatively, one can argue that, if such a line were stable, it would be
a Z–splitting curve in the sense of Shimada [25], and refer to the classification of
Z–splitting curves found in [25]. A similar observation applies as well to the end of
the proof in Section 3.5.

3.5 Proof of Proposition 3.2.4

The bijection � and the diffeomorphism of the complements are given by a birational
transformation P2 Ü †4 : one blows up the distinguished point P to obtain a
generalized trigonal curve B0 �†1 with a branch inflection tangent to the exceptional
section of †1 , and then applies three elementary transformations centered at (the
transforms of) this branch to make the curve disjoint from the exceptional section;
see Section 2.2.

In appropriate affine coordinates .u; v/ in P2 and .x;y/ in †3 , such that L is the
v–axis and F is the y –axis, the transformation is given by

.3:5:1/ uD x4=y; v D x3=y:

A typical (see below) sextic B as in the statement intersects L at two other points
v D a1 , v D a2 , a1 ¤ a2 , a1; a2 ¤ 0. Hence, up to higher order terms, its defining
polynomial has the form

.3:5:2/ .u3
� v4/.v� a1/.v� a2/;

and its transform xB �†4 is given by the polynomial

.3:5:3/ .y � 1/.x3
� a1y/.x3

� a2y/:

One can see that F D fx D 0g is a type zA5 singular fiber of xB . The inverse corre-
spondence is given by three elementary transformations centered at (the transforms of)
the type A5 singular point, followed by blowing down the exceptional section of the
resulting Hirzebruch surface †1 .

The correspondence between irreducible and maximal curves is established as above:
one has �. xB/D �.B/� 1 (the type E6 singular point P is replaced with a type A5

singular point of xB ); hence, B is maximal if and only if �. xB/D 18, and Theorem
1.3.1 implies that the latter identity holds if and only if xB is maximal and stable. Note
that xB cannot be isotrivial, as j xB.F /D1; see Table 2.
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The only extra degeneration that a sextic B may have within a given equisingular
stratum is that it may become tangent to L or one of its type Ap , p > 1, singular
points may slide into L. Then, the fiber F of the transform xB is of type zA6 or zA6Cp ,
respectively. Such a fiber can be perturbed to a fiber of type zA5 and a close fiber
of type zA�

0
or zAp , respectively, and this perturbation is followed by an equisingular

deformation of sextics. Thus, the bijection � is well defined on a Zariski open subset
of each stratum. (An alternative proof of this fact is explained in Remark 3.4.3.)

4 The fundamental group

We outline the strategy used to compute the fundamental groups, explain how the braid
monodromy can be found, and compute a few “universal” relations, present in the
group of any curve in question.

4.1 The strategy

In this section, we consider a plane sextic B with a distinguished type E singular
point P and use Propositions 3.2.1, 3.2.2, and 3.2.4 to transform it to a trigonal curve
xB �†k , k D 3 or 4, with a distinguished singular fiber F . (We assume B generic in
its equisingular deformation class.) In each case, xB has a unique singular point in F ;
it will be denoted by xP . The above cited propositions give a diffeomorphism

P2 r .B [L/Š†k r . xB [E [F /;

where L is the line tangent to B at P . Hence, there is an isomorphism

�1.P
2 r .B [L//Š �1.†k r . xB [E [F //

of the fundamental groups. According to E R van Kampen [20] (see also Fujita [17]),
the passage from �1.P

2 r .B[L// to �1.P
2 rB/ results in adding an extra relation,

which can be represented in the form Œ@��D 1, where � � P2 is a small holomorphic
disk transversal to L and disjoint from B , and Œ@��� �1.P

2 r .B [L// is the class
of the boundary of � (more precisely, its conjugacy class). Denoting by x� the image
of � in †k , one has

.4:1:1/ �1.P
2 rB/Š �1.†k r . xB [E [F //=Œ@x��:

The relation Œ@x�� D 1 is called the relation at infinity; the bulk of this section deals
with computing this relation.

The group �1.†k r. xB[E[F // is computed using the classical Zariski–van Kampen
method [20]. Pick some coordinates .x0;y0/ in the affine chart †k r .E[F /. For the
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further exposition, it is convenient to take

.4:1:2/ x0 D 1=x; y0 D y=xk ;

where .x;y/ are the coordinates about F introduced in Section 3.3–Section 3.5. Let
F1; : : : ;Fr be all singular fibers of xB other than F , and let F0 be a nonsingular fiber.
Pick a closed topological disk � in the x–axis containing all Fj , j D 0; : : : ; r , in
its interior and let �ı D�r fF1; : : : ;Fr g. (We identify fibers with their projections
to the base of the ruling.) Pick a topological section sW �!†k proper in the sense
of [4]. (For all practical purposes, it suffices to consider a constant section y D c ,
where c is a constant, jcj � 0. In [4], one can find a more formal exposition; in
particular, it is shown there that the result does not depend on the choice of a proper
section. A similar approach is found in [1].) Let f˛1; ˛2; ˛3g be a basis for the free
group �F WD �1.F0 r . xB [E/; s.F0//, and let 
1; : : : ; 
r be a basis for the group
�1.�

ı;F0/. Dragging the nonsingular fiber along a loop 
j , j D 1; : : : ; r and keeping
the base point in s , one obtains an automorphism mj 2 Aut�F , which is called the
braid monodromy along 
j . (Since the reference section is proper, this automorphism
is indeed a braid.) In this notation, the Zariski–van Kampen theorem states that

.4:1:3/ �1.†k r . xB [E [F //D
˝
˛1; ˛2; ˛3

ˇ̌
mj D id, j D 1; : : : ; r

˛
;

where each braid relation mj D id, j D 1; : : : ; r , should be understood as the triple
of relations mj .˛i/D ˛i , i D 1; 2; 3.

4.1.4 Remark Since each mj is a braid and thus preserves ˛1˛2˛3 , it would suffice
to keep the relations mj .˛1/ D ˛1 and mj .˛2/ D ˛2 only. Note however that, in a
more advanced setting, the braid monodromy does not necessarily take values in the
braid group, and all three relations should be kept. Besides, following the principle
“the more relations the better”, often it is more convenient to restate the braid relations
in the form mj .˛/D ˛ for each ˛ 2 h˛1; ˛2; ˛3i.

We will also consider the monodromy at infinity m1 , ie, the braid monodromy along
the loop @� (assuming that the base point F0 is chosen in @�).

4.1.5 Proposition Let f
1; : : : ; 
r g be a basis for the free group �1.�
ı;F0/ such

that 
1 � � � 
r D Œ@��. Then the group �1.P
2 rB/ has a presentation of the form˝

˛1; ˛2; ˛3

ˇ̌
mj D id, j D 1; : : : ; r , m1 D id, Œ@x��D 1

˛
:

Furthermore, in the presence of the last two relations, (any) one of the first r braid
relations mj D id can be omitted.
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Proof The presentation is given by (4.1.1) and (4.1.3); the relation m1 D id holds
since m1 Dm1 � � �mr . For the same reason, any monodromy mj0

can be expressed
in terms of m1 and the other monodromies mj , j ¤ j0 ; hence, the corresponding
relation can be omitted.

4.1.6 Remark Note that, unlike, eg, [4], where the case of a nonsingular fiber at
infinity is considered, here the relation m1 D id does not automatically follow from
the relation at infinity. Both relations are computed in Sections 4.4–4.6 below.

4.1.7 Remark Usually, it is convenient to take for f
1; : : : ; 
r g a geometric basis for
the group of the punctured plane �ı : each basis element is represented by the loop
composed of the counterclockwise boundary of a small disk surrounding a puncture
and a simple arc connecting this disk to the reference point; all disks and arcs are
assumed pairwise disjoint except at the common reference point.

4.2 The braid monodromy

The braid monodromy of a trigonal curve xB can be computed using its dessin (skeleton
in the case of a maximal curve); below, we cite a few relevant results of [10].

Recall that the braid group B3 can be defined as h�1; �2 j �1�2�1 D �2�1�2i; it acts
on the free group h˛1; ˛2; ˛3i via

�1W .˛1; ˛2; ˛3/ 7! .˛1˛2˛
�1
1 ; ˛1; ˛3/; �2W .˛1; ˛2; ˛3/ 7! .˛1; ˛2˛3˛

�1
2 ; ˛2/:

Introduce also the element �3 D �
�1
1
�2�1 and consider the indices of �1 , �2 , �3 as

residues modulo 3, so that �4 D �1 etc.

The center of B3 is generated by .�1�2/
3 . We denote by x̌ the image of a braid ˇ 2B3

in the reduced braid group B3=.�1�2/
3 Š Z2 �Z3 . A braid ˇ is uniquely recovered

from x̌ and its degree degˇ 2 B3=ŒB3;B3�D Z. Recall that deg �i D 1.

4.2.1 Remark To be consistent with [10], we use the left action of B3 on the free
group h˛1; ˛2; ˛3i. It appears, however, that the right action is more suitable for the
braid monodromy, as it makes the map �1.�

ı/! B3 a homomorphism rather than an
antihomomorphism. One can check that, with one exception, all expressions involving
braids are symmetric modulo the central element .�1�2/

3 D .�2�1/
3 . Hence, the only

change needed to pass to the right action is the definition of �3 : it should be defined
via �1�2�

�1
1

.
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As in Section 4.1, we fix a disk �� P1 and a proper section s over �. All vertices,
paths, etc. below are assumed to belong to �.

For a trivalent �–vertex v of the skeleton Sk of xB , let Fv be the fiber over v and
let �v D �1.Fv r . xB [E/; s.v//. A marking at v (see Section 2.4) gives rise to
a natural ordering fp1;p2;p3g of the three points of the intersection Fv \ xB and,
hence, to a canonical basis f˛1; ˛2; ˛3g for �v (see Figure 1), which is well defined
up to simultaneous conjugation of the generators by a power of ˛1˛2˛3 , ie, up to the
action of the central element .�1�2/

3 2 B3 . (In the figure, ˛i is a small loop about pi ,
i D 1; 2; 3.)

˛1

˛3
˛2

s.v/

Figure 1: The canonical basis

We extend the notion of canonical basis to the star of v in the dessin, ie, to the
bold and solid edges incident to v , extending to but not including the ı– and �–
vertices. Over these edges, the three points fp1;p2;p3g still form a proper triangle (see
Degtyarev [10]); hence, they are still ordered by the marking at v and one can construct
the loops by combining radial segments and arcs of a large circle. (Alternatively, one
can define this basis as the one obtained by translating a canonical basis over v along
the corresponding edge of the dessin.)

Given two marked trivalent �–vertices u and v of Sk, one can identify �u and �v
by identifying the canonical bases defined by the marking. This identification is well
defined up to the action of the center of B3 (as so are the canonical bases). If u and v
are connected by a path 
 , one can drag the nonsingular fiber along 
 and define the
braid monodromy m
 W �u! �v . Combining this with the identification above, one
can define the element xm
 2 B3=.�1�2/

3 . In particular, this construction applies if u

and v are connected by an edge e of Sk; depending on the type of the edge, xme is
given by the following expressions:

.4:2:2/ xmŒi;iC1� D x�i ; xmŒiC1;i� D x�
�1
i and xmŒi;i� D x�ix�i�1x�i :
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Using these relations, one can compute the reduced monodromy xm
 for any path 

composed of edges of Sk connecting trivalent �–vertices. If 
 is a loop, the true
monodromy m
 is recovered from xm
 and the degree deg m
 , which equals the total
multiplicity of the singular fibers of xB encompassed by 
 . (The multiplicity of a
singular fiber F can be defined as the number of the simplest type zA�

0
fibers into which

F can split.)

Now, let v be a marked trivalent �–vertex of the dessin of xB , and let u be the �–
vertex connected to v by the solid edge e0i . Assume that the valency of u is d , so that
the singular fiber Fu over u is of type zAd�1 ( zA�

0
if d D 1) or zDdC4 ; see Table 2.

Let 
 be the loop composed of a small counterclockwise circle around u connected
to v along e0i . Then, in any canonical basis for �v defined by the marking at v , the
monodromy m
 along 
 is given by

.4:2:3/
m
 D �

d
iC1; if Fu is a type zA fiber, or

m
 D �
d
iC1.�1�2/

3; if Fu is a type zD fiber.

4.2.4 Remark It is obvious geometrically (and can easily be shown formally) that the
reduced monodromy given by (4.2.2) along the boundary of a d –gonal region of the
skeleton, when lifted to a braid of appropriate degree, coincides with the monodromy
about a d –valent �–vertex given by (4.2.3).

4.3 The relation at infinity and the monodromy at infinity

We keep using the notation of Section 4.1. In order to compute the relation at infinity
Œ@x�� D 1, assume that � is the closure of the projection of the disk x� and that the
reference fiber F0 is chosen in @�.

Dragging a nonsingular fiber along @x� and keeping two points in s and @x� , one can
define the monodromy m along @x� as an automorphism of the relative homotopy set
�1.F0 r . xB [E/; .F0 \ @x�/ [ s.F0/; s.F0//. Pick a path p connecting s.F0/ to
F0\ @x� in F0 r . xB [E/. Then one has

p � Œ@x�� �m.p/�1
D Œs.@�/��1:

This relation holds in any reasonable fundamental group, eg, in the group of the
complement of . xB [E/ in the pullback of @�. Indeed, when dragged with the fiber,
the arc p spans a square S shown in Figure 2, disjoint from xB and E , and the product
of the four paths forming the boundary @S (with appropriate orientations) is a null
homotopic loop. Note that the counterclockwise directions of @x� and @� (induced
from the complex orientations of the respective disks) are opposite to each other.
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s.@�/

p

@x�

m.p/

Figure 2: The square spanned by p

Since Œs.@�/� D 1 in �1.†k r . xB [E [F // (the loop is contractible along s.�/),
the relation at infinity Œ@x��D 1 takes the form

p �m.p/�1
D 1:

The image m.p/ of a suitable arc p can easily be found using the local forms given
by (3.3.3), (3.4.2), and (3.5.3). One can take for � a small disk in the line v D d ,
d D const, so that x� is the disk

.4:3:1/ fjxj6 �; y D xk�1=dg;

and compute the monodromy along the loop xD � exp.2� i t/, t 2 Œ0; 1�. (Note that, in
the coordinates .x;y/, the “constant” section sW x0 7! c D const is given by x 7! cxk

(see (4.1.2)); hence, the base point makes k full turns about the origin.) We omit the
details, merely stating the result in Sections Section 4.4–Section 4.6 below.

One can use the same local models to compute the monodromy at infinity m1 . In
other words, m1 is the local braid monodromy about F (in the clockwise direction)
composed with .�1�2/

3k (due to the fact that the base point makes k full turns about
the origin). Below, we compute and simplify the group of relations Œ@x��D 1, m1D id,
which are present in the fundamental group of any curve in question; see Proposition
4.1.5.

The results of the computation are stated in Sections 4.4–4.6. We take for the reference
fiber F0 the fiber Fv over a trivalent �–vertex v of the dessin of xB connected by
an edge to the vertex u corresponding to the distinguished fiber F , and take for
f˛1; ˛2; ˛3g a canonical basis in �F D �v defined by a marking at v . The particular
choice of the marking in each case is described below.

4.4 The case of type E8

Assume that P is of type E8 , and hence F is of type zA�
1

; see Proposition 3.2.1. Let b
be the branch of xB at xP that is not vertical. Then x� is an ordinary tangent to b
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(see (3.3.3) and (4.3.1)), and the relation at infinity is

.4:4:1/ �3
D ˛1˛

2
2 ;

assuming that ˛2 is represented by a loop about b (so that the edge Œv;u� is e2 at v ).
The monodromy at infinity is m1D .�1�2/

9.�1�2�1/
�1 , and the corresponding braid

relations are

˛1 D �
�3.˛1˛2/˛3.˛1˛2/

�1�3; Œ˛2; �
�3˛1�D 1; ˛3 D �

�3˛1�
3:

In view of (4.4.1), the second relation becomes a tautology and the other two turn into

.4:4:2/ ˛3 D ˛2˛1˛
�1
2 and Œ˛1; ˛

3
2 �D 1:

In particular, ˛3
2

is a central element.

4.5 The case of type E7

Assume that P is of type E7 , and hence F is of type zA1 ; see Proposition 3.2.1. Then
x� is tangent to the distinguished branch b of xB at xP . Unless stated otherwise, we will
choose the basis ˛1 , ˛2 , ˛3 so that
(�) ˛2 and ˛3 are represented by loops about the two branches of xB at xP and ˛2

corresponds to the distinguished branch b. In particular, Œv;u� is the edge e0
1

at v .

(Occasionally, we will also consider the case when the generator corresponding to b is
˛3 .) Then, the relation at infinity is

�3
D ˛2˛3˛2 or �3

D ˛2˛3˛2˛3˛
�1
2 ;

assuming that ˛2 or, respectively, ˛3 corresponds to b. The monodromy at infinity is
m1 D .�1�2/

9��2
2

, the corresponding braid relations being

Œ˛1; �
3�D 1 and Œ˛i ; �

�3.˛2˛3/�D 1; i D 2; 3:

Combining the last pair of relations with the relation at infinity, one concludes that
(assuming that ˛2 corresponds to b)

.4:5:1/ Œ˛2; ˛3�D 1 and Œ˛i ; �
3�D Œ˛i ; ˛

2
2˛3�D 1; i D 1; 2; 3:

Then the relation at infinity takes the form

.4:5:2/ �2˛1 D ˛2:

If the generator corresponding to b is ˛3 , instead of (4.5.1) and (4.5.2) one has

.4:5:3/ Œ˛2; ˛3�D Œ˛i ; �
3�D Œ˛i ; ˛2˛

2
3 �D 1; i D 1; 2; 3; and �2˛1 D ˛3:
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4.6 The case of type E6

Assume that P is of type E6 , and hence xP is of type A5 ; see Proposition 3.2.1. Then
x� is inflection tangent to each of the two branches of xB at xP , and the relation at
infinity is

.4:6:1/ �4
D .˛2˛3/

3;

assuming that ˛2 and ˛3 are represented by loops about the two branches at xP (so
that Œv;u� is the edge e0

1
at v ). The monodromy at infinity is m1 D .�1�2/

12��6
2

,
and the corresponding braid relations are

Œ˛1; �
4�D 1 and Œ˛i ; �

4.˛2˛3/
�3�D 1; i D 2; 3:

These relations follow from (4.6.1).

5 The inclusion homomorphism

Here, we compute the homomorphism of the fundamental groups induced by the
inclusion to P2 of a Milnor ball M about a type E singular point P of a sextic B .
These results are used in Section 7.

5.1 The setup

In order to compute the inclusion homomorphisms, we represent the sextic B by the
polynomial given by (3.3.1), (3.4.1), or (3.5.2), assuming all parameters involved real
and positive, and generate the group �1.M rB/ by the classes of appropriately chosen
loops ˇ1 , ˇ2; ˇ3 in the complement fv D �gr B , where � � 1 is a positive real
constant. (In what follows, we identify the loops and their classes.) Each loop ˇi ,
i D 1; 2; 3, is composed of a small circle Ci about a point of intersection fv D �g\B

and a path pi connecting a point ri 2Ci to the base point, which is a large real number.

The image of the line fv D �g in †k is the parabola fxk�1 D �yg. It intersects the
“constant” section fy0 D cg D fy D cxkg used to define the braid monodromy at the
origin and at the point r0 WD .x0;y0/D .1=�c; 1=�

kck�1/. We assume that c is also
a real constant, 0� c � 1=� , so that y0 � 0, and take r0 for the common base
point in both the line fv D �g and the reference fiber F 0

0
D fx D x0g. (This fiber may

differ from the reference fiber considered in Section 4; the necessary adjustments are
explained below.)

Now, consider the fiber F 0i , i D 1; 2; 3, passing through ri . (We keep the same
notation Ci , ri , and pi for the images of the corresponding elements in †k .) The
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point ri is close to a branch of xB ; let ˇ0i 2 �1.F
0
i r . xB [ E/; ri/ be the element

represented by a small circle through ri encompassing this branch. Dragging F 0i
along pi while keeping the base point in pi , one defines the braid monodromy

m0i W �1.F
0
i r . xB [E/; ri/! �1.F

0
0 r . xB [E/; r0/:

(One should make sure that pi does not pass through the origin in the line fv D �g.) It
is immediate that m0i.ˇ

0
i/ represents the image of the generator ˇi under the inclusion

homomorphism (cf Figure 3, where the curve xB , the line fv D �g, and the section s

are drawn in bold, dashed, and dotted lines, respectively; the two grey lassoes, one in
fv D �g and one in the fiber F 0i D F 0

0
, represent the same element of the fundamental

group).

Figure 3: Computing the inclusion homomorphism

5.2 The case of type E7

The original curve B is given by (3.4.1). All three points of intersection of B and
the line fv D �g are real, and we take for fˇ1; ˇ2; ˇ3g a “linear” basis, numbering the
intersection points consecutively by the decreasing of the u–coordinates and taking
for pi segments of the real line, circumventing the interfering intersection points and
the origin in the counterclockwise direction.

All three points of intersection of xB and the reference fiber F0 are also real, and we
choose a similar “linear” basis f˛0

1
; ˛0

2
; ˛0

3
g for the group �1.F

0
0
r . xB[E/; r0/. Then

one has
ˇ1 7! ˛01; ˇ2 7! ˛02; ˇ3 7! .˛02˛

0
3/
�1˛01.˛

0
2˛
0
3/:
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In order to pass to the reference fiber F0 considered in Section 4.5 and a canonical
basis f˛1; ˛2; ˛3g satisfying (�), one can drag F 0

0
along the arc x D x0 exp.� i t=2/,

t 2 Œ0; 1�. Then ˛0
1
D ˛1 , ˛0

2
D ˛2˛3˛

�1
2
D ˛3 (we use the commutativity relation

in (4.5.1)), and ˛0
3
D ˛2 . Finally, the inclusion homomorphism is given by

.5:2:1/ ˇ1 7! ˛1; ˇ2 7! ˛3; ˇ3 7! .˛2˛3/
�1˛1.˛2˛3/:

5.3 The case of type E8

The curve B is given by (3.3.1), and the points of intersection of B and the line
fv D �g are the three roots u D

3
p
�5 . Let fˇ1; ˇ2; ˇ3g be a basis similar to the

one shown in Figure 1, with the paths pi composed of radial segments and the arcs
uD const � exp.˙2� i t=3/, t 2 Œ0; 1�. We assume that the generator corresponding to
the real branch of B is ˇ2 .

All three points of intersection of xB and the reference fiber F0 are real, and we choose
a “linear” basis f˛1; ˛2; ˛3g as in Section 5.2 for the group �1.F

0
0
r . xB [E/; r0/.

Dragging F0 along the arc xD x0 exp.� i t/, t 2 Œ0; 1�, to the fiber fxD��g, one can
see that ˛1 , ˛2 , ˛3 are indeed equal to the basis elements considered in Section 4.4.

In these bases, the inclusion homomorphism is given by

.5:3:1/ ˇ1 7! .˛1˛2/˛3.˛1˛2/
�1; ˇ2 7! ˛1; ˇ3 7! ˛3:

5.4 The case of type E6

The curve B is given by (3.5.2), the intersection points of B and fvD �g are the three
roots uD

3
p
�5 , and we take for fˇ1; ˇ2; ˇ3g the same basis as in Section 5.3. The basis

f˛1; ˛2; ˛3g in the reference fiber is chosen “linear” as above; these elements do satisfy
the conditions imposed in Section 4.6. In these bases, the inclusion homomorphism is
given by

.5:4:1/ ˇ1 7! .˛1˛2˛3/˛1.˛1˛2˛3/
�1; ˇ2 7! ˛1; ˇ3 7! .˛2˛3/

�1˛1.˛2˛3/:

6 The computation

In this section, Theorems 1.2.1 and 1.2.2 are proved. Throughout the section, we
fix the following notation: B stands for an irreducible maximal plane sextic with a
distinguished type E7 singular point P , and L � P2 is the line tangent to B at P .
We denote by xB and F , respectively, the trigonal curve corresponding to B and its
distinguished fiber (see Proposition 3.2.2); Sk stands for the skeleton of xB .
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6.1 Proof of Theorem 1.2.1

According to Proposition 3.1.1, all triple points of B other than P are of type E6

or E8 . Let t D 0, 1, or 2 be their number. Then Sk has the following properties:

(1) deg SkD 9� 3t and Sk has exactly t singular vertices, none of which is ı–;

(2) if t D 0, then Sk does not admit a splitting marking (Proposition 2.4.1).

Conversely, in view of Theorem 2.3.1, any skeleton Sk satisfying (1) and (2) above (for
some integer t >0) represents an irreducible maximal trigonal curve xB as in Proposition
3.2.2; hence, it represents two irreducible maximal sextics with a distinguished type E7

singular point.

The distinguished fiber F is located at the center of a bigonal region R of Sk. In the
drawings below, we show the boundary of R in grey.

Assume that all �–vertices in the boundary of R are nonsingular. Then R looks as
shown in Figure 4. This fragment of the skeleton (if present) is called the insertion.
The two branches of xB at the node located in F are in a natural correspondence with
the two edges of @R; hence, selecting one of the branches (see Proposition 3.2.2) can
be interpreted geometrically as selecting one of the two arcs in the boundary of the
insertion.

R

Figure 4: The insertion

Removing the insertion and patching it with an edge, one obtains another valid skeleton
Sk0 of degree 6� 3t 6 6, cf Figure 5. (Note that one has t 6 1 in this case.) The
�–vertices of Sk0 are in a one-to-one correspondence with the same valency vertices
of Sk other than the two vertices in @R. Conversely, given a skeleton Sk0 of degree
6�3t 6 6 with t singular �–vertices, t D 0; 1, one can place the insertion at the middle
of any edge of Sk0 to obtain a new skeleton Sk satisfying (1) above.

6.1.1 Lemma If t D 0, the skeleton Sk admits a splitting marking if and only if so
does Sk0 .

Proof It is immediate that any splitting marking of Sk restricts to a splitting marking
of Sk0 and, vice versa, any splitting marking of Sk0 extends (uniquely) to a splitting
marking of Sk.

Geometry & Topology, Volume 14 (2010)



422 Alex Degtyarev

6.1.2 Remark This trick, replacing a given skeleton Sk by another skeleton Sk0

obtained from Sk by removing a certain fragment, appears on numerous occasions
in the classification of plane sextics and, more generally, in the study of extremal
elliptic surfaces. It would be interesting to understand if the passage from Sk to Sk0

corresponds to a simple geometric construction defined in terms of trigonal curves or
covering elliptic surfaces. At present, I do not know any geometric interpretation.

Thus, the classification of skeletons Sk satisfying conditions (1) and (2) above and
containing an insertion can be done in two steps:

� The classification of skeletons of degree 6 without singular vertices and not
admitting a splitting marking, and the classification of skeletons of degree 3 with
exactly one singular vertex, which is �–. This is done in [7], and the complete
list is presented in Figure 5(a)–(e).

� Placing an insertion with one of the two arcs selected to one of the edges of each
skeleton Sk0 discovered at step one.

The second step is clearly equivalent to choosing a pair .e; o/, where e is an edge of Sk0

and o is a coorientation of e . Such pairs are to be considered up to orientation preserving
automorphisms of Sk0 � S2 . All essentially distinct edges e (with the coorientation o

ignored) are shown in Figure 5(a)–(e). Taking into account the coorientation, one
obtains the list given by Table 3, lines 1–9.

1
2

1

1̄

2
3

(a) (b) (c)

1
2

(d) (e) (f) (g)

Figure 5: The skeletons Sk0 and Sk

The few remaining cases, when the boundary of R contains singular �–vertices, can
easily be treated manually using the vertex count given by Corollary 2.5.5. The
two skeletons obtained are shown in Figure 5(f), (g), and the corresponding sets of
singularities are listed in Table 3, lines 10, 11.
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# Set of singularities Figure Count �1 S?

1 E7˚ 2A4˚ 2A2 5(a) .1; 0/ 6.8 .15; 0; 15/
2 � E7˚A12 5(b)–1 .0; 1/ 6.3 .7; 2; 2/
3 � E7˚A10˚A2 5(b)–2 .2; 0/ 6.5 .11; 0; 3/
4 E7˚ 2A6 5(c)–1;x1 .0; 1/ 6.7 .7; 0; 7/
5 � E7˚A8˚A4 5(c)–2 .0; 1/ 6.3 .23; 2; 2/
6 � E7˚A6˚A4˚A2 5(c)–3 .2; 0/ 6.5 .35; 0; 3/
7 � E7˚E6˚A6 5(d)–1 .0; 1/ 6.3 .11; 2; 2/
8 � E7˚E6˚A4˚A2 5(d)–2 .2; 0/ 6.5 .15; 0; 3/
9 E7˚E8˚ 2A2 5(e) .1; 0/ 6.5 .3; 0; 3/

10 E7˚ 2E6 5(f) .1; 0/ 6.6 .3; 0; 3/
11 � E7˚E8˚A4 5(g) .0; 1/ 6.3 .3; 2; 2/

Table 3: Maximal sets of singularities with a type E7 point represented by
irreducible sextics

The results of the computation are collected in Table 3, where we list the set of
singularities, the skeleton Sk of xB , the number of deformation classes (see below),
and a reference to the computation of the fundamental group. A set of singularities is
marked with a � if it is realized by two equisingular deformation classes which have
the same skeleton but differ by the selected branch of the insertion. (In the terminology
of Proposition 3.2.2, the two families differ by the distinguished branch of xB at xP .)
For completeness, we also list the lattice S? corresponding to the homological type
of the sextic (see Degtyarev [6] for the definitions): the notation .a; b; c/ stands for
the quadratic form generated by two elements u, v with u2 D 2a, u � v D b , and
v2 D 2c . The lattice is obtained by comparing two independent classifications, those
of curves and of abstract homological types, and taking into account the number of
classes obtained (see also Shimada [26]).

The number of deformation classes is listed in the form .nr ; nc/, where nr is the
number of real curves and nc is the number of pairs of complex conjugate curves.
(Thus, the total number of classes is nr C 2nc .) Real are the curves whose skeletons
admit an orientation reversing automorphism of order 2 (with the marked arc taken into
account); otherwise, two symmetric skeletons represent a pair of complex conjugate
curves.

6.2 Proof of Theorem 1.2.2

We compute the fundamental groups using the strategy outlined in Section 4.1 and
the presentation given by Proposition 4.1.5. As in Section 4.3, we choose for the
reference fiber F0 the fiber Fv over a �–vertex v connected by an edge to the �–
vertex corresponding to F , and consider a canonical basis f˛1; ˛2; ˛3g for the group
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�F D �v defined by an appropriate marking. In most cases, we assume that the basis
satisfies (�). Then, for all groups, the relations m1 D id and Œ@x�� D 1 are given
by (4.5.1) and (4.5.2), and the remaining braid relations mj D id are computed using
the techniques outlined in Section 4.2; in most cases, just a few extra relations suffice
to show that the group is abelian. A detailed case by case analysis is given in Sections
6.3–6.8 below.

A great deal of the calculation in Sections 6.3–6.8 was handled using GAP [18]. In most
cases, we merely input the relations and query the size of the resulting group; having
obtained six, we know that the group is Z6 . In the more advanced case in Section 6.8,
we quote the GAP input/output in Figure 10.

6.3 Sets of singularities numbers 2, 5, 7, and 11

Assume that the distinguished fiber F has a neighborhood shown in Figure 6. (The
leftmost �–vertex can be either bi- or trivalent; it is not used in the calculation.)

v

Figure 6: A special fragment of the skeleton

Assume that the distinguished branch is such that the basis in �v satisfies (�). (The
case when the generator corresponding to the distinguished branch is ˛3 is treated
similarly; alternatively, one can argue that the corresponding fragment is obtained
from the one considered by the complex conjugation.) Then, the braid relation about
the type zA�

0
singular fiber represented by the rightmost loop of the skeleton is ˛2 D

.˛�1
2
˛1˛2/˛3.˛

�1
2
˛1˛2/

�1 . In the presence of (4.5.1), it simplifies to ˛�1
1
˛2˛1D ˛3 .

Let

.6:3:1/ G D h˛1; ˛2; ˛3 j (4.5.1), (4.5.2), ˛�1
1 ˛2˛1 D ˛3 i:

Since ˛2 , ˛3 commute and ˛�1
1
.˛2

2
˛3/˛1 D .˛2

2
˛3/, one has ˛�1

1
˛3˛1 D ˛2

2
˛�1

3
.

Thus, the conjugation by ˛1 preserves the abelian subgroup generated by ˛2 and ˛3 ,
and the map t W w 7! ˛�1

1
w˛1 is given by

t W ˛2 7! ˛3 7! ˛2
2˛
�1
3 7! ˛3

3˛
�2
2 7! � � � :

Using the noncommutativity relations obtained, one can move all three copies of ˛1

in (4.5.2) to the left; this gives ˛3
1
D˛�1

2
˛�2

3
. In particular, t3D id and hence ˛3

2
D˛3

3
.
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Now, it is easy to see that the commutant ŒG;G� Š Z3 is generated by the central
order 3 element ˛2˛

�1
3

and the abelianization xG WDG=ŒG;G� is the group

abhx̨1; x̨2; x̨3 j x̨2 D x̨3; 3.x̨1C x̨2/D 0i:

(Here, the bar stands for the projection of an element to the abelianization.)

For any group �1 with central commutant (for example, for any quotient group of G

above), the map xx ^ xy 7! Œx;y� 2 Œ�1; �1� is a well defined skew-symmetric bilinear
form

V2
x�1! Œ�1; �1� (where x�1 WD �1=Œ�1; �1�); clearly, the group is abelian if and

only if this form is identically zero. In particular, abelian are the fundamental groups
of irreducible sextics with the sets of singularities numbers 2, 5, 7 and 11 in Table 3,
as in this case x�1 is cyclic and

V2
x�1 D 0.

6.4 Proofs of Proposition 1.2.4 and Corollary 1.2.5

The arguments in Section 6.3 apply as well to a reducible maximal sextic B , provided
that the skeleton of the trigonal model of B has a fragment shown in Figure 6. Such
skeletons can be enumerated similar to Section 6.1, placing an insertion to an appropriate
edge of one of the skeletons of reducible trigonal curves found in [7]. There are four
skeletons with a loop, which result in the five sets of singularities listed in Proposition
1.2.4. (In one case, there is an extra choice of the singular fiber to be converted to a
D–type point by an elementary transformation.)

Figure 6 implies that the two branches of xB at xP are in the same irreducible component;
hence, the corresponding sextic B splits into two irreducible cubics (at least one having
a cusp). Furthermore, analyzing the other possibilities, one can deduce that each
set of singularities listed in Proposition 1.2.4 is realized by a unique, up to complex
conjugation, equisingular deformation family of sextics splitting into two cubics. (The
set of singularities E7˚A9˚A2˚A1 is also realized by two other families: one
can start from the skeleton marked zA7˚

zA1˚ 2zA�
0

in [7] and place the insertion as
shown in Figure 7. In this case, the two branches at xP are in two distinct components
of xB and, depending on the branch distinguished, the corresponding sextic splits into a
quintic and a line or a quartic and a conic.)

As explained in Section 6.3, the fundamental group �1 of each of the curves obtained is
a quotient of the group G given by (6.3.1), and the commutator form

V2
x�1! Œ�1; �1�

is determined by the value Œx̨1; x̨2�. Thus, the only question is whether an extra relation
in the fundamental group implies Œx̨1; x̨2� D 0; if such a relation does exist, �1 is
abelian; otherwise, �1 D G . The remaining relations are easily found using the
techniques explained in Section 4.2. For example, the monodromy along the boundary
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of the 2n–gon adjacent to the insertion (assuming that this region does not contain a zD–
type fiber) gives the relation .˛1˛2/

n D .˛2˛1/
n ; in G , it simplifies to nŒx̨1; x̨2�D 0;

hence, it is a tautology if n D 0 mod 3, and it implies that the quotient is abelian if
n¤ 0 mod 3. (Note that this region must have an even number of corners, as otherwise
the relation would imply x̨1D x̨2 and the curve would be irreducible.) We omit further
details; the final result is stated in Proposition 1.2.4.

6.5 Sets of singularities numbers 3, 6, 8 and 9

Assume that the distinguished fiber F has a neighborhood shown in Figure 7. (The
leftmost �–vertex can be either bi- or trivalent; it is not used in the calculation.) In
other words, we assume that one of the regions adjacent to the bigon R containing F

is a triangle. Then, from Figure 5 it follows that the other region adjacent to R is a 3–,
5–, 7– or 11–gon.

Figure 7: Another special fragment

Over one of the two grey vertices in Figure 7 (depending on the distinguished branch)
a canonical basis can be chosen to satisfy (�). In this basis, in addition to (4.5.1)
and (4.5.2), the singular fibers inside the two regions adjacent to R give the relations

.6:5:1/ .˛1˛2/
m˛1 D ˛2.˛1˛2/

m; .˛1˛3/
n˛1 D ˛3.˛1˛3/

n;

where either m D 1 and n D 1; 2; 3; 5 or n D 1 and m D 1; 2; 3; 5. (The relations
are given by (4.2.3); for the second relation in (6.5.1), we use the commutativity
Œ˛2; ˛3� D 1.) Using GAP [18], one can see that, for each pair .m; n/ as above, the
group h˛1; ˛2; ˛3 j (4.5.1), (4.5.2), (6.5.1)i has order six; hence, it is abelian.

6.6 The set of singularities E7 ˚ 2E6 (number 10)

In this special case, the skeleton of xB has no trivalent �–vertices. However, we can
choose a basis similar to the one shown in Figure 1 and satisfying (�) in the fiber F0

over a point in the (open) solid edge connecting the �–vertex representing F and an
appropriate �–vertex. Then, both (4.5.1) and (4.5.2) still hold and, in addition, the
monodromy about the type zE6 singular fiber close to F0 gives the relations

˛2˛1˛2˛3 D ˛1˛2˛3˛1; ˛3˛1˛2˛3 D ˛1˛2˛3˛2:

Using GAP [18], one can conclude that the resulting group has order six; hence, it is
abelian.
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6.7 The set of singularities E7 ˚ 2A6 (number 4)

After an automorphism and/or complex conjugation, one can assume that the insertion R

is as shown in Figure 8 and that a canonical basis over v can be chosen to satisfy (�).

v

v0 v00
S

Figure 8: The set of singularities E7˚ 2A6

Then, in addition to (4.5.1) and (4.5.2), one has relations (6.5.1) with mD nD 3 (given
by the two heptagons adjacent to the insertion) and a relation ˛0

1
D ˛0

2
˛0

3
˛0

2
�1 given

by the monodromy along the loop Œ@S �, where S is the region shown in Figure 8 and
˛0

1
, ˛0

2
, ˛0

3
is an appropriate canonical basis in the fiber over v00 . Connecting v00 to v

via v0 and using (4.2.2), one obtains

˛01 D .˛1˛2/
�1˛1.˛1˛2/; ˛02 D .˛1˛2/

�1˛2.˛1˛2/; ˛03 D ˛3;

and, in view of the fact that ˛2 and ˛3 commute, the relation about Œ@S � simplifies to

˛1 D .˛2˛1/˛3.˛2˛1/
�1:

Using GAP [18], one finds that the group obtained has order six; hence, it is abelian.

6.8 The set of singularities E7 ˚ 2A4 ˚ 2A2 (number 1)

After an automorphism and/or complex conjugation, one can assume that the skeleton
of xB is as shown in Figure 9 and that a canonical basis over v can be chosen to
satisfy (�).

v

S

Figure 9: The set of singularities E7˚ 2A4˚ 2A2
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Then, in addition to (4.5.1) and (4.5.2), one has relations (6.5.1) with mD nD 2 (given
by the two pentagons adjacent to the insertion) and the relation

.6:8:1/ .˛1˛3˛
�1
1 /˛2.˛1˛3˛

�1
1 /D ˛2.˛1˛3˛

�1
1 /˛2

given by the monodromy along the boundary of the triangle S shown in Figure 9. The
monodromy about the remaining singular fiber contained in the remaining triangular
region of the skeleton can be ignored due to Proposition 4.1.5. Thus, the fundamental
group �1.P

2 rB/ is given by

.6:8:2/
˝
˛1; ˛2; ˛3

ˇ̌
(4.5.1), (4.5.2), (6.8.1), (6.5.1) with mD nD 2

˛
:

Denote this group by G . Using GAP [18] (see Figure 10), one can see that:

(1) one has ord G D 41040D 24 � 33 � 5 � 19, and the commutant ŒG;G� is a perfect
group of order 6840D 23 � 32 � 5 � 19;

(2) the only perfect group of order 6840D ordŒG;G� is SL.2;F19/;

(3) relation (6.8.1) in (6.8.2) follows from the others (as dropping this relation does
not change the order of the group);

(4) the order of each generator ˛i , i D 1; 2; 3, in G equals 6 � 19;

(5) the group G is generated by ˛1 and ˛2 only, as well as by ˛1 and ˛3 only.

Due to (3), one can drop relation (6.8.1); then (6.8.2) turns into the presentation given
in the statement of Theorem 1.2.2. The abelianization of G is the cyclic group Z6

generated by the image x̨1 of ˛1 . Hence, due to (4), the map x̨1 7! ˛19
1

splits the
exact sequence

f1g �! ŒG;G� �!G �! Z6 �! f1g;

representing G as a semidirect product of its abelianization and its commutant.

This completes the proof of Theorem 1.2.2.

6.8.3 Proposition Let B be an irreducible plane sextic with the set of singularities
E7˚ 2A4˚ 2A2 , and let M be a Milnor ball about the type E7 singular point of B .
Then the inclusion homomorphism �1.M rB/! �1.P

2 rB/ is onto.

Proof The statement follows from (5) above and from (5.2.1), which implies that ˛1

and ˛3 are in the image of the inclusion homomorphism.

7 Perturbations

We compute the fundamental groups of all perturbations of a type E7 singular point
and apply these results to prove Theorem 1.2.3.
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gap> f := FreeGroup(3);;
gap> r1 := f.2*f.3*f.2^-1*f.3^-1;;
gap> r2 := (f.1*f.2*f.3)^3/(f.2*f.3^2);;
gap> r3 := f.1*(f.1*f.2*f.3)^3*f.1^-1*(f.1*f.2*f.3)^-3;;
gap> r4 := (f.1*f.2)^2*f.1/(f.2*(f.1*f.2)^2);;
gap> r5 := (f.1*f.3)^2*f.1/(f.3*(f.1*f.3)^2);;
gap> r6 := f.1*f.3*f.1^-1*f.2*f.1*f.3*f.1^-1/(f.2*f.1*f.3*f.1^-1*f.2);;
gap> g := f / [r1, r2, r3, r4, r5, r6];;
gap> Size(g);
41040
gap> List(DerivedSeriesOfGroup(g), AbelianInvariants); ## [G,G] is perfect
[ [ 2, 3 ], [ ] ]
gap> List(DerivedSeriesOfGroup(g), Size); ## order of [G,G]
[ 41040, 6840 ]
gap> NumberPerfectGroups(6840); PerfectGroup(6840); ## [G,G]=SL(2,19)
1
L2(19) 2^1 = SL(2,19)
gap> Size(f / [r1, r2, r3, r4, r5]); ## drop r6
41040
gap> Size(Subgroup(g, [g.1])); ## order of g.1
114
gap> Index(g, Subgroup(g, [g.1, g.2])); ## g.1, g.2 generate G
1
gap> Index(g, Subgroup(g, [g.1, g.3])); ## g.1, g.3 generate G
1

Figure 10: The GAP output for E7˚ 2A4˚ 2A2

7.1 Perturbations of a type E7 singularity

Let P be a type E7 singular point of a plane curve B , let M be a Milnor ball
about P , and let Bt , t 2 Œ0; 1�, be a small perturbation of B D B0 which remains
transversal to the boundary @M . We are interested in the perturbation epimorphism
�1.M rB/� �1.M rBt /, t ¤ 0.

According to E Looijenga [21], the deformation classes (in the obvious sense) of
perturbations of a simple singular point P can be enumerated by the induced subgraphs
of the Dynkin diagram of P (up to a certain equivalence, which is not important here).
Comparing two independent classifications, one can see that any perturbation Bt of a
type E7 singular point can be realized by a family Ct �C2 of affine quartics inflection
tangent to the line at infinity (see, eg, Degtyarev [2]), so that .M;Bt /Š .C2;Ct / for
each t 2 Œ0; 1�. The groups �1.C

2 rCt / for such quartics are found in [3], and all
but five of them are abelian. The sets of singularities (perturbations) with nonabelian
fundamental group are those listed in Figure 11 and A2 ˚ 3A1 , which is a further
perturbation of D5˚A1 not changing the group.
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A4˚A2 A3˚A2˚A1 A5˚A1 D5˚A1

Figure 11: Perturbations of E7 with nonabelian fundamental group

In order to (re-)compute the four nonabelian groups, we realize each perturbation by a
family xBt �†2 , t 2 Œ0; 1�, of trigonal curves with a common type zA�

1
singular fiber F ,

so that xB0 is the isotrivial curve given by y0
3
D x0y0 . (We use the same coordinates

.x0;y0/ as in (4.1.2); in fact, xBt can be obtained from the family Ct above by a
birational transformation, similar to Section 3.3.) Then M rBt Š†2r . xBt [E[F /,
and the group �1.†2 r . xBt [E [F // can be found using the techniques outlined
in Section 4.1, without adding the relation at infinity.

The skeleton of a typical curve xBt , t ¤ 0, which is maximal, is one of those shown in
Figure 11. Let u be the ı–vertex representing the fiber at infinity F , and let v be the
�–vertex connected to u. We take Fv for the reference fiber, and choose a canonical
basis fı1; ı2; ı3g for �v defined by the marking in which Œv;u� is the edge e1 at v .
The braid monodromy is computed using Section 4.2. In each case, there are two
relations (4.2.3) given by the �–vertices connected to v by the edges e0

1
and e0

3
. For

the third �–vertex, if present, one should connect it to v by a solid edge and a chain
of bold edges and use (4.2.2).

The relations obtained are:

� A4˚A2 : ı1ı2ı1 D ı2ı1ı2 , .ı2ı3/2ı2 D ı3.ı2ı3/2 , ı2 D ı3ı1ı�1
3

;

� A3˚A2˚A1 : Œı1; ı3�D 1, .ı1ı2/2 D .ı2ı1/2 , ı2ı3ı2 D ı3ı2ı3 ;
� A5˚A1 : Œı2; ı3�D 1, .ı1ı2/3 D .ı2ı1/3 , ı3 D ı1ı2ı�1

1
;

� D5˚A1 and A2˚ 3A1 : Œı1; ı2�D Œı1; ı3�D 1, ı2ı3ı2 D ı3ı2ı3 .

7.1.1 Remark The first group is shown in [3] to be isomorphic to Z� SL.2;F5/.
The last group is obviously Z � B3 . For the group G corresponding to the set of
singularities A5˚A1 , one can easily deduce that ı3

1
is a central element and then

obtain a short exact sequence

f1g �! ZŒt �=.t3
� 1/ �!G �! Z �! f1g;

the generator of the quotient Z acting on the kernel via the multiplication by t . (As a
ZŒt �–module, the kernel is generated by ı2 .) This result also agrees with [3].
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7.2 Proof of Theorem 1.2.3

It suffices to study the perturbations of the only sextic B with nonabelian fundamental
group, ie, the one considered in Section 6.8. The set of singularities of B is E7˚

2A4˚ 2A2 .

The perturbations of the A–type points can be treated within the framework of the
paper, using the trigonal model xB of B . If one of the two type A4 points is perturbed,
a monovalent �–vertex appears in one of the two regions adjacent to the insertion
(see Figure 9); hence, the group gets an additional relation ˛1 D ˛2 or ˛1 D ˛3 (ie,
(6.5.1) with mD 0 or nD 0) and, in view of the commutativity relation Œ˛2; ˛3�D 1,
becomes abelian. The two cusps of xB are interchanged by the complex conjugation,
and it suffices to perturb the one represented by the region S in Figure 9. Then, a
monovalent �–vertex appears in S and the fundamental group gets an extra relation
˛1˛3˛

�1
1
D ˛2 (instead of (6.8.1)). Thus, the group is a quotient of the group G given

by (6.3.1) and hence is abelian; see Section 6.3.

Now, consider a perturbation B0 of the type E7 point P . Let M be a Milnor ball
about P . If the group �1.M rB0/ is abelian, then �1.P

2 rB0/ is also abelian due
to Proposition 6.8.3. For the four nonabelian groups �1.M rB0/ (see Section 7.1),
we use the description of the inclusion homomorphism found in Section 5.2. The
“linear” basis fˇ1; ˇ2; ˇ3g considered in Section 5.2 differs from the canonical basis
fı1; ı2; ı3g used in Section 7.1 by “half” the monodromy about a type E7 singular
point: one has

ı1 D .ˇ1ˇ2ˇ3/ˇ2.ˇ1ˇ2ˇ3/
�1; ı2 D .ˇ1ˇ2/ˇ3.ˇ1ˇ2/

�1; ı3 D ˇ1:

Hence, in terms of the ıi , the inclusion homomorphism is given by

ı1 7! ˛1˛
�1
2 ˛1˛3˛

�1
1 ˛2˛

�1
1 ; ı2 7! ˛1˛

�1
2 ˛1˛2˛

�1
1 ; ı3 7! ˛1:

(We used the commutativity relations (4.5.1) to simplify the expressions obtained.)
Now, it remains to express the extra relations in terms of the ˛–basis, add them to the
presentation given by (6.8.2), and use GAP [18]. (In fact, in each of the four cases listed
in Section 7.1, the first extra relation alone make the group abelian.)
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