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Equivariant covers for hyperbolic groups

ARTHUR BARTELS
WOLFGANG LUCK
HOLGER REICH

We prove an equivariant version of the fact that word-hyperbolic groups have finite
asymptotic dimension. This is important in connection with our forthcoming proof of
the Farrell-Jones conjecture for K. (RG) for every word-hyperbolic group G and
every coefficient ring R.

20F65, 20F67; 37D40, 57TMO07

1 Introduction

The asymptotic dimension of a metric space X was introduced by Gromov in [11, p 29].
It can be defined as the smallest number N such that for every o > 0 there exists an
open cover U of X with the following properties:

e dmU <N,

e The Lebesgue number of U/ is at least «, ie, for every x € X thereis U e U
such that x* C U, where x* is the open ball of radius « around x;

e The members of U have uniformly bounded diameters.

Recall that a cover U is of dimension < N if every x € X is contained in no more
then N + 1 members of I/. The asymptotic dimension of a finitely generated group
is its asymptotic dimension as a metric space with respect to any word metric. An
important result of Yu [19] asserts that the Novikov conjecture holds for groups of finite
asymptotic dimension. This can be viewed as an injectivity result for the assembly
map in L—theory (after inverting 2). Further injectivity results for assembly maps
for groups with finite asymptotic dimension can be found in Bartels [1], Carlsson and
Goldfarb [6] and Bartels and Rosenthal [4]. On the other hand no surjectivity statement
of assembly maps is known for all groups of finite asymptotic dimension and this is
very much related to the absence of any equivariance condition for the cover U/ as
above.
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Definition 1.1 Let G be a group and Z be a G-space. Let F be a collection of
subgroups of G. An open cover U of Z is called an F—cover if the following two
conditions are satisfied.

(i) For g e G and U € U we have either g(U)=U or g(U)NU = g;
(ii) For ge G and U €Y we have g(U) elU;
(iii) For U € U the subgroup Gy :={g € G | g(U) = U} is a member of F.

Let G be a word-hyperbolic group. Fix a set of generators S. Let dg be the word
metric on G with respect to S. Let X be a hyperbolic complex with an isometric
G —action in the sense of Mineyev [14]; see Section 6.1. Let dX be the Gromov
boundary of X . (This boundary can be described as a quotient of the set of geodesic
rays in X, where two such rays are identified if they are asymptotic [5, III.H.3].)
Let X := X UdX be the compactification of X [5, IIL.LH.3]). Let VCyc denote the
collection of virtually cyclic subgroups of G, that is of subgroups that have a cyclic
subgroup of finite index. The following is our main result and should be thought of
as an equivariant version of the (much easier) fact that hyperbolic groups have finite
asymptotic dimension [11, p31; 17].

Theorem 1.2 Let G be word-hyperbolic and let X be a hyperbolic complex. Suppose
that there is a simplicial proper cocompact G —action on X . Equip G x X with the
diagonal G —action. Then there exists a natural number N = N(G, X) depending
only on G and X such that the following holds: For every a > 0 there exists an open
VCyc—cover U of G x X satisfying

() dim@U) < N;

(ii) For go € G and ¢ € X there exists U € U such that gy X1c} S U, where g§ is
the open ball with center gy and radius o with respect to the word metric dg ;

(iii)) G\U is finite.

This result plays an important role in our proof of the Farrell-Jones conjecture for
K« (RG) for every word-hyperbolic group G and every coefficient ring R [3].

The conclusion of Theorem 1.2 is formally similar to the definition of finite asymptotic
dimension discussed above. The price we have to pay for the equivariance of the cover
U is the space X . For the application it will be very important that X is compact. (If
we replace X by a finite dimensional G—C W —complex all whose isotropy groups lie
in VCyc, then the conclusion follows easily from the fact that G has finite asymptotic
dimension.) The members of I/ are only large in the G —coordinate; in the X —coordinate
they may be very small. Similar covers have been used in a slightly different situation
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Equivariant covers for hyperbolic groups 1801

where X is replaced by a probability space with a measure preserving action of G;
compare Gromov [12, p300] and Sauer [18]. It would be interesting to know if there
is a version of Theorem 1.2 in this situation.

It seems reasonable to hope that the class of groups G for which there is a compact
G —space X such that the conclusion of Theorem 1.2 holds is bigger than the class of
hyperbolic groups.

The proof of Theorem 1.2 is quite involved and uses a generalization of techniques
used and developed by Farrell-Jones in [7]. Firstly, we study flows on metric spaces
and prove the existence of long and thin covers; see Theorem 1.4. This generalizes
the long and thin cells from [7, Proposition 7.2]. Secondly, we use a variant FS(X) of
Mineyev’s half open symmetric join # X [14]. This space is a substitute for the sphere
bundle of a negatively curved manifold and is equipped with a flow ¢, (corresponding
to the geodesic flow on the sphere bundle). In Theorem 1.5 we improve upon Mineyev’s
flow estimate [14, Theorem 57 on page 468]. The required cover is then produced by
pulling back a long and thin cover of FS(X) by the composition of the flow ¢, for
large 7 with an embedding GxX — FS(X). A more detailed discussion follows in
Sections 1.1 and 1.2.

1.1 Long thin covers
The existence of long thin covers will be proven in the following situation.

Convention 1.3 Let

e (G be a discrete group;
e X be a metrizable topological space with a proper cocompact G —action on X ;
e ®: X xR — X be aflow.

Assume that the following conditions are satisfied:
e & is G—equivariant;

e The number of closed orbits, which are not stationary and whose period is < C,
of the flow induced on G\ X is finite for every C > 0;

e X—XRijs locally connected (notation explained below);

o If we put

kg :=sup{|H| | H € G subgroup with finite order | H |},
dy = dim(X — X®),

then kg < oo and dy < co.
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Recall that a G'—action is proper if for every x € X there exists an open neighborhood
U such that the set {g € G | U NgU # @} is finite. Recall that X is locally connected
if for each x € X and each open neighborhood U of x we can find a connected open
neighborhood U’ of x with U’ C U. A G-space X is called cocompact if G\X
is compact. The dimension of a collection of subsets {U; | i € I} is < d, if every
point is contained in at most d + 1 members of the U;. The covering dimension of a
space X is < d if every open covering has an open refinement whose dimension is
less or equal to d . One may replace the covering dimension dy of X — X® appearing
above by the supremum of the covering dimensions of compact subsets of X — X®.
Recall that an equivariant flow ®: R x X — X is a continuous R—action, such that
®.(gx) = gP;(x) holds forall g € G, t € R and x € X. We denote by XR the
R-fixed point set, ie, the set of points x € X for which ®,(x) = x forall r € R. The
period of a closed orbit of ® which is not stationary is the smallest number 7 > 0 such
that ®,(x) = x holds for all x in this orbit.

The following is our main result in this situation.

Theorem 1.4 There exists a natural number N depending only on kg, dy and the
action of G on an arbitrary small neighborhood of X® such that for every a > 0 there
is an YCyc—cover U of X with the following two properties:

(i) dimU < N;

(i) Forevery x € X there exists U € U such that
Pl_g,01(x) 1= {Pr(x) [ T €[, ]} S U:

(iii) G\U is finite.

The main difference between Theorem 1.4 and [7, Proposition 7.2] is that we deal with
metric spaces rather than manifolds. This requires a different type of general position
argument (compare Section 3) and forces us to work with open covers rather than cell
structures. While cell structures of a manifold are automatically finite dimensional, in
our situation more care is needed to establish the bound on the dimension of &/ and
our bound is much larger then the dimension of the metric space X . Finally, we deal
with an honest proper action and do not require a torsion free subgroup of finite index,
as is used in [8].

The proof of Theorem 1.4 will be given in Section 5 and depends on Sections 2, 3 and 4.
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1.2 The flow space

Let G be a hyperbolic group. Fix a set of generators S. Let dg be the word metric
on G with respect to S. Let X be a hyperbolic complex and X = X U dX be its
compactification as before. Assume that G acts isometrically on X . In Section 6 we
introduce the metric space (FS(X), drs). This space is equipped with an isometric
G —action and a G —equivariant flow ¢;.

Our main flow estimate is the following.

Theorem 1.5 There exists a continuous G —equivariant (with respect to the diagonal
G —action on the source) map j: GxX — FS(X) such that for every o > O there exists
a number 8 = B(«) such that the following holds:

If g,h € G withdg(g,h) <« and ¢ € X then there is Ty € R with |to| < B such that
forall t e R

drs(¢cj(g,¢)s Prtroj(h,0)) = fa(T).
Here f,: R — [0, 00) is a function that depends only on « and has the property that
limr o0 fa(7) =0.

An important ingredient of the proof of this result is Theorem 7.1 which is an improve-
ment of Mineyev’s [14, Theorem 57 on page 468]. The main differences are that we
consider points not necessary on the same horosphere, and that we consider the action
of the flow ¢, and not translation by length. In addition, Mineyev’s estimate is in terms
of a pseudo-metric, not in terms of the metric dps.

In order to apply Theorem 1.4 to FS(X) we need further properties of the flow space
and G.

Proposition 1.6
(i) The order of finite subgroups in G is bounded.
(i) FS(X)—FS(X)R is locally connected and has finite covering dimension.

(iii) If the action of G on X is cocompact and proper, then action of G on FS(X) is
also cocompact and proper.

(iv) If the action of G on X is cocompact and proper, then the number of closed
orbits, which are not stationary and whose period is < C, of the flow induced on
G\FS(X) is finite for every C > 0.

The proof of Theorem 1.5 will be given in Section 8 and depends only on Sections 6
and 7. The proof of Proposition 1.6 will be given in Section 9 and depends only on
Sections 2 and 6.
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1.3 Construction of the cover

Using the results from Sections 1.1 and 1.2 we can now give the proof of Theorem
1.2. During this proof we will use the following notation: if A is a subset of a metric
space Z and § > 0, then A% denotes the set of all points z € Z for which d(z, A) <§;
compare Definition 3.1.

Proof Consider any o > 0. Let 8 = B(«) be the number appearing in Theorem 1.5.
It follows from Proposition 1.6 that Theorem 1.4 can be applied to FS(X'). Thus there
is a number N (independent of «) such that there exists an VCyc—cover V of FS(X)
of dimension no more than N with the following property: For every & € FS(X) there
exists Vg € )V such that

Pr—2p,2p1(6) = {¢ (&) | T € [-28,2B]} € V.
Since ¢[_»p,24)(&) is compact, V¢ is open and ¢[_»p24)(§) € Vg, we can find §¢ > 0
(depending on & and B, Vg) such that
8
(¢r-28.2816) " < Ve

Because G acts by isometries, we can arrange that §g = ¢ holds for all g € G.

In particular we get g - (¢[_2332ﬂ](,§))85 = (qb[_zﬁ,zﬂ](gé))‘sgé. For & € FS(X) pick
€g > 0 such that

0<eﬂ65 <8$/2.

Again we arrange that €,¢ = €¢ holds for all g € G. Obviously the collection

{(d)[—ﬁ,,s](é))Eg 1§ € FS(X)}

is an open covering of FS(X). Since G acts cocompactly, we can find finitely many
points & for i = 0,1,2,...,1 for some positive natural number I such that the
G —cofinite collection

{(¢[—ﬁ,ﬂ](g$i))6g5f |g€G.ie{0, 1,2...,1}}

is an open covering of FS(X). Consider £ € FS(X). Then we can find i =i(§) €
{0,1,2...,1} and g = g(£) € G such that £ € (¢[_ﬂ,3] (géi))egéi . In particular, there
is 7 € [, B] such that drs(§, p:(g&i)) < €g¢; . Let

§:=min{dg, /2]i =0,1,2...,1}.

Consider ¢ € (q’)[_ﬁ,ﬁ](é))g. Choose o € [—8, B] satistying dps(C, ¢po(£)) < 8. In the
following estimate we will use Lemma 7.2. (In this lemma the more careful notation
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dFS,xo is used for dFS-)

drs(C, Potc(85) < drs(C, do(§)) + drs(po (£), po+:(2Ei))
<8+elol drg(E, po(g8))
<§+ L €gf;

< 5gEi

Since o + 7 € [-28, 28], this implies

8 See;
(¢-p.818)" < ($-2p.251(g61)) 7 < Ve,
Thus we have found 6 > 0 such that for every & € FS(X) there exists Vg €V such that

1.7) (¢[—ﬂ,ﬂ](§))8 C V.

We will construct the desired open covering I/ of G x X by pulling back V' with the
composition
G x ¥ 5 Fs(x) 25 Fs(x)

for an appropriate real number 7, where j is the map from Theorem 1.5. Obviously
U has for every choice of 7 all the desired properties except for the property that there
exists Ug,,¢) € U such that g x {c} € Uy, ) forevery ¢ € X and every go € G.

We conclude from Theorem 1.5 for 7 € R and the function f, appearing in Theorem
1.5
b:0j(2.0) € (91-p.0(@x 0 j(g0.c))"

for all c € X and all g € G with dg(go.g) < «. By Theorem 1.5 there is T such that
fa(t) < 8. For such a choice of T we conclude from (1.7) that

P 0 j(g.c) € (dr—p g ° j(Lo, C)))‘s C Vg,0j(g0.0)

forall c € X and all g € G with dg(g, go) < «. This finishes the proof of Theorem
1.2. |
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2 Boxes

Convention 2.1 Throughout this section we consider

e adiscrete group G';
e a metrizable topological space X;
e a proper cocompact G —action on X ;

¢ a G-equivariant flow ®: X x R — X such that X — X® is locally connected.

2.1 Basics about boxes

In this subsection we introduce and study the notion of a box.

Definition 2.2 Let B be a subset of a G—space. Define a subgroup of G by
Gp := {g€G|gB= B},
where gB :={gb | b € B}.

A subset B of a topological G —space is called an F—subset for a collection F of
subgroups of G, if Gp belongs to F and for all g € G we have the implication
gBNB#o = B=gB.

Notice that gB = B does not imply that gb = b holds for all b € B. We denote by
Fin the collection of finite subgroups.

Definition 2.3 A box B is a subset B € X with the following properties:

(i) B is a compact Fin—subset;

(i) There exists a real number [/ = /g > 0, called the length of the box B, with the
property that for every x € B there exists real numbers ¢—(x) <0 <a4(x) and
€(x) > 0 satisfying

[ =ay(x)—a—(x);
®.(x) € B fort €la—(x),a+(x)];
O (x) & B for T € (a—(x) —€(x),a—(x)) U (a+(x),a+(x) + €(x)).
Definition 2.4 Let B C X be a box. Then the following data are associated to it:

e The length Ig > 0;
e Let Gp C G be the finite subgroup {g € G | gB = B};
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e We denote by B° the (topological) interior and by dB the (topological) boundary
of BC X;

e Let Sp C B be the set of points {x € B |a—_(x) +a+(x) =0}. We call Sp the
central slice of B

e Let 91+ B be the set of points {x € B |at(x) =0} ={¢,, (x)(x) | x € Sp}. We
call 0_ B the bottom and 04+ B the top of B. Define the open bottom and open
top 01 B° :={¢a (x)(x) | x € SpN B°};

e Let mg: B — Sp be the retraction onto the central slice which sends x to

Do (x)+a_(x))/2(X)-

Remark 2.5 A box does not intersect X® but may intersect a closed orbit. A box
does never contain a closed orbit. It may happen that a nonclosed orbit meets the
central slice infinitely many times, but whenever it meets the central slice it has to leave
the box before it comes back to the central slice. We do not require that the central
slice is connected. We have for x € B, t € [a—(x), a4+ (x)] that ®;(x) € B and

a—(Pr(x)) =a—(x)—1;
a(P:(x)) =a4(x)—7.
Lemma 2.6 Let B C X be a box of length | = [g. Then the following holds:
(i) Wegetforge Gp andxe X
a—(gx) = a—(x);
a+(gx) =a(x).

The bottom d— B, the open bottom d_— B°, the top d+ B, the open top d4+ D°, the
central slice Sp and the interior B° are Fin—subsets of G and satisfy (unless
they are empty)

Gp=Gpo=Gy_p=Gy_po =Gy, =Gy, po=0Ggp;

(i) The maps
ar: B—>R, xay(x)
are continuous;

(iii) The maps

W Spx[=1/2,1/2] 5 B, (x,7) > ®p(x)

and p~ BiSBx[—l/2,l/2], X ((Da_(x)+a+<x>(x),l/2—a+(x))
a-tay )
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are to one another inverse G g—homeomorphisms, where Gp = Gg, acts on
Spx[—1/2,1/2] by g-(s,t) = (gs.1).

We have
B° = nu((SpNB°)x(=1/2,1/2));
0B = n((SpNaB)x[~1/2,1/2]U(Sp x{-1/2,1/2})):

0+B = n(Spx{xl/2});
0+ B° = p((SpN B°) x{£l/2});

(iv) The space S N B° is locally connected;

(v) There exists €eg > 0 depending only on B such that the numbers €(x) appearing
in Definition 2.3 can be chosen so that €(x) > €g holds for all x € B.

Proof (i) For x € B and g € Gg we have &, (x) e B <& g- P (x) = . (gx) € B.
This implies a4+ (gx) = a4 (x) for x € B and g € Gpg. We conclude from the definition
of the bottom d_ B, the open bottom d_B°, the top d+ B, the open top d+ B°, the
central slice Sp and the interior B° that these sets are G g invariant and contained
in the Fin—subset B. Hence they are themselves Fin—subsets of X and satisfy
Gp = Gpo =Gy_p =Gy, p = Gg, if nonempty.

(i) Consider x € B and € > 0 with € < €(x), where €(x) is the number appearing
in Definition 2.3. The points @, (x)+¢(x) lie outside B. Since B is compact and
X is a Hausdorff space, we can find an open neighborhood Vi of @, (x)+e(x)
such that V1 does not meet B. Put UL = (@ai(x)ie)_l(Vi). Then x € U+ and
@y, (x)+e(u) does not lie in B for u € Ux. This implies a4 (u) < a4 (x) + € for
ueUyNBand a_(x)—e <a—(u) foru e U_NB. Pt U =U_NU4LNB.
Then U C B is an open neighborhood of x in B such that a_(x) — e < a—_(u) and
a+(u) <ay(x)+ € holds for u € U. Since a4 (u) —a—(u) =1 forall u € U, we
conclude a (1) € (a+(x)—€,a+(x)+¢€) forall u € U. Hence a4 is continuous.

(iii) The maps p and ! are continuous since ® and by assertion (ii) the maps a4
and a—_ are continuous. One easily checks that they are inverse to one another.

Since the flow is compatible with the G—action and Gp = G g, the map p is Gg, =
G p—equivariant.

Next we prove
Q2.7 1 ((SpNB°)x(=1/2,1/2)) € B®;
(2.8) w((SpNaB) x[—1/2,1/21U(Spx{-1/2,1/2})) € dB.

Consider (x,7) € (SgN B°) x (=[/2,1/2). Since a— and a4+ are continuous by
assertion (ii) and a—(x) = —//2 and a4+ (x) =1/2, we can find an open neighborhood
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U C B° of x such that T € (a—(u),a+(u)) holds for all u € U. Hence ®,(U) is
contained in B. Since ®.(U) is an open subset of X', we have ®,(U) € B°. Since
w(x, ) = & (x) lies in ®(U), the inclusion (2.7) is proven.

Consider x € Sg. Let U € X be an open neighborhood of ®;/,(x). Since R —
X, 7+ ®;(x) is a continuous map, there is an € with 0 <€ <//2 such that &, (x) e U
holds for t € (I/2—¢€,1/2+€). Since {O.(x) |t € (I/2—¢€,[/2)} is contained in
B and {®,(x) |t €(//2,]/2+ €)} is contained in X — B, the open neighborhood
U of ®;/5(x) intersects both B and X — B. This shows ®;/5(x) = u(x,//2) € 0B.
Analogously one proves ®_;/,(x) = u(x,—[/2) € 0B.

Consider x € SpNdB and t € (—1/2,1/2). We want to show u(x,t) € dB. Suppose
the converse. Since u(x, 7) = ®;(x) belongs to B, there must be an open neighborhood
U of ®;(x) such that U C B. Since the functions a¢— and a4 are continuous by
assertion (ii) and a—(x) = —//2 < —t < a4 (x) = 1/2, we can arrange by making
U smaller that —t € (a—(u), a+(u)) holds for all u € U. Hence ®_,(U) is an open
subset of X which is contained in B and contains x. This contradicts x € dB. This
finishes the proof of (2.8). Now assertion (iii) follows from (2.7) and (2.8).

(iv) Since B° is an open subset of the locally connected space X — X R, it is itself
locally connected. Because of assertion (iii) the space Sp N B° x (=1/2,1/2) is
locally connected. Since the projection Sg N B° x (—//2,1/2) — Sp N B° is an open
continuous map and the image of a connected set under a continuous maps is again
connected, Sp N B° is locally connected.

(v) Suppose that such ep does not exists. Then we can find a sequence (x;),>¢o of
elements in B and a sequence (t),>0 > 0 of positive real numbers with limy,— o 7, =0
such that one of the following holds for n > 0:

@ Py (x,)—1,(Xn) € B and ®,_(x,)—c(xy) & B for 7 € (0, 1)
(®) Pu, (x)+7,(Xn) € B and @y (x,)+¢(Xn) & B for T € (0, 7y)

By passing to a subsequence we can arrange that x, converges to some point x € B
and (a) holds for all # > 0 or (b) holds for all # > 0. We only treat the case (a),
where ®,_(x,)—z,(Xn) € B and ®,_(x,)—c(xn) &€ B for v € (0, 7,) holds for all
n > 0, the proof in the other case (b) is analogous. Put y, = ®,_(x,)—1, (xx). Then
Vn € 04+ B for all n > 0 since y, € B and ®(yn) = Py_(x,)—1,+7(Xn) ¢ B holds
for 7 € (0, t,). We conclude limy,— o0 a—(x,) = a—(x) from assertion (ii). Hence
limy 00 yn = ®4_(x)(x). Since y, € 34+ B for n > 0, we have lim, o yn € 0+ B.
This contradicts ®,_(y)(x) € 0—B since /g > 0. |

We mention that in general Sp itself is not locally connected.
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Remark 2.9 It is a little bit surprising that the function a1 is continuous as stated in
Lemma 2.6 (ii) since there seem to be no link between different flow lines entering the
box. The point here is that we require the box to be compact. If G is trivial and we
consider the flow ¢;(x, y) = (x + 1, y) on R?, the subset of R? given by

B = {(x.y)|x.ye[=L1,y #0;U{(x,0) | x €[0,2]}

satisfies all the requirements of a box of length 2 except for compactness and the
functions a- are not continuous at (0, 0).

Definition 2.10 Consider a box B of length /p. Let V C Sp be a nonempty closed
Fin-subset of the Gg,—space Sp and a, b real numbers with —/p/2 <a <b <Ip/2.
Define a new box of length b —a by

B(Via,b) := @ p)(V) :={P:(v) |[veV, 1 €la,b]}.

If a=—v/2 and b = v/2 for some v € [0, w] we abbreviate

B(V;v):= B(V;—v/2,v/2).
If a=—Ip/2 and b = Ip/2, we abbreviate

B(V):=B(V:—lp/2,15/2),
and call B(V) the restriction of B to V.
We have to show that B(V;a, b) is again a box. Since V is a closed subset of the
compact set Sy, it is compact. Hence V x [a, b] is compact. We conclude that

B(V,a, b) as the image of a compact set under the continuous map ®: X xR — X is
compact. From Lemma 2.6 we get Gp = G5, and the G p—equivariant homeomorphism

uwgB: SBX[—IB/2,IB/2]E>B, (x,7) > & (x).

The subset V' of the Gg—space Sp isa Fin—subset. Hence B(V;a,b) = upg(V Xx[a, b))
is a Fin—subset of the Gp—space B. Since B is a Fin—subset of the G —space X,
B(V;a,b) is a Fin—subset of the G—space X. Consider x € B(V;a,b). We can
write itas x = ®;(v) forve Sp and t €[a, b]. Put a_(x) =a—t and a4 (x) =b—r.
Let €(x) for x € B be the number appearing in the Definition 2.3 of a box for B. Now
one easily checks that the collections a4 (x) and €(x) have the desired properties of
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Definition 2.3 for B(V;a, b). This shows that B(V;a, b) is a box. We have
0_B(V;a,b) = O4(V);
I+ B(V:a,b) = Pp(V):
0_B(V;a,b)° = ®,(V N B°);
0+B(V;a,b) = ®p(V N B°);
SBwiab) = Pazn (V).

In particular B(V';v) is a box of length v with central slice V' and B(V) is box of
length /p with central slice V.

2.2 Constructing boxes

Lemma 2.11 Forevery x € X — X® there exists a nonequivariant box whose interior
contains x.

The following proof is a variation of an argument used in [16, Theorem 1.2.7].

Proof of Lemma 2.11 Because the G —action on the metrizable space X is proper
and cocompact X is locally compact; compare [13, Theorem 1.38 on page 27]. Let
a > 0 with ®4(x) # x. Let Wi be a closed neighborhood of ®4(x) that does
not contain x. By continuity there exist compact neighborhoods U’ C U of x and
€ > 0 such that @[y +o4+U C Wi and @ qU’ C U and U is disjoint from
W_UW,y. Let f: X —[0,00) be a continuous function with f(y) =1 for y € U
and f(y) =0 for y € W_U W,. Define y: U — R by

Y() =In ( [ f(d%(y))e"dr) |

(The logarithm makes sense because the integrant is nonnegative, continuous, and
positive for T = 0.) Let y e U’ . If 5 € [*a — €, a + €] then ®g(y) € W4 and
therefore f(®s(y)) = 0. Using this we compute for § € [—¢, €]

Y (5(r) = ln( [ f(q>r+8(y))e_rdr)

oa+6
—in ( / f(d%(y))e"”dr)

—a+6
a+6
=1In (e5 f_ » f(@,(y))e—fdr)
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:8+ln( af(@,(y))e_rdr)
=5+

Define S :=U' Ny~ (Y (x)). Then B :={®.(s) |s €S, 1 €[—€/2,€/2]} is a box
whose interior contains x. O

Definition 2.12 Let C be a box of length /¢ . Let
uc: Se x[—lc/2,lc/2] - C, (x,7)> O (x)
be the homeomorphism appearing in Lemma 2.6 (iii).

Consider a subset S C C. It is called transversal to the flow with respect to C if
MEI (S)YN{x} x[—Ic/2,lc /2] consists of at most one point for every x € Sc.

Lemma 2.13 Let C be box of length [ . Let B be a box with B € C. Then we can
find for every x € Sp a closed neighborhood U C Sp of x satisfying

(i) U isa Gy—invariant Fin—subset of the Gp—space Sp;

(i1) U is transversal to the flow with respect to C .

Proof Let t5,: Sp — [—Ic/2,Ic /2] be the continuous function given by the restric-
tion to Sp of the composite of the projection S¢ x[—I¢c/2,Ic/2]—[—Ic/2,!c /2] and
/LEI . Let U; € Sp be a closed neighborhood of x € Sp such that |5, (1) —t5,(x)| <
IB/2 holds for u € U;. Choose a closed neighborhood U, € Sp of x such that
gU, NUy # @ = g € Gx holds for g € Gp. Put U = (¢, g(U1 NU2). This
is a closed neighborhood of x in Sp which is Gy —invariant, a Fin—subset of the
Gp-space Sp and satisfies |tg, (1) —t5,(x)| <Ig/2 forueU.

It remains to show that U is transversal to the flow with respect to C. Suppose the
converse. So we can find ug,u; € U, v € S¢ and 19, 71 such that ug = P, (v),
u; = O, (v) and 79 # 7. Note that 79 = 7g,(ug) and 71 = 7g,(u;). Since
B is a box of length /g, we can find for i = 0,1 real numbers ¢; > 0 such that
@l—15/2,15/2)(ui) € B and O (u;) ¢ B for v € (—Ip/2—€;, —Ip/2)U(Ip/2,1p/2+¢€i).
This implies |71 —7¢| >/p. Butby the definition of U, [t1—7¢| =15, (1t1)—Ts5 (110)| =
|tsz(u1) — 155 (X)| + 155 (x) — 15,5 (1o)| < Ip. This is the required contradiction. O

Next we show for x € X that the existence of nonequivariant box containing x in its
interior already implies the existence of an equivariant box containing X in its interior.
The basic idea of proof is an averaging process in the time direction of the flow applied
to the central slice of a nonequivariant box.
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Lemma 2.14 Suppose for the point x € X that there is a nonequivariant box whose
interior contains X .

Then there exists a box B in the sense of Definition 2.3 satisfying

(i) Gp=Gsyz=0GCx;
(i) xeSpNB°;

(iii)) Sp is connected.

Proof Let C be a nonequivariant box, ie a box in the sense of Definition 2.3 in the
case, where the group G is trivial, such that x € C°. Let [ = /¢ be the length of C.
Since the G —action on X is proper by assumption and X is metrizable, we can find a
closed neighborhood U of x such that U is a Fin—subset of X with Gy = Gx. We
can assume without loss of generality that x € S¢ N C° and C C U holds and for
every t € [—/,—//2]UJ[l/2,]] and s € S¢ we have ®,(s) € C°, otherwise replace C
by an appropriate restriction. Let S¢ be the central slice of C. Let

w: Sex[=1/2,1/2] > C, (s,7) > Dr(s)

be the homeomorphism of Lemma 2.6 (iii). Since S¢ is compact, C° C X is open,
G is finite and X is metrizable, we can find a compact neighborhood Sy € S¢ N C°
of x € S¢ NC*° such that ¢Sy € C° holds for all g € G . Define

Sy = ﬂ SoN7c(n™'(gS0)),
g€Gy

where wc: S¢ x[—1/2,1/2] — Sc¢ is the projection. Then S; C Sy is a compact
neighborhood of x in Sy. By construction there exists for every g € Gx and s € S
precisely one element tg(s) € (—//2,1/2) such that ® () (s) € gSo. The function
Tg(s) is continuous in s and has image in (—//2 +6,//2 — §) for some § with
0 <& < /2, since it is the restriction to Sy of the continuous function with a compact
source

10 So = (=1/2,1/2), s+ —nc ou g™ ls).
Define the continuous function

1
. 81— (=1/2,1/2), s +—

: Z g (5).

x| 25,

Put Sy = {CDT(S)(S) | s € Sl} .

Geometry € Topology, Volume 12 (2008)



1814 Arthur Bartels, Wolfgang Liick and Holger Reich

Next we show that S, € C is Gx—invariant. Consider g’ € Gx and u € S,. Write
u = ®(5)(s) for appropriate s € Sy. Let 5" € Sy be the element uniquely determined
by CDI(g/)fl )(5) = (g')~'s’. Then we get for g € Gy

(Drg(s)—r(g,)_l(s)(sl) = q)rg(s)oq)—r(g,)_l(s)(s/) = q)tg(s)(g/s)=g/q>tg(s)(s)eg/gSO-

Since g'gSo € C° and 74(s) and T(g)-1(s) belong to (—//2,1/2) and hence g (s) —
T(gn—1(s) € (—1,1) we conclude g (s) —T(g)-1(s) € (~//2,1/2). Hence s’ € S and
Tgrg(s") = T4 (5) —T(gr—1(s). Since this implies 7(s") = 7(s) —7(gr-1(s), we conclude

g/~u = g/'cpt(s)(s) = q)r(s)(g/s) = c]Dr(s’)—i-r(g/)—l(s)(g/s)
= CI>r(s’) (g/'cpr(g,)_l(s)(s)) = cI)r(s’) (g/'(g,)_lsl) = cI)1:(s’)S/ €S,.

Since S§1 € S¢ N C° is compact, S, is a compact Gx—invariant subset of C° with
x € §,. Let S3 be the component of S, which contains x. Then S3 is a connected
closed subset of S,. Since gS3 N S5 contains x for g € Gy, the subset S3 is Gx—
invariant. Thus S5 € C° is a compact connected G —invariant subspace containing x.

We can find § with 0 <§ <//2 such that B C C*° holds for B := ®_g/5 §/21(53).

Next we show that B is a box of length §. Since S3 is Gx—invariant and the flow ©
commutes with the G —action the subset B C X is Gy—invariant. Recall that B C C
holds and C is a Fin—subset of X with G¢c = Gx. Hence B is a compact Fin—subset
of X . Consider y € B. There is precisely one element s € S3 and t € [—4/2,5/2]
satisfying y = ®.(s) since S¢ and hence S5 is transversal to the flow with respect to
C.Puta_(y)=-6/2—1,a+(y)=6/2—1,€e_(y) =€4(y)=1/2. Then

§=a+(y)—a-(y);
®.(y) € B fort €la—(y),a+(y)]
@ (y) & B fort € (a—(y)—e(y),a—(y) U(a+(y),a+(y) +e(y)).

Hence B is a box with connected central slice Sp = S3. We have x € §3. The
projection w¢: C — S¢ induces a homeomorphism S, — S and maps the component
S3 of S to a component S7 of S;. Since S is an open neighborhood of x in the
space Sc¢ N C® which is locally connected by Lemma 2.6 (iv), the component S is a
neighborhood of x in the space S¢ N C°. Since 7 is continuous we conclude from
Lemma 2.6 (iii) that x lies in the interior of B. O

Definition 2.15 For x € X define its G —period

perg(x) = inf{t |7 >0, 3g € G with &;(x) =gx} €]0,00],
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where the infimum over the empty set is defined to be co. If L € X is an orbit of the
flow @, define its G —period by

perg(L) = perg(x)
for any choice of x € X with L = ®r(x).
For r = 0 put

Xopi={xeX| perg(x) >r};
X< i={xeX| perg(x) <r}.

Consider x € X'. Then the G —period perg> (x) vanishes if and only if x € X®. We have
perg (x) = oo if and only if the orbit through x is not periodic and gPgr (x) N PR (x) =
& holds for all g # 1, or, equivalently, the orbit through Gx in the quotient space
G\ X with respect to the induced flow is not periodic. If 0 < perg (x) < oo, then the
properness of the G —action implies the existence of g € G such that Pper§ (x)(x) = gx
and perg (x) is the period of the periodic orbit through G x in the quotient space G\ X
with respect to the induced flow.

Next we show for a point x that we can find an equivariant box around a given compact
part of the flow line, where the compact part is as long as the G —orbit length allows.
The idea of proof is to take an equivariant box which contains x in its interior, making
its central slice very small by restriction and then prolonging the box along the flow
line though x.

Lemma 2.16 Suppose for the point x € X that there is a nonequivariant box whose
interior contains x . Consider a real number [ with 0 <[ < perg (x).

Then we can find a box C which satisfies
e lc=1;
* Gc=0Gyx;
e xeScNnNC°;

e Sc is connected.

Proof From Lemma 2.14 we conclude the existence of a box B in the sense of
Definition 2.3 which satisfies Gg = G, Sp is connected and x € Sp N B°. Let [p
be the length of B. From Lemma 2.6 (v) we obtain a number €g > 0 such that for
every ye Sp and 7 € (—lg/2—€p,—Ip/2)U(I/2,lg/2 + €p) the element ()
does not belong to B. We can arrange by restricting B and diminishing ep that /g </
and [ +ep < perg (x) holds.
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Next we show

Dr_1/2,1/21(x) N gP[—1/2,1/21(X) # T = g € Gx.

Namely, consider y € ®_;/2 7/2](x)NgP[_;/2,1/21(x). Then y = P (x) = gDy (x) for
appropriate t,0 €[—//2,1/2]. This implies ®;_5(x) =gx and |[t—0| <[ < perg(x).
We conclude 1 —o = 0 and hence g € G.

Since the G—action on X is proper, we can find a closed neighborhood Vx1 cX
of x such that CID[_;/ZJ/z](Vxl) N ng[_l/z’[/z](Vxl) # & = g € G4 holds. From
l+ep< perg (x) we conclude that

Pr1/2415,1/2)(X) N P12 ,~1/2](X) = D

Pr-1/2,1/2-151(X) N P1/2,1/2-+€51(X) = 2.

Since ® is continuous and [—//2+Ig,1/2], [-I/2—€p,—1/2],[-1/2,]/2—1g] and
[[/2,1/2 + €p] are compact, we can find a closed neighborhood V2 € X of x such
that

Ppt/2415,1/21(Vid) N P_t/2—e,—1/21(V) = 2
Pp1/2.1/2-15) V) NP 2,0 /24e51(V) = 2.

Put Ve= () g (vinv2).
g€Cy

Then V, € X is a closed Gx—invariant neighborhood of x with the properties
o ®_y/2,1/21(Vx) is a Fin—subset of the G-space X;
* Gopypum) = Ox;
o Pry241p,1/21(Va) N P1t/2—ep,—1/21(Vx) = &
o Pry/2,1/2-151(Vx) N P1/2,1 /2465 (Vx) = D

Let V2 C X — X R be the interior of V. Let T’ be the component of SpNB°N YV that
contains x. Since Sp N B° is locally connected by Lemma 2.6 (iv) and SpNB°NV?
is an open subset of Sp N B°, the component 7" is an open subset of SpN B° N V2
and hence of Sp. Let T be the closure of T in S B. This is a closed connected
G x—invariant neighborhood of x € Sp which is contained in V. Since Sp is a
Fin-subset of X with Gg, = G, T is a Fin—subset of S g and we can consider the
restriction B(T'). We can assume without loss of generality that the central slice Sp is
a Gy —invariant connected subset of Vy, otherwise replace B by the restriction B(J_" ).

We define C := ®[_;/5.7/2](SB).
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Next we show that C is a box of length /. Since C C ®[_;/5;/2](Vx) and C is
G, —invariant, C is a compact Fin—subset of the G—space X. Consider y € C.
We can write it as y = ®q,(s) for 7, € [-//2,]/2] and s € Sp. Put a_(y) =
—[/2—1y and ay(y) =1/2—1),. Obviously / =a;(y) —a—(y) and ®.(y) € C
for T € [a—(y),a+(p)]. It remains to show that ®/(y) & C holds for v’ € (a—(y) —
€g,a—(¥)) U (a+(»),a+(y) + ep). This is equivalent to showing that ®/(s) & C
holds for t’ € (—1/2—e€p,—1/2)U(l/2,1/2+ €p). Since s € Sg C V4, we have
Pl1/2+15,1/21(SB) N P|—1/2—¢5,—1/2](5) = D
Pr—1/2,1/2-151(SB) N P1/2,1/2+€51(5) = 2.

The main property of €p is
Qr—15/2,15/2)(SB) N P(—ig5/2—ep,~15/2)Ulp/2.15/2+ep) () = D.
Applying ®(;,_1y/2 respectively ®;_;,)/2 we obtain
D11/2,-1/2+15)(SB) N P(—1/2—e,—1/2)(5) = ;
@p1/2-15.1/21(SB) N R(1/2,1/24€5)(5) = D.
We conclude
@r1/2,1/21(SB) N @(—1/2—e5,~1/2)U(1/2,1/24¢5) (5) = 2.

Hence C is abox of length /. By construction S¢ = Sp is connected, Gc =G g = Gx
and x € Sp N B° and hence x € Sc N C°. ]

Lemma 2.17 Consider real numbers a, b, ¢ > 0 satisfying ¢ > a + 2b. Let K be a
cocompact G —invariant subset of Xs442p+2¢-

Then there exist a G—set A and for every A € A boxes A) C B) C C,, such that:
(i) A is G —cofinite;
(i1) We have
la, = a:
Ip, =a+2b;
le, =a+2b+2c;
(iii) Sc, is connected;
(iv) We have S4, € S, € Sc, ;
(v) A, € Bj and B, € Cy;
vi) K S Ujen 455
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(vi)) gAy = Agy, gBy = Bgy and gC) = Cy), for g € G;

(viii) If B) N By # @, then B) € Cy, and Sp, is transversal to the flow with respect
to C)\/ .

Proof Lemma 2.16 implies that we can find for every x € X~ 425420 a box Cx of
length a+2b+2c such that x € Sc, NC} and G¢, = G holds and S¢, is connected.
Since Gy is finite, we can find a G —invariant closed neighborhood T of x in Sc¢,
such that 7y € Sc, N Cy holds. We can arrange that gCx = Cgx and gTx = Tgx
holds for g € G and x € X5 54 2p42c. Obviously K C | J,.cx Cx(Tx:a)®, where we
use the notation from Definition 2.10. Since K is cocompact and G —invariant, we can
find a cofinite G—subset I C K satisfying

(2.18) K< | C(Tvia)r.

xel

Fix x € I. Consider y € Tyx. Since the G—action is proper, g -C;(T;) = Cg;(Tgz)
holds for z € I and g € G and Cx({y};a + 2b) and C,(T;;a + 2b) are compact, we
can find a closed G —invariant neighborhood V) C Ty of y such that for all z € 1

Cx({y}ia+2b)NCo(Tr;a+2b) =2 = Cx(Vy;a+20)NCy(Tza+2b) = 0.
For y € T we define
Iy ={zel|Cu({y}ia+20)NCE # o).

Since the set G —set [ is cofinite, Cx ({¥}; a+2b) and C, are compact and the G —action
on X is proper, the set I, is finite. From a+2b < ¢ and Ic. =a+2b+2c we conclude
for z € I, that Cx({y}:a + 2b) = ®[_4/2—p,a/2+5](¥) is contained in C7. Since
Cx({y};a+2b) is compact, we can find for z € I, a closed G, —invariant neighborhood
Uy(z) € Tx of y suchthat Cx (Uy(2);a+2b) = ®_4/2—p,a/2+5](Uy(2)) is contained
in C;. Because of Lemma 2.13 applied to Cx(Uy(z);a + 2b) € C, we can assume
without loss of generality that U, (z) is transversal to the flow with respect to C, for
every z € I,,.

Put Uy :=V, N, I, Uy(z). Then U, C Ty is a Gy—invariant closed neighborhood
of y such that
(219) Cx(Uysa+2b)cC;  ifzely;
(2.20) Uy is transversal to the flow with respect to C; for z € Iy;
(2.21) Cx(Uysa+2b)NC(Tr;a+2b) =0
ifzel and Cx({y};a+2b)NC,(T;a+2b) = 2.
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Choose a Gy —invariant closed neighborhood Wy, C Ty of y such that W), C Uy° . Obvi-
ously Ty = UyeTx W . Since Ty is compact, we can find y(x)1, p(x)2, ..., ¥(X)n(x)
in T such that T = U:’ixl) W) (x); - We can arrange Wgy, = gWy,, n(x) = n(gx)
and y(gx); = gy(x); for g € G since Cy is a Fin—subset of X with G¢, = Gy.
Obviously

n(x)

(222) Cx(Tw;0)° = | Cx(Wy),50)°.
i=1

Define A={yilx)|xel,ie{l,2,...,n(x)}}.

This is a cofinite G—set. Define for A = p;(x) in A
G =Cx;
B). = Cx(Uy,(x):a + 2b);
Ay, = Ce(Wy, ()1 0).

It remains to check that this collection of boxes has the desired properties. This is
obvious for assertions (i), (ii), (iii), (iv) and (vii). Assertion (v) follows from W), C U)‘,’
and Uy € S¢c, NCy. Assertion (vi) follows from (2.18) and (2.22).

Finally we prove assertion (viii). Suppose that By N By, # &. Write A = y;(x) and
A =y (x"). Since By = Cx(Uy, (x);a+2b) and By, € Cx/(Txr;a+2b), we conclude
that Cx (Uy, (x):a +2b) N Cx/(Txr;a + 2b) # @. By (2.21) we have x" € I, (). We
conclude from (2.19)

By = Cx(in(x);a +2b) C C;/ = C)?,.

The central slice Sp, = U, () is transversal to the flow with respect to Cy+ by (2.20).
This finishes the proof of Lemma 2.17. |

3 General position in metric spaces

Definition 3.1 Let Z be a metric space, 4 € Z and § > 0. Then we define the sets
A% ={x e Z|3a e Asuchthatd(x,a) <8},
A ={xeAd|d(x,Z—A) > 8.
For x € Z, we will abbreviate x% = {x}3.

Notice that A% and A% are open. The following Propositions 3.2 and 3.3 are the main
results of this section which is entirely devoted to their proof.
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Proposition 3.2 Let Z be a compact metrizable space of covering dimension n with
an action of a finite group F. Let U be a finite collection of open Fin—subsets such
that gU € U for g € F', U € U. Suppose that we are given for each U € U an open
subset U"” C U satisfying U” CU. Putm = (n+ 1) -|F]|.

Then for each U € U we can find an open subset U’ C Z such that:
(i) U'"CU"CU' CU CU;

(i) If Uy € U has more than m elements, then

(iii) (gU)Y =gWU’) forge F,U elU.

Proposition 3.3 Let Z be a compact metric space of covering dimension n with an
action of a finite group F by isometries. Let Y C Z be an open locally connected
F —invariant subset. Let U be a finite collection of open subsets such that gU € U for
geF,Ueld and U CY for U €l holds. Assume that there is k such that for every
subset Uy C U with more than k elements we have

() U =2.
Uely
Letd>0.Putm=m+1)-|F|, =k|F|.

Then there are finite collections V/ , j =0,...,m of open subsets of Z, such that:

() V=VOU---UV™ isan open cover of Z ;
(i) diam(V) < § forevery V € V;

(iii) For V €V there are at most [ different sets U € U such that U and V intersect,
but U does not contain V ;

(iv) For fixed j and Vy € V/ we have Vo NV # 0 for at most 2/ 1 — 2 different
sets VeVouU...uV/;

(v) Forfixed j and Vy, V] € VJ we have either Vo = V; or 70 NV, =9;
(vi) Each V' is F—invariant, ie, gV € V! forge F, V e V;
(vii) V=V°forVeV.
In order to prove these two propositions we will compare the metric space Z to the

nerve of a suitable open cover of Z. The results will be first proven for simplicial
complexes and then be pulled back to Z using the map from the next remark.
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Remark 3.4 Let Z be a metric space and U be a locally finite open cover of Z.
Denote by N (U) the simplicial complex given by the nerve of /. Then

d(z,Z-U) )
3.5 U
3:5) ZHUXEZ;(ZVeud(Z,Z—V) U]

defines amap fi;: Z — N (U), where [U] denotes the vertex of A/ (U/) that corresponds
to U e . If a group G acts by isometries on Z and on the cover U (ie, gU € U for
g€ G, U elU)then fy is equivariant for the induced action on N (If).

Lemma 3.6 Let f: Y — Z be a continuous map between metric spaces. Assume
that Y is compact. Let U be an open subset of Z and 8 > 0. Then there exists o > 0
such that

(fTronFeriw.

Proof We proceed by contradiction and assume that for every n € N there is x, € ¥’
such that

3.7) xn€ fTHU)TE,
(3.8) xn g fHUTY.

By compactness of Y, we may assume x, — X as n — co. We derive from (3.8) that
there is z, € Z — U such that d(z,, f(x,)) <2/n. Then z, — f(x) as n — oo and
thus f(x) ¢ U. On the other hand (3.7) implies that f((x,)?) C U. Since x € (x,)?
for sufficiently large n we have f(x) € U. This is the desired contradiction. O

In the sequel interior of a simplex means simplicial interior, ie, the simplex with all its
proper faces removed.

Lemma 3.9 Let Z be a simplicial complex and let Z™ be the n—th barycentric
subdivision of Z, n > 1. Let A be a simplex of Z™ . Let o, t be simplices of Z
such that both the interior of o and the interior of T intersect A. Theno Ct ort Co.

Proof Let A’ be a simplex of the first barycentric subdivision Z’ = Z(!) of Z which
contains A. Then both the interior of o and the interior 7 intersect A’. Thus it suffices
to prove the claim for the first barycentric subdivision.

Now a d-simplex A’ of the first barycentric subdivision Z’ of Z is given by a
sequence 0y, 071, ..., 0, such that each o; is a simplex of Z and o;_; is a proper face
of g; fori =1,2,...,d. This is the simplex in the barycentric subdivision whose
vertices are the barycenters of 0g, 01, ...,04. Then the simplices of Z whose interior
intersect A’ are precisely the o . O
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Recall that the open star of a vertex e of a simplicial complex Z is defined to be the
set of all points z € Z whose carrier simplex has v as an vertex. Equivalently, one
obtains the star of v by taking the union of all simplices o which have v as vertex and
then deleting those faces of these simplices o which do not have v as a vertex. We will
denote it by star(v). The set of open stars of vertices of Z is an open covering of Z.

Let o be a simplex of Z. Define star’(o) to be the star in the first barycentric
subdivision Z’ of the vertex in Z’ given by o.

Proof of Proposition 3.3 Since U is finite and dU closed for U € U/, the assumptions
on U imply that we can find for every z € Z an open neighborhood W, of z such that
for all z € Z the following holds.

e diam(W;) <§/|F|;
e W, intersects the boundary of at most k sets in I/;

o If W, intersects U for some U € U, then W, C Y.

Since the covering dimension of Z is n by assumption and Z is compact, we can choose
a finite open refinement W of the open cover {W, | z € Z} such that dim(W) < n.
Let WF be the collection of subsets of Z which consists of the components of subsets
of the form [ J ger &W for W e W with W € Y and subsets of the form gW for
ge Fand W eW with W £ Y. Since Y is a locally connected open subset of
Z , the above components are open subsets of Z. Thus the elements in the finite set
WF are open subsets. Hence Wr is a finite open covering of Z. Since dim(W) <n
every orbit of F in Z meets at most (n + 1) - | F| members of WW. We conclude
dimWprg) <m = (n+1)-|F|. Obviously gV € Wr holds if Ve Wgr. If V isa
component of Ugep gW for some W € W, we can find elements g, g5,..., g, in
F such that V is contained in | J;_, giW and (U;-=1 giW)Ngiy1 W # & holds for
i=1,2,...,(r—=1). One shows by induction over i = 1,2...,r that the diameter of
Uj‘=1 gj W is less or equal to the sum of the diameters of the sets g4 W, g2 W ...,
gi - W. Hence the diameter of any element V of Wpg is bounded by §.

Consider U €U/ and an element V € Wg such that V' intersects U but is not contained
in U. By construction V' is a component of ( J,cp gW forsome W e W with W C Y.
Since V is connected we must have V N JU # &. Hence there exists g € F with
gW NaU # @, or, equivalently, with W N g~ 19U # @. Since each set W, intersects
the boundary of at most k sets in I/ and g~ 'U € U, there are at most [ = |F|-k
elements U € U satisfying W N g~19U # @ for some g € F. Hence for every
V € Wp there are at most / elements U € U such that V intersects U but is not
contained in U .
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Consider the map f = fyy,: Z — N (WF) from Remark 3.4. Putfor j =0,1,...,m
X/ = {star'(0) | 0 € N(WF).dim(0) = j}.
Then X = XU X1 U...UAX™ is an open cover of NWF).

Let o and t be simplices in Z with star’ (o) N star’(t) # @. Let A be the carrier
simplex in Z’ of some point in star’(c) N star’(t). Then the two vertices of Z’ given
by o and t belong to A. Hence the barycenters of ¢ and 7 belong to A. In particular
the interior of o and the interior of t intersect A. We conclude from Lemma 3.9 that
o €t or T C o holds. This implies that the elements in X'/ are pairwise disjoint and
every V € X/ intersects at most 2/ 1 —2 elements in {Y* U X! U...UX/} since a
j—simplex has 2/ 1 —2 proper faces.

If the simplex o in N (Wp) is given by the subset {Vy, V1,...,Vp} € Wg, then
f~I(star’(0)) is contained in Vo N Vi N...N Vp, since star’ (o) is contained in the
intersection of the stars in N'(Wp) of the vertices of ¢ and for V € N (Wpg) we have
f~I(star(V)) € V. Hence for every X € X there exists W € Wp with f~1(X)CW.
Put

V= (X) | X € XT3
Then V7 has the following properties:

e V=VOU---UV" isan open cover of Z consisting of finitely many elements.
e diamV < § for every Vev;

e For Ve )7 there are at most / different sets U € I/ such that U and V intersect,
but U does not contain V' ;

e For fixed j, every 170 € V/ intersects at most 277! — 2 different sets V €
VOuU...uV/,

e For fixed j and 170, 171 € VJ we have either 170 = 171 or 170 N 171 =,

e BachViis F —invariant, ie, g17 eV for geF, Ve 17i.

For € > 0 define

V= {((7)9)° |V eV,
"[;hen VJ has properties (i), (iii), (iv), (v), (vi) and (vii) since ((17)_5)o C V for
V € V/" and we have T = T° for any open subset 7' of a topological space. Since Z
is compact, we can choose € so small that also property (i) is satisfied. This finishes
the proof of Proposition 3.3. |
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Proposition 3.10 Let Z be a simplicial complex and let Z ") be the m—th barycentric
subdivision of Z, m > 1. Let B be a subcomplex of Z. Let By be the union of all
simplices of Z n) that are contained in the interior of B. Let B be a simplex of Z and
let o be a simplex of Z™ that is contained in the intersection of the boundary of By
with . Then dim(o) < dim(f).

We recall that the topological interior and boundary of a subcomplex of a simplicial
complex can be described combinatorial as follows: the interior is the union of all open
simplices (simplices with all proper faces removed) that are contained in the subcomplex;
its boundary is the union of all simplices that are contained in the subcomplex and are
in a addition a face of simplex not contained in the subcomplex.

Proof of Proposition 3.10 By the definition of By there exists a simplex A of Z (m)
such that 0 € A, but A is not contained in the interior of B. Thus there exists a
simplex o of Z that is contained in the boundary of B and intersects A. By passing
to a face of o, we can arrange that « is contained in the boundary of B and the interior
of « intersects A. Since o is contained in B, we can find a face B’ of 8 such that o
intersects the interior of B’. Hence the interior of the simplex B’ C Z intersects A.
Lemma 3.9 implies « € B’ or 8’ C «. In the second case, 0 € B’ C «. But o has
to be disjoint from ¢, because « lies on the boundary of B, while o is contained in
the interior of B. We conclude o € 8’ and hence o € . Therefore, 7 =N A is a
simplex of Z _ that contains the simplex o as a face and intersects «. Since o and
« are disjoint, o is a proper face of 7. This implies dim(c) < dim(7) <dim(B). O

Proof of Proposition 3.2 The strategy is first to prove a simplicial version and then
use the map appearing in Remark 3.4 to handle the general case of a metric space.

Since we assume that Z is metrizable and F is finite, we can choose a metric dz on
Z which is F—invariant. Since Z and hence each U” is compact and the collection
U is finite, we can find § > 0 such that U’"cu =3 holds for U € U4. Hence we can
assume in the sequel without loss of generality that U” = U -3,

So we start with the special case where Z is in addition a simplicial complex, each
U € U is the interior of a subcomplex of Z and F acts simplicially on Z. Let
{Uy,...,U,} CU contain exactly one element from every F—orbit in the F—set /.
Pick m > 0 such that the simplices of the m—th barycentric subdivision Z™ of Z
have diameter < §. For i = 1,2,...,r let Z™*) be the (m + i)—th barycentric
subdivision of Z and let 4; be the union of all those simplices of Z (m+1) \which
are contained in U;. Then A; is the largest subcomplex of Z (m+1) that is contained
in U;. Since each simplex of Zm+1) hag diameter < §, we get Uf‘g C A; C U;.
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Define U/ to be the interior of A;. For U € U define U’ = gU] for any choice of
geFandie{l,2,...,r} satisfying U = gU;. One easily checks that i is uniquely
determined by U and the choice of g € F does not matter in the definition of U’
since each U is by assumption a Fin—subset. Obviously (i) and (iii) are satisfied for

U =1{U"\UelU).

Next we prove (ii) but with m replaced by n = dim(Z). Consider a subset Uy C U with
|to| = k. Notice that (¢, IU " is a subcomplex of Z"+@ for some a since the
intersection of a subcomplex of Z (n+a) with a subcomplex of Z (n+b) js g subcomplex
of Z(+P) if ¢ < b. Tt suffices to show dim ((Ny¢y, 9U’) <n—k since this implies

3.11) ﬂ oU’ = @ if Uy contains more than n elements.
Ueldy

Choose iy,ip,...,ip in{1,2,...,r} and g, g5, ..., gk in F with the property that
Uy consists of the mutually different elements g1U;,, g2Ui,, ..., gk Ui, and i1 <
ip < ... < i holds. If for some j € {I,2,...,(r — 1)} we have i; = ij, then
gjUi; # gj+1Ui; ., implies already g;U;; Ng;41Uj; ., = @ and the claim is obviously
true. Hence we can assume without loss of generality i} <i; < ... <ir. Next we
show by induction for j =1,2,...,k that

J
dim ﬂag,-,U;I <n-—j.
I=1

The induction beginning is obvious since the dimension of the boundary of a simplicial
complex is smaller than the dimension of the simplicial complex itself. The induction
step from j —1 to j is done as follows. By induction hypothesis the dimension of the
simplicial subcomplex ﬂ{;ll dagi, U;, of Z@+1i-1) s less or equal to (n— j +1). Let
o be a simplex of the subcomplex ﬂ{zl 0gi, Ui/l of Z®+i)) We can find a simplex
B in ﬂ;;ll 0gi, Ul.’l such that o is contained in B. Recall that by assumption U; is
the interior of a subcomplex B; of Z (n+ij-1)  Proposition 3.10 applied to the case
m=ij—ij_1 and B=g;B; and o and B as above implies

dim(o) <dim(B) <n—j +1

since in the notation of Proposition 3.10 we have By = g; Ul.’]_ . Hence dim(o) <n—j.
This finishes the proof of Proposition 3.2 in the special case where Z is a simplicial
complex, each U € U is the interior of a subcomplex of Z and F acts simplicially
on Z.

In the general case we start with an open cover V of Z such that each V € V has
diameter < € = §/3 and dim(V) <n. Let Vg be the cover of Z whose members are
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the open sets of the form gV with V €V and g € F. Then VF is an open cover of
Z whose members have diameter < € and we have gV € Vg for V€ Vg and g € F.
Analogously as in Proposition 3.3 one shows that dim(Vg) < m.

For U el let Vy ={V € Vg | V C U} and consider N'(Vy) as a subcomplex of
N (V) (this is the subcomplex spanned by the vertices [V] with V € V) and denote
by U the interior of A/ (Vu). Consider the map f = fy.: Z — N(VF) from Remark
34.If xe f~YW(Vy)) and x € V, V € Vr then by the construction of f, V € Vy.
Therefore
SO TN U

Let xeU €. If x eV with V € Vg then V € Vy, because the diameter of V is < €.
Therefore f(x) € N(Vy). If f(x) lies on the boundary of N'(Vy), then there are
V eVy, V' eVp—Vy suchthat x € V and VNV’ % &. In particular this implies
x & U™2€. We have thus shown that

(3.12) U c r~Y0)cuU.

Equip N (VF) with a metric such that the action of F is by isometries. By Lemma 3.6
there is « such that

(3.13) (fTHON S UUT)

for all U € U. By the special case treated in the first part of this proof for each U
there is U’ such that

A~

0*cl~cl'cUcU,
(gU)Y =g(U’) for g € F and

ﬂ W' =o if Uy contains more than m elements.
Uel

(See (3.11) and recall that dim(Vg) <m.) Finally set U’ = f~1(U") for U € U. Since
df ~1(U) € f~1(dU) and taking preimages preserves inclusions and intersections (ii)
and (iii) are satisfied. Moreover, by (3.12) and (3.13)

Ul =UuT (O TN O e MO e O SU
and therefore (i) is also satisfied. O

4 Covering X, by long boxes

Throughout this Section we will assume that we are in the situation of Convention
1.3. In particular kg is the maximum over the orders of finite subgroups of G and
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dy is the dimension of X — X®. Both kg and dy are finite. Also recall the notation
X~ introduced in Definition 2.15. This section is entirely devoted to the proof of the
following

Proposition 4.1 There exists a natural number M = M (kg, dy) depending only on
kg and dy which has the following property:

Forevery o, e € R with 0 < e <« there exists y = y(«, €, M) > 0 such that for every
cocompact G —invariant subset K of X, , there is a collection D of boxes satisfying:

42) KC UDED CI>(—e,e) (D°);

(4.3) Forevery x € X which lies on the open bottom or open top of a box in D, the
set D|_q, —eufe,a](X) does not intersect the open bottom or the open top of a box
inD;

(4.4) Forany x € X there is no box D € D such that ®[g 4)(x) intersects both the
open bottom and open top of D;

(4.5) The dimension of the collection {D° | D € D} is less or equal to M , ie the
intersection of (M + 2) pairwise distinct elements is always empty;

(4.6) Forge G, DeD wehave gD € D;

(4.7) There is a finite subset Dy € D such that for every D € D there exists g € G
with gD € Dy;
4.8) P_y—c,a+e)(D) is a Fin—subset of X forall D € D.

The idea of the proof is very roughly as follows. Conditions (4.2) and (4.3) require
the boxes to be very long, but we have still the freedom to make the boxes very thin.
Proposition 3.2 applied to the transversal directions will be important to arrange the
boxes during the construction to be in general position. This will allow the application
of Proposition 3.3, where property (iii) will be crucial in order control how many boxes
from previous steps of the construction interfere at each step in the construction.

4.1 Preliminaries and the basic induction structure

We begin with fixing some numbers and collection of boxes. Define numbers
m:=kg-(dy +1);
M = (kg)? - (dy + 1) +2m+1;
a:=¢€/2;
b:=4M - (a + 2¢) 4+ 3(x + €);
ci=a+2b+e)+1+¢;
y:=a+2b+2c.
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Notice that m and M depend only on kg and dy and all the other numbers depend
only on &, € and M . (The reader may wonder why we picked a small, we are after all
looking for long boxes. But for our construction it is only important that » and ¢ are
large and in the proof of Lemma 4.49 (iii) our choice of a small a will be convenient.)

Let A; € By € C)j, for A € A be three collection of boxes as in the assertion of Lemma
2.17, where we use a as defined above and replace b by b + €, and ¢ by ¢ — €. Then
we replace B) by the restriction B (a 4 2b). The resulting collections satisfy:

e A is G—cofinite;

e ly=a,lp=a+2band Ic =a+2b+ 2c;

* Sc, is connected;

* Sy, €SB, S S¢;;

e A, S Bj and B, CCy;

o KSUjen 4;:

o gA) = Ag), gB) = By and gCy = Cyy, for g€ G and A € A;

o If B, N By # @, then ¢ (By) € C;, and Sp, is transversal to the flow
with respect to Cy-.

Next we discuss the main strategy of the proof. We will construct the desired collection
D inductively over larger and larger parts of K. The boxes Cj will be used to control
the group action, ie, they will allow us to restrict attention to the finite group G, .
The boxes B; will be used to control properties (4.2) and (4.3). The boxes A4; will
be used to control which part of K is already covered. We will need to sharpen the
induction assumptions. We introduce a minor but useful variation of (4.2) as follows.

Definition 4.9 A collection of boxes is §—overlong for 0 < § < € if for every x €
X which lies on the open bottom or open top of a box in this collection, the set
D_q—5,—e+8]Ule—5,a+8](x) does not intersect the open bottom or the open top of any
box in this collection.

The assertion (4.2) is then that D is 0—overlong. Clearly, §—overlong for some 0 <§ < ¢
implies 0—overlong.

Definition 4.10 We say that a box D is not huge if for every A € A such that D

intersects B) we have ¢[_¢ (D) C Cy and Sp is transversal to the flow with respect
to Cy,.
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Every box which is obtained from one of the boxes Bj by restriction is automatically
not huge.

Definition 4.11 We say a collection £ of boxes is a §—good box cover of a subset S
of X if it has the following properties:

e & is §—overlong;
e Every box in £ is not huge;
e Assertions (4.3), (4.4), (4.5), (4.6) and (4.7) hold for £ in place of D;

° S g UEES ®(_€:€) (Eo)‘

To prove Proposition 4.1 we will construct a 0—good box cover of K. Let N be the
number of G —orbits of A.

Put

N —
(4.12) 5, = " e for r=0.1.....N.

N +1
Clearly,

N
€> N+le:50>--->5r > 8,41 >-->8y =0.

We will show inductively for » =0,1,2,..., N that for any subset & C A consisting

of r G-orbits there exists a §,—good box cover of Kg :=Jgeg A¢- The induction
beginning r = 0 is trivial, take D = &. The induction step from r to r + 1 is
summarized in the next lemma.

Lemma 4.13 (Inductionstep: r tor + 1) Let E € A consist of r G —orbits and
assume that D is a 8, —good box cover of Kg = (Jgeg As- Let A € A — E and
E’:= GAU E. Then there is a §, 11 —good box cover D’ of Kg/ = Ugem Ag.

=

Clearly Lemma 4.13 implies Proposition 4.1. The proof of Lemma 4.13 will occupy
the remainder of Section 4.

4.2 Boxesin C )f’

Before we explain the construction of D', we have to introduce some notation and to
rearrange D as follows. In the sequel everything will take place in the interior of the
box Cy . Recall for the sequel the G¢, -homeomorphism

ne,: S, x[—a/2—=b—c,a/24+b+c]—=Cy, (x,7) = Pr(x)

from Lemma 2.6 (iii). Let ¢, : Cy =S¢y, X = P(a (x)+a_(x))/2(x) be the retraction
onto the central slice. Closures and interiors of subsets of Sc, are always understood
with respect to Sc; .
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Definition 4.14 Let E C Cf be a box such that Sg is transversal to the flow with
respect to Cj, .

Define an open subset of Sc, N Cy by
Ugp = JTCA(SE N Eo) = JICA(EO).
Define the continuous G g —invariant map

tg: 76, (Sg) = [=lc/2.1c /2]

to be the composite of the inverse of 7¢, |s.: SE 5 nc, (SE), the inverse of ¢,
restricted to Sg and the projection Sc, x[~Ic/2,Ic /2] — [-Ic/2.lc/2].

For a subset 7" C S¢, define a subset of Sg by

op(T) :=ng! (T)N Sk.

Lemma4.15 Let E, E' C Cy be boxes such that Sg and S+ are transversal to the
flow with respect to Cy,. Then:

(i) IfgENE'# & forsome g € G, then g € G¢, . In particular G g is a subgroup
of Gg, ;

(i) The map tg is uniquely characterized by
pe, (x) = (7¢, (x), TE 0 7c, (X))
for x € Sg;

(i) If T € Sc, is a closed Fin—subset of the Gg—space Sc, , then og(T) is
a closed Fin—subset of the G g—space Sg and the restriction E(og(T)) is
defined;

(iv) Let U C Sc, be anopen Fin—subset of the G g —space Sc, with Uc e, (SE)
and U = U°. Then

E(0g(0)) = Pig/2,15/20E0));
E(0g(U))° = @ig/2,1/2)(0EU));
VE@r@y = Y-
Proof (i) Suppose gE N E’ # @. Since then gC) N Cy, # &, we get g € G¢, .
(i1)) This follows from the definitions.

(iii) This is obvious since ¢, is G g—equivariant.
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(iv) We conclude E(og(U)) = q’[—lE/z,lE/z](UE(U)) from the definition of the
restriction. The set ®(_;./2.7,./2)(0£(U)) is mapped under the homeomorphism ¢,
to the set {(u,?) |u e U, |t —tg(u)| <lIc/2}. Since tg is continuous and U is open
in Sc, , this set and hence ®(_;,/2.1./2)(0g(U)) € C;’ are open. This implies

D1 /2.105/20EU)) S E(0g(0))°%;
og(U) Cop(U)NE(@EU))°.

If we apply 7¢, to the latter inclusion, we conclude

UCUnNnc, (E(cg(U))°) cU°=U.
This implies 05 (U) = og(U) N E(og(U))° and Ug(e.(0)) = U. Lemma 2.6 (iii)
implies @1, /2,1./2)(0E(U)) = E(0g(U))°. m

4.3 Rearranging the data of the induction beginning

Let D be the collection of boxes, from the hypothesis of Lemma 4.13 (with respect to
ECAand e A—E).
Definition 4.16 Put

D, :={DeD| DN By #I};
U(Dy) :={Up | D € D,}.

Since the G'—action on X is proper and Bj is compact, property (4.6) implies that D,
is finite. We will consider the G, sets

Gc, Dy ={gD|DeDy.gelc};
GCA-U(D)L)I{gUD | DED}L,gEGCA}Z{UE | EGGCA-DK}.

Since every D € D, is not huge, the set D is contained in C)‘: and Sp is transversal to
the flow with respect to C) . Both these properties also hold for every D € Gc, - D;,.

We use Proposition 3.2 to diminish the elements in D slightly in order to obtain a
general position property for D. At this point it is important, that we arranged the
central slice S¢, to be connected.

We main goal of this subsection will be the proof of the following lemma.
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Lemma 4.17 We can assume without loss of generality that D has the following
general position properties:

4.18) () 90U =@ whenly < G, -U(Dy,) fulfills [Uy| > m = kg - (dx + 1);
Uely
@4.19) IfD,D' € Gc, -Dj andUp = Up: then D = D',

The proof of Lemma 4.17 will use the following lemma, that we will prove first.

Lemma 4.20 There exists collections {Vp | D € G¢, -D,} and {Wp | D € G¢, - D, }
of open subsets of S¢, satisfying:

(i) For D € Gc¢, - D, the sets Wp . Wp, Vp and Vp are G —invariant subsets of
the Gp —space Up ;
(i) We have Wp € Wp C Vp € Vp C Up for D € Gg, - Dy ;
(iii) We have Wp = (Wp)° and Vp = (Vp)° for D € Gc, ' D;;
(iv) Wep =gWp and Vyp = gVp holds for g € G¢, and D € G¢, - Dy ;
(v) Kg < UD%%A P(—c.)(D°) U Ugeg Upep, & P—e.)(P(0p(Wp))°);

(vi) If Vp =VE for D, E € G¢, -D,,,then D = E;

(vii) Iffor D, E € G, - D, the intersection Vp N Vg contains both Wp and Wg,
then Vp = Vg.

Proof Choose a metric d on Sc, which is G¢, —invariant. Consider D € G¢, -D;,.
Put
—1 o
Vp(n) = (U5"")°.

Notice for the sequel that for an open subset Y of a topological space we have ¥ = Y°
and Y C Y° but in general ¥ # Y° . Hence Vp(n) is a Gp—invariant open subset
of S¢, with Vp(n) = (VD (n))o. We get for D € G¢, - D) and g € G¢, that
Vp(n) S Vp(n+1)<SUp, Up =,>; Vp(n) and gVp(n) = Vgp(n) holds. Denote
for D € G, - D), and n > 1 the restriction by

D, = D (op(Vp(n).lp—1/n).

Lemma 4.15 (iv) and Lemma 2.6 (iii) imply D° = | J,~; D, and D, C D;_H
n>1.

for

Put K,E =Kg — (KE N U CD(_G,G)(DO)).

DeD
D¢G D,
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Since Kz € Upep P(—c.c)(D°) by assumption, we have

(4.21) Kz S |J @CeoD);
DeG- D,y
(4.22) Ke CKLU (] ®eoD).
DeD
DEG-D,,

Since each D € D is not huge, ®[_¢ (D) is contained in Cy for D € D). Since
gC.NC\ # 2 = g €Gg, , we get from (4.21)

(4.23) KgnGc | @@
DGGCA"D)\

(4.24) Kg=|Jg (KENG).
geG

Since Ky is closed, Ky NCy, is compact. Because D° =J,>; D, and Dy C D, |,
(4.23) implies that there exists a natural number N with

KgnG e | Preod)
DEGC)L-'D)L

Since Dy € D(op(Vp(N)) we conclude
Kz NGy, < U Do (D(op (VD (N))°).
I)GGC)\-'D)L
We conclude from (4.24)
Ky C U U g Pee)(D(op(VD(N))°).
g€G DeD,,
We conclude from (4.22)
KeS |J @@ U | | ¢ Pcee(DOp(VpIN))°).
DeD g€G DeD,,
D¢G-D,

So for every choice of natural numbers {np | D € G¢, - D, } satisfying np > N and
ngp =np for g € G¢, and D € G, - D, the collection {Vp(np) | D € Gc, - D, }
has the following properties:

e Vp(np) is a Gp—invariant subset of the Gp—space Vp;
« Vp(np) = (Vp(np)):
* Wehave Vp(np) € Vp(np) C Up for D € G¢, - Dy ;
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* Vep(ngp) =gVp(np) holds for g € G¢, and D € G, - Dy ;
" Ksc UDQ(E;% P(—e,e)(D°) UUgee Upep, 8 P—e.e) (P(0p (VD (10)))°).
s

Next we show that for some choice of numbers {np | D € G¢, -D, } satistying np > N
and ngp =np for g € G¢c, and D € G¢, -D,, the collection {Vp(np) | D € G¢, -Dy}
also has property (vi). We can write G¢, - D, as the disjoint union

Ge, Dy=C UC 1. . 1LC,

of its G ¢, —orbits. We show by induction that we can find numbers n¢,n,, ..., n, with
ny > N such that if we set np = ny for D € Cy, the collection {Vp = Vp(np) | D €
C1UCy U---UCy} satisfies property (vi). The induction beginning k =1 is trivial, the
induction step from k — 1 to k is done as follows. For given D € Cj choose ngy with
Vp(ng) # @. Since Sc, is connected, the nonempty closed subset Vp (1) and the open
subset Vp(n+ 1) # Sc, cannot agree for n > ng. In particular Vp(n) C Vp(n+1)
for all n > ngy and since C; UCy U--- U Cf_, is a finite set we can find a number
ny such that Vp(ny) # Ve(ng) for E € C; UCy U---UC_1. By invariance under
the G, —action the same statement holds for all D € C with this ny . If we have
D, gD € C with g € G¢, then since ¢, from Lemma 2.6 (iii) is G¢, —invariant
and the action on the interval trivial and D is a Fin—set, Up = gUp already implies
D = gD. Therefore property (vi) holds for C; UCy U --- U Cy. We have therefore
verified property (vi) for the collection Vp = Vp(np) with D € G, D;,.

In order to achieve property (vii) we repeat this construction replacing the collection of
boxes G¢, D, with the collection of boxes {D(O’D(VD (no))) | DeGg, -Dk}. Namely,
put
Wp(n) = (V5"

Lemma 4.15 (iv) implies Up (o1, (75 (n)) = Vp (). Thus we get open subsets Wp (n) S
Vp and a natural number N’ such that for every choice of natural numbers {np | D €
Gc, - Dy} satisfying np > N’ and ngp = np for g € G¢, and D € G¢, - D), the
collection {Wp(np) | D € Gc, - D, } has the following properties:

e Wp(np) is a Gp—invariant subset of the Gp—space Vp;

« Wp(np) = (Wp(np))®;

e We have Wp(np) € Wp(np) C Vp for D € Gc, -D;;

e Wep(ngp) =gWp(np) holds for g € G; and D € G¢, -D;;

* Kg < UDQS%/\(D(—E,G)(DO) U UgeG UDeD,\ & P(—c,e) (D(UD (m))o)'
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Consider D, E €C with Vp # V. Since Vp =|J,,>; Wp(n) and Vg =, WE(n)
holds, we can find N’(D, E) such that Vp N Vg does not contain both Wp (n) and
Wg(n) forn> N'(D, E). Define N” to be the maximum over the numbers N'(D, E)
for D, E € Gc, - D), with Vp # Vg and N'. Put Wp = Wp(N") for D € G¢, - Dj,.
Then the collections {Vp | D € Gc¢, - Dy} and {Wp | D € G, - D, } have all the
desired properties. This finishes the proof of Lemma 4.20. O

Now we can prove Lemma 4.17.

Proof In the sequel we will use the collections {Vp | D € G¢, -D;} and {Wp | D €
Gc, - Dy} appearing in Lemma 4.20. We apply Proposition 3.2 in the case, where the
space Z is Sc, , the finite group F' is G, , the collection U is {Vp | D € G¢, - Dy}
and we use the subsets Wp C Vp. Since Sc, C X is closed, we have dim(S¢, ) <dx.
So from Proposition 3.2 we obtain for every D € Gc, - D;, an open subset V}; € Sc,
such that the following holds:

« WpC V)< Vp;
o If Uy S{V} | D € G¢, - Dy} has more than m = k¢ - (dx + 1) elements, then
ﬂ " = o;
U el

o (Vgp)' =(gVp)' = g(Vl’)’) for g € G¢, and D € G, - D;,.

Now define V) = V_I’)’o.

% . .
Since V] is open, we conclude V}, = V}} . Recall that Vp = Vp. and Wp = Wp".
Notice that V] is not necessarily V). Since V) is open, we get V7 C V;, and hence
Vi N oV}, = &. We have

< V=5 =T,
Hence 8Vl/) C 0V};. Thus we have constructed for every D € Gc, - Dj an open subset
Vl’) C Sc, such that the following holds
« WpCV,CVp;

o If Vo S{V} | D€ Gc, -U(D,)} has more than m = k¢ - (dx + 1) elements,
then

* (Vgp) =(gVp) =g(V}) for g € Gc, and D € G¢, -U(D;,);
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We use next restriction of boxes to diminish some of the boxes in D as follows. Consider
D € D. Suppose there exists go € G and Dy € G¢, - D, with D = goDy. Then define
D= goDo (O’DO(V )) We have to check that this is well-defined. Suppose we have
gi € G and D; e GC/\ D, with D =g;D; fori =0,1. We have D —g1 goDy.
This implies g1 gy € Gc, (see Lemma 4.15 (1)) and hence go Up,=U D, - We
conclude g go(VDo) = (Vp,) and hence g1 oDo(GDO(V 0)) D1 (GD] (V) ))
If there does not exist gg € G and Dy € D, with D = g¢ Dy, we put D=D. Deﬁne
a new collection of boxes

D={D|DeD).

Next we want to show that D is a §, —good box cover of Kg = Uge Ag. Since
Wp €V}, for D € Dy, we conclude from property (v) appearing in Lemma 4.20

Kz < U cD(—e,e)(ﬁo)~
DeD
One easily checks that the other requlred properties of a 8, —good box cover do pass

from D to D since elements in D are obtained from those in D by restriction in a
G —equivariant way.

We conclude G, - UD,) < {V, | DedGg, - Dy} from Lemma 4.15 (iv). (We re-
mark that DN B) # @ does not necessarily 1mp1y Dn B # @ and the above inclusion
may be a strict inclusion.) By construction D satisfies (4.18).

Suppose for D,D € Gc, ~ﬁk that Uy = Up,. By construction Uy = VA and
Up = V). We conclude V}, = V), and hence both Wp and Wp, are contained in
Vp N Vp:. Properties (vi) and (vii) appearing in Lemma 4.20 imply D = D’. We
conclude that D satisfies (4.19). This finishes the proof of Lemma 4.17. O

Now we have finished our arrangement of D and can now construct the desired new
collection D’ out of D as demanded in Lemma 4.13.

4.4 Carrying out the induction step

Recall that we defined numbers m, M, a, b and ¢ in the beginning of Section 4.1.
Recall also that N is the number of G —orbits of A and that € is given in Proposition 4.1.
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In the sequel we will abbreviate

at = :I:IAA/2;

by = *Ip, /2;

c+ = =£lc, /2.
We have ar —a— =a;

by—ay=a_—-b_=b;

cy+—by=b_—c_=c.

Put
€ K
4.25 = and n:==.
(4.25) F= N )m+ ) =
We will use the G¢, -homeomorphism
(4°26) MCy - SC)L X[C—7C+]_>C)w (_X,f) = qD‘C(x)

from Lemma 2.6 (iii) as an identification. Note that Ay = Sy, X [a—,a+], By =
S, X [b—.by] and By = (Sp, N B°) x (h—,by) under this identification. Note that
for g € G¢, we have g-(x,1) = (gx,t), by Lemma 2.6 (iii).

Choose a G¢, —invariant metric dScx on Sc, . Consider D € D, . Recall that D C
C,. and that the retraction 7¢,: C), — S¢, induces a G p—-homeomorphism Sp —
mc, (Sp). We have introduced the continuous G p—invariant map

tp: ¢, (Sp) = [c—, 4]

in Definition 4.14. It is uniquely characterized by ¢, (x) = (7¢, (x), Tp o ¢, (X))
for x € Sp. Since 7p is continuous and 7, (Sp) is compact, we can find §p > 0
such that

4.27) ltp(x)—tp(y)| =n forx,y€nc, (Sp) with dgq (x,y) <dp.
Because D, is finite we can set

(4.28) 8 := min{dp | D € D, }.

Then § > 0.

In the sequel interiors and closures of subsets of S¢, are to be understood with
respect to Sc, . One easily checks with this convention that Lemma 2.6 (iii) implies
Sp, = B°NSp, since By € Cy.

Next we want to apply Proposition 3.3 to the locally connected compact metric space
Z = S¢, with the obvious isometric F' := Gp, —action (note that F' C G¢, by
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Lemma 4.15 (i), the F' = G p, —invariant open subset ¥ := S¢, N Cf which is locally
connected by Lemma 2.6 (iv), the collection of sets I/ := U (D, ) and the number § > 0
in (4.28). Note that for D € D) we have by definition D N B) # & and therefore
D < C} since D is not huge. Therefore Up C nc, (D) € Sc, NCy =Y for DeD;.
In the notation just introduced this means U C Y for U € Y. Thus we can indeed
apply Proposition 3.3 in this situation. By intersecting the resulting open covering with
Sp, =SB, N B°, we obtain a collection V = VOUVIU---UV™ of open subsets of
Szoak which has the following properties:

(4.29) V is a open covering of SIOﬁ consisting of finitely many elements;

(4.30) For every V €V there are at most ké -(dx + 1) different U € U(D,,)
suchthat UNV # @ and V Z U;

(4.31) For fixed j and Vo € V/ we have Vo NV # @ for at most 2/ F1 —2 < 2 +1
different subsets V € VO U---U Vj_l;

(4.32) For fixed j and Vy, V] € V/ we have either Vo = V; or Vo NV; = &;

(4.33) Each V' is G, —invariant, ie, gV € V' if g € Gp,, V € V';

(4.34) For V €V its closure V is a Fin—subset of S B, With respect to the G g, —

action;
(4.35) We have V° =V for V € V;
(4.36) For every V €V the diameter of V' is bounded by §;

@37 Vinvk=gif j £k.

Properties (4.29), (4.30), (4.31), (4.32), (4.33) and (4.36) are direct consequences of
Proposition 3.3. Property (4.34) follows from properties (4.32) and (4.33). Prop-
erty (4.37) can be achieved by replacing V/ by a subset of V/ if necessary.

Since for every subset ¥ C S¢, with Y° =Y we have

o

(TAS5) S (Fnsy,) = F°ns;, =y ns;, < (TS

and hence (¥ N ng)o =Y N Sp , property (4.35) holds. We mention that because of
(4.34) we can consider for V €V the restriction By (V) and property (4.35) ensures

Sf,\(V) =V .

The collection D’ we are seeking will be of the form D U {gBy (W ;a", a_vf_/) | W e

W, g € G}, where YW C V. In order to find suitable YW €V and a:VE we proceed by a
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subinduction over n = —1,...,m. Using (4.12) and (4.25) we set
Spn =86 —m+1)-pn forn=-1,0,1,....m

Clearly 8 =0p—1>08,0> >0, p—1>06n> > m=20841

and 6, ,—1 —8,n =p. For j =0,...,m let

Kij) = U V x[a—,ay].
VeVoU-UY;

(Recall that we use (4.26) to identify K ij ) with a subset of Cj.) The induction step
from (n — 1) to n is formulated in the following lemma.

Lemma 4.38 (Inductionstep: n—1 to n) Assume that we have for j =0,...,n—1
subsets W/ C V/ and numbers {a | W e W/} satisfying b_ < a?¥ < a_Vf <bt
such that the collection of boxes D"~ ! = DU {gDW |W e WOU...UW" ! ge G}

isady,— l—good box cover of Kg U GK(n D , where DV := BA(W a” ,a+) for
Wewlu...uwr1,

Then there is a subset W" C V" and numbers ai/ eR withb_ <a"” < aT < b4 for
W € W" such that D" = D"~ ' U {gD"W | W eW" g e G} isaé,,—good box cover
of Kg UGK™, where D = By (W:;a¥ ,a") for W e W".

Since (4.29) implies Sy, C )B =Upep V weget 4, CUpep V xla—,ay]. We
conclude Kz € Kg U GK = was defined in Lemma 4.13.) Hence D’ = D™
is the desired §,41—good box cover of Kg/. Therefore Lemma 4.13 follows from
Lemma 4.38.

The proof of Lemma 4.38 will occupy the remainder of Section 4.

Definition 4.39 Let W be the set of all W € V" for which

Wxla—ay]l ¢ | @ree(D).
Depn—1

Lemma4.40 LetV €V andlet d+ D be the top or bottom of a box D € D, . Consider
t € (c—,c4). Suppose that 3+ D N (Vx{t}) # &. Then

0+DN(V X[e—,c4]) SV x(t—n,t+1n).
Proof Consider v € V with (v,7) € d+ D. Then (v,t F/p/2) € Sp. Hence tp(v) =

t ¥Ip/2, where tp is the function introduced in Definition 4.14. Consider w € V
and s € [c—, c4] with (w,s) € d+ D. Then s F/p/2 = tp(w). From (4.27), (4.28)
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and (4.36) we conclude |tp(v) — tp(w)| < 1 and hence |t — s| < 1. This implies
I+DN(V x[e—,c4]) SV x(E—n,t+1n). |

Recall that for D € D, we have D € C; and we have associated to such D an open
subset Up = 7c, (Sp N D°) = e, (D°) of Sc, -

Definition 4.41 For W € W" define
Dy :={DeD" ' | D°NWx(b_,by) # D);
Dy :={D e Dy | W S Up};
DY .={DeDy |WNUp#2,W ZUp};
JECOE = {1 € (b—,b1) |AD € DEY |84 D° N W xit} # B);
TR = {1 € (b—,by) | 3D € DY | 34 D° N Wt} # @}
JE = {1 € (b—,by) | ID € DY | D°N Wt} # )
T, = IS U BT Y Ty gt

Since D € Dy implies W N Up # @&, we have Dy = D%;Od u Dl;;}d. The reason for
the names of D%;Od and D%f}d is this. In the construction of D% for W e W" we will
be able to allow top and bottom of D" to be very close to top or bottom of a box in
D%;}Od (compare Lemma 4.43) but will have to make sure that top and bottom of D"
will be far away from top and bottom of every box in D?;}d. Thus, both for choosing
a” and aEFV there will be two cases: either we find a suitable top (for a?¥’) respectively
bottom (for a_Vl/) of a box in D%;Od to put Wx{aq”:/ } close by, or all boxes from D%,;Od
are far away and we will only have to worry about the boxes from Dtl’,f}d. The crucial
point will then be, that the number of members of Dtﬁa}d is uniformly bounded, see
Lemma 4.42.

Note that for ¢ € Gp, we have JﬁgOd’i = Jif?,;d’i, J;ﬂd’i = J;;Id,’i, Jﬁ?Od = Jif?,;d
and JI?V = JgW, because g acts trivially on the second factor of Cy = Sc, X[c—, c4].
Lemma 4.42 We have

DR < M = (kg)® - (dx + 1) + 27",

Proof We conclude from the definitions, Lemma 4.15 (iv) and (4.35)
D" =DU{gD" | W eWu...uW" ! g G}
DY = B;L(W;aW,aT) = Wx [aKV,aK/] for W e WOU-..uW",

Upw =W for W e WO U...uW",
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Recall that gBy N B) # @ = g € Gp, holds. Hence we get
D?,f}d:{DeD|D°ﬂWx(b_,b+)7é®,WﬂUD#@,W;ZUD}
U{gDW/|W/GWOU~--UW”_1,geG,
(&D") AW X (b—,b1) # 2. W N Uypur # 2, W ¢ UgDW/}
={Dep|D°me(b_,b+)7e®,WmUD7A®,W¢UD}
U{gDW/|W’EWOU---UW"_l,geGBA,WﬂgW’#Q,WngW/}
g{DeDﬂWﬂUD;é@,WgZUD}
U{gDW/|W’EWOU---UW”_l,geGBA,WﬂgW’#Q,WngW/}.

We have gD"' = D&W’' and D' = D"’ & W’ = W”. Hence we conclude
using (4.19), (4.30), (4.31) and (4.37) that

DRI <D €Dy | WNUp #2.W ¢ Up}

+ {gDW/ W eWOU---UW' ! gcGp, WNgW £3. W gng/}
={Up eUDy) |WnUp #2, W ¢ Up}|

+ {gW/|W/GW°U~--UW”_1,geGBA,WﬂgW/yéQ,WngW’}
{Up eU(Dy) |WNUp # 2. W ¢ Upji

=

+ {V|Vev"u---uv”‘l,wmv#@,Wgzv}’

<kg-(dy +1)+2""!
= M.

This finishes the proof of Lemma 4.42. |

Lemma 4.43 Let W e W". If tg € J5 "7 U IS and 1, € J],, then

lto—t1| &[e _ar,n—l +na+ 8r,n—1 —1).
Proof There are Dy € D%;Od, D1 €Dy, 0g, 01 €{—, +} and wg, wq € W such that
(wo, o) € dgy Dy and (wy,11) € d5, D7 . By definition of D%;Od we have W C Up,

and Do © Cy. Therefore there is T € R such that ®;(wy,11) = (wy, 11 + 1) € 35 Dy
and t; + 7 € (c—, c4+). We conclude from Lemma 4.40 that |¢g — (¢ + )| < 1. Because
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D"~ 1 satisfies the induction assumption, we know that Dy, € D"~ ! is 8y n—1—overlong.
Therefore

|| & [e — 8r,n—1 , o+ 8r,n—1]-
This implies our result, because ||tg — 1| — ||| < |(to —t1) — T| < 7. |

Definition 4.44 For W € W" let

RY = sup ((b_ +a+e,a)n J§§°d’+) U{b- +a+e);

RK/ = inf ((a+, by—a—e)n Jﬁ;md’_) U{by —a—e}.

Lemma 4.45 Let W € W". We have:
O RV, RY)nJS™ = o;
i) RY +a+68,+2n<RY.

Proof We first show that
(4.46) [a——€/2+n,a+ +e/2—n]ﬂJ§;’°d=@,

We proceed by contradiction. If (4.46) fails then there are tg € [a——€/24+n, a4+ +€/2—
n], wog € W and abox D € D%;Od such that (wg, ty) € D°. We have W C Up. For
every w € W there exist unique real numbers 74 (w) such that (w, t4(w)) € 94+ D°.
From Lemma 4.40 we conclude

t+(w) € (tx(wo) — 1. 7£(wo) + 1) forw e W.

We have 1_(wq) <t9 <14 (wq). From a;—a_ =¢€/2 we conclude 7o <ay+¢€/2—n=
a_+e—nand tg>a_—€/2+n=as+ —e+n. We estimate

—(w)—e<t_(wo)+n—e=<tg+n—e=<a-;
Tr(w) te>t(wo) —nt+e=to—n+e=ay.

This implies W x[a—,a+] C ® (¢, D° which contradicts the definition of W" in
Definition 4.39. This proves (4.46).

We give now the proof of (i). Assume that there is D € D%;Od, to € (RY, RT) and
wo € W such that (wg, ty) € D°. Because n = /5 < ¢/5 < €/2 we conclude from
(4.46) that either 7ty < a— or fy > a4. We treat the first case, in the second case
there is an analogous argument. There is 74 > 0 such that (wg, fyp + 74+) € 0+ D°. If
to+ T+ >a—, then (wg,a_) € D°, thatis, a_ € J2%°4 Since this contradicts (4.46) we
conclude 79+ 14 <a—_. Clearly ty+ 14 € JI%;Od’+ and b_+a+e<RW < to<to+t+.
But this contradicts the construction of R? in Definition 4.44. This proves (i).
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Next we prove (ii). First we treat the case R =bh_ 4+ «a + €. Since 2 = 211/5 <
2¢/5 <€, 8pp <€ and 200 4+ 3€ <b =a_ —b_ we conclude

RY 4048, 4+2n = b_+20+€+8,,+2n < b_+20+3€ < b_+b = a_ <RY.

The case R_If = b4 —a — € can be treated similarly. Therefore we may assume now
RY #£b_4a+eand R_Vl/ # b4 —a—e. From the construction of RL/:V we conclude then
that there are 74 € Jﬁ?Od’jF, such that RY —n <t_ < RY and R_If <ty < RK/ + 7.
Clearly - < R% <a_<ay < RK/ <t4+. Thus t4 —t— > 0. By Lemma 4.43

ly —1— &le=3pp—1+ 0,0+ 8 n—1—1
On the other hand (4.46) implies - <a_ —¢/2+n and ty > ay +€¢/2—n. Using

ay—a_=¢€/2,2n=2u/5<2/5<¢€/2and S, p1 —N=8,n+U—10>08;,=>0
we estimate

ty—t— > (ay +€/2—n)—(a——€/24+n) = 3€/2-2n > € > € =8, p—1 +1.

Therefore 14 —t_ > a + 6, p—1 — =& + 6p,n + i — 1. This implies — + & + 6,4 <
t+ 4+ n— . Using this and 57 = pu we compute

RY 4 a+68 420 < t_+a+68.,+37
<t+—u+4n<RK/—M+5n:R2/. a

We can now give the construction of aiV for W e W*. If RY > b_ 4+« + € then we
set a” := RY 4 1. Otherwise R” = b_ + «a + € and we will use the fact that we
arranged b = a— — b_ to be very large. It follows from Lemmas 4.42 and 4.45 (i) and
a— < RK/ that JI?V N[RY,a_] is contained in the union of 2M intervals of length
2n. Using 8, n +1n < 8pn + 0 = 8, n—1 < € We estimate
a_—(b_+a+e) =b—(ax+e) = 4AM(ax+2€) +2(ax +¢)
> M 4+ 1)Qa +2¢€) > M + 1)(2a + 20+ 26,.1).
If from an interval I of length strictly larger than L, we take out 2M or less intervals,
each of which has length less than or equal to [, then the remaining set contains an
interval of length / := (L —2M1)/(2M + 1). The center of such an interval, will
have distance //2 from all points in the 2M intervals and from the boundary of 7.
Therefore we find ¢ € [(b— + o +€) + (a + 8rn),a— — (a + 8r,)] such that
(4.47) a¥ —t| > a+8,, forallz € JJ,.
w

This finishes the construction of ¢”. To construct a Y we proceed similarly. If
RT < b4+ —a —e then we set a_Vl/ = RK/ —1n. Otherwise R_If = by —a—e and there
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is a_vf €lay +(a@+6rn), (b4 —a+e€)—(a+6,)] such that
(4.48) @ —t| > a+ 8, forallz € JJ,.
This finishes the construction of a_’f. We can arrange that aftV = a‘iW for g € G, .

For W € W" let now DY := B;L(W;aKV,aT) = I/I_/x[aKV,af].

Lemma 4.49 Let W € W".

(1) (D(—(x—e,(x+e)(DW) C By
(ii) If x lies in the open bottom or open top of DY then

<I)[_Ol_lsr.n ,—€+8r n]Ul€—8r n,0+8r 1] (X)

does not intersect the open bottom or top of a box D € D" 1 ;

(i) Ipw =a"¥ —a¥ >a+68,4:

@iv) WX[CI_, a+] - CD(—G,G)(DW)O,'
W) HDeD™' | D*N (DY) # B} = M.

w

Proof (i) By construction b— + o +€ <a
W C Sp, .

< az/ < bt —a —e€ and (4.34) implies

(ii) We consider the open bottom first. Let w € W and x = (w,a”). By (i)
Dl—q—5, 1, —e+8,.n]Ule—6r n,a+8,.,](X) is contained in Bj and can therefore only inter-
sect boxes from Dy . The claim follows thus if [@” —¢| ¢ [€ — 8;.n, o + 8, 4] for all
t e JI‘?V. If RY =b_ + o+ ¢ then (4.47) holds and implies our claim. Otherwise

: d,+ w w : w
a = RW 4+ 1y and there is 1 € JI%;,)O N[RZY —n, RY] by the construction of R”
in Definition 4.44. Now Lemma 4.43 implies our claim since 6, ,—1 — 8,0 = 4 >
3u/5 = 3n. The open top can be treated completely analogously.

and af2a+—n>a_ since ay —a_=a=¢€/2>p/5=n0.1f R =b_+a +e,
then by construction a”¥ < a_ — (a4 6,.,) and our claim follows. Similarly the claim
follows if R? = b4 —a — €. Thus we are left with the case az = RK/ F n and the
claim follows from Lemma 4.45 (ii).

(iii)) Clearly af —a" is the length of D" . By construction ¢¥ <a_ +n<ay

(iv) Asnoted above the construction of alf implies that a¥ —n<a_ and a_If +n>a4.
The claim follows therefore from n < €.

(v) Because (D")° c Wx(b_,by),
(DeD" ' | D°N(DY)° £} ={DeDy | D°N(DY)° £ 2.
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By construction R? < a” < a¥¥ < RW . Thus Lemma 4.45 (i) and Lemma 4.42
imply

HDeDw | D°N(DY) £} ={DeD | D°N(DY)Y £} <M. O

We now define
D" .=D" L U{gD" | W eW" g eG).
It remains to check that D" is a §, ,—good box cover of Kg UGK in) . Recall the

induction hypothesis that D"~ ! is a 8r.n—1—good box cover of Kg UGK §"_1) .

We begin with showing that D" is §, ,—overlong. So we have to show for every
Xx € X which lies on the open bottom or open top of a box D; in D", that the set
Qg5 ,—e+8r n]U[e—8y n,a+8,](X) does not intersect the open bottom or the open
top of any box D; in D".

If D; and D, lie in D"~!, this follows from the induction hypothesis.

Suppose that D; & D"~ ! and D, € D""!. Then we can assume without loss of
generality that D; = D" for some W € W" since D"~ ! is G —invariant. The claim
follows then from Lemma 4.49 (ii).

The case D; € D" ! and D, ¢ D" ! is treated analogously.
If D; = D, and D; ¢ D", then the claim follows from Lemma 4.49 (i) and (iii).

If D; # D, and Dy, D, ¢ D" !, the claim follows from (4.32) and Lemma 4.49 (i)
since B), is a Fin—subset of X. Hence D” is §, ,—overlong.

We conclude from Lemma 4.49 (i) and (iii) that D" satisfies (4.3).

We derive the inclusion Kg UG K )(\") C Upepn P(—¢,e)(D°) from Definition 4.39 and
Lemma 4.49 (iv). (The set K }(L”) was defined before Lemma 4.38.)

By (4.32) the DV are mutually disjoint. Therefore Lemma 4.49 (v) implies that (4.4)
holds for D".

It is clear that (4.5) and (4.6) hold for D".

Next we prove property (4.7). Because of the induction hypothesis it suffices to prove the
assertion for the boxes gD" for g € G and W e W", where DV = By (W;a" , aK/).
From Lemma 4.49 (i) we conclude CID[_G,_E,O,JFE](DW) C By (W). Since W is a Fin-
subset of Sp, with respect to the G p, —action by (4.34) and B is a Fin—subset of the

G —space X, d>[_a_6,a+€](DW) is a Fin—subset of the G —space X .

Geometry € Topology, Volume 12 (2008)



1846 Arthur Bartels, Wolfgang Liick and Holger Reich

Finally we show that elements in D are not huge. For g € G and W € W" the box
gDW can be obtained by restriction from By and is therefore not huge; compare
Definition 4.10 and the subsequent comment.

We have shown that D" is the required §, ,—good box cover of Kg UGK i”). This
finishes the proof of Lemma 4.38.

As was noted before, Proposition 4.1 follows from Lemma 4.13 which follows from
Lemma 4.38. The proof of Proposition 4.1 is therefore now completed.

5 Construction of long YVCyc—covers of X

At the end of this section we will give the proof of Theorem 1.4. Throughout this
section we will work in the situation of Convention 1.3. In order to construct the long
and thin cover of X we need to discuss covers of X® and X <y —X R,

Lemma 5.1 There exists a collection Uywr of open Fin—subsets of X such that
G\Uyr is finite, X® Uveu,p U and dimUyr) < co.

Proof Because the action of G on X is proper there is for x € X® an open Fin—
neighborhood Wy of x. Because the action of G on X is cocompact and X R is
closed, there is a finite subset A C X® such that X® C (J,cq Ujcp gWa- Let
Uyr ={gW, | g € G, 1 € A}. Because the W), are Fin-sets we have gW, # W) =
gW, N W, = @. Therefore dim(Uyr) < |A|—1. O

Lemma 5.2 Fix y > 0. Let L<, be the set of orbits L = ®gr(x) in X whose G —
period satisfies 0 < perg (L) < y. Then there exists a collection U, ={Ur | L € L<y}
of open VCyc—subsets Uy, of the G—space X such that L C Uy, for L € L, and
dimiU = 0.

Proof By assumption we can find finitely many pairwise distinct elements L, L,,
..., Lyin L<y suchthat L<, =G-{L,L,,...,L,}. Wecanarrangethat L; =g-Ly
for some g € G implies j = k. Since the G ; —action on L; is proper and cocompact
and L; is homeomorphic to R or § 1 the group Gp; is virtually cyclic. (A group
that acts cocompact and properly on R has two ends and is therefore virtually cyclic
[5, Theorem 1.8.32(2)].) We can choose compact subsets K; € L; with Lj =G, - K
and G\GL; closed.

Since G\ X is compact and G\GL; NG\GL # @ = j = k holds, we can find open
subsets V{,V;,.... V/in G\X suchthat G\GL; € V/ and V/NV] # @ = j =k
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holds. Let V; be the preimage of Vj/ under the projection X — G\X . Then Vj is a
G —invariant open neighborhood of L;j and V; NV, #0 = j =k.

Fix j € {1,2,...r}. Since the G—action on X is proper, we can find an open neigh-
borhood Wj’ of K; and a finite subset S C G such that Wj/ N ng’ T =geS. Let
So € S be the subset consisting of those elements g € § for which K; NgK; = &.
Since K is compact, we can find for s € Sy an open neighborhood W;” of K; such
that W' NsW{" = @. Put U] := W/ N[ \seg, Wy’ Then U is an open neighbor-
hood of K; such that Uj/ ﬂgUJf # @ implies K; NgK; # @. Put U; = G, -UJT.
Then Uj is a G, —invariant open subset containing Lj = G, Kj. Next we prove
gU;NU; # 2 = g€ Gy, . Suppose for g € G that gU;j NUj # . Then we can find
g0, &1 € G, such that ggon/ﬂglUj # . This implies gl_lggon NK; #a. We
conclude gl_lggoLj NL; # @ and hence gl_lggzLj = L; . This shows gl_lggo €Gy,;
and thus g € G ;. Hence Uj is an open VCyc-subset of the G—space X such that
GUj = GLJ' and L; C U;.

Define for any element L € L<,,
Up=g-(VinU;j) forgeG with L =gL;.

This is independent of the choice of g and j and Up is a VCyc—subset of the G—
space X with Gy, = Gy, since (V; NU;) is a VCyc—subset of the G —space X with
Gy,nu; = GL; - We have by construction

U, NUp, #9= Li=L,. O
Finally we can give the proof of Theorem 1.4.

Proof Let « > 0 be given. Choose € such that 0 <€ <. Let M = M (kg, dx) and
y = y(4a, €, M) > 0 be as in Proposition 4.1.

Let Uyr be the collection of open Fin—sets from Lemma 5.1 and U/, be the collection
of open VCyc—sets from Lemma 5.2. Note that dim(Uyr UlU,,) = dim(Uyr) + 1 is
finite and does not depend on «, but only on an arbitrarily small neighborhood of X®
as a G—space.

Put S ={xe€X|3U €U, Ulyr such that ®_y o)(x) C U}.

Note that S is G—invariant, because U/, and Uyr are. Consider x € §. Choose
Ux €Uy Ulyr with ®_y 41(x) S U. Since {x}x[—a,a] is compact and contained
in ®~!(Uy), we can find an open neighborhood Vy of x such that Vy x [—a,a]

®~1(Uy). This implies Vy € S. Hence S is an open G —invariant subset of X which
contains X<, .

Geometry € Topology, Volume 12 (2008)



1848 Arthur Bartels, Wolfgang Liick and Holger Reich

Let K be the closure of the complement of S in X . Since G\ X is compact K C X
is a cocompact G —invariant subset which does not meet X<, . Hence we can apply
Proposition 4.1 to K with respect to 4« instead of o and € with 0 < € < «. Recall
that M = M (kg,dx) and y = y(M, 4a, €) are the numbers appearing in Proposition
4.1. So we get a collection of boxes D with the properties described in Proposition 4.1.
Put
Uk = {qD(—a—e,—Hx-}-e)Do | D € D}.

Then for x € K there is U € Uk such that ®[_ o1(x) C U and every element in Ug
is an open Fin—subset of X .
Next we show dim(Ug) < 2M + 1. Consider pairwise disjoint elements D, D,
..., Dapry3 of D. We have to show that ﬂifIH P(—g—c,ate) (D) = I. Suppose
the contrary, ie, there exist x € X such that x € ®(_y—¢,q+¢)(Dy) holds for k =
1,2,...,(2M + 3). Obviously x € ®(_y_¢q+e) (D)) implies that Oo4(x) € D} or
®_4(x) € Dy since € <a and for every y € X the set ®pg 44](») can not intersect
both the open bottom and the open top of Dy . Hence we can find (M + 2) pairwise
distinct elements ki, ks, ..., kar4o S {1,2,...,2M + 3} such that ®,,(x) € D,‘c’j
holds for j =1,2,..., M +2 orthat ®_,,(x) € D,‘;_ holds for j =1,2,...,M+2.In
both cases we get a contradiction to dim({D° | D € D}) < M . This shows dim(Ug) <
2M + 1. Note that this bound depends only on kg and dy and is independent of «.
Because

dim(Ug UU, UUyr) < dim(Ug) + dim(U, Ulyr) + 1

this implies that the dimension of
U = Ug VU, Ulyr

is bounded by a number that depends only on kg, dx and the G —action on an arbitrary
small neighborhood of X® . Thus ¢/ is the required VCyc—cover of X . This finishes
the proof of Theorem 1.4. a

Remark 5.3 In Convention 1.3 we assumed that the number of closed orbits, which
are not stationary and whose period is < C, of the flow induced on G\ X is finite
for every C > 0. This assumption can be replace with the following less restrictive
assumption.

There is a number N such that for every y > 0 there is a G —invariant
collection ¢ of open VCyc—subsets of X such that for each x € X<,
there is U € U such that ®[_,, ,,; CU, dim(lf) < N and G\U is finite.

The proof of Theorem 1.4 given above clearly also works under this less restrictive
assumption. This might be useful in nonpositively curved situations.
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6 Mineyev’s flow space

6.1 Hyperbolic complexes, double difference and Gromov product

We collect some basic concepts such as hyperbolic complexes, double difference and
Gromov product which are all taken from the paper by Mineyev [14] and which we
will need for our purposes.

A simplicial complex is called uniformly locally finite if there exists a number N such
that any element in the O—skeleton X, occurs as vertex of at most N simplices.

Let X be a simplicial complex. Given any metric d on its 0—skeleton, one can extend
it to a metric d on X as follows. Given points u; for k = 1,2 in X, we can find
vertices Xi[0], xx[1], xg[ng] such that u; belongs to the simplex with vertices x[0],
xr[1], ..., xXk[ng]. There are unique numbers ax[0], ag[l], ..., ag[ng] in [0, 1] with
"h_oaklix] =1 such that uy is given by Y_7*_ o aglix]- Xk[ng]. Then define

ig= ir=0
ny np

duy,ug) = Y " afin]-eafis] - d(xfir], xalia)).

i1=0i=0

This is a well-defined metric extending d such that each simplex with the metric
induced by d is homeomorphic to the standard simplex.

Given a connected simplicial complex, define a metric dy on its O—skeleton by defining
do(x, y) as the minimum of the numbers z > 0 such that there is a sequence of vertices
X =Xy, X1, ..., Xp = » with the property that x; and x;4 are joint by an edge for
i =0,1,...,n—1. The word metric dyoq on a connected simplicial complex X is
the metric cﬂ).

A metric complex (X, d) is a connected uniformly locally finite simplicial complex
X equipped with its word metric d = dywod. A hyperbolic complex X is a metric
complex (X, d) such that (X, d) is §—hyperbolic in the sense of Gromov for some
8 > 0 (see Gromov [10] and Bridson, Haefliger and Buch [5, Definition III.H.1.1]).
Let X be the boundary and X = X U X be the compactification of the hyperbolic
complex X in the sense of Gromov [10; 5, III.H.3].

Mineyev [14, 6.1] constructs for a hyperbolic metric complex (X, d) a new metric
D with certain properties (see [14, Lemma 2.7 on page 449 and Theorem 32 on page
446]). For instance D is quasi-isometric to the word metric dy,orq. For a simplicial map
f: X — X the following conditions are equivalent: (i) f is a simplicial automorphism,
(i) f is a simplicial automorphism preserving the word metric dyorq, (ili) f is a
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simplicial automorphism preserving the metric D. Define for a,a’,b,b’ € X the
double difference to be the real number

1 ~ ~ ~ ~
(6.1) (a,d'|b,b') = 3 (D(a, by+ D', b")— D(d',b) — D(a, b/)) )
Recall that the Gromov product for a, b, ¢ € X is defined to be the positive real number

6.2) (alb)c := é-(f)(a,c)—l—ﬁ(b,c)—f)(a,b)).
Define the subset
S(X) € {(a,d b,b)yeXxXxXxX}=X*
to consist of those quadruples (a,d’, b, b’) satisfying
a,bedX = a+#b;
a,b’ € 0X = d' # b;

a,becdX =a#b';
a, b edX =d #0.

Let T(X) = {(a.b,c) | X xXxX|cedX = (a#cand b #c)}.

We equip S(X) € X* and T(X) C X3 with the subspace topology. The following
result is a special case of [14, Theorem 35 on page 448 and Theorem 36 on page 452].
(We only need and want to consider the case where the double difference takes values
in R.)

Theorem 6.3 (Mineyev) Let (X, d) be a hyperbolic complex. Then the double ditfer-
ence of (6.1) extends to a continuous function invariant under simplicial automorphisms
of X

satisfying

(i) (a.d'|b,b’) = (b,b'|a.d’);

() (a,d'|b,b'y = —(d',alb,b’) = —(a,d’|b’,b);
(iii) (a,alb,b’) = (a,d'|b,b) =

(iv) (a,d'|b,b')+ (d',d"|b,b") = (a,da"|b,]");
(v) (a,blc,x)+ (c,alb,x)+ (b,cla,x) = 0;
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The Gromov product of (6.2) extends to a continuous function invariant under simplicial
automorphisms of X
(=)= T(X) = [0, 00]

satistying

(1) (alb)e =00 & (c€dX)or (a,be€dX anda =b);

(i) (a,b|x,y) = (b|x)e—(b|y)q fora e X and (a,b,x,y) € S(X).
We will often use the rules appearing in Theorem 6.3 tacitly.
Another important ingredient will be the following result due to Mineyev [14, Proposi-

tion 38 on page 453].

Proposition 6.4 (Mineyev) Let (X,d) be a hyperbolic complex. Then there exist
constants A € (e~ !, 1) and T €[0, oo) depending only on X such that forall a,b,c,u €
X satisfying

(a.c.u.b) € S(X);

(b,c,u,a) € S(X);

max{{a, clu,b), (b,clu,a)} > T,
we have (u.c.a.b) € S(X);
|<M, c|a, b>| < )\rnax{(a,c|u,b),(b,c|u,a)}.

6.2 Two auxiliary functions

In the sequel we will use the following two functions for &, 8 € R := R [ [{—00, oo}
with o < 8.

(6.5) Ola.p): R — [, B]
(6.6) Ol A1 R — [, B]
which are defined by

oa if —co=<t<uq;
9[05’/3]([) = t ifa<t=<g;
B if B =<t =<o0,

—00 if —co=t=uq,
a+el™/2—eB/2 if —co<t <o, —oc0<a< oo

Op.pt) = 3 t+e¥t/2—e' B2 ifa<t<B,—00<t<o0;
B+e*t/2—eP1/2 ifB<t<00 —00<p <00;
00 ift =8 = o0.
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Here and in the sequel we use the convention that for r, s € R the expressions r + s,
r-s and e’ are defined as usual and furthermore

Fr+o00=00+r =00 forr e R;
r—oo=—-00+r=—00 forrelR;
e~ =0;

e® = o0;

| £ 00| = o0.

The function ®y g) agrees with the function denoted by 6’[e, B; -] in Mineyev [14,
Section 1.6]. We equip R with the topology uniquely determined by the properties that
R C R is an open subset, the subspace topology on R C R is the standard topology
and a fundamental system for open neighborhoods of co is {(R, 00) U{oco} | R € R}
and of —oo is {(—o0, R)U{—o0} | R € R}.

The elementary proof of the following basic properties of @[, g; is left to the reader.

Lemma 6.7 Suppose that @ < . Then:

(i) We have fort € R
© Oy p1(t +5) o o
Otept(t) = / I ds = Bap(0) +e 12— TIB
—00 °

(i) The restriction of Oy g) to R is a homeomorphism R = (o, B) which is a
C —function. Its first derivative is the continuous function

el /2 —et=P/2 if —oo<t<aq;
teR > { 1—e*1/2—eF/2 ifa<t<§;
—e® 24 ePt2 B <t <o0;

(iii) The function ®y g) is strictly monotone increasing. The function 0O}y g) is
monotone increasing;

(iv) The function Oy g) is nonexpanding, ie, |O[q, g1(t) — O[q,g(s)| < |t — 5| for
t,s € R. The same is true for Oy g ;

(v) The map O gi: R — [a, B] is a homeomorphism;
(vi) We have for t € R and s € R

Oar+s,8+5](t +5) = 0o, g1 (1) + 5
Olats,8+s]( +5) = Ofg,g(2) + 5.
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(vii) Consider o, 1, Bo, B1 € R such that oa; < B; fori =0,1, (g = —00 < ay =
—00) and (Bo = 00 & B1 = 00) holds. Put

max{|a; —aol, |B1 — Bol} ifag,ar, Bo.B1 €R;

C - lop — g ifag, a1, € R, Bo = B1 = o0;
181 — Bol ifog = oy = —00, Bo. 1. € R;
0 if(XO:(X]:—OO,,BOIﬂIIOO.

Then we get for all t € R that
|6er.11(0) = By 1 (] = C:
|Oa1.811(0) = Ol p)(1)| = C:
(viil) Ifoa <t, then
O, 81(1) — O[—00,p1(1) = e )2,
If B > ¢, then
Ola,o00] (1) — Opapy (1) = P /2;
(ix) Consider o, 8 € R with —co <a < and t € R.
If ®[a,ﬂ](l) < (a+ B)/2, then
t <min{B, O, g () +1/2}.
If O p1(t) = (a+ B)/2, then

t = max{a, O, g(1) —1/2}.

6.3 The construction of the flow space

Let (X, d) be a hyperbolic complex. We want to define the associated flow space, ie
a metric space FS(X) together with a flow, following Mineyev [14]. (It is the same
as the half open symmetric join # X constructed by Mineyev [14, Section 8.3].) The
underlying set is

(6.8) FS(X):= {(a,b,t) EXXXXR|(aedX =t #—00)

and (b€ dX =t #o0)and (a,b €dX = a#b)}/ ~,
where we identify (a,b, —00) ~ (a,b’, —0), (a, b, o0) «;(a’,_b, oo_), and (a,a,t) ~
(a,a,t’). In the sequel we will denote for (a,b,t) € X x X x R which satisfies

acidX =>t#—00,bedX =>t#ooanda,bedX = a#b itsclass in FSX again
by (a,b,1).
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From now on we fix a base point x¢g € X . The metric on FS(X) will depend on this
choice.

Define the map
(6.9) [xog: X xFS(X) — R
(u,(@.b, 1)) = (alb)u + |0/=(blxo)aalxo)s] (1) — (@, blu, xo)] .
It is easy to check that it is compatible with the equivalence relation appearing in the
definition of FS(X).
Definition 6.10 Define a pseudometric on FS(X)
Fs.xo = Ars(x),xy FS(X) X FS(X) - R,
(a,b,t),(c,d,s) — sup ‘lxo(u, (a,b,t)) —lx,(u, (c, d,s))] .
ueX

Recall that a pseudometric satisfies the same axioms as a metric except that the condition
d(x,y)=0= x =y is dropped. The proof that this definition makes sense and yields
a pseudometric d ;s, xo 18 given in Mineyev [14, Theorem 44 on page 459].

Lemma 6.11 The inclusion X — FS(X), x — (x, x,0) is an isometric embedding
with respect to the metric D on X and the pseudometric dpg ,, = on FS(X).

Proof We compute for # € X and x € X and 7 € R

Lo (14, (3, X, 1)) = (x1X)u + |0 (x|x0) x (x,00)2] (1) — (X X[, X0)|
= D(x, M) + }9[0’0](0 — 0‘
= ﬁ(u,x).

Consider a, b € X. Since by the triangle inequality |5(u, a)— 5(u, b)| < ﬁ(a, b) and
|D(b,a)— D(b,b)| = D(a, b) holds, we conclude

d}(S’XO((a,a,t), (b,b,s)) = sup }ZXO(u, (a,a,t)) —lx,(u, (b,b,s))‘
ueX

= sup | D(u,a)— D(u, b)|

ueX
= D(a,b). 0
The canonical R—action on R
(6.12) p:RxR, (1.0) > ¢ (1)
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is defined by ¢ (1) =1+7,if 1 €R, ¢pr(—00) = —00 and ¢;(c0) = 0o. This R-action
on R together with the trivial R—action on X x X yields an action of R on X x X xR
which in turn induces an R—action

(6.13) ¢: RxFS(X)— FS(X), (t,(a,b,t)) — (a,b,p:(2)).

For a,b € X we define the line (a, b)Fs(x) to be the set of points {(a,b,t) |t € R}.
Obviously (@, b)rs(x) is a transitive free R—set if a # b.

Next we construct the desired metric from the pseudometric above.

Definition 6.14 Define a metric on FS(X)

dps(x),xo: FS(X) X FS(X) — R,

d;'(S’xO((]St(Cl, bv [), ¢t(c, d, S))d
2.ell T

(a,b,1),(c,d,s) |—>/
R

Obviously dFs,x, inherits from d }(S’ x, the properties of a pseudometric. The proof that
dFs,x, is a metric can be found in [14, Theorem 14 on page 426 and Theorem 45 on
page 459].

Lemma 6.15 The inclusion X — FS(X) is an isometric embedding with respect to
the metric D on X and the metric dfs,x, on FS(X).

Proof We compute for # € X and x € X and # € R using Lemma 6.11.

Y < (@e(a.a.1). ¢ (b. b,
drs.x,((@.a.t), (b, b.s)) = /R Fs.x0 (9 (azc.letlilqs( 9

/ drs x,((@,a.t +7),(b,b,s + 1)) J
= T
R

- 2.e|r|
D
=/ Dia.b) ..
R 2.e|f|
~ 1
:D(a’b)'/Rz.e|r| dx

= D(a,b). O

In the sequel we will consider X as a subspace of FS(X) by the isometric embedding
appearing in Lemma 6.15.
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Let f: X — X be an isometry, ie a bijection respecting the word metric d on X.
It extends uniquely to a homeomorphism f: X — X and induces an isometry with
respect to the metric dpg(x),x,

FS(f): FS(X) = FS(X), (a,b,1) = (f(a), [ (), 1+ (a,b|xo, /™" (x0)).

(Already d ;S’ x, 18 invariant under this map by a straight-forward calculation that uses
Lemma 6.7 (vi).) We have FS(go f) = FS(g) o FS(f) and FS(id) = id. In particular
a G—action on X by isometries with respect to the word metric extends to a G —action
on FS(X) by isometries with respect to the metric dpg(x), x, -

Next we compute the pseudometric d; and the metric drg on a line.

Lemma 6.16 We get for (a, b, t), (a,b,s) € FS(X) and a given base point xg € X

Fs,xo ((@.5,0),(a.D,5)) = |61~ (blxo)artalxo)] (1) = O—(blxo)artalxo)] ()|
drs,xo (a,b,1),(a,b,5)) =[O (b]x0)a.lalx0)5]1 () = O[=(Blxo)arlalxo)s] (5] -

Proof We have
rs.xo ((@.D,1),(a,b,s))
= sup ‘lxo(uv (a,b, 1)) —lxy(u, (a,b, S))‘
ueX

= sup | ((alB)u + |01 (blxo)astalxo)s1 (1) — (@, blut, Xo))
ueX

— ((@lb)u + |6 (blxo)astalxo)s)(8) — (@, bu, xo) )|
= sup |61 (b1x0)a (a0 (1) = (@ b1, X0) | = |6—(b1x0)a (alxo)] () — (@, Dlu, o) | -
ue

We conclude from the triangle inequality
[|6—BLxo)aalxo)s1 (1) = (@, Bl x0)| = |B—(bixo)a talxo)] () — (@, DL, o) |

< |0 (bIx0)arlalx0)s] (1) — (@ bltt, X0) = (O (b]x0)aulalxo)s](8) — (@, blu, xo))|
= 01— (b1x0)a-(alx0)51 (1) = O (blx0)ar(alx0)51(5)

’

and we get for u = a

|1O1—(b1x0)as(alx0)5) (1) — (@, blat. X0) | = |O—(blxg)as (alx0)5)(5) — (@ Dla. xo) |
= ||61=(bIx0)as (alx0)1 (1) = (={B1X0)a) | = |G (Blxo)as alxo)s1(8) = (={blx0)a) |
= |01 (blx0)a- (alx0)51 (1) = (= (blx0) s alxo)51(5) | -

This implies

dis xy (@,5,1),(a,D,5)) = [0 (lxo)alalxo)s] (1) = O (blxo)arlalxo)s] (5] -
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We prove the claim for dFs x, only in the case ¢ > s, the case ¢ < s is analogous. Then
t+ 1> s+t holds for all T € R. Since both O[_(5|x,),.(alx0)s] AN O[—(b[x0)a.(alx0)s]
are monotone increasing, we conclude for all t € R,
O1—(blxo)astalxo)p] ( F T) = O—(blxo)aslalxo)p) (5 + T)
= [0 (b1xo)antalxo)s) (¢ + T) = O (blxo)a.lalxo)s) (8 + )]
O (blxo)aslalxo)p] (T + T) = Ol—(blxg)aslalxo)p] (5 +T)
=[O (blx0)alalxa)o] (! + T) = O (blxo)aualxo)s) (5 + D) -

Now we get

drs,x, ((a,b,1), (a,b,s))
/ d;;S,xO (¢T((a1 ba t)), ¢t(a, b, S))
- dt
R

2. eltl
_ /‘ drs x,((@, bt + 7)), (a,b,s + r))dT
R 2. el
_ / O tblxo)as ol + T) = Oi—tbixodastalxobs) S + D -
R 2. eltl
_ / 0= (b1x0)a-(alx0)p) (¢ +T) = Of—(blxo)afalx)p (S T T) ;-
R 2.eltl
_ / O-lxodatalx))C+ D) / O blxodastalx)o) (S + )
R 2. eltl R 2. eltl
= O (blx0)a. (alx0)6] (1) — Ol (b]x0)as(alx0)s1(5)
= | O (bIx0)as (al0)] (1) — O (Blx0)as(alx0)s1 () -
This finishes the proof of Lemma 6.16. |

Remark 6.17 We have fixed a base point x¢ € X . For a different base point x; € X
there is a canonical isometry (FS(X), drs,x,) = (FS(X), dFs,x,) defined by (a,b,t) —
(a,b,t + {(a,b|xg,x1)). (Of course this isometry appeared already when we defined
FS(f) for an isometry f: X — X.) Using these isometries and a colimit over all
choices of base points it is possible to give a canonical construction of the metric space
FS(X) without choosing a base point. However, then we do no longer have canonical
coordinates in FS(X), ie to make sense out of (a, b, 1) € FS(X) we would still need
to pick a base point. Since the base-point free formulation is not directly relevant for
our applications, we do not give any details here.

Remark 6.18 As pointed out before, FS(X) and # X agree as topological spaces. But
it should be noted that the construction of the metric drs,x, on FS(X) differs slightly
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from the metric dx constructed by Mineyev on * X . The definitions of / xo 1N (6.9) and
of /(u, x) in [14, Definition 10 on page 422] do not quite agree. There Mineyev uses
a different parametrization to the effect that his formula translates to replacing 6 by
© in (6.9). (The point [a, b; s]x, € # X corresponds to (a, b, O—(bIx0)as(alx0)s](5))
in our parametrization, because [a, b; s]gc0 = [a.b: O[_(b|xo)a,(alx0)s] ()]xo 1s used in
[14, Section 2.3] to identify the models #X and & X .) However, this difference is not
important. All results of [14] that we will use are also valid with this minor variation.
Moreover we remark that since [0]—(px0)4.(alx0)5] (1) = O[=(b|x0)a,(alxo)»] (1) < 1 forall
t € R, it is easy to check that the identification of FS(X) and * X is a quasi-isometry
with respect to drs, x, and ds.

7 Flow estimates

In this section we prove the main exponential flow estimate for FS(X'). Recall that we
have fixed a base point xg € X .

Theorem 7.1 (Exponential flow estimate) Let A € (e~!,1) and T € [0, 0c) be the
constants depending only on X which appear in Proposition 6.4. Consider a,b,c € X
such that a,c € 0X = a # c and b,c € 0X = b # ¢ holds. Let t,s, 7 € R. Put

9 =1t—s—{a,b|c,xp);
2

N =245 oo

Then we get

N _
dFS’xO(¢f(a, C, Z), ¢T+T()(b’ C, S)) S TIIOL)Z -)\,(t (a,C|b,xO)) . )Lf‘

For the sphere bundle of the universal cover of a strictly negatively curved manifold
estimates as above are classical results and have been used in algebraic K—theory by
Farrell and Jones [7]. Compare also the work of Bartels, Farrell, Jones and Reich [2,
Proposition 14.2]. There only ¢ € dX is considered and 7 is chosen to ensure that
¢r(a,c,t) and ¢4, (b, c,s) both lie on the same horosphere around c.

As mentioned in the introduction, the proof of Theorem 7.1 is strongly based on ideas
due to Mineyev [14, Theorem 57 on page 468].

We also will use the following basic flow estimate.
Lemma 7.2 We get for (a,b,t),(c,d,s) € FS(X) and T € R,
drsxo (@e(a.b.1). §e(e.d.s)) = e dpsx,((@.b.1). (c.d. ).
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Proof We compute

drs,xo(Pc(a.b.1), ¢ (c.d,s))
_/ FS x0(¢a(¢r(a b,1)), o (¢ (c,d, S)))
R

- e|0'|

=/ FSxO(¢0'+‘L'(a b 1), po+(c,d, S))
R

e|0'|

_/ dgs,xy (Po (@, b, t) $olc.d.5))
R 2.elo—tl

</ st0(¢a(a b,1), ¢o(c,d, S))
- Jr

elol=ll

<e|f|,/ d;"(Sxo(%(a b,t),¢s(c.d, s))
B R 2. e‘U|

:eltl 'dFS,.X()((av b’t)7 (C7 dvs)) D
We record the following result due to Mineyev[14, Proposition 48 on page 460].

Theorem 7.3 The map
(X x X —AX)) xR SFS(X)—X. ((a.b).1) > (a.b.1)

is a homeomorphism, where A(X) € X x X is the diagonal.

7.1 Flow estimates for the pseudo metric

The goal of this subsection is to prove the version of Theorem 7.1 for the pseudometric

X
dFS ,X0 "

Theorem 7.4 Let A € (e~',1) and T €[0, oo) be the constants depending only on X
which appear in Proposition 6.4. Consider a,b,c € X such that a,c € 0X = a # ¢
and b,c € X = b # ¢ holds. Let t,s,7 € R. Put

19 =1t—5—{(a,blc, xop);

N:2+—)\T-(—ln(k))'

Then we get

(7'5) ;(S,X()((bf(avcvt)’ d)‘t-i-‘fo(bvcvs)) = N')‘t—i_t_(a’c'b’XO)'
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Its proof needs some preparations and is then done in several steps.
We begin with the trivial case ¢ = b.
Lemma 7.6 Consider the situation appearing in Theorem 7.4. If a = b then (7.5)
holds.
Proof Since
9 = t—s—{a,blc,xq) = t—s—{(a,a|c,xy) = t—s,

we get for all T € R

d)‘t(a’cvt) = (a,C,t + ‘E) = (b,C,S +T7+ TO) = ¢‘L’+‘E()(b7c7s)
and hence

d])«‘(S,xO(qu(a,C,t), ¢r+r0(b,C,S)) = O 0

So we can make in the sequel the additional assumption that @ # b. This has the
advantage that the expressions {(a, c|b, x¢), (b, c|a, xo), {a,c|u,b) and (b, c|u,a) for
u € X which will appear below are well defined elements in R.

Lemma 7.7 Define t,19,a,b,c,xq as in Theorem 7.4. Suppose that a,b € X =
a # b. Then:

(i) We have

{alxo)e —(a,c|b, xo) = (blxo)c — (b, cla, xo) = {alb)e;
t+1—A{a,clb,xo) =5+ 71+ 10— (b, Cla,xo);
{alxo)e — (t + 1) = (blxo)e — (s + T + T0):
—({clxo)a —{a,c|b, xo) = —(c|b)a:
—(clxo)p — (b cla, xo) = —(cla)p:
max{{a, clu,b), (b, clu,a)} < {a|xo)c —{a,c|b,xqg) forueX;

Gi) If t+ 1> —{c|x0)a;

s+ 1T+ 10 = —(c[x0)p,

then O (c|x0)aslalxo)e](t + T) — (@, c|b, xo)
= 01— (c|x0)p.(blx0)](§ + To + T) — (b, cla, xo):
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(ii1) If we assume

1412 —(c|x0)a:

O—(c|xo)as(alxo)e](t +T) —{a.c|b, xo) < max{{a,c|u,b),(b,c|u,a)},

then O1—(clxo)astalxo) ] +T) =1+ T.
Proof (i) Notice for the sequel that (a|a’). = oo if ¢ € dX . Hence the first equality,
the third equality and the last inequality are true for trivial reasons if ¢ € dX .
We compute for ¢ € X
(a|X0)c - (a7 Clb, xO) = (a|x0>c + <C, a|ba X())

= (a|xo)c + ((alb)c — (alxo)c)
= (alb)c.

and analogously
(blxo)c — (b.cla.xo) = (bla)e = (alb)e.
This proves the first equation.
The second follows from
s+ T+ t0—(b, cla, xo)
=s+t4+t—s5s—{a,blc,xo)— (b, cla, xg)

=t+t—{a,b|c,xg)—{b,cla,xo) — {(c,alb, xq) + {c,alb, xq)
=14+t —(a,clb, xo).

The third equation is a direct consequence of the first two if ¢ € X', and hence true for
all ce X.

The proof of the fourth and fifth equation is analogous to the one of the first one.
Since for c € X

{a.clu,b) = {c,alb,u) = (alb)c —(alu)c
and (b, clu,a) = {c,bla,u) = (bla)e —(blu)e = (bla)e = (alb)c

IA
)

S
~
[

holds, the last inequality follows from the first equality.

(i) We begin with the case 7 + t > (a|xg).. Then we get from the third equation of
assertion (i) that also s + © 4+ 79 > {b|xg), holds. We conclude from the definitions
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and the first equation of assertion (i)
O1—(clxo)aslalxo)e ] +T) — {a, clb, xo) = {a|xo)c — (a, c|b, xo)
= (b|xo)c — (b, cla, xo)
= 01— (clx0) 5. (b1x0)c1 (8 + To + T) = (b, cla, xo).

Next we treat the case ¢ + t < (a|xg)c. Then we get from the third equation of
assertion (i) that also s+t + 179 < (b|xo), holds. Since by assumption ¢+t > —(c|xg)q
and s + 7 4+ 19 = —(c|xo)p holds, we conclude from the definitions and the second
equation of assertion (i)

01— (clxo)asalxo)e ] +T) —{a,clb, xo) = 1 + T —(a, c|b, xo)
=s+1t+4+ 19— (b, Cla, xg)
= 01— (clx0)p, (blx0)] (8 + To +T) — (b. cla. xo).
(iii) Since the inequality in assertion (i) implies
01— (clx0)as(alxo)e ] +T) <max{{a,clu, b), (b, clu,a)} + (a, c|b, xo)
S (a|x0>67
we get £ + T < {(a|xg)¢. Since we assume —(c|xg)q <t + T, we conclude
O—(clxo)aslalxo) ]t +T) =1+ T.

This finishes the proof of Lemma 7.7. O
The elementary proof of the next lemma is left to the reader.

Lemma 7.8 Consider numbers A € (e~!,1) and T €[0, 00). Put
2

N =24+4————.
AT - (=In(R))
Then we get
2 < N;
2-(T—v+4+A%) < N-AY forallv <T;
v+ N-AVY S < NATY forO<v=<w.

Lemma 7.9 Consider the situation appearing in Theorem 7.4. Suppose that a,b €
0X = a # b. Suppose that

I+ 1> —(c|x0)a;

s+ 7T+ 10 = —(clxo)p-
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Then we get for all u € X

‘IX()(uv ¢‘C(a’ C’ Z)) - l.X() (u’ ¢‘E+‘E()(b9 C’ S))‘
= [{(u. cla, b) + |0 (clxo)a(alxo) ] + T) = (a.c|b, xo) — (a. c|u,b)|
— |O—elxo)artaxo) 1 + ) = (@, clb, xo) — (b, c|u.a) ] .

Proof We compute

|Lxo u, pe(@, . 1)) = Ly (, priry (b, . 9))|
Lxo(u, (a,c.t + 1)) —Ixo(u, (b,c,s + 1+ ‘L’()))‘
(@le)u + 01— (clxo)as(alxo)el (¢ + T) = (@, clu, xo) | — (blc)u
— |61 (elxo)s. (blx0)e1 (8 + To + ) — (b, clu, x0) |
= |{cla)y —{c|b)u
+ B exo)atalxo)e] ( + T) = {@. clb. xo) + (@ c|b, xo) — (a. clu, xo)|
— |O=elxo)o s blxo) 1 (8 + 7o + 7) = (b, cla, xo) + (b, cla. xo) — (b clu. xo)]|
= [{u, cla, b) + 01— (c|xo)ar(alxo)e] (t +T) = (@, c|b, xo) — {a, clu, b) |
— 0 (clxo)(blxo)c (s + To +T) = (b, ¢la, x0) — (b, c|u, a) || .

Since we get from Lemma 7.7 (ii)

Ol—(clx0)as(alxo)e]( +T) = (@, c|b, x0) = O—(c|x0)y,(blx0)1(S + To +T) — (b, ¢la, Xo).

Lemma 7.9 follows. O

Lemma 7.10 Consider the situation appearing in Theorem 7.4. Suppose that a, b €
0X = a # b. Suppose that

1+t = —(clxo)a:
s+ 1+ 710 = —({c|x0)p>
and 01— (¢|xo)a.lalxo)c ] +T) — (@, clb, xo) = max{({a,clu,b),(b,clu,a)}.
Then we get for all u € X

}Ixo(u9 d)t(av ¢, t)) - le(Ll, ¢‘C+‘Eo (b7 ¢, S))‘ = 0.
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Proof We compute

|0—clxo)as(alxo)e] ( + T) — {a. clb. Xo) — (a. c|u, b)|
— 01— (cIx0)as(alxo)e ] + T) — {a. c|b, xo) — (b, c|u, a)|
= (B—clxo)atalxo) 1 +T) = (@, clb, Xo) = (a, c|u, b))
— (B (clxo)aslalxo) ) +7) = {a. c|b, xo) — (b, c|u. a))
=—(a,clu,b) + (b, clu,a).
This implies together with Lemma 7.9

|Lxo (u, @e(a. ¢, 1)) = Lxo (U, Prpry (b, . 9))|

(u,cla,b)y —(a,clu,b) + (b, clu,a)|
[(b,a|c,u) + (a,c|b,u) + (c,bla, u)|
0. O

Lemma 7.11 Consider the situation appearing in Theorem 7.4. Suppose that a, b €
0X = a # b. Suppose that

t+1=—(c|x0)a:
s+ 7410 = —(c|x0)p"
and that
O1—(clxo)alalxo)c] (! +T) = (@, ¢|b, xo) < max{{a, c|u,b), (b, clu,a)};
O—(cIx0)arlalxo) 1 +T) —{a,c|b, xo) = T.
Then we get for all u € X

\lxo(u,qﬁt(a,c,t)) —lx()(u,¢,+,0(b,c,s))\ < . ptt+T—laclb.xo),

Proof We get from Lemma 7.9

Lxo (U, r(a, ¢, 1)) = Lxy (U, Prizy (D, ¢, 5))|
= [{u. cla, b) + |6 (clxo)aslalxo)e]  + T) — (@, c|b, xo) — (a, c|u, b)|
— 61— elxobarlalxo)e] (t + T) = (@, clb, x0) — (b, c|u, )|
< [(u, cla. b)Y + [(0—(clxo)astalxo)c] t + T) — (@ ¢|b, x0) — {a. c|u. b))
= (B (el xo)arlalxobe] (t +©) = (@ clb, x0) = (b, c|u, a))
= (u,cla,b)| + |—{a,clu,b) + (b, clu,a)|
= (u,cla,b)| + |{c,alu, b) + (a,u|c, b)]
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= [(u, cla,b)| +[(u, c|a,b)]|
=2-|{u,cla,b)|.

Our assumptions imply max{{a, c|u, b}, (b, clu,a} = T . We conclude from Proposi-

tion 6.4
|(u,c|a,b)| < )\max{(a,c|u,b),(b,c|u,a)}.

Thus we get using Lemma 7.7 (iii)

}Zxo (Ll, d)‘t(av C, t)) - IX() (l/l, ¢‘E+‘E0 (b7 C, S))‘ S 2 * )\'maX{<a’c|u’b>’(b’c|u’a>}

< 2. A9i=teixg)a talxg)e1 (D) —(a.clb,xo)

— 2. \ftT—(aclb,xo) O
Lemma 7.12 Consider the situation appearing in Theorem 7.4. Suppose that a, b €
0X = a # b. Suppose that

t+ 1> —(c|x0)a;

s+ 7+ 10 = —(c[X0)p,

and that

O—(clxo)as(alxo) 1 + T) — (@, c|b. xo) < max{(a,c|u.b). (b.clu.a)}:

O~ (clx0)a-(alxo)e) (t +T) = {a, ¢lb, xo) < T
Then we get for all u € X

[Lxo (s fe(@, €,0)) = Lo (s ey (b, 9))| < N - a1 HT=l0clbxo),

Proof Since 0[—(¢|x()a.(alxo)c] 15 MoOnotone increasing and by Lemma 7.7 (i) and by
assumption

Ol—(clxo)as(alxo)e] (. +T) — (@, c|b, xo) < min {max{(a, c|u,b), (b,clu,a)}, T};

max{(a, clu,b), (b, clu,a)} < {a|xo)c — {(a, c|b, xq),
holds, we can choose t’ € R satisfying

O—(clxo)as(alxo)e] (. + ")y —{a, c|b, x¢) = min {max{{a, c|u,b), (b, c|lu,a)}, T};

T <7
In particular we have

t+17 > —(c|xo0)a;

s+t + 19> —(c|x0)p.
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Hence Lemma 7.10 and Lemma 7.11 imply

(713)  |leou, dor(a, ¢, 1)) — Ly (U, ooy (b €, 8))| < 20 AITE —laclbxo)
<2. )\t+t—((l,€|b,)€0)‘

We compute

(714 Lo, pe(a, ¢, 1)) = Lo (U, fr50 (D €, )|
= Lo (. e (@, ¢, 1)) = Ly (., g (@, ¢, 1))
+ Lo (U, por (@, €, 1)) — Ly (1, por 410 (B, €, 5))
+ L (U e 1 (B €. 5)) = Ly (1. pr iy (B, €. 5))|
< Lo (. pe(a, . 1)) = Ly (u, por(a, . 1) |
+ | Lo (. por (@, €. 1)) = Ly (1, prr 1 (b €, 5))|
+ Lo (. e 1y (b €, 8)) — Lo (. prry (b. . 8))| -

We estimate using Lemma 7.7 (iii)

(715)  |lxy (u, pe(a, ¢, 1) = Ly (u, P (a, ¢, 1))
= |({@lehu + [B—(clxobas(alxo) 1 +T) = {a. clu, xo)|)
— ((@le)u + |01—(clxoastalxo) ] (E + T) = {a. clu. xo) )|

= | [B—(clxo)as(alxo) 1 +T) = {a. clu. xo)]

— |01=(elxoatalxo) 1 (t + T) = {a. clu, xo) |
= B (clxobastalxor ]+ ) = B (clxoasfalxo) 1 +T)]
= | (B (clxo)a- talxo) 1 (t +T) = {a. clb. x0))

~ (O1—(clxo)artalxo)e(t + ) = {a. c|b, x0)) |
= | (O1=telxo)artalxo)c1(t +7) = (@, ¢l xo))

—min {max{(a, c|u, b), (b, c|lu,a)}, T} ‘
= min {max{{(a, c|u, b), (b, c|lu,a)}, T}

— (O=tclxo)as alxor (t + 1) — (@, ¢[b, x0))
= min {max{{a, c|u, b), (b, clu,a)}, T} — (t + v — {a, c|b, xq))
<T—(t+1t—{a,c|b,xy)).
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Analogously we get using Lemma 7.7 (ii)

(7.16) Ly (4, Prrg (b, ¢, 5)) = Ly (14, Prr 54 (b €, )|
= {((b|c)u + }9[—(c|xo)b,(b|x0)c](5 + 1+ 19)— (b, C|u, xo){)
— ({B1E)u + |Or—(clxohp Blxo)e] (5 + T+ T0) = (b, clu, x0) )|
= [|6telxo)s. (blx0)e](8 + T+ T0) = (b, ¢|u, o) |
— |Oi=(clxolpuiblxo)el(s + T+ T0) — (b, clu. x0)||
< 1B telxo)s. (b1x0)e] (5 + T+ T0) = O—(elxo)s.(blxo)e] (8 + T+ T0)]
= |(Or=clxo)p.(blxo)e] (8 + T + To) — (b, cla. Xo))
~ (B—(clxo)p, (b x0)e] (5 + T+ T0) = (b. cla. x0)) |
= | (O1=telxo)arlalxo) 1 (t +7) = (@, c[b, xo))
~ (O~ (clxobaralxo)e] (¢ +T) = {a. clb. x0))|
<T—(@+1t—{a,clb, xq)).

Lemma 7.7 (iii) implies

t+t—(a,clb,xo) = O—(c|xo)arlalxo)e] +T) —{a.clb, xo) =< T.
Hence we conclude from Lemma 7.8 for v =1 + v — (a, c|b, xo)
A7) 2+ (T = (47— (a,clb, xo)) + A+ laclbxo)) <y prbe=laclbxo),
Combining (7.13), (7.14), (7.15), (7.16) and (7.17) yields

Lo (U, pe (@, €, 1)) = Ly (1, oty (B, €, 5)) |
=2 (T = (t+ 7= (@ clb, xg)) + A7~ laxlbox

S N .)\‘t+r_(a’c|b’x0)' O
Lemma 7.18 Consider the situation appearing in Theorem 7.4. Suppose that a, b €
dX = a # b. Suppose that

141> —(c|x0)a;

s+ T+ 10 = —(clxo)p-

Then (7.5) holds.
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Proof This follows from Lemma 7.10, Lemma 7.11 (note that 2 < N by Lemma 7.8)
and Lemma 7.12 since by definition

d;“(S,xo (¢f (a’ c, t)’¢'5+'50 (bv c, S))
= sup ‘IXO(u,@(a,c,t)) —le(u,¢r+rO(b,c,s))‘ . |
ueX

Lemma 7.19 Consider the situation appearing in Theorem 7.4. Suppose that a,b €
0X = a # b. Suppose that at least one of the following inequalities is true:

1 +1 = —(c|x0)a:
s+ 14+ 19 < —{c|x0)p-

Then (7.5) holds.

Proof Put " = max{—(c|xo)a — 1, —{c|Xx0)p — S — T0}.

Since by assumption © < —(c|xg)q —t or T < —(c|x0)p —5 — To holds, we must

have

1
T<71.

We estimate
(7.20)  df . (@c(@.c.1). prizy(b.c.5))
= dpg (@, c,t + 1), (b, c,5 + T+ 1))
<dpgy,((a,c.t + 1), (a,c,t +1"))
+ dpg o ((a, et +17"), (b, c,s + 1" + 10))
+ dpg xo (b, e, s + 17" + 10), (b, ¢, s + T+ 10)).

Since t+17" > —{c|x0)a;

s+ 7"+ 10 = —(c|x0)p,
holds by definition of t”, we get from Lemma 7.18
(721)  dps . ((@.c.t+7"),(b.c,s+ 1"+ 1) <N At laclb.xo)
Next we want to show

(7.22) drs v, (@, c.t + 1), (a,c,t +1"))
+dps o (b.c.s + 7"+ 1) (bc.s + T+ 1)) < 7" —71.
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Inspecting the definition of "7 we see that we have to consider two cases, namely,
t+1" =—(c|xg)q and s+ 19+ 1" > —(c|x0)p,
and t+1">—(c|xg)a and s+ 19+ 1" = —(c|x0)p.

We only treat the first one, the second is completely analogous. From ¢ +7 < ¢ +

" = —(c|xo)a we conclude O (c|xg).(alxo)e] (! +T) = O—(clxo)p.(blxo)c] (t +T7)-

Lemma 6.16 implies
rs.xo((@.c.t + 1), (a.c.t +1")) =0.

We conclude from Lemma 6.16

dps o (b.c.s + 1" +10). (b.c.s + T+ 10))

O~ (clx0)p (blxo)e](8 + T+ T0) = O1—(clxo)p (blxo) 1 (5 + T + T0) |
<|s+7"+10)—(s+7+7)
=7"—1.
This finishes the proof of (7.22).
If we combine (7.20), (7.21) and (7.22), we get
(7.23)  dYs . (Pe(@.c.t). poiry(bic,s)) ST/ — T+ N AITE —laclbxo),
We estimate
—(clxo)a—1 = (c|b)a—{c|x0)a—1 = (a,c|b,xo)—1,
and for b e X
—{c|xo)p —5—T0
= —(c|xo)p —1 + {(a,blc, xo)
—{a,clb, xo) + {a,blc, xo) — (c|x0)sp
+ {c,alb, xo) + {a,b|c, xo) + (b, cla, xo) — (b, c|a, xo) — {c|x0)p

= {a,c|b,xq)—1t

= )—1

= (a,c|b,xo) —t —(b.cla. xo) — (c|xo0)s
= )—t

= ) —t.

a,clb, xq

a,clb, xgo cla)p

a,clb, xo

This inequality holds for b € 0X for trivial reasons. The last two inequalities imply

™ < {a,c|b,x¢) —t

and hence 0 <1t"—1 < —(@{+1t—{a,clb,xp)).
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Lemma 7.8 applied to v=1"—1 and w = — (¢ + © — (a, ¢|b, xq)) yields
(7.24) 1 LN )Lt_i_r//_(a,clb,xo) <N. )Lt+1:—(a,c|b,x0).
If we combine (7.23), (7.24), we get the desired inequality

Al o (Pr(@.c.t). prizy(b.c.5)) < N - Al Helaclbxo), 0

Now Theorem 7.4 follows from Lemma 7.6, Lemma 7.18 and Lemma 7.19.

7.2 Flow estimates for the metric

Next we prove Theorem 7.1.

Proof We estimate using ¢-A > 1, 0 <e~!-A <1 and Theorem 7.4

drs,xo(Pr(a, c,t), Prizy(b, ¢, 5))
— /OO dI)7(S,x0 (¢U(¢T(a’ ¢, t))? ¢U(¢T+‘E()(b’ ¢, S)))

—o0 2. elol

do

do

. * d;fs (¢a+r((a’ ¢, 1)), Po+1+10 ((b,c, S)))
- — 00 2. e‘a|
o . At+0+t—(a,c|b,x0)
<
- ~/—OO 2.e|0|
0 . kt+a+r—(a,c|b,x0) 0 A )\t—l—a-i—r—(a,clb,xo)
= / do + /
oo 2. elol 0 2.elol
0 N - )\t-i-a-i—r—(a,clb,xo) 0 N . )\t-i-cr-i—r—(a,clb,xo)
/ do + /
—00 2.e70 0 2-e%

N 0 o]
= I Frlacibxo) / (e-1)’ do + / (e7'0)? do
2 —00 0

—ﬁ_ t+t—{a,clb,xo) . |:(€')\)U:|O (e_l-k)a >
) A ( In(e-1)|_o + _ln(e_l')\) .

N 1 1
—_ _kt+r—(a,c|b,xo) X
2 In(e- 1) + —In(e=1-2)

N 1 1
_ _)Lt+t—(a,c|b,x0) .

p T+me) T 1=
N
~ 1—In(A)2

do

do.

do.

. )\(t—(a,c|b,x0)) AT O
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8 The flow estimates for the map ¢

Let X be a hyperbolic complex and x¢ € X be a base point. We define a map

8.1) lxg: X X X - FS(X)

by tx,(a,c) =
(a, c, ®[_—1(6|xo)a,(aIXO)c] (min{2, ﬁ(a, c)/2}— (c|x0)a)) c€ X and a # c;
(a, c, @E_l(cle)u,oo]Q— (c|x0)a)) c€X;
c=(c,c0) ifa=c.

We remind the reader that for a, c € X we have a = (a,a,0) = (a,a, —o0) = (a, ¢, —00)
in FS(X).

Remark 8.2 Because of Lemma 6.16 the point ty,(a,c) is ¢ if a = ¢, is the
unique point on the line (a, ¢)ps(x) Whose distance with respect to drs,x, from a is
min{2, ﬁ(a, c)/2} if ¢ € X and a # c, and is the unique point on the line (a, ¢)rs(x)
whose distance with respect to drs,x, from a is 2 if ¢ € dX .

Lemma 8.3 Consider a,b € X and ¢ € X witha # ¢ and t € R. Suppose

min{2, 5(a, c)/2} celX;

drs,xo((a, ¢, 1), (a,a,0)) = {2 c €dX

Then —ﬁ(a,b) < t—{a,clb,xy) < 5/2.

Proof Note that (a,a,0) = (a,c¢,—0o0) € FS(X). We conclude from Lemma 6.16,
Lemma 7.7 (i) and Lemma 6.7 (vi)

B4 Opclp)q.(alb))(t — (@, c[b, xo))
= O (c|xo)a—{aclb.xo) (alx0)e —{ac|b.x0)] € — (a. ¢|b. x0))
= OL(clx)a.(alxo)] () — (@ ¢[b, Xo)
= O[(c|xo)as(alx0)c] ) = (={¢[X0)a) + (—(¢|X0)a) — (a. ¢|b, x0)
= O (c|xo)a-{alx0)c] ) — (={c[X0)a) — (¢|b)a
=drs,x,((a,c,t),(a,a,0))—{(c|b)q.

If c € X, we get by assumption

D(a,c) _ (alb)e—(=(c|b)a)

drsxo((a.¢.0).(a,a,0)) = — 5 :

Geometry € Topology, Volume 12 (2008)



1872 Arthur Bartels, Wolfgang Liick and Holger Reich

and hence
(alb)e + (—{c|b)a)
> .

This inequality is true for ¢ € dX for trivial reasons. Hence we get from (8.4)

—{clb b
O[—(c|b)a,(alb)e]t — (@, c|b, xg)) =< d >“2+ talble

dFS,xo ((aa ¢, t)’ (Cl, a, O)) - <C|b>a =

Lemma 6.7 (ix) together with (8.4) implies

t—{a,c|b, x0) = O (c|p)4,(alb) 1t — (a. c|b, x0)) +1/2
= dpsx((a, ¢, 1), (a,a.0)) = (c|b)a +1/2
< dpsx,((a.c.1),(a,a,0)) +1/2
<2+1/2
=5/2.
Thus we have proven the upper bound 7 — {a,c|b, x¢) <5/2. It remains to show the
lower bound —D(a,b) < t—{a,cl|b, xo).
We conclude from the assumptions that

D(a,c) _ {alb)e—(—(c|b)a)
2 B 2

drs,x,((a,c.t),(a,a,0)) = andce X

or drs,x,((a.c.t),(a,a,0)) = 2

holds. We begin with the first case. Then

drs,xo((@.c.0). @.a.0) ~{elp)g = AP IZHCl0la)

Lemma 6.7 (ix) together with (8.4) implies
t—{a,clb,xo) = —(c|b)a = —D(a,b).
Finally we treat the second case. Then (8.4) implies
Ol (clb)a.(alb)c1(t = (@, ¢|b, x0)) = 2—{c|b)a-
Since for u < —(c|b), we have
OL(clb)aralb)e] ) = —(c|b)g + e“~Tlelbla) o _gulalble ;3 < 5 —(c|b),,

we conclude
I — (avclb’xo) z _(Clb)a = _D(a?b)
This finishes the proof of Lemma 8.3. |
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Lemma 8.5 The map tx,: X x X — FS(X) from (8.1) is continuous. It is Isom(X)—
equivariant with respect to the diagonal Isom(X')—action on the source. For x € X the
map ty,(x,—): X = FS(X), y>ix,(x,y) is injective.

Proof We only prove continuity, the other claims are straight-forward to check using
Remark 8.2. Recall that X and FS(X') are metric spaces. By [5, Exercise III.H.3.18(4)]
the space X is metrizable. Hence it suffices to check continuity for sequences. Con-
sider sequences (dn)p>0 in X and (¢y)p>0 in X and points ¢ € X and ¢ € X
such that limy oo ay = a in X and limy_—oo ¢y = ¢ In X hold. We have to show
limy,— 00 txy (@n. cn) = txy(a, c) in FS(X).

Suppose that @ = ¢. Then we can assume ¢, € X and 5(61,,, ¢n)/2 <2 for n>0 and
limy, 00 D(ap, cy) = 0. This implies by the construction of ¢y, that

lim dFS,xO(an,txO(an,Cn)) - 111’1’1 dFS’xO(an,Cn)/z - O
n—>oo n—>oo

and hence
lim tx,(an,cy) = lim ay, =a =c =1x,(a,c).
n—oo n—o0

Hence we can assume without loss of generality that a # ¢ and a, # ¢, forall n > 0
holds.

For n > 0 put ay, = —(cx|X0)a, and Bn = (an|xo)c,. Put o = —(c|xo)q and B =
(a]x0)c. Then the continuity of the Gromov product (see Theorem 6.3) implies

lim o, = «o;
n—>00
n—>00

Define ¢, to be the real number satisfying

8.6) ®[¢xn,ﬂn](fn) = min {2, ﬁ(an,cn)/2} —(culx0)a, cneX;
Ola,,,1(tn) = 2—{cnlx0)ay, cn € X,

Define ¢ to be the real number satisfying

8.7) Ole,p1(t) = min{2, D(a,c)/2} —{(c|x0)a ¢ € X;

Ore,p1(t) = 2—{c|x0)a c € dX.

Then tx,(an,cn) = (an,cn.ty) and 1y, (a,c) = (a,c,t). Because of Theorem 7.3 it
suffices to show that lim, o #;, = ¢ holds. From Lemma 8.3 applied in the case b = x
we conclude —ﬁ(an, Xx0) <1, <5/2 and —ﬁ(a, Xo) <t <5/2. Hence we can assume
without loss of generality for all n > 0

—13(a,x0)— 1 <t,,t<5/2.
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We conclude from the Mean Value Theorem for some number p € [0, 1]
O, f1(tn) — Ola,p1(t) = Oy g1(0-ta + (1= p)t) - (tn —1).

Choose a constant C > 0 such that @E (s) > C~! holds for s € [—D(a, xo)—1,5/2].
Since p -t + (1 — p)t lies in [— D(a xo) —1,5/2], we conclude for all n >0

[th —t] < C - |O[q,p](tn) — Opa, (2.
We get from the triangle inequality
1O1a,81(t1n) — O, 81()| < |O[q,,,8,1(tn) — Ol g1(tn) | + 1Ol ,1(tn) — O, g1 (1)

and hence

(8.8) |tn —t] < C - (IO[a,,8,1(tn) — Ola, 81t + |O1a,,,,,1(tn) — Opa, g1 (1)) -

Since a,,a € X, we have —oo < oy and —oo < . We have f < oo if and only if
c€ X and B, < oo ifand only if ¢, € X. If B = co, we can assume without loss of
generality 5/2 < 8, and hence ¢, < 8, for all » > 0. We conclude

1O, 8,1 In) — Ola,p1(tn)| = maxilan —al,|Bn—Bl}  Bn. B < o0;
1O, 8,1 Tn) — Ol g1(tn)| = oty — x| Bn =B = oc;
|®[Oln,3n](tn) - ®[a,/3](tn)| < |op—af+ efn=Pn Bn <00, B = o0.

from Lemma 6.7 (vii) and (viii) and (the triangle inequality in the last case). Since
thy <5/2, limy—oo @y =« and limy, o Bn = B, we conclude

Jim 1Oy, 8,1 (fn) — Ofarpy ()] = 0.
Since D and the Gromov product are continuous, we get using (8.6) and (8.7)

nll)nolo |®[an a,Bn](tn) - ®[a:ﬂ] (t)| =
Now (8.8) implies limy,— o t; = ¢. This finishes the proof of Lemma 8.5. O
Theorem 8.9 (Flow estimate for 1) Let A € (e~!,1) and T €[0, o) be the constants

depending only on X which appear in Proposition 6.4. Consider a,b € X and c € X .
Put

2
AT (—In(h))’

Then there exists a real number t such that

N=2+

lto] <2-D(a,b)+5
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and forall t € R

N A
s xo ety (@ ©) Prirlg (b, 0)) = ———ms ATPOD T,

—In(A)2
Proof Put
-1 . ~ )
(®[_(C|x0)m(a|x0)c]) (mm{2, D(a,c)/2}— (c|x0)a) ifce X and a # ¢;
— 1 .
T (Ok(elxo)acx)) 2= (clx0)a) if ¢ € 0X;
{(a,clb,xo) =0 ifa=c;
—1( . ~ .
(®[—(C|X0)b,(b|xo)c]) (m1n{2,D(b,c)/2}—(c|x0)b) ifce X and b 756’;
— 1 '
57 Orelxotpiool) (2= (clxo)s) if ¢ € X
(b,cla,x¢) =0 if b=c.
Put 79 = t—s—{a,b|c, xg).

We have by definition

lxo(a,c)=(a,c,t);
xo(by€) = (b, ¢, 5);
t9o=t—s—{a,blc,xg) = (t—{a,c|b,xg))— (s— (b, cla, xp)).

‘We conclude from Theorem 7.1

N
dFS,xo (¢th0 (a,c), ¢‘[+‘[()Lx0 (b,¢) £ ————- )\(t—(a,clb,xo)) AT

1 —1In(A)2
_ [ min{2,D(a,¢)/2} ceX;
We have drs,x,((a,¢.1),(a,a,0)) = { 2 cedX.
min{2, D(b,¢)/2} c€ X;
and drs.xo((b. ¢, ). (b.5.0)) = {2 2 P00 c €0X.

We conclude from Lemma 8.3 and the definition of ¢ and s respectively that

—D(a,b) < t—{a.clb.xo) < 5/2;
—D(a,b) < s—(b,cla,xo) < 5/2,

holds. This finishes the proof of Theorem 8.9. a

We can now prove the flow estimate from the introduction.
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Proof of Theorem 1.5 Define j: GxX — FS(X) by j(g.c) := lxo(gx0.c). It
follows from Lemma 8.5 that j is continuous and G —equivariant with respect to the
diagonal G —action on the source. Let C := max{ﬁ(xo, §xg) | § € S} where S is the
generating set S of G used to define the word metric dg on G. Then

D(gxo.hxo) <Cdg(g.h) Y g.hegG.

Let o > 0 be given. Let A € (e~!', 1) and T €[0, 0o) be the constants depending only
on X which appear in Proposition 6.4. Let N be the number defined in Theorem 8.9.
Define

B(a) :=2Ca + 5;
- N 3—Ca 11
Ja(®) = T A

It follows from Theorem 8.9 that B(«) and f, satisfy the assertion of Theorem 1.5. O

9 Further properties of the flow space

Theorem 9.1 Let X be a hyperbolic complex with base point xo € X . Suppose that
G acts on X by simplicial automorphisms such that every isotropy group is finite.
Then:

(i) The metric space (FS(X), drs,x,(X)) is proper;
(ii) The induced G —action on the flow space (FS(X), drs,x,) is proper;
(iii) If G acts cocompactly on X , then G acts cocompactly on FS(X).

A G-space Y is called proper if for every y € Y there exists an open neighborhood U
such that the set {g € G | g-U NU # &} is finite. Proper implies that all isotropy groups
are finite. The converse is not true in general but is true if Y is a G—C W —complex
[13, Theorem 1.23 on page 18]. If (Y, dy) is a metric space and G acts by isometries,
the G —action is proper if and only if for every y € Y there exists an € such that the
set {g € G| g-Be(¥)N Be(y) # @} is finite, where Be(y) ={z €Y |dy(y,z) <€}.
A metric space (Y, dy) is called proper if and only if Be(y) ={z€Y |dy(y,z) <€}
is compact forall y € Y and € > 0.

The elementary proof of the next result is left to the reader.

Lemma 9.2 Let (Y, dy) be a proper metric space. Let G act on Y by isometries.
Then the G —action on Y is proper if and only if for every C > 0 and y € Y the set

{g|dy(g-y.y) <C} is finite.
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Now we are ready to prove Theorem 9.1.

Proof (i) This is proven in [14, Proposition 54, page 464].
(i) Mineyev [14, page 457] constructs a map
U: FS(X)—> X

such that there exists constants K; and K, depending only on X such that for all
v,w € FS(X) and g € G we have

|dFs xo (v.w) — D(¥(v), W(w))| < Ky
D(¥(g-v).g-¥(v) < K».
Compare also [14, Proposition 43 on page 458].
We conclude for v € FS(X) and g € G
D(g-¥(v), ¥(v))
< D(¥(g-v), ¥(v)) + D(¥(g-v). g W) X
= dps,xo (g V. V) — dps,xo (g - v.v) + D(¥(g ). ¥(v)) + D(¥(g-v). g - ¥ (v))
< drs.xo (8 V. V) + |dps,xo (g v.v) — D(¥(g -v), ¥())| + D(W(g - v). g ¥(v))
< dps,xo(g-v,v) + K; + K».

There exist real numbers A > 1 and B > 0 depending only on X such that for all
X1,X2 € X we have

A7 D(x1,x3)— B <d(x;,x3) < A-D(x1,x2)+ B
where d is the word metric; compare the beginning of Section 6.1. Hence we get
d(g-W(v), ¥(v)) < A-D(g- W (v). ¥(v)) + B
< A-(drsx,(g-v.v) + Ky + K2) + B.

Consider v € FS(X) and C > 0. Since G acts properly on X and (X, d) is a proper
metric space, Lemma 9.2 implies that the set

geG|d(g YY), ¥(v) <A-(C+K|+Ky)+ B}

is finite. Since this set contains {g € G | drs,x,(g-v,v) < C} , also the latter set is
finite. Hence the G —action on (FS(X), dFs,x,) is proper by Lemma 9.2.

(iii) Since G acts simplicially and cocompactly on X', we can find a compact subset
C C X suchthat G-C = X. Consider D ={x € FS(X) | D(¥(x),C) < K,}. Since
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C is compact, its diameter diam(C) is finite. Since for y,z € D we get
drsxy(7:2) < D(W(1), ¥(2) + K < diam(C) +2K; + K,

the set D has finite diameter. Since FS(XX) is proper as a metric space by assertion (i),
the closure of D is a compact subset of FS(X). Next we show G-D =FS(X). Consider
x € FS(X). Choose g € G such that g~ W(x) € C. From D(¥(g~'x), g~ 1W(x)) <
K> we conclude g~'x € D. This implies x € g- D € G - D. Hence D is a compact
subset of FS(X) with G- D = FS. Therefore G acts on FS cocompactly. This finishes
the proof of Theorem 9.1. |

The following facts are well-known. We include a proof for the convenience of the
reader.

Lemma 9.3 Let X be a §—hyperbolic complex in the sense of Section 6.1. Let X be
the compactification of X in the sense of Gromov. Then

(i) X is locally connected;

(i1) X has finite covering dimension.

Proof We start by reviewing the topology of X following [5, p429]. Recall that X ()
denotes the 1—skeleton of X . A generalized ray ¢: I — X (1) is a geodesic with respect
to the word metric dyorg, Wwhere I = [0, R] for R > 0 or I = [0, 00). In the later case
¢ will be called a geodesic ray. If I = [0, R] it is convenient to write ¢(z) = ¢(R)
for 1 > r. Two geodesic rays ¢, ¢’ are called equivalent if there is C > 0 such that
dwora(c (1), ¢'(1)) < C for all 1 € [0,00). X = XD is the set of all equivalence
classes of such geodesic rays. For a geodesic ray ¢ we denote by ¢(o0) the point in
dX determined by c¢. Fix a base point xo € X(® and k > 28. Every point in dX can
be written as ¢(o00) where ¢ is a geodesic ray starting at xo [5, Lemma 3.1 on page
427]. For a geodesic ray c starting at xo and n € N let V,,(l)(c) denote the set of all
¢’(00) where ¢’ is a generalized ray starting at xo with dyoa(c(n), ¢’ (n)) < k. (Such
a generalized ray may end in X .) Let V,(c) be the union of V,,(l)(c) with the smallest
subcomplex of X containing V,,(l)(c) N X . The topology on X = X U dX is now
defined as follows: a U C X is open if and only if the following two conditions hold:

e UNJXisopenin X.

e If ¢ is a geodesic ray starting at x¢ and c(oo) € U then there is n € N such
that V,(c) C U.
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We now prove (i). Obviously X is locally connected as it is a C W —complex. It suffices
to show for every x € X = X — X that there is a (not necessarily open) connected
neighborhood (see [15, Exercise 10 on page 163]). But this follows because the V;(c)
from above are connected.

Next we prove (ii). Let D € N be the maximal number of points in X ©) that are
contained in a ball of radius k + 2§. This is a finite number because X is uniformly
locally finite. Because X has finite covering dimension and d.X is compact, it suffices
to show the following: For every finite collection I/ of open subsets of X that covers
dX there is an (D — 1)—dimensional refinement of I/ that still covers 0.X .

We will need the following observation: Let ¢, ¢’ be two geodesics starting at xq. Let
x be the endpoint of ¢ and x’ be the endpoint of ¢’. If N is such that d(c(N), x) >
d(x,x")+ 68, then d(c(N),c (N)) <25. This is an easy application of the condition
that all geodesic triangles in X (M) are §—thin.

For N € N consider the set Sy of all ¢(N) where ¢ is a geodesic ray in X (1) starting
at xo. This is a finite subset of X(®) because X is locally finite. For every x € Sy
pick a geodesic ray cx starting at xo such that ¢x(N) = x. Denote by B the close
ball of radius n + 6 around xq¢. Let Uy := (Vn(cx))° — B. Then the collection
Uy :={Uy | x € Sy} covers X . Let z € X — B and choose x € Sy such that x lies
on a geodesic from x( to z. Using the above observation it is not hard to show that for
every x’ € Sy with z € Uys we have d(x, x") < k + 2§. Therefore the dimension of
Up is bounded by D —1.

It remains to show that for sufficiently large N, the collection U will be a refinement
of the given collection U. Let R > k + 35, R € N. By the definition of the topology
of 0X and because 0X is compact, there are My,..., M, € N and geodesic rays
c1,...,Cp starting at xq such that

o 0X CVpy4r(c)U---UVar,+r(cn);

e forevery i =1,...,n thereis U € U such that Vjy, (¢;) CU.

Let M := max{Mi,..., My,}. Two applications of the above observation give the
following: If ¢ is a geodesic ray starting at xo such that ¢(o0) € Vi, + gr(c;), then
Var42r(c) C Vg, (ci). Thus Ups4o g is a refinement of U . O

We can now check the additional properties stated in Section 1.2.

Proof of Proposition 1.6 (i) This follows from [5, Theorem 3.2 on page 459].
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(i) By Lemma 9.3 X has finite covering dimension and is locally connected. It
follows therefore from Theorem 7.3 that FS(X) — FS(X)R = FS(X) — X is locally
connected and has finite covering dimension.

(iii)) This follows from Theorem 9.1.

(iv) For g € G its translation length on (FS(X), drg(x),x,) is defined as
I(g) := lim dpsx,(g"(a.b.1),(a.b.1))/n.
n—oo

By the triangle inequality this definition does not depend on the choice of (a, b,t) €
FS(X). In particular, it depends only on the conjugacy class of g. Since the iso-
metric G—action on FS(X) is cocompact and proper, (G, dg) is quasi-isometric to
(FS, dFs,x,). Thus, there are constants 4 > 1, B > 0 such that

A-1(g)+ B =t(g) = lim dg(g". 16).

(t(g) is the translation length of g on (G, dg).) By [5, Proposition 3.15 on page 465]
for fixed C > 0 the number of conjugacy classes whose translation length on (G, dg)
is no more than C is finite. We conclude that the same holds for the translation length
on (FS(X), drs,x,)-

Fix C > 0. Let £ be the set of all orbits L of the flow ¢, on FS(X) with 0 <
perg(é) < C, see Definition 2.15. Every L € L is a line (ar,br)psx) with ar,
by € X. For L € L thereis g7 € G such that

gr-(aL,br.t) = (aL,br,t +per§ (L))

for (ar,br.t) € L. Inparticular gy -ay =ay,, gr.-by =bp.Ifap € X or by € X,
then gz, has finite order because the action of G on X is proper. But this would imply
perg (L) =0. Therefore ay , by € 0X . By Lemma 6.16 [(gr) = perg(L) <(C. Recall
that X =~ 0G, because X is quasi-isometric to G [5, Theorem 3.9 on page 430].
Because every g € G has at most 2 fixed points on dG [9, 20.- Corollaire on page 149]
the map L +— gy is injective. Because there are only finitely many conjugacy classes
of translation length < C this means that G\ L is finite. This is what we needed to
prove. |
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