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We present an a posteriori error estimation for the numerical solution of a sto-
chastic variational problem arising in the context of parametric uncertainties. The
discretization of the stochastic variational problem uses standard finite elements
in space and piecewise continuous orthogonal polynomials in the stochastic
domain. The a posteriori methodology is derived by measuring the error as
the functional difference between the continuous and discrete solutions. This
functional difference is approximated using the discrete solution of the primal
stochastic problem and two discrete adjoint solutions (on two imbricated spaces)
of the associated dual stochastic problem. The dual problem being linear, the
error estimation results in a limited computational overhead. With this error
estimate, different adaptive refinement strategies of the approximation space
can be thought of: applied to the spatial and/or stochastic approximations, by
increasing the approximation order or using a finer mesh. In order to investigate
the efficiency of different refinement strategies, various tests are performed on the
uncertain Burgers’ equation. The lack of appropriate anisotropic error estimator
is particularly underlined.

1. Introduction

Simulation of physical systems is often challenged by incomplete knowledge of
model parameters, including initial conditions, boundary conditions, external forc-
ing, physical properties and modeling constants. In these situations, it is relevant
to rely on a probabilistic framework and to consider the unknown model data as
random quantities. Consequently, it becomes essential to assess the variability of
the model solution induced by the variability of the model data, i.e., to propagate
and quantify the impact of the uncertainty on the model solution. In a probabilistic
framework, the uncertainty quantification consists in the determination of the
probability law of the model solution induced by the probability law of the data, in
order to establish confidence intervals, to estimate limits of predictability and/or to
support model-based decision analysis.

Keywords: error analysis, stochastic finite element method, uncertainty quantification, refinement
scheme.
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Uncertainty propagation and quantification has recently received considerable
attention, particularly through the development of efficient spectral techniques
based on Polynomial Chaos (PC) expansions. PC based methods were originally
developed for engineering problems in solid mechanics [10; 25] and subsequently
applied to a large variety of problems, including flow through porous media [8; 9],
thermal problems [12; 13], incompressible [19; 20; 30] and compressible flows [18;
21] (see also [14] for a review of recent developments in PC methods for fluid
flows) and reacting systems [7; 24]. PC expansions consist in the representation
of the uncertain data as functionals of a finite set of independent random variables
with prescribed densities, the uncertainty germ, and in expanding the dependence
the model solution using a suitable basis of uncorrelated functionals of the germs.
A classic choice for the basis is a set of polynomials in the germ. If the germ has
zero-mean normalized Gaussian components, one obtains the Wiener–Hermite PC
basis [28; 5], which is formed of generalized Hermite polynomials. Other density
types of the germ components result in various families of orthogonal polynomials
or mixtures of orthogonal polynomials [29]. Two distinct types of solution methods
can be used to compute the expansion coefficients of the stochastic solution: the
sampling based approaches and the Galerkin projection. In the former type of
methods, one solves a series of deterministic problems for different values of the
uncertain model data and makes use of the resulting sample set of solutions to
estimate the expansion coefficients (see for instance [24; 20]). The second type
of methods, which is considered in the following, consists on the contrary in a
projection of the model equations (weak formulation) on the expansion basis. This
Galerkin projection results in a set of generally coupled deterministic problems for
the stochastic modes of the solution.

Piecewise polynomials [27] and multiwavelets [15; 16] were recently proposed
as elements of the stochastic basis. These representations were developed to
address the limitations of global spectral representations for complex, steep or
even discontinuous dependencies of the model solution with regard to the data,
for instance when a bifurcation appears for values of the data in the uncertainty
domain. A key aspect of these discontinuous stochastic approximations is that they
naturally offer flexibility for a local adaptation of the representation to the solution.
This adaptation allows for improvements of the computed solution, through local
refinements of the approximation space, while maintaining the dimension of the
representation basis and of the set of coupled problems to be solved at a reasonable
level. The refinement of the stochastic approximation space can in fact consist in
an increase of the local expansion order (p-refinement) or in using polynomials
being continuous over smaller supports (h-refinement). For instance, in [15; 16]
the domain of the random parameters is partitioned in subdomains over which
independent discontinuous low order expansions are employed. Heuristic criteria,
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based on the spectrum of the local expansion, is used to decide whether the local
expansion is sufficient or whether it should be improved by means of h-refinement,
i.e., by splitting the subdomain into smaller ones, and along which dimension of
the germ. A similar strategy is pursued in [27] but in the context of hp-spectral
approximations. The refinement is also based on heuristic arguments involving the
relative contribution of the higher order terms to the local solution expansion.

Although these schemes have been shown to provide significant improvements
over global PC expansions, in terms of robustness (see for instance [17]) and
computational efficiency, they still lack rigorous criteria for triggering the refinement.
The objective of the present paper is therefore the derivation of a rigorous error
estimator, to be used in place of the heuristic error indicators. To this end, we have
decided to extend the dual-based a posteriori error technique commonly used in the
(deterministic) finite element community. This choice was motivated by the firm
and rigorous theoretical foundations of this error estimate technique, and because
of its variational framework which makes it suitable for extension to the Galerkin
projection of stochastic problems.

The paper is organized as follows. In Section 2, the variational formulation
of a generic stochastic problem, based on a mathematical model involving para-
metric (data) uncertainties, is considered. The stochastic variational problem and
construction of the approximation space are detailed. The latter involves a finite
element discretization in space and a piecewise continuous approximation along the
stochastic dimensions. In Section 3, the dual-based a posteriori error estimation is
introduced. The methodology makes use of a differentiable functional to measure
the difference between the exact (continuous) and approximated (discrete) stochastic
solutions. Provided the discrete solution is sufficiently close to the continuous one,
their functional difference is shown to be well approximated by a simple estimate.
This estimate involves the discrete solutions of the primal and associated dual
problems, and the continuous adjoint solution of the dual problem. A classic
surrogate of the continuous adjoint solution is proposed, resulting in an error
estimate methodology requiring the resolution of the discrete primal problem and
two dual problems on different approximation spaces. The dual problems to be
solved being linear, the computational overhead of the error estimator is expected to
be limited. In Section 4, we discuss the various strategies that can be subsequently
used to improve the approximation in order to reduce the error. The reduction of
the error can be performed by using smaller elements or by increasing the orders of
the spatial and stochastic approximation spaces. As in the deterministic context,
the determination of the optimal refinement strategy is an open question, which is
made even more difficult and critical in the present stochastic context where the
stochastic space (domain of the germ) may have many dimensions. Consequently,
Section 5 presents some numerical tests aiming at showing the validity of the
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proposed dual-based error estimator in deciding which spatial/stochastic elements
need priority refinement. The test problem is based on the 1-D Burgers’ equation,
with uncertainty on the viscosity and a boundary condition. Different algorithms of
increasing complexity are proposed for the local refinement of the stochastic and
spatial approximations, based on the dual-based error estimation. Finally, major
findings of this work and a few recommendations for future developments are
summarized in Section 6.

2. Variational formulation of uncertain flow

2.1. Deterministic variational problem. We will consider the standard variational
problem for u on a M-dimensional domain �x ⊂ RM with homogeneous Dirichlet
boundary condition (u = 0) on the boundary ∂�x of �x :

a(u; ϕ) = b(ϕ) ∀ϕ ∈ Vx , (1)

to be solved for u ∈Vx , a suitable Hilbert space of �x . In Eq. (1), a is a differentiable
semilinear form and b a linear functional.

2.2. Stochastic variational problem. It is assumed that the mathematical model
given by Eq. (1) involves some parameters, or data, denoted by a real-valued vector
d. The data may for instance consist of some physical constants involved in the
model. Clearly, the solution u of the variational problem depends on the data value,
a fact stressed by making explicit the dependence of the variational problem with d:

a(u; ϕ|d) = b(ϕ|d) ∀ϕ ∈ Vx . (2)

If the actual value of the data d is not exactly known, (is uncertain), it is suit-
able to consider d as a random quantity defined on an abstract probability space
(2, B, dP), 2 being the set of elementary outcomes θ , B the σ -algebra of the
events and dP a probability measure. In this context, the solution of the model
is also random. In the following, we adopt the convention consisting in using
uppercase letters to denote random quantities. Therefore, the random solution U
and data D are dependent stochastic quantities defined on the same probability
space (2, B, dP); the dependency between U and D is prescribed by the model.
Uncertainty propagation and quantification thus consists in the inference of the
probability law of U , given the probability law of D and the mathematical model
relating the two. It is assumed that the problem is well-posed in the sense that
problem (2) has almost surely a unique solution.

We denote V2 = L2(2, dP) the space of second order random variables. We
thus have to solve, for U ∈ Vx ⊗ V2,

A(U ; 8|D) = B(8|D) ∀8 ∈ Vx ⊗ V2, (3)
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where

A(U ; 8|D) ≡

∫
2

a(U (θ); 8(θ)|D(θ)) dP(θ),

B(8|D) ≡

∫
2

b(8(θ)|D(θ)) dP(θ).

(4)

2.3. Stochastic discretization. We assume that D is parameterized as a functional
of a finite number N of independent identically distributed real valued random
variables ξi , defined on (2, B, dP) with value in Sξ ⊂ R:

D = D(ξ), ξ = (ξ1, . . . , ξN) ∈ (Sξ )
N

≡ �ξ ⊂ RN. (5)

The vector ξ of random parameters is often referred to as the uncertainty germ. We
denote p the known probability density function of ξi such that, by virtue of the
independence, the joint distribution of ξ is given by

pξ (ξ) = pξ (ξ1, . . . , ξN) =

N∏
i=1

p(ξi ). (6)

Without loss of generality, we shall restrict ourself in the following to germs having
uniformly distributed components on Sξ = [−1, 1] and consequently we have

p(ξi ) =

{
1/2 if ξi ∈ [−1, 1],

0 otherwise,
�ξ = [−1, 1]

N. (7)

Note however that the developments given below can be easily extended to the
situation where the ξi have different ranges and/or different distributions. The
variational problem can be formulated in the image probability space (�ξ , Bξ , pξ ),
using

A(U ; 8|D) =

∫
2

a(U (θ); 8(θ)|D(θ)) dP(θ)

=

∫
�ξ

a(U (ξ); 8(ξ)|D(ξ) pξ (ξ))dξ ≡ 〈a(U ; 8|D)〉�ξ
, (8)

B(8|D) =

∫
2

b(8(θ)|D(θ)) dP(θ)

=

∫
�ξ

b(8(ξ)|D(ξ)) pξ (ξ)dξ ≡ 〈b(8|D)〉�ξ
. (9)

Moreover, the stochastic functional space is now Vξ = L2(�ξ , pξ ) and the varia-
tional problem becomes

A(U ; 8|D) = B(8|D) ∀8 ∈ Vx ⊗ Vξ , (10)

to be solved for U ∈ V ≡ Vx ⊗ Vξ .
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Following [27], we rely on piecewise orthogonal polynomials to construct the
stochastic approximation space. The stochastic range �ξ is divided into a collection
of Nb nonoverlapping subdomains �

(m)
ξ referred to as stochastic elements (SEs) in

the following. In this work, the SEs are hyper-rectangles:

�ξ =

Nb⋃
m=1

�
(m)
ξ , �

(m)
ξ = [ξ

(m),−
1 , ξ

(m),+
1 ] × · · · × [ξ

(m),−
N , ξ

(m),+
N ]. (11)

On �
(m)
ξ , the dependence of the data and solution with the random germ ξ is

expressed as a truncated Fourier-like series,

U (ξ ∈ �
(m)
ξ ) =

P(m)∑
k=0

u(m)
k 9

(m)
k (ξ), D(ξ ∈ �

(m)
ξ ) =

P(m)∑
k=0

d(m)
k 9

(m)
k (ξ), (12)

where 9
(m)
k (ξ) are orthogonal random polynomials in ξ and u(m)

k , d(m)
k are the deter-

ministic expansion coefficients over �
(m)
ξ of the solution and data respectively. The

orthogonality of the random polynomials is defined with regard to the expectation
over the respective SE. Denoting by 〈·〉

�
(m)
ξ

the expectation over the m-th SE, we
can write the orthogonality of the polynomials as〈

9
(m)
k 9

(m)
k′

〉
�

(m)
ξ

=
1∣∣∣�(m)
ξ

∣∣∣
∫

�
(m)
ξ

9
(m)
k (ξ) 9

(m)
k′ (ξ) pξ (ξ) dξ

= δkk′

〈
9

(m)
k

2〉
�

(m)
ξ

, (13)

where ∣∣∣�(m)
ξ

∣∣∣ =

∫
�

(m)
ξ

pξ (ξ) dξ, (14)

and δkk′ is the usual Kronecker delta symbol. These polynomials vanish outside
their respective support:

9
(m)
k (ξ /∈ �

(m)
ξ ) = 0 ∀k = 0, . . . , P(m). (15)

The number of terms P(m) in the expansions Eqs. (12) is a function of the selected
stochastic expansion order q(m) of the SE:

P(m) + 1 =
(q(m) + N)!

q(m)! N!
. (16)

The ξi being uniformly distributed, the polynomials 9
(m)
k are simply rescaled and

shifted multidimensional Legendre polynomials [1]. The stochastic approximation
space is

Vh
ξ = span

(
{9

(m)
k }, 1 ≤ m ≤ Nb, 0 ≤ k ≤ P(m)

)
, (17)
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and the stochastic approximation can be improved by increasing the number Nb

of SEs, i.e., through refinement of the partition of �ξ , and/or by increasing the
stochastic expansion order q(m) over some stochastic elements.

2.4. Finite element discretization. Consider a partition of �x into a set of Nx

nonoverlapping finite elements (FE) with respective support �
(l)
x for l = 1, . . . , Nx:

�x =

Nx⋃
l=1

�(l)
x . (18)

The FE approximation of the continuous solution U , denoted by U h , over the
element �

(l)
x , is given by

U h(x ∈ �(l)
x ) =

Nd(l)∑
i=1

U (l)
i N(l)

i (x), (19)

where Nd(l) is the number of degrees of freedom of the l-th element and N(l)
i the

associated spatial shape functions. We denote p(l) the polynomial order of the
shape functions over �

(l)
x . The spatial approximation space is thus

Vh
x = span

(
{N(l)

i }, 1 ≤ l ≤ Nx, 1 ≤ i ≤ Nd(l)
)

, (20)

and the spatial approximation can be improved by a refinement of the partition of
the spatial domain �x or by increasing the spatial order p(l) of some finite elements.

2.5. The approximation space Vh. From the stochastic and spatial approximation
spaces defined above, the approximation space Vh of the stochastic variational
problem is seen to be:

Vh
= Vh

x ⊗ Vh
ξ . (21)

The solution at a point (x, ξ) of � ≡ �x × �ξ has for expression:

U (x ∈ �(l)
x , ξ ∈ �

(m)
ξ ) =

Nd(l)∑
i=1

P(m)∑
k=0

u(l,m)
i,k N(l)

i (x) 9
(m)
k (ξ), (22)

where the deterministic coefficient u(l,m)
i,k is the k-th uncertainty mode of the m-th

SE for the i-th degree of freedom of the l-th FE.
An immediate consequence of the tensored construction of the approximation

space Vh is that the spatial FE discretization is the same for all the stochastic
elements �

(m)
ξ , and conversely the stochastic discretization is the same for all

spatial finite elements �
(l)
x . This is clearly not optimal as some portions of the

stochastic domain �ξ may require finer spatial discretization than others to achieve
a similar accuracy. Conversely, the solution in some parts of spatial domain �x
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may exhibit more complex dependences with regard to D(ξ), therefore requiring
a finer stochastic discretization than at other locations. However, for the tensored
construction Vh , the discrete solution can be improved through a) refinement of the
FE approximation space Vh

x uniformly over �ξ , and b) refinement of the stochastic
approximation space Vh

ξ uniformly over �x .
In fact, this symmetric situation can be easily relaxed: an adaptation to each

SE of the spatial discretization, i.e., the number of elements Nx and/or the number
of degrees of freedom of the elements Nd, causes no difficulty. This is due to the
complete independence of the solution over different stochastic elements, a feature
emerging from the absence of any differential operator along the uncertainty dimen-
sions. Consequently, the adaptation of Vh

x with the SEs was actually implemented
and used for the generation of the results presented hereafter. However, to simplify
the presentation of the method and the notation, this feature is not detailed here.
On the other hand, using a variable stochastic approximation for different spatial
FE is much more cumbersome and remains to be investigated. This adaptation
would require the development of nonobvious matching conditions of the stochastic
approximation across FE boundaries.

3. Dual-based a posteriori error estimate

3.1. A posteriori error. For a finite dimensional subspace Vh
⊂ V, the discretized

solution U h
∈ Vh is the Galerkin approximation defined as the solution of the

discrete problem

A(U h
; 8h

|Dh) = B(8h
|Dh) ∀8h

∈ Vh . (23)

Let J : � → R be a differentiable functional of the solution. In the spirit of [3] and
[2] among others, one is interested in approximating J(U ) as closely as possible
by J(U h), i.e., to minimize the difference J(U ) − J(U h) in some sense. We seek
for an expression of J(U )− J(U h). To this end, let us define the Lagrangian L of
the continuous solution by:

L(U ; Z) ≡ J(U ) + B(Z |D) − A(U ; Z |D), (24)

where Z ∈ V is the adjoint variable of the continuous problem. The adjoint variable
Z is a Lagrange multiplier of the optimization problem for the minimization of
J(U ) under the constraints of Eq. (10). Formally, this minimum corresponds to the
stationary points of L:

∂L

∂U
= J′(U ; 8′) − A′(U ; 8′, Z |D) = 0 ∀8′

∈ V, (25)

∂L

∂ Z
= B(8|D) − A(U ; 8|D) = 0 ∀8 ∈ V. (26)
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Eq. (25) is the adjoint (or dual) problem, while Eq. (26) is the state (or primal)
problem. The derivatives are here in the Gâteaux sense:

J′(U ; 8′) = lim
ε→0

J(U + ε 8′) − J(U )

ε
,

A′(U ; 8′, Z |D) = lim
ε→0

A(U + ε 8′
; Z |D) − A(U ; Z |D)

ε
.

Assuming that these limits exist, the derivatives are unique. Note that following
these definitions, the derivatives are generally nonadditive and nonlinear with regard
to U and 8′. However, the derivatives are homogeneous,

J′(U ; α8′) = α J′(U ; 8′), A′(U ; α8′, Z |D) = α A′(U ; 8′, Z |D),

so we will adopt the convention that functionals are at least homogeneous with
regard to the first argument after the right-side of a semicolon, and linear with
regard to the second argument, if any.

The discrete counterpart of the dual and primal problems are in turn

J′(U h
; 8h′

) − A′(U h
; 8h′

, Zh
|Dh) = 0 ∀8h′

∈ Vh, (27)

B(8h
|Dh) − A(U h

; 8h
|Dh) = 0 ∀8h

∈ Vh . (28)

Combining these results, one obtains at the solutions {U, Z} ∈ V, {U h, Zh
} ∈ Vh

L(U, Z)−L(U h, Zh) = J(U )+B(Z)− A(U ; Z)−J(U h)−B(Zh)+ A(U h
; Zh)

= J(U )−J(U h), (29)

where the dependences of A and B on D have been dropped to simplify the notations.
Here, the operators applied to discrete solutions are understood to correspond to their
respective discrete counterpart. Then, the error estimates derived below account
for the discretization error. It is seen from Eq. (29) that the difference in J for
the continuous and discrete solutions is equal to the difference in their respective
Lagrangian.

3.2. A posteriori error estimation. Following [4], among others, we now derive
a more practical expression for the difference J(U ) − J(U h). Let K (· ) be a
differentiable functional on a given functional space W. The difference K (v) −

K (vh), for v and v′
∈ W, can be expressed as an integral between v and vh of the

derivative of K :

K (v) − K (vh) =

∫ v

vh
K ′(v′) dv′. (30)

The integration path can be parameterized to obtain

K (v)−K (vh)=

∫ 1

0
K ′(vh

+s(v−vh))(v−vh)ds =

∫ 1

0
K ′(vh

+ s ev; ev)ds, (31)
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where ev ≡ v −vh . Using K ′(v) = 0, we can rewrite the right-hand side of Eq. (31)
as

K (v)−K (vh)=

∫ 1

0
K ′(vh

+sev; ev)ds+ 1
2

(
K ′(vh

; ev) − K ′(vh
; ev) + K ′(v; ev)

)
.

(32)
Making use of the Galerkin orthogonality and the trapezoidal rule we obtain

K (v) − K (vh) =
1
2

K ′(vh
; ev) +

1
2

∫ 1

0
K (3)(vh

+ s ev; e3
v) s (s − 1) ds. (33)

Applying this relation to the difference of the Lagrangian of the continuous and
discrete solutions leads, after some algebra, to:

J(U ) − J(U h) =
1
2

[
ρ(U h, Z − 8′h) + ρ∗(Zh, U − 8h)

]
+ R̃, (34)

with the residuals

ρ(U h, · ) ≡ B(· ) − A(U h
; · ), (35)

ρ∗(Zh, · ) ≡ J′(U h, · ) − A′(U h
; ·, Zh). (36)

The remainder term R̃ in Eq. (34) has for expression

R̃ =
1
2

∫ 1

0

(
J(3)(U h

+ s EU ; E3
U ) − A(3)(U h

+ s EU ; E3
U , Zh

+ s EZ )

− 3 A′′ (U h
+ s EU ; E2

U EZ )
)

s (s − 1) ds, (37)

with the error terms defined as EU = U − U h and EZ = Z − Zh . Thus R̃ is
cubic in the error, suggesting that it can be neglected provided that the continuous
and discrete solutions are sufficiently close. It is also seen that the residuals are
functional of both the primal and dual continuous solutions U and Z , such that
using Eq. (34) to estimate J(U )−J(U h) would require two surrogates of U and Z
even if R̃ is neglected. In fact, the expression can be further simplified to remove
the contribution of U . Using an integration by part of R̃, one obtains [4]

ρ∗(Zh, U − 8h) = ρ(U h, Z − 8′h) + 1ρ, (38)

where

1ρ =

∫ 1

0

[
A′′(U h

+ s EU ; E2
U , Zh

+ s EZ ) − J′′(U h
+ s EU ; E2

U )
]

ds. (39)

Introducing this result into Eq. (34) leads to the final expression for the approxima-
tion error:

J(U ) − J(U h) = ρ(U h, Z − 8′h) + r, (40)
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where

r =

∫ 1

0

[
A′′(U h

+ s EU ; E2
U , Z) − J′′(U h

+ s EU ; E2
U )

]
s ds. (41)

The remainder term r is now quadratic in EU and will be neglected, assuming again
that the discrete solution U h is indeed a close enough approximation of U .

3.3. Methodology. At this point we have an estimate of the approximation error
given by

J(U ) − J(U h) ≈ B(Z − Zh
|Dh) − A(U h

; Z − Zh
|Dh), (42)

where we have substituted 8′h by the adjoint solution of the discrete problem in
Eq. (40), as usual in a posteriori error methodology. To evaluate this estimate, one
needs to know the solutions U h and Zh of the primal and dual discrete problems
and the solution Z of the continuous dual problem given by Eq. (25). However,
the continuous dual problem can not be solved as it requires the knowledge of
the exact solution U . Instead, a surrogate of Z denoted Z̃ is used. This surrogate
is classically constructed by solving a discrete dual problem on a refined finite
dimensional space Vh̃ containing Vh . The methodology is thus the following. Given
an approximation space Vh we solve the primal and dual problems Eqs. ((28),(27))
for U h and Zh

∈ Vh . The refined space Vh̃
⊃ Vh is constructed by increasing the

polynomial orders of both the approximation space Vh
x and Vh

ξ , and we solve the

following dual problem for Z̃ ∈ Vh̃

J′(U h
; 8) − A′(U h

; 8, Z̃ |Dh̃) = 0 ∀8 ∈ Vh̃ . (43)

It yields the a posteriori error estimate given by

J(U ) − J(U h) ≈ B(Z̃ − Zh
|Dh) − A(U h

; Z̃ − Zh
|Dh). (44)

Two important remarks are necessary at this point. First, it is underlined that
the dual problems are linear and significantly less expansive to solve than the
primal problems, even in an enriched approximation space. Second, as shown by
Eq. (43), the adjoint solution Z̃ is based on a functional form A′ constructed with
the approximation of D on the enriched space Vh̃ . As a consequence, the resulting
error estimate based on Z̃ accounts for possible error in the approximation of the
uncertain data D(ξ) on Vh

ξ .

4. Refinement procedures

4.1. Global and local error estimates. The a posteriori error methodology de-
scribed in Section 3 gives access to an estimate of J(U ) − J(U h) according to
Eq. (44). The global approximation error η is therefore



94 LIONEL MATHELIN AND OLIVIER LE MAÎTRE

η =
∣∣A(U h

; Z̃ − Zh
|Dh) − B(Z̃ − Zh

|Dh)
∣∣

=

∣∣∣〈a(U h
; Z̃ − Zh

|Dh) − b(Z̃ − Zh
|Dh)

〉
�ξ

∣∣∣
≤

Nb∑
m=1

∣∣∣�(m)
ξ

∣∣∣ ∣∣∣〈a(U h
; Z̃ − Zh

|Dh) − b(Z̃ − Zh
|Dh)

〉
�

(m)
ξ

∣∣∣ . (45)

Defining the local error on the element �
(l)
x × �

(m)
ξ by

ηl,m ≡

∣∣∣∣∣
∫

�
(m)
ξ

∫
�

(l)
x

[̃
a(U h

; Z̃ − Zh
|Dh) − b̃(Z̃ − Zh

|Dh)
]

pξ (ξ) dx dξ

∣∣∣∣∣ , (46)

where ∫
�x

ã(u; v|d)dx = a(u; v|d),

∫
�x

b̃(v|d)dx = b(v|d),

we obtain the following inequality:

η ≤

Nx∑
l=1

Nb∑
m=1

ηl,m . (47)

Then, the objective is to refine the approximation space Vh in order to reduce the
global error η as estimated from the a posteriori error analysis. A popular strategy
to ensure that the global error gets below a given threshold value εη is to refine the
approximation such that

ηl,m <
εη

NxNb
= ε, ∀l, m ∈ [1, Nx] × [1, Nb]. (48)

4.2. Refinement strategies. If the criterion given in Eq.(48) is not satisfied for
at least one SFE, the approximation space needs refinement. Different types of
refinements are possible. First, from the tensored construction of the approximation
space, Vh

= Vh
x ⊗ Vh

ξ , it is seen that the refinement may concern the spatial
or stochastic approximation spaces, or both. To distinguish these two types of
refinement we shall refer in the following to x and ξ -refinement for the spatial
and stochastic refinements respectively. Second, the refinement can be based on
construction of finer partitions of the domains or on increased approximation orders,
hereafter referred to as h- and p-refinements respectively. Therefore, we can choose
between four fundamental types of refinements to reduce the approximation error
to satisfy Eq. (48), hξ -, hx -, pξ - or px -refinements, or any combination of the four.

The problem is thus to find the refinement strategy that yields the largest decay of
the discretization error for the lowest computational cost. The difficulty here is that
the local error estimate only provides some information about the elements (SEs
and FEs) over which the approximation is insufficient. In other words, if for some l
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and m the local error is such that ηl,m > ε then we can only safely consider that the
approximation error over �

(m)
ξ × �

(l)
x is too large but nothing more. Specifically, it

is not possible to decide (a) between h- or p-refinement and (b) whether one should
enrich the approximation space Vh

x or Vh
ξ .

Difficulty (a) is a classic problem in (deterministic) hp-finite-element methods.
In the deterministic context, different strategies have been proposed to support the
decision regarding h- or p-refinement, and most of these strategies are based on trial
approaches. For instance, in [11], a systematic trial of h-refinement is performed.
The efficiency of the h-refinement is subsequently measured by comparing the
resulting error reduction with its theoretical value estimated using the convergence
rate of the FE scheme. If the efficiency of the h-refinement is not satisfactory, a p-
refinement is enforced at the following refinement step. This type of trial/verification
approach has not been retained here because of its numerical cost. Difficulty (b) is on
the contrary specific to stochastic finite-element methods and thus remains entirely
to be investigated. A possible way to deal with difficulty (b) can be envisioned
again by a trial approach where one would apply successively x and ξ -refinements
to measure the respective effectiveness in error reduction. Again, trial approaches
are expected to be overly expensive in the stochastic context where the size of the
discrete problems to be solved can be many times larger than for the deterministic
case: better approaches, yet to be thought, are needed here.

Another issue arising in the stochastic context is the potentially large dimen-
sionality N of the stochastic domain �ξ : an isotropic hξ -refinement, where SEs
are broken into smaller ones along each dimension ξi , can quickly result in a
prohibitively large number of SEs. This issue was already observed in [15; 16; 17]
where adaptive multiwavelet approximations are used. Rather, it is desirable to
gain further information on the structure of the local error ηl,m in order to refine
along the error’s principal directions solely. Several approaches may be thought of
to deal with this constraint. In the context of deterministic finite element method,
several anisotropic error estimators have been rigorously derived based on higher
order information. Among others, [23] and [22] use the Hessian matrix based on
Clément interpolants [6] to derive an estimate of the directional errors. Thought
attractive, this method has only been derived for first-order finite elements (P1)
and its extension to higher order remains largely an open problem. This limitation
precludes its use in the present context where approximation order q is routinely
larger than one. As a result, we feel that the issue of anisotropic refinement remains
largely to be addressed while being the most critical aspect of the refinement
strategies; it is also the possible source of significant improvements for the Adaptive
Stochastic Finite Element method. In fact, it is anticipated that the derivation of
anisotropic refinement techniques will allow to deal with problems involving a
larger set of random variables than currently tractable.
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Considering all these difficulties, it was decided to first verify the effectiveness
of the dual-based a posteriori error estimation in indicating which elements need
refinement, and to delay the question of the refinement strategy decision to a future
work. Consequently, we present in a next section some numerical tests which
essential purposes are to prove that the proposed error estimator indeed detect areas
of � where the error is the most significant. Still, we perform refinements, of
increasing complexity, without pretending in any way that the decision algorithms
used yield optimal approximation spaces, but merely that they allow for a reduction
of the global error to an arbitrary small level.

5. Numerical examples

5.1. Uncertain Burgers’ equation. To test the a posteriori error estimator, we
consider the 1-D Burgers’ equation on the spatial domain �x ∈ [x−, x+

]:
1
2

(u (1 − u))x − µ uxx = 0 ∀x ∈ [x−, x+
],

u(x−) = u−, u(x+) = u+.
(49)

This equation is widely used in particular in the fluid dynamics community as
it features essential ingredients: diffusion as well as a quadratic convective term.
Depending on the boundary conditions, the solution of the Burgers’ equation
exhibits areas where u(x) is nearly constant and equal to u− (for x ' x−) and u+

(for x ' x+) with a central area, the transition layer, where u quickly evolves from
u− to u+ according to an hyperbolic tangent profile having an increasing steepness
with decreasing the fluid viscosity.

5.1.1. Uncertainty settings. We consider the random solution U (x, ξ) of the Burg-
ers’ equation which arises when the viscosity µ is uncertain and parameterized by
the random vector ξ : µ = µ(ξ). As discussed above, ξ is uniformly distributed in
[−1, 1]

N. The number N of random variables depends on the parameterization. To
ensure the existence of a solution to the stochastic problem, the parameterization is
selected such that the viscosity is almost surely positive. The stochastic Burgers’
equation is thus:

1
2

[U (x, ξ) (1 − U (x, ξ))]x − µ(ξ) Uxx(x, ξ) = 0 ∀x ∈ [x−, x+
],

U (x−, ξ) = u−, U (x+, ξ) = u+.
(50)

The viscosity is parameterized using N = 2 random variables as follows

µ(ξ) = µ0 + µ1ξ1 + µ2ξ2, µ0 > 0. (51)

The expectation of the viscosity is 〈µ〉�ξ
= µ0, and provided that |µ1|+ |µ2| < µ0,

µ(ξ) is almost surely positive. We shall set in the following µ0 = 1, µ1 = 0.62 and



DUAL-BASED ERROR ESTIMATE FOR STOCHASTIC FINITE ELEMENT METHODS 97

µ2 = 0.36. The resulting probability density function (pdf) of the random viscosity
is plotted in Figure 1.
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Figure 1. Probability density function of the viscosity.

Finally, we set x−
= −10 and x+

= 10 and we use for the boundary conditions,

u−
=

1
2

[
1 + tanh

(
x−

4 µ0

)]
≈ 0, u+

=
1
2

[
1 + tanh

(
x+

4 µ0

)]
≈ 1. (52)

For these boundary conditions,

u(x) =
1
2

[
1 + tanh

(
x

4 µ0

)]
,

is in fact solution of the deterministic Burgers’ equation for µ = µ0 [26].

5.1.2. Variational problems. The variational formulation of the Burgers’ equation
is derived. By means of integration by parts, one obtains for the primal problem to
be solved for U ∈ V:

A(U ; 8|D) − B(8|D) =

〈∫
�x

[U (1 − U ) − 2 µ Ux ] 8x dx
〉
�ξ

= 0 ∀8 ∈ V∗,

(53)
where V∗

= V∗
x ⊗Vξ is constructed using the restriction of Vx to functions vanishing

on ∂�x . For the derivation of the adjoint problem, an obvious choice is here to
base the a posteriori error estimate on the solution itself, i.e., using

J(U ) =

〈∫
�x

U dx
〉
�ξ

. (54)
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For this choice, we have

J′(U ; 8′) = lim
ε→0

J(U + ε 8′) − J(U )

ε
=

〈∫
�x

8′ dx
〉
�ξ

∀8′
∈ V. (55)

and

A′(U ; 8′, Z |D) = lim
ε→0

A(U + ε 8′
; Z |D) − A(U ; Z |D)

ε
(56)

=

〈∫
�x

[
(1 − 2 U ) Zx 8′

− 2 µ Zx 8′

x
]

dx
〉
�x

. (57)

Thus the dual problem can be written as〈∫
�x

[
(1 − 2 U ) Zx 8′

− 2 µ Zx 8′

x + 8′
]

dx
〉
�x

= 0 ∀8′
∈ V, (58)

for Z ∈ V and deterministic boundary conditions Z(x−) = Z(x+) = 0.
For the discretization of the primal and dual problems, we use Chebyshev finite

elements to construct Vh
x , and Legendre polynomials (uniform distribution) for

Vh
ξ [1].
To compute the surrogate of the exact adjoint solution, the approximation space

Vh is extended to Vh̃ by increasing the orders of the Chebyshev (p) and Legendre
polynomials (q), as seen in Section 3. This surrogate has to be close enough to
the exact adjoint solution to yield correct error estimates through Eq. (46). This
is controlled by the construction of Vh̃ . For example, Table 1 shows the error
estimate ηl,m , at some element (l, m), obtained using increasing polynomial orders
when solving Eq. (58) for the surrogate of the adjoint solution. The convergence
of the error estimate is observed. It is seen that increasing the orders to p + 1 and
q + 1 provides an estimate within 15% of its “exact” value (taken as achieved for
p and q increased by 4). Since the dimension of the stochastic problem quickly
increases with the stochastic order, it has been decided to solve Z̃ with orders p
and q increased by one in the following numerical examples. However, if one is
willing to pay the price of a better accuracy in the error estimate, we recommend
the use of a a larger increase in the polynomial orders, noticing that thanks to the
linearity of the dual problem, as seen from Eq. (58), its resolution only contributes
to a reduced fraction of the global CPU time.

A fundamental point is that primal and dual problems do not involve any op-
erator in the stochastic directions (derivatives in ξi ) but in the spatial direction x
solely. This has the essential implication that realizations of the Burgers’ flow for
different realizations of the viscosity are fully independent. As a result, the solution
of the primal and dual problems over different SEs are uncoupled, allowing for
straightforward parallelization with drastic speed-up of the computation. We took
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degree 1(p, q) error estimate

1 1.0667 10−3

2 1.2078 10−3

3 1.2140 10−3

4 1.2151 10−3

Table 1. Convergence of the error estimate ηl,m with the increase
in the Legendre and Chebyshev polynomial orders to p +1p and
to q + 1q when computing the adjoint solution surrogate Z̃ .

advantage of this characteristic by solving SE-wise the primal and dual problems on
a Linux-cluster having 4 nodes with dual processors. Another interesting property
of the stochastic decoupling between SEs is that, during the refinement process, the
approximation needs only to be updated for the stochastic subdomains �

(m)
ξ that

have been x or ξ -refined.

5.2. Isotropic hξ -refinement. In a first series of tests, the spatial discretization if
held fixed with Nx = 6 Chebyshev finite elements having equal size and order p = 6.
For the refinement, only hξ -refinement is allowed here while the stochastic order is
maintained to a constant value.

For the purpose of comparison, we show in Figure 2 the convergence of the error
in the computed mean and variance of U at the point x = 0.52 when the partition
of �ξ is uniformly refined by increasing the number Nb of SEs from 22 to 1002.
The mean is given by

〈
U h 〉

�ξ
=

Nb∑
m=1

∣∣∣�(m)
ξ

∣∣∣ 〈U h 〉
�

(m)
ξ

,

and the variance by

σ 2(U ) ≡

〈[
U h

−
〈
U h 〉

�ξ

]2
〉
�ξ

=

Nb∑
m=1

∣∣∣�(m)
ξ

∣∣∣ 〈[U h
−

〈
U h 〉

�ξ

]2
〉
�

(m)
ξ

. (59)

In this experiment, the SEs are squares with equal size. To estimate the errors,
surrogates of the exact mean and variance of U were computed using Nx = 6, p = 6,
Nb = 1282 and q = 6. Note that these surrogates are in fact approximations of the
exact mean and variance of the semicontinuous problem, the spatial discretization
being held fixed. Consequently, it is not expected that the a posteriori error estimate
η goes to zero since a small but finite spatial error persists even for Vh

ξ → Vξ . The
plot in Figure 2 shows the convergence of the errors on the mean and variance at
x = 0.52 of the semicontinuous solution for two stochastic orders q = 2 and q = 4.
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The error is seen to quickly decrease as the number of SEs increases, illustrating the
convergence of the solution process. The errors on the mean and variance converge
with a similar rate which is function of the stochastic order q.
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Figure 2. Evolution of the errors on the computed (semicontinu-
ous) mean and variance of the solution at x = 0.52 as a function
of Nh =

√
Nb when using uniform hξ -refinement. Two stochastic

orders q = 2 and q = 4 are reported as indicated.

However, it is known that this uniform refinement is not optimal, since some areas
of �ξ may require a finer discretization than others. Thus, instead of employing
a uniform refinement, we now use the a posteriori error estimate to identify the
SEs requiring refinement. Following Eq. (48), an hξ -refinement is to be performed
on a SE �

(m)
ξ whenever ηl,m ≥ ε for some l ∈ [1, Nx = 6]. If so, the refinement

consists in splitting �
(m)
ξ into 2N

= 4 smaller SEs of equal size (i.e., isotropically).
Applying this scheme for q = 2 gives the evolution with the refinement iterations
of the errors in the computed mean and variance of U h at x = 0.52 reported in
Figure 3. These results were generated using ε = 2 10−5. The errors are plotted
as a function of the total number of dual and primal problems actually solved
during the iterative refinement process. The evolution of the errors for the uniform
refinement previously shown in Figure 2 is also reported for comparison. A dramatic
improvement of the convergence of the errors on the two first moments is observed
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when the a posteriori error based refinement scheme is used, compared to the
uniform refinement. Specifically, an error of ∼ 10−7 in the (semicontinuous) mean
and variance is achieved at a cost of roughly 128 resolutions of the primal and dual
problems when using the adaptive hξ -refinement, while about 5000 primal problems
have to be solved to reach a similar accuracy when using a uniform refinement.
Clearly, the adaptive hξ -refinement out-performs the uniform refinement, not only
in terms of CPU-cost, but also in terms of memory requirements.
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Figure 3. Evolution of the errors in computed (semicontinuous)
mean and variance of the solution at x = 0.52 as a function of the
number of primal and dual problems solves during the isotropic
hξ -refinement and q = 2. Also plotted are the evolutions of the
errors for the uniform refinement.

A better appreciation of the performance of the adaptive hξ -refinement can be
gained from the analysis of the data reported in Table 2, which presents the evolution
of the number Nb of SEs, the number of resolutions of primal and dual problems
and the errors in the first two moments as the refinement proceeds. Starting from
a partition of �ξ into 4 equal SEs, they are first all refined along the two-directions
ξ1 and ξ2 leading to a partition involving 16 SEs. At the second iteration, all these
SEs are still considered too coarse to match the prescribed accuracy and are refined
again in the two stochastic directions, resulting in 64 SEs. After the third iteration,
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only a fraction of the SEs needs further refinement and the process eventually stops
after 6 iterations with a partition of the stochastic space into 97 SEs.

Iteration Nb # of resolutions error on mean error on variance

1 4 4 4.1074 10−5 1.0189 10−3

2 16 20 4.7861 10−5 2.7054 10−3

3 64 84 1.0813 10−5 7.1067 10−4

4 76 100 1.3056 10−6 1.0944 10−4

5 88 116 8.7892 10−8 8.5915 10−6

6 97 128 6.9087 10−9 1.4032 10−7

Table 2. Evolution of the SE discretization (Nb), number of primal
and dual problems solves and errors on mean and variance of the
solution (at x = 0.52), with hξ -refinement iteration and q = 2.

In a second series of test, the a posteriori error based isotropic hξ -refinement is
applied with different stochastic orders q. The refinement criterion ε is increased
to 5.10−5 while other numerical parameters are kept constant (say p = 6, Nx = 6).
Figure 4 shows the resulting partition of �ξ and surface response of the solution
at x = 0.1 for q = 1, 3 and 5. It is seen that to satisfy the same error criterion a
lower number of FEs is necessary when the stochastic order increases. Specifically,
for q = 1, 174 SEs are needed compared to 10 for q = 5. It is also seen that the
partition of �ξ is essentially refined in the lower quadrant corresponding to lower
values of the viscosity. An asymmetry of the resulting partition of �ξ is also seen
for q = 1, denoting the different contributions of ξ1 and ξ2 to the uncertainty of the
solution as one may have expected from the parameterization in Eq. (51).

Furthermore, the surface responses in Figure 4 show that the refinement of �ξ

takes place in areas where the solution exhibits the steepest dependence with regard
to ξ , but also in areas where it is essentially unaffected by the viscosity; this is due
to the fact that the refinement is based on a criterion involving all spatial locations:
the solution at different spatial locations requires refinement at different places in
�ξ .

5.3. Isotropic hξ,x-refinement. In the previous tests, an isotropic hξ -refinement
only was applied. However, as discussed previously, the a posteriori error estimate
incorporate both the stochastic and spatial errors. In fact, it is expected that when
lowering µ a finer and finer spatial FE discretization in the neighborhood of x = 0
is needed as the solution becomes stiffer and stiffer. Consequently, one may find
advantages in adapting the FE discretization to �

(m)
ξ . This is achieved by introducing

an additional test before applying the isotropic hξ -refinement. If the local error ηl,n
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Figure 4. Partition of �ξ (left) and surface response for U (ξ) at
x = 0.1 (right) at the end of the isotropic hξ -refinement process
using ε = 5.10−5. Plots correspond to q = 1, 3 and 5 from top to
bottom.

is greater than ε, the spatial discretization is first checked by computing an estimate
of the spatial error ηx

l,m from

(
ηx

l,m
)2

=

∫
�

(l)
x

〈[
U h

− 5l(U h)
]2

〉
�

(m)
ξ

dx, (60)
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where 5l(U h) is the (spatial) Clément interpolant [6] of U h over the spatial patch
defined by the union of the FEs having a common point with the element �

(l)
x . The

order of the Clément interpolant is set to p(l, m) + 1. If this estimate of the spatial
error is greater than a prescribed second threshold εx a hx -refinement is applied to
the FE �

(l)
x (for the SE �

(m)
ξ only), consisting in its partition into two Chebyshev

elements of equal size. On the contrary, if ηx
l,m < εx for all l ∈ [1, Nb(m)], the

hξ -refinement is applied as previously.
This strategy is applied to the test problem, with the initial discretization using

Nx = 6 identical FEs with p = 6, over 4 equal SEs with q = 2 and a refinement
criteria ε = 10−4. The partition of � at the end of the refinement process is shown
in Figure 5. The left plot shows the partition of �ξ and highlights again the need
for refinement for the lowest values of the viscosity. The right plot shows the
dependence of the refinement of the FE discretization with ξ . Specifically, it is
seen that hx -refinement essentially occurs for the lowest values of the viscosity (i.e.,
when the solution exhibits the steepest spatial evolutions) and in the neighborhood
of x = 0 as one may have expected.
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Figure 5. Partition of �ξ (left) and � (right) after the hξ,x -
refinement procedure. Numerical parameters are given in the text.

Additional insights about the distribution of the local a posteriori error estimate
ηl,m in � can be gained examining Figure 6, where plotted is the local error
magnitude as spheres. A large sphere corresponds to a large error ηl,m , with a
scaling of the spheres’ diameter as d ∼ η0.25

l,m . As already stated, it is seen that the
maximum error occurs around x = 0 and that it decreases very quickly as one gets
away from that location. This plot clearly exemplifies the h-refinement strategy:
divide elements where a large error occurs to make the error magnitude below the
prescribed tolerance ηl,m .
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Figure 6. Distribution of the local a posteriori error estimate ηl,m

after hξ,x -refinement. The spheres’ diameter d scales as d ∼ η0.25
l,m .

We present in Figure 7 the expectation (left) and variance (right) of the approxi-
mate solution U h after refinement as a function of x . The plot of the expectation〈
U h

〉
�ξ

is also compared with the deterministic solution u(x) for the mean viscosity
µ0 = 1. This deterministic solution has for expression:

u(x; µ = 1) =
1
2

[
1 + tanh

x
4

]
. (61)

It is seen that the expected solution also has an hyperbolic tangent-like profile but is
not equal to the deterministic solution: the differences are due to the nonlinearities
of the Burgers’ equation. The right plot in Figure 7 depicts the solution variance
σ 2(U h). The boundary conditions being deterministic the variance vanishes at x−

and x+. The uncertainty in the viscosity produces a symmetric variance with regard
to x = 0 as it only affects the steepness of the hyperbolic tangent-like profile since

U (x, ξ) ≈
1
2

[
1 + tanh

x
4 µ(ξ)

]
. (62)

Also, due to the selected boundary conditions, we have at the center of the spatial
domain U (ξ)= (u−

+u+)/2=1/2 almost surely, provided that µ(ξ)>0. Therefore,
the variance of U h vanishes at x = 0 as shown in Figure 7.

The probability density functions of U h , together with the solution’s quantiles,
are reported in Figure 8 as functions of x . The quantiles are defined as the level
u(Q), for Q ∈]0, 1[, such that the probability of U h(x) < u is equal to Q. The
plot of the pdf shows dramatic changes with x . For x = x− the pdf is a Dirac of
unit mass (no-uncertainty); then when x increases the pdf evolves from a sharp
lower tail distribution to a long lower tail distribution. At x = 0 it is again a Dirac
(no-uncertainty). For x increasing further to x+ the opposite evolution is observed
(due to the central symmetry of the settings). Note that the distribution of the
solution is bounded since U almost surely ∈ [u−, 1/2] for x ≤ 0 and U almost
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Figure 7. Expectation (left) and variance (right) of the approxi-
mate solution U h(x, ξ) at the end of the hξ,x -refinement process.

surely ∈ [1/2, u+
] for x ≥ 0. The quantiles reflect the complexity of the distribution

with important changes with x of the spacing between quantiles.
To further illustrate the need of refinement to properly capture the solution

distribution, we present in Figure 9 the convergence of the pdf of U h at x = 0.52
along the hξ,x -refinement process. The left plot shows the pdf in linear-log scales
to appreciate the improvement in the tails of the distribution, while the right plot in
linear-linear scales shows the improvement in the high density region. It is seen that
during the first iterations of the refinement process the pdf presents under-estimated
right-tails and some spurious oscillations, which are due to discontinuities of the
approximate solution across SEs boundaries.

5.4. Anisotropic h/q-refinement. In the previous tests, an isotropic h-refinement
was used in the stochastic domain. As a result, each refined SE is split into 2N SEs.
For large N this simple procedure quickly results in a prohibitively large number
of SEs. Instead, one finds advantage in splitting �

(m)
ξ only along the stochastic

directions yielding the largest error reduction. Obviously, the a posteriori error
estimate does not provide enough information to decide along which directions
�

(m)
ξ should be split: an anisotropic error estimator is necessary to this end. In

the absence of an such estimator, we rely on a criterion, inspired from [16; 27],
which is based on the relative contributions of each stochastic directions to the local
variance. The local variance is defined as

σ 2
�

(m)
ξ

(U ) =

〈[
U − 〈U 〉

�
(m)
ξ

]2
〉
�

(m)
ξ

. (63)
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Figure 8. Top: pdf of the approximate solution U h as a function
of x at the end of the hξ,x -refinement. The pdf-axis is truncated for
clarity. Bottom: quantiles u(Q) of the solution, as a function of x ,
for Q = 0.05 to 0.95 with constant increment 1Q = 0.1.

Since the stochastic expansion of U over �
(m)
ξ is of the form

U (ξ ∈ �
(m)
ξ ) =

P(m)∑
k=0

u(m)
k 9

(m)
k (ξ),
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Figure 9. Probability density function at x = 0.52 for different
steps of the hξ,x -refinement process. Linear-log plot (left) and
linear-linear plot (right).

and because by convention 9
(m)
k = 1 for k = 0 (i.e., mode 0 is the mean mode), the

local variance becomes

σ 2
�

(m)
ξ

(U ) =

P(m)∑
k=1

(
u(m)

k

)2 〈
9

(m)
k

2〉
�

(m)
ξ

, (64)

and we define

σ 2
�

(m)
ξ ×�

(l)
x
(U ) =

P(m)∑
k=1

〈
9

(m)
k

2〉
�

(m)
ξ

∫
�

(l)
x

(
u(m)

k (x)
)2

dx . (65)

It is seen that the integral of the local variance on the FE �
(l)
x is a weighted sum of

the integral of the squared stochastic expansion coefficients over the FE. The idea
is thus to define, for each direction i = 1, . . . , N, the contribution of the polynomial
of degree q(m) in ξi to this variance integrated on �

(l)
x . This contribution is denoted

σ 2
l,m(U ; i, q(m)). Using the respective contributions of each direction, it is decided

that �
(m)
ξ has to be split along the i-th stochastic direction if the following test is

satisfied for at least one FE:

σ 2
l,m(U ; i, q(m))∑N

i=1 σ 2
l,m(U ; i, q(m))

≥ ε2. (66)

where 0 < ε2 < 1 is an additional threshold parameter. If none of the stochastic
directions satisfies the previous test, it is on the contrary decided to increment by
one unit the stochastic expansion order q(m) over �

(m)
ξ .

The anisotropic h/p-refinement strategy now follows the general algorithm:
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1. solve the primal and dual problems for the current approximation space Vh;
get U h and Zh .

2. Solve the adjoint problem in the enriched space Vh̃ ; get Z̃ .

3. Compute the local error ηl,m from Eq. (46) for m = 1, . . . , Nb and l = 1, . . . ,

Nx(m).
If ηl,m < ε for m = 1, . . . , Nb, l = 1, . . . , Nx(m), then end computation.

4. For m = 1, . . . , Nb and l = 1, . . . , Nx(m)

If ηl,m > ε:

a. Compute the estimate of the spatial error ηx
l,m using Eq. (60).

b. If ηx
l,m > εx , mark element for hx -refinement.

c. If the element has not been marked for hx -refinement,
(a) Compute the directional variances.
(b) For i = 1, . . . , N if the directional variance is greater than ε2 then mark
element �

(m)
ξ for hξ -refinement in direction i .

5. For m = 1, . . . , Nb: if �
(m)
ξ has not been marked for some hξ -refinement,

and none of the elements �
(m)
ξ × �

(l)
x , l = 1, . . . , Nx(m), are marked for hx -

refinement but there exists at least one l ∈ [1, Nx(m)] such that ηl,m > ε, then
increase q(m) by one.

6. Construct the refined approximation space and restart from 1.

This refinement scheme has been successfully applied to the test problem, with
µ1 =0.82 and µ2 =0.16. The viscosity parameterization was changed to increase the
contribution of the first direction compared to the second to the solution uncertainty.
Note that the pdf of µ is affected by this change of the parameterization, but the
uncertainty range is kept constant. For illustration purposes, we present in Figure 10
an example of the partition of the stochastic space into SEs with variable stochastic
expansion orders. The initial discretization involves Nb = 4 equal SEs with q = 2.
At the first iteration, all SEs were split isotropically, the expansion order being
kept constant. At the second iteration, the SEs with boundary at ξ1 = −1 were
further refined but in the ξ1 direction only. For the following iterations, no further
hξ -refinement was required while some SEs still have a significant estimated error:
it yielded increase in the stochastic expansion order q(m). Again, the final expansion
order is the greatest for the SEs with ξ1 = −1 and/or ξ2 = −1 boundaries (where
viscosity is small), and is the lowest for the SE having boundary ξ1 = 1 and ξ2 = 1
where q has been kept constant.

5.5. Tests for N = 3. To conclude this series of tests, an additional uncertainty
source is considered by taking the left boundary condition as random, U−. The
random boundary condition is assumed independent of the viscosity value and
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consequently parameterized using an additional random variable ξ3. The complete
uncertainty settings are:

µ(ξ) = 1 + 0.5 ξ1 + 0.05 ξ2, U−(ξ) = u−

0 + u′ ξ3, (67)

with u−

0 given by Eq. (52) and u′
= 5. 10−4. This low value of u′ is selected as it is

known that small perturbations of the boundary condition leads to O(1) changes in
the solution of the Burgers’ equation (see [31]). This is due to the “supersensitivity”
of the transition layer location with the boundary condition: the low variability in
U− will result in large variability of the solution but essentially around the center of
the spatial domain and not in the neighborhood of x− where the solution variability
is low. This problem is thus well suited to test the effectiveness of the a posteriori
error methodology in providing correct local error estimators. Moreover, as the
sensitivity of the solution with regard to U− increases when the viscosity is lowered,
a finer partition of �ξ is expected for low values of ξ1, while the contribution of ξ2

will be less as seen from Eq.(67).
The spatial discretization (Nx = 20, p = 6) and stochastic orders q being held

fixed, we proceed with the previously described a posteriori error based anisotropic
hξ -refinement scheme. The target precision is set to εη = 0.001. In Figure 11 we
show the reduction of the a posteriori error η along the refinement process for
orders q = 1 and 2. The evolution of the error estimate for a uniform refinement of
the stochastic space is also reported for comparison. Because the stochastic space
now has 3 dimensions, the increase in number of SEs for the uniform refinement
is seen to be dramatically large for a low resulting reduction of the a posteriori
error. On the contrary, using the local error estimate to guide the refinement process
is seen to significantly improve the error reduction with the number of SEs. It is



DUAL-BASED ERROR ESTIMATE FOR STOCHASTIC FINITE ELEMENT METHODS 111

also remarked that the anisotropic refinement requires 3 iterations to achieve the
prescribed precision for q = 1, while only 2 iterations are needed for q = 2.

 1e-04
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 0  20  40  60  80  100  120  140

η

# stochastic elements (Nb)

Error-based - q = 1
Error-based - q = 2

Uniform - q = 1
Uniform - q = 2

Figure 11. Reduction of the a posteriori error estimate η with the
number Nb of stochastic elements involves in the partition of �ξ .
Plotted are the results for the anisotropic hξ -refinement procedure
(labeled Error-based) and uniform refinement, using q = 1 and 2 as
indicated.

Figure 12 depicts the partition of the stochastic space at the end of the hξ -
refinement process. The initial partition uses Nb = 2N

= 8 identical SEs. In fact,
the anisotropic hξ -refinement process never requires refinement along the second
dimension ξ2: the plots of Figure 12 thus show the partition of �ξ in a plane where
ξ2 is constant. The independence of the partition with regard to ξ2 denotes the
capability of the proposed scheme to detect the weak influence of ξ2 on the solution.
On the contrary, it is seen that for fixed ξ2 and ξ3 a finer division of �ξ along the
first direction is necessary when ξ1 decreases, because of the steeper behavior of the
solution when the viscosity decreases. In contrast, for fixed ξ1 and ξ2 the partition
is uniform along the third direction, but is finer for low viscosity and q = 1, as one
may have anticipated from the behavior of the Burgers’ solution.

To conclude these tests, we show in Figure 13 the variance of the stochastic
solution along the spatial domain, for the two stochastic orders q = 1 and 2, at the
end of the anisotropic refinement process. The effect of the uncertain boundary
condition on the solution variance can be appreciated through comparison with
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the result reported in Figure 7. Specifically, the variance of the solution at the
center of the spatial domain is now different from zero. It is seen that even so both
orders leads to similar estimated error, small but noticeable differences are visible
in the spatial distribution of the solution variance. These difference in terms of
predicted variance can be better appreciated from the right plot in Figure 13 where
the differences for q = 1 and q = 2 are plotted.

6. Concluding remarks

A dual-based a posteriori error analysis has been proposed in the context of sto-
chastic finite element methods with stochastic discretization involving piecewise
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continuous orthogonal polynomials approximations. The error estimation involves
the resolution of a linear stochastic dual problem, which computational cost is
deemed negligible compared to the primal problem (provided the latter is nonlin-
ear). Numerical tests on the uncertain Burgers’ equation have demonstrated the
effectiveness of the methodology in providing relevant error estimates that can be
localized in the spatial and stochastic domain.

The principal limitation of the proposed method is the lack of resulting infor-
mation regarding the structure of the estimated error. Specifically, the respective
contributions of the spatial and stochastic approximations to the estimated error
are not accessible. At a finer level, the error estimator does not allow for the
discrimination between the relative contributions of the stochastic directions to the
overall error. We believe this is the most severe limitation in view of anisotropic
refinement of the stochastic approximation space required to treat problems with
high dimensional uncertainty germs. However, we consider that the proposed
methodology constitutes a significant improvement compared to error indicators
previously proposed in the stochastic context [16; 17; 27], which were based on the
spectrum of the local stochastic expansion.

Several potential improvements of the refinement strategy have been identified
throughout this work. It includes the derivation of rigorous and efficient anisotropic
error estimators for high order approximation schemes. Another area of potential
application of the a posteriori estimator is the coarsening of the approximation
space in view of application to, say, unsteady flows. Both of these developments
are the subject of on-going work.
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