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We prove the folklore endpoint multilinear kj -plane conjecture originating in a paper of Bennett, Carbery
and Tao where the almost sharp multilinear Kakeya estimate was proved. Along the way we prove a more
general result, namely the endpoint multilinear kj -variety theorem. Finally, we generalize our results to
the endpoint perturbed Brascamp–Lieb inequalities using techniques in earlier sections.

1. Introduction

The endpoint multilinear k j -plane theorem. The multilinear kj -plane conjecture was implicitly proved
by Bennett, Carbery and Tao [2006], except for the endpoint case. In the first part of this paper we
formulate and prove the endpoint case. In fact we will prove the endpoint multilinear kj -variety theorem,
which is more general.

The proof uses the polynomial method. We will set up the polynomial like Guth [2010] did in his
proof of the endpoint multilinear Kakeya conjecture. Then we make some crucial new observations
and development of the theory, enabling us to estimate “the quantitative interaction of the polynomial
with itself” in terms of its visibility. As a result, we are able to deal with the codimension difficulty and
complete the proof.

The multilinear kj -plane estimate is a natural generalization of the famous multilinear Kakeya estimate.
Albeit weaker than linear Kakeya, the multilinear Kakeya theorem and the methods it inspired recently
had remarkable applications to classical harmonic analysis problems as well [Bourgain and Guth 2011;
Bourgain 2013a; 2013b; Guth 2016b; 2016c; Bourgain and Demeter 2015]. See the beginning of [Guth
2015] for a good introduction.

The nonendpoint case of the multilinear Kakeya conjecture was proved by Bennett, Carbery and Tao
[Bennett et al. 2006] and later Guth [2010] proved the endpoint case, which we state below.

Theorem 1.1. For 1≤ j ≤ d , let {Tj,a : 1≤ a ≤ A( j)} be a family of unit cylinders in Rd. We set vj,a to be
the direction of the core line of the cylinder Tj,a . Assume the core lines of cylinders from different families
are “quantitatively transversal”; i.e., for any 1≤ aj ≤ A( j), we have v1,a1 ∧ v2,a2 ∧ · · · ∧ vd,ad ≥ θ > 0,
where θ is fixed. Then we have∫

Rd

( d∏
j=1

A( j)∑
a=1

χTj,a

)1/(d−1)

.d θ
−1/(d−1)

d∏
j=1

A( j)1/(d−1). (1-1)
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Guth’s approach to proving Theorem 1.1 is very different from the approach of Bennett, Carbery and
Tao. He was able to take a polynomial that approximates the intersection of tubes sufficiently well, along
the way employing some nice tools and lemmas from algebraic topology and integral geometry.

In the Kakeya setting we have cylinders which are neighborhoods of lines. A natural analogue is to
replace lines with higher-dimensional affine subspaces and this will exactly be our multilinear kj -plane
setting. In Remark 5.4 of [Bennett et al. 2006], the authors note that their techniques can be also used to
obtain nonendpoint cases of multilinear k-plane transform estimates considered in [Oberlin and Stein
1982]. There is also a k-plane version of the Kakeya problem [Bourgain 1991] that could be relevant here.

They did not state the result precisely and we will state what we can get from their proof below. If
we go check the proof, similar techniques in [Guth 2015] can also give us the result. Here we allow
subspaces of different dimensions and hence call the theorem a “multilinear kj -plane theorem”.

Before stating the theorem we introduce our terminology to describe a “higher-dimensional” analogue
of cylinders.

Definition 1.2. In a space of dimension d , for any 1≤ b< d define a b-slab to be the Cartesian product of
a b-dimensional ball B1 and a (d−b)-dimensional ball B2 (the spaces spanned by both balls are required
to be orthogonal). The radius of B1 will be called the size of our b-slab and the radius of B2 will be called
the radius of it. The Cartesian product of B1 and the center of B2 is called the core of this b-slab.

By the above definition, a 1-slab is a cylinder. Its length is the size in our language. Our definitions of
radius and core are consistent with familiar definitions for cylinders. As explained above, we call our
theorem a kj -plane theorem because when the size is large, a k-slab looks flat and is like a “fattened”
k-plane.

Theorem 1.3 (multilinear kj -plane theorem with Rε loss [Bennett et al. 2006]). Assume R is a large
positive number. Assume K1, K2, . . . , Kn $ {1, 2, . . . , d} are disjoint and K1 ∪ · · · ∪ Kn = {1, 2, . . . , d}.
Let kj = |K j |.

For 1≤ j ≤ n, let {Tj,a : 1≤ a ≤ A( j)} be a family of kj -slabs of size ≤ R and radius 1. Assume that
for any 1 ≤ aj ≤ A( j), the core of Tj,aj is on a kj -plane that forms an angle < δ against the kj -plane
spanned by all ei , i ∈ K j .

Then when δ > 0 is sufficiently small depending on d, we have∫
Rd

( n∏
j=1

A( j)∑
a=1

χTj,a

)1/(n−1)

.ε,d Rε
n∏

j=1

A( j)1/(n−1). (1-2)

When n = d and K j = { j}, this theorem is the multilinear Kakeya theorem with Rε loss, which is the
main theorem of [Bennett et al. 2006]. In [Guth 2015], a simpler proof of this special case is also given,
and it can be generalized easily to prove the whole Theorem 1.3.

We can obtain various kj -plane theorems by taking different n and K j in Theorem 1.3. As we saw
in Theorem 1.1, Guth [2010] was able to remove the Rε in the multilinear Kakeya case. So in general we
would also expect the removal of Rε. Conceptually, this will allow us to have slabs with “size∞” (that are
actually 1-neighborhoods of kj planes) in the theorem. It turns out to be true and will be proved in this paper.
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Theorem 1.4 (multilinear kj -plane theorem). Take the same assumptions as Theorem 1.3, but with no
restriction on the size of slabs. We have∫

Rd

( n∏
j=1

A( j)∑
a=1

χTj,a

)1/(n−1)

.d

n∏
j=1

A( j)1/(n−1). (1-3)

Theorem 1.4 has an affine-invariant version, just like the multilinear Kakeya case, which was first
pointed out in [Bourgain and Guth 2011]. We will actually prove this version (Theorem 1.5 below).
Theorem 1.4 is a direct corollary of it.

In order to state the theorem, we introduce some notation. For any q ≤ d vectors v1, v2, . . . , vq , we
define |v1 ∧ v2 ∧ · · · ∧ vq | to be the volume of the parallelepiped generated by v1, v2, . . . , vq . Moreover,
for any m (affine) subspaces V1, V2, . . . , Vm with a total dimension d , we can define |V1∧V2∧ · · ·∧Vm |

to be |v1,1 ∧ · · · ∧ v1,d1 ∧ v2,1 ∧ · · · ∧ v2,d2 ∧ · · · ∧ vm,1 · · · ∧ vm,dm |, where {vj,i : 1 ≤ i ≤ dj } form an
orthonormal basis of the linear subspace parallel to Vj .

Theorem 1.5 (affine invariant multilinear kj -plane theorem). Assume the positive integers 1≤k1, . . . , kn≤

d − 1 satisfy
∑n

j=1 kj = d. For 1 ≤ j ≤ n, let {Tj,a : 1 ≤ a ≤ A( j)} be a family of kj -slabs of radius 1.
Assume the core kj -plane of Tj,a is parallel to the linear subspace Hj,a . Then for any real numbers ρj,a j

we have∫
Rd

( A(1)∑
a1=1

· · ·

A(n)∑
an=1

n∏
j=1

ρj,ajχTj,aj
(x) · H1,a1 ∧ · · · ∧ Hn,an

)1/(n−1)

dx .d

n∏
j=1

( A( j)∑
aj=1

|ρj,aj |

)1/(n−1)

. (1-4)

Remark 1.6. We refer the reader to [Bennett and Bez 2010] for an explanation of why the exponents
are as they appear in Theorem 1.5. Also we note that in that paper the authors already observed the
affine-invariant Finner inequality, which is an “unperturbed” version of Theorem 1.5.

Our Theorem 1.5 has some application in the multilinear restriction theorem too. For each 1≤ j ≤ n
assume 6j :Uj →Rd is a smooth parametrization of a subset of a smooth submanifold �j whose closure
is compact. Also assume

∑n
j=1 dim�j = d. Here we assume Uj is a neighborhood of the origin 0. We

can associate the extension operator to 6j as follows:

E j gj (ξ)=

∫
Uj

e2π iξ ·6j (x)gj (x) dx . (1-5)

Assume T61(0)�1∧· · ·∧T6n(0)�n 6= 0. Then just like the classical multilinear restriction case discussed
in [Bennett et al. 2006], we can form the endpoint multilinear restriction conjecture:

Conjecture 1.7 (endpoint multilinear kj -restriction conjecture). Assume we have 6j as above such that
T61(0)�1 ∧ · · · ∧ T6n(0)�n 6= 0. Then when the Uj are sufficiently small, we have∫

Rd

n∏
j=1

|E j gj |
2/(n−1) .d

n∏
j=1

‖gj‖
2/(n−1)
L2(Uj )

. (1-6)
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The methods in [Bennett et al. 2006] yield the following local variant of the conjectured (1-6) with
Rε-loss: ∫

B(0,R)

n∏
j=1

|E j gj |
2/(n−1) .d,ε Rε

n∏
j=1

‖gj‖
2/(n−1)
L2(Uj )

. (1-7)

We can use Theorem 1.4 to slightly improve (1-7). Using exactly the same proof techniques as in the
proof of Theorem 4.2 in [Bennett 2014], from Theorem 1.4 we deduce that there exists a κ = κ(d) > 0
such that ∫

B(0,R)

n∏
j=1

|E j gj |
2/(n−1) .d (log R)κ

n∏
j=1

‖gj‖
2/(n−1)
L2(Uj )

. (1-8)

The endpoint perturbed Brascamp–Lieb inequalities. Everything in the previous section in its unper-
turbed version, including the Loomis–Whitney inequality and the multilinear kj -plane theorem, is a
special case of the Brascamp–Lieb inequalities. In this paper we also generalize the Brascamp–Lieb
inequalities in the same way we do with the multilinear kj -plane theorem, with some new combinatorial
ideas. We state our endpoint perturbed Brascamp–Lieb inequalities in this section.

We first briefly review the Brascamp–Lieb inequalities. We will mostly follow the notational convention
in [Bennett et al. 2008; 2010], which are two important references in the literature. Assume that in Rd we
have n linear surjections Bj : R

d
→ E j . Then for certain positive numbers pj , 1≤ j ≤ n, the following

Brascamp–Lieb inequality holds for any measurable function f j on E j (1≤ j ≤ n) with some C > 0:∫
Rd

n∏
j=1

( f j ◦ Bj )
pj ≤ C

n∏
j=1

(∫
E j

f j

)pj

. (1-9)

If this is the case, we call the minimum possible constant C such that (1-9) holds the Brascamp–Lieb
constant BL(B, p). Here we use B to denote the data (B1, . . . , Bn) and p to denote the data (p1, . . . , pn).
The pair (B, p) is called the corresponding Brascamp–Lieb datum. If (1-9) fails for any finite C , we define
BL(B, p)=+∞. Note that no a priori assumptions are made on the relationship between d and n here.

Lieb [Lieb 1990] showed:

Theorem 1.8. BL(B, p)= BLg(B, p), where

BLg(B, p)= sup
( ∏n

j=1(detE j Aj )
pj

det
(∑n

j=1 pj B∗j Aj Bj
))1/2

(1-10)

with the supremum is taken over all Aj : E j → E j such that Aj is a positive definite linear transform.

An alternative way to state Theorem 1.8 is that the Brascamp–Lieb constant is what one would obtain
by restricting attention to the special case in which each f j is a certain Gaussian function.

Subsequently, Bennett, Carbery, Christ and Tao [Bennett et al. 2008; 2010] determined a necessary and
sufficient condition for BL(B, p)=BLg(B, p) <+∞. They proved that BL(B, p)=BLg(B, p) <+∞
is equivalent to the following two conditions:
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(1) Scaling condition: ∑
j

pj dim E j = d. (1-11)

(2) Dimension condition: for any linear subspace V ⊆ Rd,

dim V ≤
∑

j

pj dim(Bj V ). (1-12)

So we know when we can have the actual Brascamp–Lieb inequality (1-9) thanks to their work.
Inequality (1-9) has an equivalent version that is easier to understand intuitively. We state it in the

following proposition and refer the readers to [Bennett 2012] for this observation.

Proposition 1.9 (combinatorial Brascamp–Lieb). Assume we have a Brascamp–Lieb datum (B, p) in Rd.
Assume kj =dim ker Bj and we have n families of slabs. Assume the j-th family Tj consists of only kj -slabs
of radius 1 whose cores are all parallel to ker Bj . Also assume each |Tj | is finite. Then BL(B, p) <+∞
if and only if we always have ∫

Rd

n∏
j=1

(∑
Tj∈Tj

χTj

)pj

.
n∏

j=1

|Tj |
pj. (1-13)

In light of the last subsection, a perturbed version of this proposition should be true. This can indeed
be proved; recently, Bennett, Bez, Flock and Lee [Bennett et al. 2015, Theorem 1.2] proved the following
(nonendpoint) theorem via generalizations of Guth’s method [2015].

Theorem 1.10 (perturbed Brascamp–Lieb with Rε-loss [Bennett et al. 2015]). Assume we have a
Brascamp–Lieb datum (B, p) in Rd with BL(B, p) < +∞. Let kj = dim ker Bj . Assume we have
n families of slabs and the j-th family Tj consists of only kj -slabs of radius 1 and size ≤ R. Assume each
|Tj | is finite. Also assume that each slab in the j-th family has its core kj -plane within a δ-neighborhood
of ker Bj on the corresponding Grassmannian (with a given standard metric). Then when δ is sufficiently
small depending on (B, p) we have∫

Rd

n∏
j=1

(∑
Tj∈Tj

χTj

)pj

.d, p,BL(B, p),ε Rε
n∏

j=1

|Tj |
pj. (1-14)

They conjectured that Rε can be removed here (see inequalities (7) and (8) of [Bennett et al. 2015])
and we prove their conjecture in the last section of this paper.

Theorem 1.11 (endpoint perturbed Brascamp–Lieb theorem). Assume we have a Brascamp–Lieb datum
(B, p) in Rd with BL(B, p) <+∞. Let kj = dim ker Bj . Assume we have n families of slabs and the j-th
family Tj consists of only kj -slabs of radius 1. Assume each |Tj | is finite. Also assume that each slab in the
j-th family has its core kj -plane within a δ-neighborhood of ker Bj on the corresponding Grassmannian
(with a given standard metric). Then when δ is sufficiently small depending on (B, p) we have∫

Rd

n∏
j=1

(∑
Tj∈Tj

χTj

)pj

.d, p,BL(B, p)

n∏
j=1

|Tj |
pj. (1-15)
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Remark 1.12. Theorem 1.11 formally implies the stability of Brascamp–Lieb constants, which was a
result of Bennett, Bez, Flock, and Lee [Bennett et al. 2015]. However, it is worth noticing (see the proof
later in Section 8) that the main result in [Bennett et al. 2015] is an input rather than an output in our
proof of Theorem 1.11. In particular, we do not have a new proof of the main result in [Bennett et al.
2015] in this paper.

Our proof of Theorem 1.11 will follow the same scheme as the proof of Theorem 1.4. Some new
difficulties present themselves and we deal with them in due course.

Like what we had in the end of last subsection, our perturbed Brascamp–Lieb theorem has some
impact on the endpoint Brascamp–Lieb-type restriction conjecture formulated in [Bennett et al. 2015].
To introduce it, we use the same setup that we did in Conjecture 1.7, but this time we don’t assume that∑

j kj = d or that T61(0)�1 ∧ · · · ∧ T6n(0)�n 6= 0. Instead, we assume that there exists p= (p1, . . . , pn),
pj > 0, such that BL(B(6), p) < ∞, where B(6) = (T61(0)�1, . . . , T6n(0)�n) (here we abuse the
notation a bit and for each component we really mean the linear subspace of Rd parallel to it).

Conjecture 1.13 (endpoint Brascamp–Lieb-type restriction conjecture). With the above setup, when the
Uj are sufficiently small, we have∫

Rd

n∏
j=1

|E j gj |
2pj .d, p,BL(B(6), p)

n∏
j=1

‖gj‖
2pj

L2(Uj )
. (1-16)

In [Bennett et al. 2015] a local variant of (1-16) with Rε-loss is proved:∫
B(0,R)

n∏
j=1

|E j gj |
2pj .d, p,BL(B(6), p),ε Rε

n∏
j=1

‖gj‖
2pj

L2(Uj )
. (1-17)

By Theorem 1.11 and again the same method as in the proof of Theorem 4.2 in [Bennett 2014], we
can slightly improve (1-17): there is a κ = κ(BL(B(6), p)) > 0 such that∫

B(0,R)

n∏
j=1

|E j gj |
2pj .d, p (log R)κ

n∏
j=1

‖gj‖
2pj

L2(Uj )
. (1-18)

Idea of the proofs. When looking to remove the factor Rε in Theorems 1.3 and 1.10, the methods in
[Bennett et al. 2006] or [Guth 2015] do not feel very appealing. Instead we will follow the path led by
Guth [2010] and try to come up with a version of the so-called polynomial method.

However, there is a major difficulty to generalizing Guth’s argument: note that the zero set of one
polynomial has codimension 1. In the setting of [Guth 2010], because a line has dimension 1, a line will
intersect the above zero set at discrete points. And the number of such points is controlled by the degree
of the polynomial. Hence we can do some counting to obtain estimates. In particular, Guth’s proof relies
heavily on the following cylinder estimate.

Lemma 1.14 (cylinder estimate). Let T be a cylinder of radius 1 and P be a polynomial of degree D.
Let v be a unit vector parallel to the core line of T . If we define Z(P) to be the zero set of P, then the
directed volume (see Definition 2.1) satisfies

VZ(P)∩T (v).d D. (1-19)
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In the kj -plane setting, the zero set of a single polynomial no longer interacts well with a kj -plane:
because the latter generally has a smaller codimension, it won’t intersect the former at discrete points in
general. Due to this issue we cannot do counting and seem to lose our main weapon (Lemma 1.14).

In this paper, we deal with this difficulty and obtain our Theorem 1.4. The main idea is the following:
for a k-plane, instead of finding one single polynomial, we would like to take zero sets of k polynomials
to interact with it. Because the codimensions of the k-plane and zero sets of the k polynomials add up
to d, they will intersect at points and it is possible to do counting to estimate the intersection again.

Along this line, we are taking more than one polynomial to approximate an arbitrary set of N cubes.
We would like the zero sets of all the polynomials to be “transverse”; with this requirement we can choose
at most d such polynomials. Like the original polynomial method, we would like to know how low the
degrees of our polynomials can be. Guth [2010] showed that we can always choose the first polynomial to
be of degree .d N 1/d . But for the second polynomial this degree bound may already be no longer valid.
Think about N unit squares lining up on a line in the plane R2. Any polynomial with degree significantly
less than N would have most of its zero set “almost parallel” to the line, see [Guth 2016a], and hence
two such polynomials cannot interact transversely at most of the squares. However, in this example it is
possible to find two transverse polynomials with degree product N. One can also look at examples of
cube grids, or more generally transverse intersections of hypersurfaces, and similar phenomena happen
there. Based on the above discussion, we are willing to ask the following question in the spirit of the
polynomial method.

Question 1.15. Given any N disjoint unit cubes in Rd and Aν > 1 for each given cube Qν , do there
always exist d polynomials P1, P2, . . . , Pd such that

∏d
i=1 deg Pi is roughly

∑
ν Aν , and the zero sets of

all Pi have “quantitative interaction” &d Aν at each of the above cubes?

We notice that it looks like a “continuous version” of the inverse Bézout’s theorem; see for example
[Tao 2012]. The analogue is very difficult in algebraic geometry, see [Tao 2012] for part of the reason,
and is conceivably very hard in its current continuous version too. We believe it can be formulated as an
explicit question with an affirmative answer though. One can make this question rigorous by specifying
the meaning of “quantitative interaction”; see the discussion below and (6-9) for a result of this flavor.

Luckily enough, we find the full power of this hard version is not needed this time. Instead, it will be
equally useful to have a positive answer to the following “softer” question.

Question 1.16. Given any N disjoint unit cubes in Rd and Aν > 1 for each given cube Qν , do there
always exist d polynomials P1, P2, . . . , Pd and positive numbers αν > 1 such that

∏d
i=1 deg Pi is roughly∑

ν αν Aν , and the zero sets of all Pi have quantitative interaction &d αν Aν at each of the above cubes?

This question is weaker than Question 1.15 because there we have the additional requirement that
aν = 1. In other words, we allow polynomials of higher degree here but “with the right multiplicity”. In
general, higher-degree polynomials, even with the right multiplicity, do not necessarily work as well as
ones with lowest possible degree; see for example some estimates in [Guth 2016a]. But in this application
it makes no difference, as we are in a situation similar to what we have in [Guth 2010].
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Surprisingly, it turns out that after some further refinement of the question, we find that we can take
P1, . . . , Pd all to be the same P and that we can obtain P by the refined polynomial method of Guth
involving visibility. Once this is clear we are able to prove our theorem with a great amount of help from
(multi-)linear algebra and geometry.

To be more specific, we find that we can take a single nonzero polynomial (that is complicated enough
to look like the product of several transverse polynomials) such that the following holds: If we define
Z(P) to be the zero set of P , then for each relevant Qν , d copies of Z(P)∩ Qν interact in a sufficiently
transverse manner. Since the d copies of Z(P)∩ Qν interact in a very transverse way, and the copies are
all the same, for any j and any Qν we deduce that kj copies of Z(P)∩Qν interact sufficiently transversely
with the part of the j -th family of slabs inside Qν . But for any j , the j -th family has a limited capacity of
transverse interaction with kj copies of Z(P) by Bézout’s theorem. This gives us an estimate that leads
to Theorem 1.4.

As we saw above, we end up taking one single polynomial d times. Nevertheless, we choose to keep the
entire thought process on “d transverse polynomials” here because after all, it is how we eventually come
up with the solution and the reader might find our thought process useful elsewhere. Also, Question 1.15,
which remains open, is still fundamental, as it’s a general one concerning the polynomial approximation
of any N cubes. For example, it implies the existence of the polynomial in the polynomial method. Its
discrete analogue is also open; see [Tao 2012]. But progress in various subcases has been made.

In the multilinear kj -plane setting, our method actually proves a stronger theorem (multilinear kj -variety
theorem, Theorem 6.1) which largely generalizes Theorem 1.4. We will state its exact form after a bit
more preparation. Here let us briefly describe it.

Let’s take a new viewpoint. Knowing that a point belongs to a slab of radius 1 is equivalent to knowing
the existence of another point on the core of the slab that lies in its 1-neighborhood. Also note that
the union of all cores (kj -planes) of the j-th family of slabs can be viewed as an algebraic variety of
degree A( j) and dimension kj . This variety is a smoothly embedded kj -manifold except some zero-volume
subset. Our Theorem 1.4 is basically saying that the n families of kj -planes have limited capacity of
“transversally interaction”. We will prove that this is the general case for any n algebraic varieties with
total dimension d in Theorem 6.1.

This multilinear kj -variety theorem immediately has interesting special cases. For instance, we have a
theorem about collections of sphere shells in the flavor of Theorem 1.4.

The proof of Theorem 1.11 is with almost the same machine, but we have some new difficulties: When
we use this machine, we want to know how well each kj -plane interacts with our polynomial. However,
the information on the Brascamp–Lieb constant seems to be very hard to use when we try to look at
things “locally”, as we do in the proof of Theorem 1.4. We address this issue in Section 7 and Section 8
by proving a weaker “integral version” of our previous pointwise estimate. Albeit weaker, it already leads
to a proof of Theorem 1.11.

Like the situation of Theorem 1.4, Theorem 1.11 has a generalization to algebraic varieties (Theorem 8.1)
and we prove the latter to automatically imply the former. Again the current form is quite strong and
interesting in its own right.
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Outline of the paper. In Sections 2 and 3 we review Guth’s polynomial method [2010] and develop
all we need in this subject. Section 4 consists of linear algebra preliminaries and Section 5 consists of
integral geometry preliminaries. We prove Theorem 1.4 and Theorem 1.5 in Section 6 and Theorem 1.11
in Section 8 after some preparation (Section 7). We will prove them by generalizing to versions about
algebraic varieties.

2. Polynomial with high visibility

In this section, we review the refined polynomial method by Guth [2010]. We review the definition and
properties of visibility and state Guth’s theorem that we can find a polynomial with reasonable degree
and large visibility in many cubes. Along the way we define a relevant notion, namely the fading zone,
for future convenience.

Definition 2.1. In Rd, for any compact smooth hypersurface Z (possibly with boundary) and any vector v,
define the directed volume

VZ (v)=

∫
Z
|v · n| dVolZ , (2-1)

where n is the normal vector at the corresponding point of Z .

If v is a unit vector, there is a formula for VZ (v) that is geometrically more meaningful. Let πv be
the orthogonal projection of Rd onto the subspace v⊥. Then for almost y ∈ v⊥, we have |Z ∩π−1

v (y)| is
finite and, see [Guth 2010],

VZ (v)=

∫
v⊥
|Z ∩π−1

v (y)| dy. (2-2)

Definition 2.2. The fading zone F(Z) is defined to be the set {v : |v| ≤ 1, VZ (v)≤ 1}. It is a nonempty
convex compact subset of the unit ball; see [Guth 2010]. The visibility Vis[Z ] = 1/|F(Z)|.

First we explain the heuristic meaning of the two concepts. Imagine that it is midnight and we are
looking at a glittering object with exactly the same shape as Z from a fixed distance. To describe the
situation mathematically, we can find a vector v such that its direction is the direction of the object and
its length is the brightness of the object. Then we can intuitively think that Z fades away when v enters
the fading zone. And naturally the less visible the object is, the larger we want the fading zone to be.
Hence we can define the visibility to be the inverse of the volume of the fading zone. See the beginning
of Section 6 in [Guth 2010] for how to intuitively understand visibility and a few simple examples.

It is good to keep in mind that in this paper we will mostly deal with hypersurfaces Z with VZ (v)&d 1
for any unit vector v. For hypersurfaces that don’t satisfy this we will typically fix it by taking its union
with several hyperplanes parallel to coordinate hyperplanes.

Clearly as long as Z has finite volume, F(Z) has a nonempty interior.
We are interested in polynomials and want to use the notions above to study them. Recall that the space

of degree D algebraic hypersurfaces in Rd is parametrized by RPK for K =
(D+d

d

)
− 1 in the following

way: any such hypersurface corresponds to a polynomial P up to a scalar. By viewing P also as the(D+d
d

)
-tuple of its coefficients we find this parametrization [Guth 2010]. We want to think of the directed
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volume and the visibility as functions over RPK. However, as Guth [2010] pointed out, they are bad
functions that may even be discontinuous.

Following [Guth 2010], we get around this difficulty by looking at the mollified versions of them. If we
take the standard metric on RPK, we will mollify those functions over small balls around some P ∈ RPK.
In the rest of this paper, we take ε to be a very small positive number depending on all the constants, and
in application on the set of cubes and visibility conditions. This kind of assumption is often dangerous but
as we can eventually see, here it does no harm at all (mainly because all the algebraic hypersurfaces of
degree D satisfy the same intersection estimate (5-5) uniformly), just like the case of [Guth 2010]. There
instead of the intersection estimate, we have the cylinder estimate (1-19) as a special case counterpart.

For any P ∈ RPK, let B(P, ε) be the ε-neighborhood of P. Let Z(P) denote the zero set of P. Note
that for any P, the set of singular points on Z(P) has zero (d−1)-dimensional Hausdorff measure. And
the rest of Z(P) is a smooth embedded hypersurface by the implicit function theorem.

Definition 2.3. For any bounded open set U and any vector v, define the mollified directed volume

V Z(P)∩U (v)=
1

|B(P, ε)|

∫
B(P,ε)

VZ(P ′)∩U (v)dP ′. (2-3)

Define the mollified fading zone and mollified visibility based on the mollified directional volumes:

F(Z(P)∩U )= {v : |v| ≤ 1 : V Z(P)∩U (v)≤ 1}, (2-4)

Vis[Z(P)∩U ] =
1

|F(Z(P)∩U )|
. (2-5)

Like we had before for F(Z), F(Z(P)∩U ) is a convex compact subset of the unit ball with a nonempty
interior. By John’s ellipsoid theorem [1948], for any convex set 0 with interior, there is an ellipsoid
Ell(0) such that Ell(0) ⊆ 0 ⊆ Cd Ell(0) and |Ell(0)| ∼d |0|. It is easy to see that if the convex set is
symmetric about the origin (which will be the case for all convex sets considered in this paper), then we
may require the ellipsoid to be symmetric about the origin too. We assume so henceforth in the paper.
We call any such Ell(0) an elliptical approximation of 0.

V Z(P)∩U (v) and Vis[Z(P)∩U ] are continuous with respect to P ∈ RPM [Guth 2010]. In the same
paper, Guth also proved the following key lemma.

Lemma 2.4 (large visibility on many cubes [Guth 2010]). For any finite set of cubes Q1, . . . , QN and
nonnegative integers M(Qi ), 1 ≤ i ≤ N, there exists a polynomial P of degree ≤ D (but viewed as a
degree-D polynomial when we mollify) such that Vis(Z(P)∩Qk)≥M(Qk) and D.d

(∑N
i=1 M(Qk)

)1/d.

3. Wedge-product estimate based on visibility

As we are actually dealing with the mollification version of everything, it is convenient to have a
generalized definition of visibility on any space of finite measure. The generalized setup here will also be
cleaner and more flexible in the inductive arguments which are needed.



THE ENDPOINT PERTURBED BRASCAMP–LIEB INEQUALITIES WITH EXAMPLES 565

Assume we have a measure space (X, µ) with µ(X) <∞ and a vector-valued measurable function
f : X→ Rd. For any vector v ∈ Rd define the total absolute inner product of v and f as

VX, f (v)=

∫
X
|v · f (x)| dµ(x) (3-1)

(the directed volume of the last section being the example we have in mind).
Define the fading zone F(X, f ) = {v ≤ 1 : VX, f (v) ≤ 1} and visibility Vis[X, f ] = 1/|F(X, f )|.

As we had in the end of the last section, we have an elliptical approximation Ell(F(X, f )) such that
Ell(F(X, f ))⊆ F(X, f )⊆ Cd Ell(F(X, f )).

Next we obtain a lower bound of a wedge product integral in terms of visibility.

Theorem 3.1 (wedge product estimate). Assume that for any unit vector v we have VX, f (v)≥ 1. Then∫
· · ·

∫
Xd

∣∣∣∣ d∧
i=1

f (xi )

∣∣∣∣ dµ(x1) dµ(x2) · · · dµ(xd)&d Vis[X, f ]. (3-2)

Proof. We do induction on the dimension d to prove the theorem. First observe that if Ell(F(X, f )) is an
elliptical approximation of F(X, f ), then for any linear subspace W of Rd, we have Ell(F(X, f ))∩W
(an ellipsoid) is also an elliptical approximation of F(X, f )∩W by definition (this may seem problematic
as the Cd will vary, but for the conclusion only finitely many intermediate dimensions are involved in the
whole induction process and we can set Cd of them to all be the same).

For d = 1, by definition we easily see

Vis[X, f ] = 1
2

∫
X
| f (x)| dµ(x) (3-3)

and the conclusion holds. Note that even in the argument here we are using the hypothesis to ensure we
have (3-3).

Assume the conclusion holds for d < d0 and d0 > 1. Now we deal with the case d = d0. Assume
v1, . . . , vd0 are parallel to the semiprincipal axes of any elliptical approximation Ell(F(X, f )), respectively,
and that they form an orthonormal basis (we can arbitrarily choose a set of orthogonal semiprincipal
axes if there is ambiguity defining the semiprincipal axes). Among them we assume v1 is parallel to a
semiminor axis (i.e., a shortest semiprincipal axis) that has length t1. Taking v = λv1, where λ∼d0 t1 in
(3-1), we deduce ∫

X
| f (x)| dµ(x)≥ 1

t1
. (3-4)

Next for any unit vector v ∈ Rd0, we prove∫
· · ·

∫
Xd0−1

∣∣ f (x1)∧ · · · ∧ f (xd0−1)∧ v
∣∣ dµ(x1) dµ(x2) · · · dµ(xd0−1)&d0 t1 ·Vis[X, f ]. (3-5)

Let πv⊥ be the orthogonal projection from Rd0 to its subspace v⊥. Define fv⊥ = πv⊥ ◦ f . If we identify
Rd0−1 with v⊥, then fv⊥ is another (d0−1)-dimensional vector-valued function on X. By definition,
we know VX, f (w) = VX, f

v⊥
(w) for any w ∈ v⊥. Hence F(X, fv⊥) = F(X, f ) ∩ v⊥. By the previous
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discussion, we know we can choose Ell(F(X, fv⊥)) to be Ell(F(X, f ))∩ v⊥. But among all the (d0−1)-
dimensional sections of Ell(F(X, f )) passing through the origin, the section cut by v⊥1 has the largest
volume (see also Lemma 7.4), which is ∼d0 |Ell(F(X, f ))|/t1 = 1/(t1 ·Vis[X, f ]). Hence

Vis[X, fv⊥] =
1

|F(X, fv⊥)|
∼d0

1
|Ell(F(X, fv⊥))|

&d0 t1 ·Vis[X, f ].

By induction hypothesis we have∫
· · ·

∫
Xd0−1

∣∣ f (x1)∧ · · · ∧ f (xd0−1)∧ v
∣∣ dµ(x1) dµ(x2) · · · dµ(xd0−1)

=

∫
· · ·

∫
Xd0−1

∣∣ fv⊥(x1)∧ · · · ∧ fv⊥(xd0−1)
∣∣ dµ(x1) dµ(x2) · · · dµ(xd0−1)

&d0 Vis[X, fv⊥]&d0 t1 ·Vis[X, f ]. (3-6)

This is (3-5).
Combining (3-4) and (3-5), we have∫
· · ·

∫
Xd

∣∣∣∣ d∧
i=1

f (xi )

∣∣∣∣ dµ(x1) dµ(x2) · · · dµ(xd)

=

∫
X
| f (x)|

(∫
· · ·

∫
Xd0−1

∣∣∣∣ f (x1)∧ · · · ∧ f (xd0−1)∧
f (x)
| f (x)|

∣∣∣∣ dµ(x1) dµ(x2) · · · dµ(xd0−1)

)
dµ(x)

&d0 t1 ·Vis[X, f ] ·
∫

X
| f (x)| dµ(x)&d0 Vis[X, f ], (3-7)

which concludes the induction. �

4. Linear algebra preliminaries

Our proof relies heavily on linear algebra. In this section we do the linear algebraic part and prove two
useful lemmas.

Lemma 4.1. Assume V1, . . . , Vn ⊆ Rd and kj = dim Vj satisfies
∑n

j=1 kj = d. Then for any vectors
w1, . . . ,wd ∈ Rd, we have

max
n∏

j=1

∣∣(Vj )
⊥
∧wi j,1 ∧ · · · ∧wi j,kj

∣∣&d |V1 ∧ · · · ∧ Vn| ·

∣∣∣∣ d∧
i=1

wi

∣∣∣∣, (4-1)

where the maximum is taken over 1≤ i j,h ≤ d for 1≤ j ≤ n, 1≤ h ≤ kj , where each 1≤ i ≤ d is chosen
exactly once among all i j,h .

Proof. Assume that {vj,h}1≤h≤kj is an orthonormal basis of Vj . Then by definition we have∣∣∣∣(V1 ∧ · · · ∧ Vn) ·

( d∧
i=1

wi

)∣∣∣∣= |(vj,h ·wi )|. (4-2)
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By the generalized Laplace cofactor expansion, the determinant on the right-hand side of (4-2) is a
sum of terms in the form

± det(v1,h · w̃1,h) det(v2,h · w̃2,h) · · · det(vn,h · w̃n,h) (4-3)

where w̃1,1, w̃1,2, . . . , w̃1,k1, w̃2,1, . . . , w̃2,k2, . . . , w̃n,1, . . . , w̃n,kn is a rearrangement of w1, . . . ,wd . Hence
for some such rearrangement we have

|V1 ∧ · · · ∧ Vn| ·

∣∣∣∣ d∧
i=1

wi

∣∣∣∣.d
∣∣det(v1,h · w̃1,h) det(v2,h · w̃2,h) · · · det(vn,h · w̃n,h)

∣∣. (4-4)

By the properties of the Hodge ∗-operator, we then have

| det(vj,h · w̃j,h)| =
∣∣(∗vj,1 ∧ · · · ∧ vj,kj )∧ w̃j,1 ∧ · · · ∧ w̃j,kj

∣∣= |V⊥j ∧ w̃j,1 ∧ · · · ∧ w̃j,kj |, (4-5)

which concludes the proof. �

The rest of this section is dedicated to the computation of a determinant that will be useful in the next
section.

Lemma 4.2. Assume that 0≤ cj ≤ d are integers, 1≤ j ≤ m, satisfying
∑m

j=1 cj = d. For any j , assume
vj,1, vj,2, . . . , vj,d is an orthonormal basis of Rd (written as column vectors). Then we have∣∣∣∣∣∣∣∣det


v1,c1+1 · · · v1,d v2,c2+1 · · · v2,d 0 · · · 0 · · · 0 · · · 0
v1,c1+1 · · · v1,d 0 · · · 0 v3,c3+1 · · · v3,d · · · 0 · · · 0
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

v1,c1+1 · · · v1,d 0 · · · 0 0 · · · 0 · · · vm,cm+1 · · · vm,d


∣∣∣∣∣∣∣∣

=
∣∣det

(
v1,1 · · · v1,c1v2,1 · · · v2,c2 · · · vm,1 · · · vm,cm

)∣∣. (4-6)

Proof. For 2 ≤ j ≤ m, let Aj = (v1,1 · · · v1,c10 · · · 0 · · · vj,1 · · · vj,cj · · · 0 · · · 0). The rule here is that its
first c1 columns are v1,1, . . . , v1,c1 and its

(∑
j ′< j cj ′ + 1

)
-th to

(∑
j ′< j cj ′

)
-th columns are vj,1, . . . , vj,cj ,

while its other columns are zero vectors. The left-hand side of (4-6) is equal to∣∣∣∣∣∣∣∣∣∣
det


I 0 0 0 0 0 0 0 0 0 0 0 0 0

A2 v1,c1+1 · · · v1,d v2,c2+1 · · · v2,d 0 · · · 0 · · · 0 · · · 0
A3 v1,c1+1 · · · v1,d 0 · · · 0 v3,c3+1 · · · v3,d · · · 0 · · · 0
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

Am v1,c1+1 · · · v1,d 0 · · · 0 0 · · · 0 · · · vm,cm+1 · · · vm,d


∣∣∣∣∣∣∣∣∣∣
.

We exchange the columns to make it look better. For simplicity let Vj = (vj,1 · · · vj,d). This is an
orthogonal matrix. We also define a matrix Bj = (bj (k, l)), 1≤ k ≤ d , such that bj (k, l)= 1 if l ≤ cj and
k = l+

∑
j ′< j cj ′ , and bj (k, l)= 0 otherwise. Then after rearranging the columns of the matrix above we
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find the determinant (in absolute value) is equal to∣∣∣∣∣∣∣∣∣∣
det


B1 B2 B3 · · · Bm

V1 V2 0 · · · 0
V1 0 V3 · · · 0
· · · · · · · · · · · · · · ·

V1 0 0 · · · Vm


∣∣∣∣∣∣∣∣∣∣
.

We can multiply the j-th column by V−1
j = V t

j on the right, then subtract all the j-th columns,
j > 1, from the first column. This preserves the determinant. Note the definition of Bj , if we define
1= (v1,1 · · · v1,c1 − v2,1 · · · − v2,c2 · · · − vm,1 · · · − vm,cm ), then the determinant is∣∣∣∣∣∣∣∣∣∣

det


1t B2V t

2 B3V t
3 · · · Bm V t

m
0 I 0 · · · 0
0 0 I · · · 0
· · · · · · · · · · · · · · ·

0 0 0 · · · I


∣∣∣∣∣∣∣∣∣∣
.

Equation (4-6) then follows directly. �

5. Integral geometry preliminaries

In this section we prepare some integral geometry tools for our proof of Theorem 1.4. First we generalize
(2-2) to the following lemma.

Lemma 5.1. Assume in Rd we have m smooth compact submanifolds Z1, Z2, . . . , Zm (possibly with
boundary) with codimensions c1, . . . , cm respectively. If

∑m
j=1 cj = d then for any measurable subset

U ⊆ Rd(m−1)
= (Rd)m−1, we have∫

Z1

∫
Z2

· · ·

∫
Zm

χU (
−−→p1 p2, . . . ,

−−−→p1 pm)
∣∣(Tp1 Z1)

⊥
∧ · · · ∧ (Tpm Zm)

⊥
∣∣ dVol1 · · · dVolm

=

∫
v2,...,vm∈Rd, (v2,...,vm)∈U

∣∣(Z1)∩ (Z2+ v2)∩ · · · ∩ (Zm−1+ vm−1)∩ (Zm + vm)
∣∣ dv2 · · · dvm, (5-1)

where pj ∈ Z j , Tpj Z j is the tangent space of Z j at pj , dVolj is the volume element on the j-th submanifold,
and Z j + vj = {pj + vj : pj ∈ Z j } is the translation of Z j along the vector vj . The | · | on the right-hand
side defines cardinality.

This lemma has a lot of information so we pause a bit and go through several examples to understand
it better.

When d = 2, if Z1 and Z2 are two nonparallel line segments and U is the whole R2, the integrand on
the right-hand side of (5-1) is the characteristic function of a parallelogram generalized by Z1 and Z2.
Hence the right-hand side is the area of the parallelogram, which is easily seen to be equal to the left-hand
side. When d = 3, if Z1 is a line segment, Z2 is a parallelogram in a plane and U is the whole R3, the
situation is totally analogous.
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When d = 3, Z1 is a whole line and Z2 is a smooth surface of finite area, and we can take U to be the
point set between two planes orthogonal to Z1 with distance 1. It is a simple exercise to show that (5-1)
then becomes (2-2). Hence it is indeed a generalization of the latter.

Finally let’s look at a more complicated example. Again take d = 3 and U = R6. Take a parallelepiped
� = ABC D− A1 B1C1 D1. Take three parallelograms Z1 = ABC D, Z2 = AB B1 A1, Z3 = ADD1 A1.
Define u =

−→
AB, v =

−→
AD, w =

−−→
AA1. Again the integrand on the right-hand side is a characteristic

function. We find it is plainly equal to Vol(�)2. Now the left-hand side is equal to

|u× v| · |v×w| · |w× u| ·
∣∣∣∣ u× v

|u× v|
∧

v×w

|v×w|
∧

w× u
|w · u|

∣∣∣∣= |(u× v)∧ (v×w)∧ (w× u)|

= |((u× v)× (v×w)) · (w× u)|

= |(v · (u×w))v · (w× u)| = Vol(�)2. (5-2)

Proof of Lemma 5.1. Without loss of generality we can assume U is open and bounded. By the
multilinear feature of both sides of (5-1), we only need to consider this problem locally. Hence we
can assume each Z j is smoothly parametrized by a domain in Rd−cj. In other words we may assume
Z j : xi = f j,i (yj,1, . . . , yj,d−cj ) and that the (d − cj ) vectors wj,l = (∂ f j,i/∂yj,l)1≤i≤d have a nonzero
wedge product at any point pj ∈ Z j . They span the tangent space Tpj Z j and will be written as column
vectors below.

Look at the cartesian product Z = Z1×Z2×· · ·×Zm ⊆ (R
d)m ∼=Rdm. This is a smooth submanifold of

dimension
∑m

j=1(d−cj )= d(m−1). Use x j,i , 1≤ i ≤ d , to denote the standard Euclidean coordinates in
the j -th copy of Rd and let vj,i = x j,i−x1,i , j > 1. For simplicity let xj = (x j,i )1≤i≤d and vj = (vj,i )1≤i≤d .
Notice that the right-hand side of (5-1) is equal to∫

Z
χU ((vj )2≤ j≤m)| dv2 dv3 · · · dvm |.

Define the density form θ = |dv2 dv3 · · · dvm | = |dv2,1∧dv2,2∧· · ·∧dv2,d ∧· · ·∧dvm,1∧· · ·∧dvm,d |.
On the manifold Z it is a multiple of the volume density element

|dV | =
m∏

j=1

∣∣∣∣d−cj∧
l=1

wj,l

∣∣∣∣∣∣∣∣ ∧
1≤ j≤m,1≤l≤d−cj

dyj,l

∣∣∣∣.
Next we find θ/|dV |.

We have
θ

|dV |
=

1∏m
j=1

∣∣∧d−cj
l=1 wj,l

∣∣
∣∣∣∣(∂vj,i

∂yj,l

)∣∣∣∣.
And by change of variable we have

∣∣∣∣(∂vj,i

∂yj,l

)∣∣∣∣=
∣∣∣∣∣∣det

−w1,1 · · · −w1,d−c1 w2,1 · · · w2,d−c2 · · · 0 · · · 0 · · · · · · · · ·

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

−w1,1 · · · −w1,d−c1 0 · · · 0 · · · wm,1 · · · vm,d−cm · · · · · · · · ·

∣∣∣∣∣∣ . (5-3)
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This looks very much like the left-hand side of (4-6). Indeed, the extra negative signs do not change the
determinant and can be ignored. The only essential difference here is that for each j , our {wj,l}1≤l≤d−cj is
not a set of orthonormal vectors. If we do a change of variable to make them orthonormal we will extract
a factor of

∣∣∧d−cj
l=1 wj,l

∣∣ from right-hand side of (5-3) for each j . We then apply Lemma 4.2 and get

θ

|dV |
=

∣∣∣∣ m∧
j=1

(Tpj Z j )
⊥

∣∣∣∣. (5-4)

Hence the right-hand side of (5-1) is equal to
∫

Z χU ((vj )2≤ j≤m)
∣∣∧m

j=1(Tpj Z j )
⊥
∣∣ dV. Note that dV is

the product of all dVolj . This can easily be recognized as the left-hand side. �

In application, we want to look at the case where each Vj is the zero set of an algebraic variety of
codimension cj . Such a Vj may contain singular points, but they form a subset of measure 0 when we
take the (d−cj )-dimensional Hausdorff measure. Hence almost all points on Vj are smooth points and
we can apply our Lemma 5.1 to obtain the following theorem.

Theorem 5.2 (intersection estimate). Assume in Rd we have m algebraic subvarieties Z1, Z2, . . . , Zm

with codimensions c1, . . . , cm and degrees s1, . . . , sm respectively. If
∑m

j=1 cj =d then for any measurable
subset U ⊆ Rd(m−1)

= (Rd)m−1, we have∫
Z1

∫
Z2

· · ·

∫
Zm

χU (
−−→p1 p2, . . . ,

−−−→p1 pm)
∣∣(Tp1 Z1)

⊥
∧· · ·∧(Tpm Zm)

⊥
∣∣ dVol1 · · · dVolm≤Vol(U )

m∏
j=1

sj , (5-5)

where dVolj is the (d−cj )-dimensional volume element on the j-th subvariety. Almost all pj ∈ Z j are
smooth points and we define Tpj Z j to be the tangent space of Z j at pj .

Proof. Inequality (5-5) follows directly from Lemma 5.1 and Bézout’s theorem. �

Theorem 5.2 generalizes the cylinder estimate in [Guth 2010], which was recorded as Lemma 1.14 in
our current paper.

6. Proofs of Theorems 1.4 and 1.5

In this section, we prove Theorem 1.5 and deduce Theorem 1.4 as a corollary. As briefly described in the
Introduction, we actually prove a generalized theorem about any n varieties.

Basically, our multilinear kj -variety theorem says that for n algebraic subvarieties of Rd with their
codimension adding up to d, their tubular neighborhoods will provide us with an inequality similar to
Theorem 1.5 if we take their “amount of interaction” into account. In particular, if we take each subvariety
to be a union of kj -planes we obtain Theorems 1.5 and 1.4 (see the end of this section).

Theorem 6.1 (multilinear kj -variety theorem). Assume 1≤ kj ≤ d − 1, 1≤ j ≤ n, satisfy
∑n

j=1 kj = d.
Assume that for 1≤ j ≤ n, Hj ⊆ Rd is part of a kj -dimensional algebraic subvariety of degree A( j). Let
dσj denote the kj -dimensional (Hausdorff ) volume measure of Hj . Then with respect to this measure,
almost all yj ∈ Hj are smooth points. For a smooth point yj ∈ Hj , let Tyj Hj denote the tangent space of
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Hj at yj . Then∫
Rd

(∫
H1×H2×···×Hn

χ{dist(yj ,x)≤1}

∣∣∣∣ n∧
j=1

Tyj Hj

∣∣∣∣ dσ1(y1) · · · dσn(yn)

)1/(n−1)

dx .d

n∏
j=1

A( j)1/(n−1). (6-1)

We give an outline of the proof before we actually do it. For the convenience of the statement, we wrote
Theorem 6.1 in an integral form. However, because of the truncation χ{dist(yj ,x)≤1} it is really of discrete
flavor. In other words, around any unit cube, we only take into account the part of the varieties near this
cube. By Lemma 2.4, we can find a polynomial with large visibility around each relevant cube. In the
lemma, it is possible to assign different weights to different cubes in the above movement. We assign
the weights according to the cubes’ “popularity” among Hj , as done in [Guth 2010] for the multilinear
Kakeya theorem.

We will see it does not matter if we multiply all the weights by the same large positive number
simultaneously. As long as the weights are large enough, we can add hyperplanes to the polynomial
which do not essentially increase its degree and make its zero set satisfy the assumption of Theorem 3.1
at each relevant cube. Then we can invoke Theorem 3.1 for the resulting zero set Z(P) at all relevant
cubes to show that d copies of Z(P) have enough interaction there. Now around each relevant cube we
are ready to assign some copies of Z(P) to each variety Hj and use Lemma 4.1 to show that those “have
enough interaction”. On the other hand, we can use Theorem 5.2 to bound the amount of interaction from
above. Hence we obtain a nontrivial inequality. All quantities there work out as they supposed to and we
obtain our theorem.

Proof of Theorem 6.1. We only need to prove the case where each Hj is compact and take a limiting
argument to complete the proof. Fix a large constant N in terms of d; for example, N = 100ed should be
more than sufficient.

Consider the standard lattice of unit cubes in Rd. For each cube Qν in the lattice, let Oν be its center. Let

G(Qν)=

∫
H1×H2×···×Hn

n∏
j=1

χ{dist(yj ,Oν)≤N }

∣∣∣∣ n∧
j=1

Tyj Hj

∣∣∣∣ dσ1(y1) · · · dσn(yn). (6-2)

Obviously

G(Qν)≥

∫
H1×H2×···×Hn

n∏
j=1

χ{dist(yj ,x)≤1}

∣∣∣∣ n∧
j=1

Tyj Hj

∣∣∣∣ dσ1(y1) · · · dσn(yn) (6-3)

for any x ∈ Qν . Hence it suffices to prove that under assumptions of Theorem 6.1, we have∑
ν

G(Qν)
1/(n−1) .d

m∏
j=1

A( j)1/(n−1). (6-4)

We only have finitely many relevant cubes Qν such that G(Qν) 6= 0. Hence we can choose a huge
cube of side length S containing all of the relevant cubes. By Guth’s lemma, Lemma 2.4, we can find
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a polynomial P of degree .d S such that for each cube Qν ,

Vis[Z(P)∩ Qν] ≥ Sd G(Qν)
1/(n−1)

(∑
ν

G(Qν)
1/(n−1)

)−1

. (6-5)

Adding .d S hyperplanes to P (in other words multiplying P by linear equations of those hyperplanes)
if necessary, we may assume that for all Qν where G(Qν) > 0 we have V Z(P)∩Qν

(v)≥ |v|. Hence we
are in a good position to use the wedge product estimate (3-2).

Before we move on let us remark on a technical issue. If we do have to add hyperplanes at this point,
we need to modify our Definition 2.3 a little bit: Assume all the hyperplanes we added form a zero set
of a polynomial P0. We call the original polynomial in Guth’s lemma Pold and our P is actually Pold P0.
Then when we are talking about the mollified directed volume, mollified visibility, etc. around P, we
want to look at all P ′P0, where P ′ ∈ B(Pold, ε) instead of all P ′ ∈ B(P, ε). For example, the definition
(2-3) should now be modified to

V Z(P)∩U (v)=
1

|B(Pold, ε)|

∫
B(Pold,ε)

VZ(P ′P0)∩U (v) dP ′. (6-6)

We also note that an alternative strategy to “adding hyperplanes” is given in [Carbery and Valdimarsson
2013] (see Lemmas 3 and 6 and the argument on page 1654 there). It is a very detailed and clear account.

For the rest of the section for simplicity of the notation, we deal with the case where no hyperplanes
are added. For the general case the proof is identical except for proper correction of notation.

For any y1 ∈ H1 ∩ B(Oν, N ), . . . , yn ∈ Hn ∩ B(Oν, N ), P1, . . . , Pd ∈ B(P, ε)(see Section 2),
p1 ∈ Z(P1)∩B(Oν, N ), . . . , pd ∈ Z(Pd)∩B(Oν, N ), by Lemma 4.1, we can find some i j,h for 1≤ j ≤ n,
1≤ h ≤ kj such that

n∏
j=1

∣∣(Tyj Hj )
⊥
∧ (Tpi j,1

Z(Pi j,1))
⊥
∧ · · · ∧ (Tpi j,kj

Z(Pi j,kj
))⊥
∣∣&d

∣∣∣∣ n∧
j=1

Tyj Hj

∣∣∣∣ · ∣∣∣∣ d∧
i=1

(Tpi Z(Pi ))
⊥

∣∣∣∣ (6-7)

and all i j,h are distinct and form exactly the set {1, 2, . . . , d}.
Integrating over (H1 ∩ B(Oν, N ))× · · ·× (Hn ∩ B(Oν, N )), we obtain

G(Qν)·

∣∣∣∣ d∧
i=1

(Tpi Z(Pi ))
⊥

∣∣∣∣
.d

∑
(i j,h)

∫
H1∩B(Oν ,N )

· · ·

∫
Hn∩B(Oν ,N )

n∏
j=1

∣∣(Tyj Hj )
⊥
∧(Tpi j,1

Z(Pi j,1))
⊥
∧·· ·∧(Tpi j,kj

Z(Pi j,kj
))⊥
∣∣

dσ1(y1) · · · dσn(yn). (6-8)

Here we sum over all possible choices of {i j,h : 1 ≤ j ≤ n, 1 ≤ h ≤ kj } such that all i j,h are distinct
and form exactly the set {1, 2, . . . , d}.

Integrate (6-8) over P1, . . . , Pd ∈ B(P, ε) and pi ∈ Z(Pi )∩ B(Oν, N ) (we abuse the notation a bit
and write dp = dσ(p) where dσ is the (d−1)-dimensional Hausdorff volume measure on Z(P)). Taking
Definition 2.3 into account, we use wedge product estimate (Theorem 3.1) and (6-5), (6-8) and deduce
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∑
(i j,h)

1
|B(P, ε)|d

∫
· · ·

∫
B(P,ε)d

∫
H1∩B(Oν ,N )

· · ·

∫
Hn∩B(Oν ,N )

∫
Z(P1)∩B(Oν ,N )

· · ·

∫
Z(Pd )∩B(Oν ,N )

n∏
j=1

∣∣(Tyj Hj )
⊥
∧ (Tpi j,1

Z(Pi j,1))
⊥
∧ · · · ∧ (Tpi j,kj

Z(Pi j,kj
))⊥
∣∣

dp1 · · · dpd dσ1(y1) · · · dσn(yn) dP1 · · · dPd

&d G(Qν) ·Vis[Z(P)∩ Qν]

&d Sd G(Qν)
n/(n−1)

(∑
ν

G(Qν)
1/(n−1)

)−1

. (6-9)

Rewrite (6-9) as∑
(i j,h)

n∏
j=1

(
1

|B(P, ε)|kj

∫
· · ·

∫
B(P,ε)kj

1
Skj · A( j)

∫
Hj∩B(Oν ,N )

∫
Z(Pi j,1 )∩B(Oν ,N )

· · ·

∫
Z(Pi j,kj

)∩B(Oν ,N )∣∣(Tyj Hj )
⊥
∧ (Tpi j,1

Z(Pi j,1))
⊥
∧ · · · ∧ (Tpi j,kj

Z(Pi j,kj
))⊥
∣∣

dpi j,1 · · · dpi j,kj
dσj (yj ) dPi j,1 · · · dPi j,kj

)
&d

1∏n
j=1 A( j)

G(Qν)
n/(n−1)

(∑
ν

G(Qν)
1/(n−1)

)−1

. (6-10)

By the arithmetic-geometric mean inequality we deduce

1(∏n
j=1 A( j)

)1/n G(Qν)
1/(n−1)

(∑
ν

G(Qν)
1/(n−1)

)−1/n

.d

∑
(i j,h)

n∑
j=1

1
|B(P, ε)|kj

∫
· · ·

∫
B(P,ε)kj

1
Skj · A( j)

∫
Hj∩B(Oν ,N )

∫
Z(Pi j,1 )∩B(Oν ,N )

· · ·

∫
Z(Pi j,kj

)∩B(Oν ,N )∣∣(Tyj Hj )
⊥
∧ (Tpi j,1

Z(Pi j,1))
⊥
∧ · · · ∧ (Tpi j,kj

Z(Pi j,kj
))⊥
∣∣

dpi j,1 · · · dpi j,kj
dσj (yj ) dPi j,1 · · · dPi j,kj

(6-11)

Sum (6-11) over ν, and then invoke the intersection estimate Theorem 5.2 with U = {(ui )1≤i≤kj+1 :

ui ∈Rd, dist(ui , ui ′)< N 2
} (it suffices to choose U large enough). Note that deg Pj = S and deg Hj = A( j),

we have
1(∏n

j=1 A( j)
)1/n

(∑
ν

G(Qν)
1/(n−1)

)(∑
ν

G(Qν)
1/(n−1)

)−1/n

.d

∑
(i j,h)

n∑
j=1

1
|B(P, ε)|kj

∫
· · ·

∫
B(P,ε)kj

1
Skj ·A( j)

∫
Hj

∫
Z(Pi j,1 )

· · ·

∫
Z(Pi j,kj

)

χU (yj , pi j,1, . . . , pi j,kj
)·
∣∣(Tyj Hj )

⊥
∧(Tpi j,1

Z(Pi j,1))
⊥
∧· · ·∧(Tpi j,kj

Z(Pi j,kj
))⊥
∣∣

dpi j,1 · · · dpi j,kj
dσj (yj ) dPi j,1 · · · dPi j,kj

.d

∑
(i j,h)

n∑
j=1

1
|B(P, ε)|kj

∫
· · ·

∫
B(P,ε)kj

1 dPi j,1 · · · dPi j,kj
.d 1 (6-12)

and (6-4) holds. �
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Theorems 1.5 and 1.4 follow easily from Theorem 6.1. To prove Theorem 1.5 it suffices to prove the
case where all ρj,aj are rational numbers. Then without loss of generality we may assume further that they
are integers. By considering multiple copies of the Uj,aj , we can further assume they are all 1. Then one
just takes the j-th variety to be the union of the cores of the j-th family of slabs and apply Theorem 6.1
(after a scaling). Theorem 1.4 is a direct corollary of Theorem 1.5.

7. An analogue of Lemma 4.1

In the rest of this paper, we prove Theorem 1.11. In this section we prove a lemma (Lemma 7.5) analogous
to Lemma 4.1, which will be used in the proof the same way as Lemma 4.1 was used in the proof of
Theorem 1.4. This lemma is weaker in appearance than Lemma 4.1, but it turns out that it serves our
purpose.

Definition 7.1. In Rd, given a convex body 0 centered at the origin, define its dual body 0∗ to be
{v ∈ Rd

: |(v, x)| ≤ 1 for all x ∈ 0}, where ( · , · ) is the Euclidean inner product on Rd.

It is trivial by definition that if two convex bodies 01 and 02 satisfy 01 ⊆ 02 then 0∗1 ⊇ 0
∗

2 .
By John’s ellipsoid theorem, we need to mainly consider ellipsoids as examples of convex bodies.

Next we develop several lemmas concerning ellipsoids. From now on, when we talk about an ellipsoid in
Euclidean space, we always assume the ellipsoid has the same dimension as the background space.

Lemma 7.2. If the 0 in Definition 7.1 is a (closed) ellipsoid centered at O (the origin), then 0∗ is also
an ellipsoid centered at O. We call 0∗ the dual ellipsoid of 0. Choose a set of principal axes of 0 (the
wording is because the choices might not be unique); then they are also a set of principal axes of 0∗.
Moreover, the lengths of the corresponding principal axes of 0 and 0∗, when divided by 2, are reciprocal
to each other. Hence (0∗)∗ = 0 and Vol(0) ·Vol(0∗)= Cd > 0 is a constant depending only on d.

Proof. Trivially the dual body of the unit ball is again the unit ball. Assume 00 has a dual body 0∗0 . Then
for any positive definite linear transform A, we have by definition

(A00)
∗
= {v ∈ Rd

: |(v, Ax)| ≤ 1 for all x ∈ 00}

= {v ∈ Rd
: |(A∗v, x)| ≤ 1 for all x ∈ 00}

= (A∗)−10∗0 = A−10∗0 . (7-1)

Now we can use a positive definite linear transformation A to transform the closed unit ball to our 0;
by the computation above, 0∗ is A−1 acting on the unit ball, so it is an ellipsoid. Also the principal axes
of 0 correspond to an orthonormal basis that diagonalizes A. This basis also diagonalizes A−1. Hence
the principal axes of 0 are also principal axes of 0∗. The rest of the lemma is obvious. �

Lemma 7.3. Suppose we have a subspace V ⊆ Rd and 0 ∈ Rd is an ellipsoid centered at O. Let πV ( · )

be the orthogonal projection onto V. Then πV (0
∗) and 0∩ V are dual to each other (in V with respect to

the induced inner product). Note these two are both ellipsoids.

Proof. If V has dimension 1, then the lemma is true by definition of the dual body (note by Lemma 7.2,
the two ellipsoids are dual to each other).
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For general V, by the last paragraph for any V ′ ⊆ V of dimension 1 we have πV ′(πV (0
∗)) and

(0 ∩ V )∩ V ′ are dual to each other. But given the ellipsoid 0V = 0 ∩ V ⊆ V, apparently there is only
one possible set Y ⊆ V such that for any V ′ ⊆ V of dimension 1, πV ′(0V ) and Y ∩ V ′ are dual to each
other (since Y ∩ V ′ is determined by 0V via this property). Now by last paragraph again, the dual of 0V

in V is this unique Y. Hence πV (0
∗) has to be this dual. �

Lemma 7.4. For any subspace V ⊆ Rd of dimension d ′, we define πV to be the orthogonal projection
onto V as usual. Then for any (closed) ellipsoid 0 ⊆ Rd, we have

|πV (0)||0 ∩ V⊥| = Cd,d ′ |0|, (7-2)

where Cd,d ′ > 0 only depends on d and d ′. Here we use the corresponding standard Lebesgue measures
on V, V⊥ and Rd, respectively.

Proof. It is well known that in Rd, an ellipsoid defined by {x : (x, Ax)≤ 1} has volume Cd/(det A)1/2,
where A is a positive definite linear transform and ( · , · ) is the Euclidean inner product. Assume
0 = {x : ‖T x‖2 ≤ 1}, where T is a nondegenerate linear transform. Since we can multiply T by any
orthogonal transform on the left, we may assume T V⊥ = V⊥. Then by last paragraph,

|0| =
Cd

| det T |
, (7-3)

|0 ∩ V⊥| =
Cd,d ′

| det T |V⊥ |
. (7-4)

Meanwhile, x ∈ V belongs to πV (0) if and only if infv∈V⊥ ‖T (x+ v)‖ ≤ 1. By the method of least
squares, infv∈V⊥ ‖T (x+ v)‖ = ‖π(T V⊥)⊥(T x)‖ = ‖πV (T x)‖. Hence

|πV (0)| =
Cd ′

| det(πV ◦ T |V )|
. (7-5)

Now notice πV⊥=V⊥. Hence when written in matrix form it is easy to verify det T |V⊥ ·det(πV ◦T |V )=
det T. This together with (7-3)–(7-5) implies (7-2). �

Now we are ready to develop an analogue of Lemma 4.1. We recall that in Section 3 we defined
the total absolute inner product VX, f (v), the fading zone F(X, f ), visibility Vis[X, f ], and chose an
elliptical approximation Ell(F(X, f )) for any measurable vector-valued function f : X→ Rd.

Lemma 7.5. Fix positive integers d and 1≤ k1, . . . , kn < d. Let Rd be the standard Euclidean space.
Assume a Brascamp–Lieb datum (B, p) such that all Bj are orthogonal projections from Rd to a

subspace and dim ker Bj = kj . Assume E j = Bj (R
d)= (ker Bj )

⊥. Assume we have the scaling condition∑n
j=1 pj dim E j = d.
For any measurable vector valued function f : X→ Rd on some measure space satisfying VX, f (v)≥ 1

for all v ∈ Rd, we have
n∏

j=1

(∫
X kj
|E j ∧ f (x1)∧ · · · ∧ f (xkj )| dx1 · · · dxkj

)pj

&d, p (BL(B, p))−1(Vis[X, f ])
∑n

j=1 pj−1. (7-6)
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Proof. Similar to the proof of Theorem 3.1, we define πker Bj to be the orthogonal projection onto ker Bj

as before and fker Bj = πker Bj ◦ f . Then∫
X kj

∣∣E j ∧ f (x1)∧ · · · ∧ f (xkj )
∣∣ dx1 · · · dxkj =

∫
X kj

∣∣ fker Bj (x1)∧ · · · ∧ fker Bj (xkj )
∣∣ dx1 · · · dxkj . (7-7)

Similar to the proof of Theorem 3.1, we know F(X, fker Bj )= F(X, f )∩ ker Bj . Hence we can take
Ell(F(X, fker Bj )) to be Ell(F(X, f ))∩ ker Bj . By (7-7), Theorem 3.1, Lemma 7.2 and Lemma 7.3,∫

X kj

∣∣E j ∧ f (x1)∧ · · · ∧ f (xkj )
∣∣ dx1 · · · dxkj =

∫
X kj

∣∣ fker Bj (x1)∧ · · · ∧ fker Bj (xkj )
∣∣ dx1 · · · dxkj

&d
1

|Ell(F(X, f ))∩ ker Bj |

&d |(Ell(F(X, f ))∩ ker Bj )
∗
|

= |πker Bj (Ell(F(X, f ))∗)|. (7-8)

Hence it suffices to prove
n∏

j=1

∣∣πker Bj (Ell(F(X, f ))∗)
∣∣pj &d, p (BL(B, p))−1(Vis[X, f ])

∑n
j=1 pj−1. (7-9)

At this point we invoke the definition of BL(B, p). For any ellipsoid 0, we choose f j = χπEj (0
∗) in

(1-9). Then by definition
∏n

j=1( f j ◦ Bj )
pj ≥ χ0∗ . Hence

|0∗| ≤

∫
Rd

n∏
j=1

( f j ◦ Bj )
pj ≤ BL(B, p)

n∏
j=1

(∫
E j

f j

)pj

= BL(B, p)
n∏

j=1

|πE j (0
∗)|pj . (7-10)

In other words,

BL(B, p) · |0| ·
n∏

j=1

|πE j (0
∗)|pj &d 1. (7-11)

By Lemmas 7.2, 7.3 and 7.4, we have

|πE j (0
∗)| ∼kj

1
|0 ∩ E j |

∼kj ,d
|πker Bj (0)|

|0|
. (7-12)

Hence

BL(B, p) · |0| ·
n∏

j=1

(
|πker Bj (0)|

|0|

)pj

&d, p 1. (7-13)

Take 0=Ell(F(X, f ))∗. By Lemma 7.2 again, we have |0|= |Ell(F(X, f ))∗|∼d 1/|Ell(F(X, f ))|=
Vis[X, f ]. This fact and (7-13) imply (7-9), which in turn implies (7-6). �

8. Proof of Theorem 1.11

We are ready to prove Theorem 1.11. Just like the proof of Theorem 1.4, we prove a stronger theorem
concerning algebraic varieties. This theorem can also be considered as an analogue of Theorem 6.1.
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Theorem 8.1 (variety version of Brascamp–Lieb). Assume we have positive integers k1, . . . , kn ≤ d and
rational numbers p1, . . . , pn > 0. Choose a common denominator τ of all pj and assume pj = τj/τ , with
τj ∈ Z+ satisfying the scaling condition

∑
j pj (d − kj )= d.

Assume that for 1≤ j ≤ n, Hj ⊆ Rd is part of a kj -dimensional algebraic subvariety of degree A( j).
Let dσj denote the kj -dimensional (Hausdorff ) volume measure of Hj . Then under this measure, almost
all yj ∈ Hj are smooth points. For a smooth point yj ∈ Hj , let Tyj Hj denote the tangent space of Hj at yj .

For
∑

j τj smooth points y= (y1,1, . . . , y1,τ1, y2,1, . . . , y2,τ2, . . . , yn,τn ), yj,l ∈ Hj , there exists a unique
Brascamp–Lieb datum (B( y), p( y)) with

∑
j τj projections Bj all being orthogonal projections within

Rd as the following: Define (B( y), p( y)) = (B1,1, . . . , B1,τ1, B2,1, . . . , B2,τ2, . . . , Bn,τn , 1/τ, . . . , 1/τ)
such that ker Bj,l = Tyj,l Hj and all components of p are 1/τ . Then∫

Rd

(∫
H
τ1
1 ×···×H τn

n

n∏
j=1

τj∏
k=1

χ{dist(yj,k ,x)≤1}BL(B( y), p( y))−τ dσ1(y1,1) · · · dσ1(y1,τ1) · · · dσn(yn,τn )

)1/τ

dx

.d,τ1,...,τn,τ

n∏
j=1

A( j)pj . (8-1)

Let us explain the motivation of Theorem 8.1 before proving it. If we want to naturally generalize
Theorem 6.1 to the Brascamp–Lieb setting, first of all we have to come up with a reasonable integral like
the left-hand side of (6-1) to put on the left-hand side. However the fact that in (6-1) all pj = 1/(n− 1)
no longer holds in our situation. In fact, the pj might even all be irrational numbers. A natural way would
be approximating (pj ) by rational tuples. This works (see below) but eventually we need all the pj to be
the same to get a quantity analogous to left-hand of (6-1).

Another remark before we move on. It’s good to keep in mind that we may assume τ1 = · · · = τn = 1
in this theorem without loss of generality. This is trivial to see. But we keep the theorem in its current
form here so it is more straightforward to apply.

Proof that Theorem 8.1 implies Theorem 1.11. Note that the conditions (1-11) and (1-12) only have
rational coefficients. Hence it is possible to choose (n + 1) different rational p′ close enough to p
such that the conditions (1-11) and (1-12) are satisfied (that is, BL(B, p′) < +∞), and that p lies
in the convex hull of those p′. By interpolation we only need to prove the case when p is a rational
vector.

Next in order to apply the result of Theorem 8.1 to prove Theorem 1.11, we claim that if a Brascamp–
Lieb datum (B, p) is such that pj = τj/τ , where τ all τj are positive integers, then BL(B, p)=BL(B′, p′),
where B′ = (B1, . . . , B1, . . . , Bn, . . . , Bn) contains τj copies of Bj , and p′ = (1/τ, . . . , 1/τ). In fact,
looking at the definition (1-9) of BL(B, p), we have

BL(B′, p′)= sup
{ f j,l }

∫
Rd

∏n
j=1

∏τj
l=1( f j,l ◦ Bj )

1/τ∏n
j=1

∏τj
l=1

(∫
Hj

f j,l
)1/τ . (8-2)

Since we can always take f j,l = f j for all l, we deduce BL(B′, p′)≥ BL(B, p). On the other hand, in
the definition of BL(B, p) we can take f j = f j,lj for every possible tuple (l1, . . . , ln) satisfying 1≤ lj ≤ τj
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to deduce ∫
Rd

n∏
j=1

( f j,lj ◦ Bj )
τj/τ ≤ BL(B, p)

n∏
j=1

(∫
Hj

f j,lj

)τj/τ

. (8-3)

Then we let (lj ) run through all possible tuples and invoke Hölder to conclude that∫
Rd

n∏
j=1

τj∏
l=1

( f j,l ◦ Bj )
1/τ
≤ BL(B, p)

n∏
j=1

τj∏
l=1

(∫
Hj

f j,l

)1/τ

. (8-4)

Hence BL(B′, p′)≤ BL(B, p). Therefore BL(B′, p′)= BL(B, p).
By Theorem 1.1 in [Bennett et al. 2015], BL is a locally bounded function. It is then not hard to derive

Theorem 1.11 from Theorem 8.1 when p′ is a fixed rational number. �

Proof of Theorem 8.1. It’s plain that we may assume τ1 = · · · = τn = 1. For short we write Bj = Bj,1 and
yj = yj,1.

The proof will be almost identical to that of Theorem 6.1. In the current proof, we omit some details
for familiar manipulations in that proof to reduce redundancy and refer the reader to it.

Take the N and set up the unit cube lattice in Rd as in the proof of Theorem 6.1. Again let Oν be the
center of any cube Qν in the lattice. This time we define

G(Qν)=

∫
H1×···×Hn

n∏
j=1

χdist(yj ,Oν)≤N BL(B( y), p( y))−τ dσ1(y1) · · · dσn(yn). (8-5)

Similar to the proof of Theorem 6.1, it suffices to show∑
ν

G(Qv)
1/τ .d,n

n∏
j=1

A( j)1/τ. (8-6)

Again we may assume for the moment that each Hj is compact and use a limiting argument. Then we
can again choose a large cube of side length S that contains all the relevant cubes. Finally we can find a
polynomial P of degree .d S such that for each Qν ,

Vis[Z(P)∩ Qν] ≥ Sd G(Qν)
1/τ
(∑

ν

G(Qν)
1/τ
)−1

. (8-7)

As before we have to make the technical comment that after adding some hyperplanes and changing
the definition of Vis accordingly, we may assume for all Qν with G(Qν) > 0 we have

V Z(P)∩Qν
(v)≥ |v|

(so that we are allowed to apply (7-6)). We only deal with the case where no hyperplanes are added so
that the notation is simpler.

Similar to what we did in the proof of Theorem 6.1, we choose Bj = Tyj Hj , all pj = 1/τ and integrate
(7-6) over yj ∈ Hj ∩ B(Oν, N ). Then we choose the measure space X in (7-6) to be

{p ∈ Z(P ′)∩ B(Oν, N ) : P ′ ∈ B(P, ε)}
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(the measure is just the surface measure on each Z(P ′) joint with the standard measure on B(P, ε), which
is dp dP ′, where P ′ ∈ B(P, ε) and p ∈ Z(P ′)∩ B(Oν, N )) and deduce

1
|B(P, ε)|(n−τ)d

∫
· · ·

∫
B(P,ε)(n−τ)d

∫
H1∩B(Oν ,N )

· · ·

∫
Hn∩B(Oν ,N )

∫
Z(P1)∩B(Oν ,N )

· · ·

∫
Z(P(n−τ)d )∩B(Oν ,N )

n∏
j=1

∣∣(Tyj Hj )
⊥
∧ (Tpk1+···+kj−1+1 Z(Pk1+···+kj−1+1))

⊥
∧ · · · ∧ (Tpk1+···+kj

Z(Pk1+···+kj ))
⊥
∣∣

dp1 · · · dp(n−τ)d dσ1(y1) · · · dσn(yn) dP1 · · · dP(n−τ)d
&d,n G(Qν) ·Vis[Z(P)∩ Qν]

n−τ

&d,n S(n−τ)d G(Qν)
n/τ
(∑

ν

G(Qν)
1/τ
)−(n−τ)

. (8-8)

As before we rewrite it as
n∏

j=1

(
1

|B(P, ε)|kj

∫
· · ·

∫
B(P,ε)kj

1
Skj · A( j)

∫
Hj∩B(Oν ,N )

∫
Z(P1)∩B(Oν ,N )

· · ·

∫
Z(Pkj )∩B(Oν ,N )∣∣(Tyj Hj )

⊥
∧ (Tp1 Z(P1))

⊥
∧ · · · ∧ (Tpkj

Z(Pkj ))
⊥
∣∣ dp1 · · · dpkj dσj (yj ) dP1 · · · dPkj

)
&d,n

1∏n
j=1 A( j)

G(Qν)
n/τ
(∑

ν

G(Qν)
1/τ
)−(n−τ)

. (8-9)

Here note that since
∑n

j=1(d − kj )= τd by assumption, we have
∑n

j=1 kj = (n− τ)d . We have used
this fact in the above inequality chain (8-9).

By the arithmetic-geometric mean inequality we have
n∑

j=1

(
1

|B(P, ε)|kj

∫
· · ·

∫
B(P,ε)kj

1
Skj · A( j)

∫
Hj∩B(Oν ,N )

∫
Z(P1)∩B(Oν ,N )

· · ·

∫
Z(Pkj )∩B(Oν ,N )∣∣(Tyj Hj )

⊥
∧ (Tp1 Z(P1))

⊥
∧ · · · ∧ (Tpkj

Z(Pkj ))
⊥
∣∣ dp1 · · · dpkj dσj (yj ) dP1 · · · dPkj

)
&d,n

1(∏n
j=1 A( j)

)1/n G(Qν)
1/τ
(∑

ν

G(Qν)
1/τ
)−(n−τ)/n

. (8-10)

Like we did in the proof of Theorem 6.1, summing over ν and applying the intersection estimate
Theorem 5.2 with U = {(ui )1≤i≤kj+1 : ui ∈ Rd, dist(ui , u′i ) < N 2

}, we deduce

1(∏n
j=1 A( j)

)1/n

(∑
ν

G(Qν)
1/τ
)(∑

ν

G(Qν)
1/τ
)−(n−τ)/n

.d,n 1, (8-11)

which implies (8-6) and concludes the proof. �

Remark 8.2. For the perturbed Brascamp–Lieb theorem itself, Theorem 1.11, it is conceivable that one
can directly work with the framework of arguments in [Carbery and Valdimarsson 2013], without applying
a rational approximation argument as we did in this section. Nevertheless, we still decided to keep the
current approach as we feel that Theorem 8.1 here may be of independent interest, and that rationality
seems indispensable for us to state the theorem (and prove it).
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