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We investigate the Hardy–Schrödinger operator Lγ =−1− γ /|x |2 on smooth domains �⊂ Rn whose
boundaries contain the singularity 0. We prove a Hopf-type result and optimal regularity for variational
solutions of corresponding linear and nonlinear Dirichlet boundary value problems, including the equation
Lγ u= u2?(s)−1/|x |s, where γ < 1

4 n2, s ∈ [0, 2) and 2?(s) := 2(n−s)/(n−2) is the critical Hardy–Sobolev
exponent. We also give a complete description of the profile of all positive solutions — variational or not —
of the corresponding linear equation on the punctured domain. The value γ = 1

4 (n
2
− 1) turns out to be a

critical threshold for the operator Lγ . When 1
4 (n

2
− 1) < γ < 1

4 n2, a notion of Hardy singular boundary
mass mγ (�) associated to the operator Lγ can be assigned to any conformally bounded domain � such
that 0 ∈ ∂�. As a byproduct, we give a complete answer to problems of existence of extremals for
Hardy–Sobolev inequalities, and consequently for those of Caffarelli, Kohn and Nirenberg. These results
extend previous contributions by the authors in the case γ = 0, and by Chern and Lin for the case
γ < 1

4 (n − 2)2. More specifically, we show that extremals exist when 0 ≤ γ ≤ 1
4 (n

2
− 1) if the mean

curvature of ∂� at 0 is negative. On the other hand, if 1
4 (n

2
−1) < γ < 1

4 n2, extremals then exist whenever
the Hardy singular boundary mass mγ (�) of the domain is positive.
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1. Introduction

The borderline Dirichlet boundary value problem
−1u− γ

u
|x |2
= u(n+2)/(n−2) on �,

u > 0 on �,

u = 0 on ∂�,

(1-1)

on a smooth bounded domain � of Rn (n ≥ 3) has no energy minimizing solutions if the singularity 0
belongs to the interior of the domain �; see the discussion after inequality (1-15). The situation changes
dramatically, however, if 0 is situated on the boundary ∂�. Indeed, Chern and Lin [2003; 2010] showed that
solutions exist in this case provided the mean curvature of ∂� at 0 is negative, n≥ 4, and 0<γ < 1

4(n−2)2.
The condition on γ ensures that the Hardy–Schrödinger operator Lγ := −1− γ /|x |2 is positive on
H 1

0 (�). This is the case as long as γ < γH (�), the latter being the best constant in the corresponding
Hardy inequality, i.e.,

γH (�) := inf
{ ∫

�
|∇u|2 dx∫

�
u2/|x |2 dx

: u ∈ D1,2(�) \ {0}
}
. (1-2)

Here D1,2(�)— or H 1
0 (�) if the domain is bounded — is the completion of C∞c (�) with respect to the

norm given by ‖u‖2 =
∫
�
|∇u|2 dx , and it is well known that for any domain � having 0 in its interior,

we have
γ (�)= γH (R

n)= 1
4(n− 2)2. (1-3)

On the other hand, γH (R
n
+
)= 1

4 n2 when Rn
+
:= {x ∈Rn

: x1 > 0} is the half-space, and if � is any domain
having 0 on its boundary, then necessarily

1
4(n− 2)2 < γH (�)≤

1
4 n2. (1-4)

The question of what happens when 1
4(n − 2)2 < γ < γH (�) provided the initial motivation for this

paper. To start with, we shall show that the negative mean curvature condition at 0 is still sufficient for
the existence of solutions for (1-1) as long as γ remains below a new (higher) threshold, namely when
n ≥ 4 and

0< γ ≤ 1
4(n

2
− 1). (1-5)

However, the situation changes dramatically for the remaining interval, i.e., when

1
4(n

2
− 1) < γ < γH (�). (1-6)

In this case, we show that local geometric conditions at 0 become irrelevant for solving (1-1) and more
global properties of the domain must come into play. This will be illustrated by the notion of Hardy
singular boundary mass of the domain � that we introduce as follows.

We first consider the Hardy–Schrödinger operator Lγ := −1−γ /|x |2 on Rn
+

, and notice that the most
basic solutions for Lγ u = 0 satisfying u = 0 on ∂Rn

+
are of the form uα(x)= x1|x |−α, and that Lγ uα = 0
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on Rn
+

if and only if α is either α−(γ ) or α+(γ ), where

α±(γ ) :=
1
2 n±

√
1
4 n2− γ . (1-7)

Actually, a byproduct of our analysis below gives that any nonnegative solution of Lγ u = 0 on Rn
+

with
u= 0 on ∂Rn

+
is a linear combination of these two solutions. Note that α−(γ )< 1

2 n<α+(γ ), which points
to the difference — in terms of behavior around 0 — between the “small” solution x 7→ x1|x |−α−(γ ), and
the “large” one x 7→ x1|x |−α+(γ ). Indeed, the small solution is “variational”, i.e., is locally in D1,2(Rn

+
),

while the large one is not.
This turns out to hold in more general settings, as we show that any variational solution of Lγ u= a(x)u

behaves like x 7→d(x, ∂�)|x |−α−(γ ) around 0, while any positive nonvariational solution is necessarily like
x 7→ d(x, ∂�)|x |−α+(γ ) around 0. The profile can be made more explicit when γ > 1

4(n
2
−1), as it is the

only situation in which one can write a solution of Lγ u = 0 as the sum of the two above described profiles
(plus lower-order terms), while if γ ≤ 1

4(n
2
− 1), there might be some intermediate terms between the

two profiles. This led us to define the following notion of mass, which is reminiscent of the positive mass
theorem of Schoen and Yau [1988] that was used to complete the solution of the Yamabe problem. This will
allow us to settle the remaining cases left by Chern and Lin, since we establish that the positivity of such
a boundary singular mass is sufficient to guarantee the existence of solutions for (1-1) in low dimensions.

Theorem 1.1. Let� be a smooth bounded domain of Rn such that 0∈∂�. Assume 1
4(n

2
−1)<γ <γH (�).

Then, up to multiplication by a positive constant, there exists a unique function H ∈C2(�\ {0}) such that
−1H −

γ

|x |2
H = 0 in �,

H > 0 in �,

H = 0 on ∂� \ {0}.

(1-8)

Moreover, there exists a constant c ∈ R and H satisfying (1-8) such that

H(x)=
d(x, ∂�)
|x |α+(γ )

+ c
d(x, ∂�)
|x |α−(γ )

+ o
(

d(x, ∂�)
|x |α−(γ )

)
as x→ 0.

Due to the uniqueness of solutions to (1-8) up to multiplication by a constant, the coefficient c is uniquely
defined. It will be denoted by mγ (�) := c ∈ R, and will be referred to as the Hardy singular boundary
mass of �.

It will be shown in Section 7 that this notion of mass is conformally invariant in the following sense: if
two sets are diffeomorphic via an inversion fixing 0 (see Definition 7.3 and (7-16)), then they have the
same mass. As a consequence, we shall be able to define a notion of Hardy singular boundary mass for
unbounded domains that are conformally bounded (that is, those that are smooth and bounded up to an
inversion that fixes 0). We shall show that �→ mγ (�) is a monotone set-function and that mγ (R

n
+
)= 0.

These properties will allow us to construct in Section 9, examples of bounded domains � in Rn with
0 ∈ ∂� with either positive or negative boundary mass, while satisfying any local behavior at 0 one
wishes. In other words, the sign of the Hardy-singular boundary mass is totally independent of the local
properties of ∂� around 0.
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One motivation for considering equation (1-1) came from the problem of existence of extremals for
the Caffarelli–Kohn–Nirenberg (CKN) inequalities [1984]. These state that in dimension n ≥ 3, there is a
constant C := C(a, b, n) > 0 such that, for all u ∈ C∞c (R

n),(∫
Rn
|x |−bq

|u|q
)2/q

≤ C
∫

Rn
|x |−2a

|∇u|2 dx, (1-9)

where

−∞< a <
n− 2

2
, 0≤ b− a ≤ 1, and q =

2n
n− 2+ 2(b− a)

. (1-10)

If we let D1,2
a (�) be the completion of C∞c (�) with respect to the norm ‖u‖2a =

∫
�
|x |−2a

|∇u|2 dx , then
the best constant in (1-9) is given by

S(a, b, �)= inf

{ ∫
�
|x |−2a

|∇u|2 dx(∫
�
|x |−bq |u|q

)2/q dx
: u ∈ D1,2

a (�)\{0}

}
. (1-11)

The extremal functions for S(a, b, �)— whenever they exist — are then the least-energy solutions of the
corresponding Euler–Lagrange equations

− div(|x |−2a
∇u)= |x |−bquq−1 on �,

u > 0 on �,
u = 0 on ∂�.

(1-12)

To make the connection with the Hardy–Schrödinger operator, note that the substitution v(x) =
|x |−au(x) with a < 1

2(n − 2), gives — via the Hardy inequality — that u ∈ D1,2
a (�) if and only if

v ∈ D1,2(�) and that u is a variational solution of (1-12) if and only if v is a solution of equation
−1v− γ

v

|x |2
=
v2?(s)−1

|x |s
on �,

v > 0 on �,

v = 0 on ∂�,

(1-13)

where

γ = a(n− 2− a), s = (b− a)q and 2? =
2n

n− 2+ 2(b− a)
. (1-14)

The Caffarelli–Kohn–Nirenberg inequalities are then equivalent to the Hardy–Sobolev inequality

C
(∫

�

u2?(s)

|x |s
dx
)2/2?(s)

≤

∫
�

|∇u|2 dx − γ
∫
�

u2

|x |2
dx for all u ∈ D1,2(�), (1-15)

at least in the case when γ < 1
4(n− 2)2, which is optimal for domains � having 0 in their interior. If � is

also bounded, then the best constant in (1-15) is never attained; that is, (1-13) has no energy minimizing
solution.
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However, when 0∈ ∂�, inequality (1-15) holds for γ all the way up to 1
4 n2, and we shall work thereafter

towards solving (1-13) by finding extremals for the variational problem

µγ,s(�) := inf
{

J�γ,s(u) : u ∈ D1,2(�) \ {0}
}
, (1-16)

where J�γ,s is the functional on D1,2(�) defined by

J�γ,s(u) :=

∫
�
|∇u|2− γ

∫
�

u2/|x |2 dx(∫
�

u2?(s)/|x |s dx
)2/2?(s) . (1-17)

We shall therefore consider the more general equation (1-13). The study of this type of nonlinear singular
problems when 0∈∂�was initiated by Ghoussoub and Kang [2004] and studied extensively by Ghoussoub
and Robert [2006a; 2006b] in the case γ = 0. Chern and Lin [2003; 2010] and Lin and Wadade [2012]
dealt with the case γ < 1

4(n− 2)2. For more contributions, we refer to [Attar, Merchán and Peral 2015;
Dávila and Peral 2011; Gmira and Véron 1991].

Theorem 1.2. Let� be a smooth bounded domain in Rn (n ≥ 3) such that 0 ∈ ∂�. Assume γ ≤ 1
4(n

2
−1)

and 0≤ s < 2. If either {s > 0} or {s=0, n≥4 and γ >0}, then there are extremals for µγ,s(�) provided
the mean curvature of ∂� at 0 is negative.

As mentioned above, our main contribution here to this problem is to consider the cases when
1
4(n

2
− 1)≤ γ < 1

4 n2, as well as when n= 3, s= 0 and γ > 0, which were left open by Chern and Lin
[2010]. We now introduce the new ingredients that we bring to the discussion.

We first note that standard compactness arguments [Ghoussoub and Kang 2004; Chern and Lin 2010]
yield that for µγ,s(�) to be attained it is sufficient to have that

µγ,s(�) < µγ,s(R
n
+
), (1-18)

and in order to prove the existence of such a gap, one tries to construct test functions for µγ,s(�) that are
based on the extremals of µγ,s(Rn

+
) provided the latter exist. The cases where this is known are given by

the following standard proposition. See, for instance, [Bartsch, Peng and Zhang 2007; Chern and Lin
2010]. A complete proof is given in [Ghoussoub and Robert 2016].

Proposition 1.3. Assume γ < 1
4 n2, n≥ 3 and 0≤ s< 2. Then:

(1) µγ,s(Rn
+
) is attained provided either {s > 0} or {s= 0, n≥ 4 and γ > 0}.

(2) On the other hand, there are no extremals for µγ,s(Rn
+
) for any n ≥ 3 if {s = 0 and γ ≤ 0}.

(3) Furthermore, whenever µγ,0(Rn
+
) has no extremals, then necessarily

µγ,0(R
n
+
)= inf

u∈D1,2(Rn)\{0}

∫
Rn |∇u|2 dx(∫

Rn |u|2
? dx

)2/2? =
1

K (n, 2)2
, (1-19)

where 2? := 2n/(n− 2) and 1/K (n, 2)2 is the best constant in the Sobolev inequality.

The only unknown situation on Rn
+

is again when s = 0, n = 3 and γ > 0, which we address in
Section 10.
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Assuming first that an extremal for µγ,s(Rn
+
) exists and that one knows its profile at infinity and at 0,

this information can be used to construct test functions for µγ,s(�). This classical method has been used
by Kang and Ghoussoub [2004], by Ghoussoub and Robert [2006b; 2006a] when γ = 0, and by Chern
and Lin [2010] for 0< γ < 1

4(n− 2)2 in order to establish (1-18) under the assumption that ∂� has a
negative mean curvature at 0. Actually, the estimates of Chern and Lin [2010] extend directly to establish
Theorem 1.2 for all γ < 1

4(n
2
− 1) under the same negative mean curvature condition. However, the case

where γ = 1
4(n

2
−1) already requires estimates on the profile of variational solutions of (1-13) on Rn

+
that

are finer than those used by Chern and Lin [2010]. The following description of such a profile will allow
us to construct sharper test functions and to prove existence of solutions for (1-13) when γ = 1

4(n
2
− 1).

Theorem 1.4. Assume γ < 1
4 n2 and 0≤ s < 2, and let u ∈ D1,2(Rn

+
), u≥ 0, u 6≡ 0 be a weak solution to

−1u−
γ

|x |2
u =

u2?(s)−1

|x |s
in Rn

+
. (1-20)

Then, there exist K1, K2 > 0 such that

u(x)∼x→0 K1
x1

|x |α−(γ )
and u(x)∼|x |→+∞ K2

x1

|x |α+(γ )
.

The solution of the problem on Rn
+

also enjoys the following natural symmetry that will be crucial for
the sequel. This was carried out by Ghoussoub and Robert [2006a] when γ = 0, and their proof extends
immediately to the case 0≤ γ < 1

4 n2. Chern and Lin [2010] gave another proof which also includes the
case where γ < 0.

Theorem 1.5 [Chern and Lin 2010]. If u is a nonnegative solution to (1-20) in D1,2(Rn
+
), then u ◦ σ = u

for all isometries of Rn such that σ(Rn
+
)= Rn

+
. In particular, there exists v ∈ C∞((0,+∞)×R) such

that for all x1 > 0 and all x ′ ∈ Rn−1, we have that u(x1, x ′)= v(x1, |x ′|).

The following theorem summarizes the situation for low dimensions.

Theorem 1.6. Let � be a bounded smooth domain of Rn (n ≥ 3) such that 0 ∈ ∂�, hence 1
4(n− 2)2 <

γH (�)≤
1
4 n2. Let 0≤ s < 2.

(1) If γH (�)≤ γ <
1
4 n2, then there are extremals for µγ,s(�) for all n ≥ 3.

(2) If 1
4(n

2
− 1) < γ < γH (�) and either {s > 0} or {s= 0, n≥ 4 and γ > 0}, then there are extremals

for µγ,s(�) provided the Hardy singular boundary mass mγ (�) is positive.

(3) If {s = 0 and γ ≤ 0}, then there are no extremals for µγ,0(�) for any n ≥ 3.

Finally, we address in Section 10 the only remaining case, i.e., n= 3, s = 0 and γ ∈
(
0, 9

4

)
. In this

situation, there may or may not be extremals for µγ,0(R3
+
). If they do exist, we can then argue as before —

using the same test functions — to conclude existence of extremals under the same conditions, that is,
either γ ≤ 2 and the mean curvature of ∂� at 0 is negative, or γ > 2 and the mass mγ (�) is positive.
However, if no extremals exist for µγ,0(R3

+
), then as noted in (1-19), we have that

µγ,0(R
3
+
)= inf

u∈D1,2(R3)\{0}

∫
R3 |∇u|2 dx(∫

R3 |u|2
? dx

)2/2? =
1

K (3, 2)2
,
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Hardy term dimension geometric condition extremal

−∞<γ ≤ 1
4(n

2
−1) n≥ 3 negative mean curvature at 0 yes

1
4(n

2
−1)< γ < 1

4 n2 n≥ 3 positive boundary-mass yes

Table 1. Singular Sobolev-critical term: s> 0.

Hardy term dimension geometric condition extremal

0<γ ≤ 1
4(n

2
−1)

n= 3 negative mean curvature at 0 and positive internal mass yes
n≥ 4 negative mean curvature at 0 yes

1
4(n

2
−1)< γ < 1

4 n2 n= 3 positive boundary-mass and positive internal mass yes
n≥ 4 positive boundary mass yes

γ ≤ 0 n≥ 3 — no

Table 2. Nonsingular Sobolev-critical term: s= 0.

and we are back to the case of the Yamabe problem with no boundary singularity. This means that one
needs to resort to a more standard notion of mass Rγ (�, x0) associated to Lγ and an interior point x0 ∈�

in order to construct suitable test functions in the spirit of [Schoen 1984]. Such an interior mass will
be introduced in Section 10. We get the following (note that the boundary mass mγ (�) was defined in
Theorem 1.1).

Theorem 1.7. Let � be a bounded smooth domain of R3 such that 0 ∈ ∂�. In particular 1
4 < γH (�)≤

9
4 .

(1) If γH (�)≤ γ <
9
4 , then there are extremals for µγ,0(�).

(2) If 0< γ < γH (�) and if there exists x0 ∈� such that Rγ (�, x0) > 0, then there are extremals for
µγ,0(�) under either one of the following conditions:

(a) γ ≤ 2 and the mean curvature of ∂� at 0 is negative.
(b) γ > 2 and the boundary mass mγ (�) is positive.

More precisely, if there are extremals for µγ,0(R3), then conditions (a) and (b) are sufficient to get
extremals for µγ,0(�). If there are no extremals for µγ,0(R3), then the positivity of the internal mass
Rγ (�, x0) is sufficient to get extremals for µγ,0(�). Tables 1 and 2 summarize our findings.

Notation. In the sequel, Ci (a, b, . . . ) (i = 1, 2, . . . ) will denote constants depending on a, b, . . . . The
same notation can be used for different constants, even in the same line. We will always refer to the
monograph [Gilbarg and Trudinger 1998] for the standard results on elliptic PDEs.

2. Old and new inequalities involving singular weights

The following general form of the Hardy inequality is well known. See, for example, [Cowan 2010] or
the book [Ghoussoub and Moradifam 2013].
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Theorem 2.1. Let � be a connected open subset of Rn and consider ρ ∈ C∞(�) such that ρ > 0 and
−1ρ > 0. Then, for any u ∈ D1,2(�) we have∫

�

−1ρ

ρ
u2 dx ≤

∫
�

|∇u|2 dx . (2-1)

Moreover, the case of equality is achieved exactly on Rρ ∩ D1,2(�). In particular, if ρ 6∈ D1,2(�), there
are no nontrivial extremals for (2-1).

The above theorem applies to various weight functions ρ. See, for example, [Cowan 2010; Ghoussoub
and Moradifam 2013]. For this paper, we use it to derive the following inequality.

Corollary 2.2. Fix 1≤ k ≤ n. We then have the following inequality.(
n+ 2k− 2

2

)2

= inf
u

∫
Rk
+×Rn−k |∇u|2 dx∫

Rk
+×Rn−k u2/|x |2 dx

,

where the infimum is taken over all u in D1,2(Rk
+
×Rn−k) \ {0}. Moreover, the infimum is never achieved.

Proof. Take ρ(x) := x1 · · · xk |x |−α for all x ∈� := Rk
+
×Rn−k

\ {0}. Then

−1ρ

ρ
=
α(n+ 2k− 2−α)

|x |2
.

We then maximize the constant by taking α := 1
2(n+ 2k− 2). Since ρ 6∈ D1,2(Rk

+
×Rn−k), Theorem 2.1

applies and we obtain that(
n+ 2k− 2

2

)2 ∫
Rk
+×Rn−k

u2

|x |2
dx ≤

∫
Rk
+×Rn−k

|∇u|2 dx (2-2)

for all u ∈ D1,2(Rk
+
×Rn−k), and that the extremals are trivial.

It remains to prove that the constant in (2-2) is optimal. This will be achieved via the following
test function estimates. Construct a sequence (ρε)ε>0 ∈ D1,2(Rk

+
× Rn−k) as follows. Starting with

ρ(x)= x1 · · · xk |x |−α, we fix β > 0 and define

ρε(x) :=


|x/ε|βρ(x) if |x |< ε,
ρ(x) if ε ≤ |x | ≤ 1/ε,
|ε · x |−βρ(x) if |x |> 1/ε,

(2-3)

with α := 1
2(n+ 2k− 2). As one checks, ρε ∈ D1,2(Rk

+
×Rn−k) for all ε > 0. The changes of variables

x = εy and x = ε−1z yield∫
Bε(0)

ρ2
ε

|x |2
dx = O(1),

∫
Rn\B

ε−1 (0)

ρ2
ε

|x |2
dx = O(1),∫

Bε(0)
|∇ρε |

2 dx = O(1),
∫

Rn\B
ε−1 (0)
|∇ρε |

2 dx = O(1),
(2-4)
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when ε→ 0. By integrating by parts, we get∫
B
ε−1 (0)\Bε(0)

|∇ρε |
2 dx =

∫
B
ε−1 (0)\Bε(0)

−1ρ

ρ
ρ2 dx + O(1)

=

(
n+ 2k− 2

2

)2 ∫
B
ε−1 (0)\Bε(0)

ρ2

|x |2
dx + O(1), (2-5)

when ε→ 0. Using polar coordinates, we obtain∫
B
ε−1 (0)\Bε(0)

ρ2

|x |2
dx = C(2) ln 1

ε
, where C(2) := 2

∫
Sn−1

∣∣∣∣ k∏
i=1

xi

∣∣∣∣2 dσ. (2-6)

Therefore, by using (2-4), (2-5) and (2-6),∫
Rk
+×Rn−k |∇ρε |

2 dx∫
Rk
+×Rn−k ρ2

ε /|x |2 dx
=

(
n+ 2k− 2

2

)2

+ o(1)

as ε→ 0, and we are done. Note that the infimum is never achieved since ρ 6∈ D1,2(Rk
+
×Rn−k). �

Another approach to prove Corollary 2.2 is to see Rk
+
×Rn−k as a cone generated by a domain of the

unit sphere. Then the Hardy constant is given by the Hardy constant of Rn plus the first eigenvalue of the
Laplacian of the Dirichlet of the above domain of the unit sphere endowed with its canonical metric. This
point of view is developed in [Pinchover and Tintarev 2005] (see also [Fall and Musina 2012; Ghoussoub
and Moradifam 2013] for an exposition in book form).

We also have the following generalized Caffarelli–Kohn–Nirenberg inequality.

Proposition 2.3. Let � be an open subset of Rn. Let ρ, ρ ′ ∈ C∞(�) be such that ρ, ρ ′ > 0 and
−1ρ,−1ρ ′ > 0. Fix s ∈ [0, 2] and assume that there exists ε ∈ (0, 1) and ρε ∈ C∞(�) such that

−1ρ

ρ
≤ (1− ε)

−1ρε

ρε
in � with ρε,−1ρε > 0.

Then, for all u ∈ C∞c (�),(∫
�

(
−1ρ ′

ρ ′

)s/2

ρ2?(s)
|u|2

?(s) dx
)2/2?(s)

≤ C
∫
�

ρ2
|∇u|2 dx . (2-7)

Proof. The Sobolev inequality yields the existence of C(n) > 0 such that(∫
�

|u|2
?

dx
)2/2?

≤ C(n)
∫
�

|∇u|2 dx

for all u ∈ C∞c (�), where 2? = 2?(0) = 2n/(n − 2). A Hölder inequality interpolating between this
Sobolev inequality and the Hardy inequality (2-1) for ρ ′ yields the existence of C > 0 such that for all
u ∈ C∞c (�), (∫

�

(
−1ρ ′

ρ ′

)s/2

|u|2
?(s) dx

)2/2?(s)

≤ C
∫
�

|∇u|2 dx . (2-8)
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By applying (2-1) to ρε , we get for v ∈ C∞c (�),∫
�

ρ2
|∇v|2 dx =

∫
�

|∇(ρv)|2 dx −
∫
�

−1ρ

ρ
(ρv)2 dx

≥

∫
�

|∇(ρv)|2 dx − (1− ε)
∫
�

−1ρε

ρε
(ρv)2 dx ≥ ε

∫
�

|∇(ρv)|2.

Taking u := ρv in (2-8) and using this latest inequality yield (2-7). �

Corollary 2.4. Fix k ∈ {1, . . . , n− 1}. There exists then a constant C := C(a, b, n) > 0 such that for all
u ∈ C∞c (R

k
+
×Rn−k),(∫

Rk
+×Rn−k

|x |−bq
( k∏

i=1

xi

)q

|u|q
)2/q

≤ C
∫

Rk
+×Rn−k

( k∏
i=1

xi

)2

|x |−2a
|∇u|2 dx, (2-9)

where

−∞< a <
n− 2+ 2k

2
, 0≤ b− a ≤ 1, q =

2n
n− 2+ 2(b− a)

. (2-10)

Proof. Apply Proposition 2.3 with ρ(x)= ρ ′(x)=
(∏k

i=1 xi
)
|x |−a and ρε(x)=

(∏k
i=1 xi

)
|x |−(n−2+2k)/2

for all x ∈ Rk
+
×Rn−k. Corollary 2.4 then follows for suitable a, b, q . �

Remark. Observe that by taking k = 0, we recover the classical Caffarelli–Kohn–Nirenberg inequalities
(1-9). However, one does not see any improvement in the integrability of the weight functions since(∏k

i=1 xi
)
|x |−a is of order k − a > − 1

2(n − 2), hence as close as we wish to (n − 2)/2 with the right
choice of a. The relevance here appears when one considers the Hardy inequality of Corollary 2.2.

3. On the best constants in the Hardy and Hardy–Sobolev inequalities

As mentioned in the Introduction, the best constant in the Hardy inequality γH (�) does not depend on the
domain �⊂ Rn if the singularity 0 belongs to the interior of �, and it is always equal to 1

4(n− 2)2. We
have seen, however, in the last section that the situation changes whenever 0 ∈ ∂�, since γH (R

n
+
)= 1

4 n2.
Some properties of the best Hardy constants were studied in [Fall and Musina 2012; Fall 2012]. In this
section, we shall collect whatever information we shall need later on about γH .

Proposition 3.1. The best Hardy constant γH satisfies the following properties:

(1) γH (�)=
1
4(n− 2)2 for any smooth domain � such that 0 ∈�.

(2) If 0 ∈ ∂�, then 1
4(n− 2)2 < γH (�)≤

1
4 n2.

(3) γH (�)=
1
4 n2 for every � such that 0 ∈ ∂� and �⊂ Rn

+
.

(4) If γH (�) <
1
4 n2, then it is attained in D1,2(�).

(5) We have inf{γH (�) : 0 ∈ ∂�} = 1
4(n− 2)2.

(6) For every ε > 0, there exists a smooth domain Rn
+
( �ε ( Rn such that 0 ∈ ∂�ε and 1

4 n2
− ε ≤

γH (�ε) <
1
4 n2.
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Proof. Properties (1)–(4) are well known (see [Fall and Musina 2012; Fall 2012]). We sketch proofs since
we will make frequent use of the test functions involved. Note first that Corollary 2.2 already yields that
γH (R

n
+
)= 1

4 n2.

(2) Since �⊂ Rn, we have that γH (�)≥ γH (R
n)= 1

4(n− 2)2. Assume by contradiction that γH (�)=
1
4(n − 2)2. It then follows from Theorem 3.6 below (applied with s = 2) that γH (�) is achieved by
a function in u0 ∈ D1,2(�) \ {0} (note that µ0,γ (�) = γH (�) − γ ). Therefore, γH (R

n) is achieved
in D1,2(Rn). Up to taking |u0|, we can assume that u0 ≥ 0. Therefore, the Euler–Lagrange equation
and the maximum principle yield u0 > 0 in Rn: this is impossible since u0 ∈ D1,2(�). Therefore
γH (�) >

1
4(n− 2)2.

For the other inequality, the standard proof normally uses the fact that the domain contains an interior
sphere that is tangent to the boundary at 0. We choose here to perform another proof based on test
functions, which will be used again to prove Proposition 3.3. It goes as follows: since � is a smooth
bounded domain of Rn such that 0 ∈ ∂�, there exist U, V open subsets of Rn such that 0 ∈U and 0 ∈ V
and there exists ϕ ∈ C∞(U, V ) a diffeomorphism such that ϕ(0)= 0 and

ϕ(U ∩ {x1 > 0})= ϕ(U )∩� and ϕ(U ∩ {x1 = 0})= ϕ(U )∩ ∂�.

Moreover, we can and shall assume that dϕ0 is an isometry. Let η ∈ C∞c (U ) such that η(x) = 1 for
x ∈ Bδ(0) for some δ > 0 small enough, and consider (αε)ε>0 ∈ (0,+∞) such that αε = o(ε) as ε→ 0.
For ε > 0, define

uε(x) :=
{
η(y)α−(n−2)/2

ε ρε(y/αε) for all x ∈ ϕ(U )∩�, x = ϕ(y),
0 elsewhere.

(3-1)

Here ρε is constructed as in (2-3) with k = 1. Now fix σ ∈ [0, 2], and note that only the case σ = 2 is
needed for the above proposition. Immediate computations yield∫

�

|uε(y)|2
?(σ )

|y|σ
dy = C(σ ) ln 1

ε
+ O(1) as ε→ 0, (3-2)

where C(σ ) := 2
∫

Sn−1

∣∣∏k
i=1 xi

∣∣2?(σ ) dσ . Similar arguments yield∫
�

|∇uε |2 dy = n2

4
C(2) ln 1

ε
+ O(1) as ε→ 0. (3-3)

As a consequence, we get that ∫
�
|∇uε |2 dx∫

�
u2
ε/|x |2 dx

=
n2

4
+ o(1) as ε→ 0.

In particular, we get that γH (�)≤
1
4 n2, which proves the upper bound in item (2) of the proposition.

(3) Assume that �⊂ Rn
+

. Then D1,2(�)⊂ D1,2(Rn
+
), and therefore γH (�)≥ γH (R

n
+
)= 1

4 n2. With the
reverse inequality already given by item (2), we get that γH (�)=

1
4 n2 for all �⊂ Rn

+
such that 0 ∈ ∂�.

(4) This will be a particular case of Theorem 3.6 when s = 2.
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(5) Let �0 be a bounded domain of Rn such that 0 ∈�0 (i.e., it is not on the boundary). Given δ > 0, we
chop out a ball of radius 1

4δ with 0 on its boundary to define �δ := �0 \ Bδ/4
((
−

1
4δ, 0, . . . , 0

))
. Note

that for δ > 0 small enough, � is smooth and 0 ∈ ∂�. We now prove that

lim
δ→0

γH (�δ)=
1
4(n− 2)2. (3-4)

Define η1 ∈ C∞(Rn) such that η1(x)= 0 if |x |< 1 and η1(x)= 1 if |x |> 2. Let ηδ(x) := η1(δ
−1x) for

all δ > 0 and x ∈ Rn. Fix U ∈ C∞c (R
n) and consider, for any δ > 0, an εδ > 0 such that limδ→0 δ/εδ =

limδ→0 εδ = 0. For δ > 0, we define

uδ(x) := ηδ(x)ε
−(n−2)/2
δ U (ε−1

δ x) for all x ∈�δ.

For δ > 0 small enough, we have that uδ ∈C∞c (�δ). Since δ= o(εδ) as δ→ 0, a change of variable yields

lim
δ→0

∫
�δ

u2
δ

|x |2
dx =

∫
Rn

U 2

|x |2
dx .

We also have for δ small,∫
�δ

|∇uδ|2 dx =
∫

Rn
|∇uδ|2 dx =

∫
Rn
|∇(U · ηδ/εδ )|

2 dx

=

∫
Rn
|∇U |2η2

δ/εδ
dx +

∫
Rn
ηδ/εδ (−1ηδ/εδ )U

2 dx . (3-5)

Let R > 0 be such that U has support in BR(0). Since n ≥ 3, we have∫
Rn
ηδ/εδ (−1ηδ/εδ )U

2 dx = O
((
εδ

δ

)2

Vol
(
BR(0)∩Supp(−1ηδ/εδ )

))
= O

((
δ

εδ

)n−2)
= o(1)

as δ→ 0. This latest identity, (3-5) and the dominated convergence theorem yield

lim
δ→0

∫
�δ

|∇uδ|2 dx =
∫

Rn
|∇U |2 dx .

Therefore, for U ∈ C∞c (R
n), we have

lim sup
δ→0

γH (�δ)≤ lim
δ→0

∫
�δ
|∇uδ|2 dx∫

�δ
u2
δ/|x |2 dx

=

∫
Rn |∇U |2 dx∫

Rn U 2/|x |2 dx
.

Taking the infimum over all U ∈ C∞c (R
n), we get that

lim sup
δ→0

γH (�δ)≤ inf
U∈D1,2(Rn)\{0}

∫
Rn |∇U |2 dx∫

Rn U 2/|x |2 dx
= γH (R

n)= 1
4(n− 2)2.

Since γH (�δ)≥
1
4(n− 2)2 for all δ > 0, this completes the proof of (3-4), yielding (5).

For (6) we use the following observation.

Lemma 3.2. Let (8k)k∈N ∈ C1(Rn,Rn) be such that

lim
k→+∞

(
‖8k − IdRn‖∞+‖∇(8k − IdRn )‖∞

)
= 0 and 8k(0)= 0. (3-6)
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Let D⊂Rn be an open domain such that 0∈∂D (not necessarily bounded or regular), and set Dk :=8k(D)
for all k ∈ N. Then 0 ∈ ∂Dk for all k ∈ N and

lim
k→+∞

γH (Dk)= γH (D). (3-7)

Proof. If u ∈ C∞c (Dk), then u ◦8k ∈ C∞c (D) and∫
Dk

|∇u|2 dx =
∫

Rn
+

|∇(u ◦8k)|
2
8?kEucl |Jac8k | dx, (3-8)∫

Dk

u2

|x |2
dx =

∫
Rn
+

(u ◦8k(x))2

|8k(x)|2
|Jac8k | dx, (3-9)

where here and in the sequel 8?kEucl is the pull-back of the Euclidean metric via the diffeomorphism 8k .
Assumption (3-6) yields

lim
k→+∞

sup
x∈D

(∣∣∣∣ |8k(x)|
|x |

− 1
∣∣∣∣+ sup

i, j

∣∣(∂i8k(x), ∂j8k(x)
)
− δi j

∣∣+ |Jac8k − 1|
)
= 0,

where δi j = 1 if i = j and 0 otherwise. This limit, (3-8), (3-9) and a density argument yield (3-7). �

We now prove (6) of Proposition 3.1. Let ϕ ∈ C∞(Rn−1) such that 0≤ϕ≤ 1, ϕ(0)= 0, and ϕ(x ′)= 1
for all x ′ ∈Rn−1 be such that |x ′| ≥ 1. For t ≥ 0, define 8t(x1, x ′) := (x1− tϕ(x ′), x ′) for all (x1, x ′)∈Rn.
Set �̃t :=8t(R

n
+
) and apply Lemma 3.2 to note that limε→0 γH (�̃t)= γH (R

n
+
)= 1

4 n2. Since ϕ ≥ 0 and
ϕ 6≡ 0, we have Rn

+
( �̃t for all t > 0. To get (6) it suffices to take �ε := �̃t for t > 0 small enough. �

As in the case of γH (�), the best Hardy–Sobolev constant

µγ,s(�) := inf

{∫
�
|∇u|2 dx − γ

∫
�

u2/|x |2 dx(∫
�

u2?(s)/|x |s dx
)2/2?(s) : u ∈ D1,2(�) \ {0}

}
will depend on the geometry of � whenever 0 ∈ ∂�.

Proposition 3.3. Let � be a bounded smooth domain such that 0 ∈ ∂�.

(1) If γ < 1
4 n2, then µγ,s(�) >−∞.

(2) If γ > 1
4 n2, then µγ,s(�)=−∞.

Moreover,

(3) If γ < γH (�), then µγ,s(�) > 0.

(4) If γH (�) < γ <
1
4 n2, then 0> µγ,s(�) >−∞.

(5) If γ = γH (�) <
1
4 n2, then µγ,s(�)= 0.

Proof. Assume that γ < 1
4 n2 and let ε > 0 be such that (1+ ε)γ ≤ 1

4 n2. It follows from Proposition 3.5
that there exists Cε > 0 such that for u ∈ D1,2(�),

n2

4

∫
�

u2

|x |2
dx ≤ (1+ ε)

∫
�

|∇u|2 dx +Cε

∫
�

u2 dx .
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For any u ∈ D1,2(�) \ {0}, we have

J�γ,s(u)≥

(
1−(4γ /n2)(1+ε)

) ∫
�
|∇u|2 dx−(4γ /n2)Cε

∫
�

u2 dx(∫
�
|u|2?(s)/|x |s dx

)2/2?(s) ≥−
4γ
n2 Cε

∫
�

u2 dx(∫
�
|u|2?(s)/|x |s dx

)2/2?(s) .

It follows from Hölder’s inequality that there exists C > 0 independent of u such that∫
�

u2 dx ≤ C
(∫

�

|u|2
?(s)

|x |s
dx
)2/2?(s)

.

It then follows that J�γ,s(u)≥−(4γ /n2)CεC for all u ∈ D1,2(�)\{0}. Therefore µγ,s(�)>−∞ whenever
γ < 1

4 n2.

Assume now that γ > 1
4 n2 and define for every ε > 0 a function uε ∈ D1,2(�) as in (3-1). It then

follows from (3-2) and (3-3) that as ε→ 0,

J�γ,s(uε)=

( 1
4 n2
− γ

)
C(2) ln(1/ε)+ O(1)(

C(s) ln(1/ε)+ O(1)
)2/2?(s) =

(( 1
4 n2
− γ

) C(2)
C(s)2/2?(s)

+ o(1)
)(

ln 1
ε

)(2−s)/(n−s)

.

Since s < 2 and γ > 1
4 n2, we have limε→0 J�γ,s(uε)=−∞; therefore µγ,s(�)=−∞.

If γ < γH (�), Sobolev’s embedding theorem yields µ0,s(�) > 0; hence the result is clear for all γ ≤ 0
since then µγ,s(�)≥ µ0,s(�). If now 0≤ γ < γH (�), it follows from the definition of γH (�) that for
all u ∈ D1,2(�) \ {0},

J�γ,s(u)=

∫
�
|∇u|2−γ

∫
�

u2/|x |2 dx(∫
�

u2?(s)/|x |s dx
)2/2?(s) ≥

(
1−

γ

γH (�)

) ∫
�
|∇u|2 dx(∫

�
|u|2?(s)/|x |s dx

)2/2?(s) ≥

(
1−

γ

γH (�)

)
µ0,s(�).

Therefore µγ,s(�)≥ (1− γ /γH (�))µ0,s(�) > 0 when γ < γH (�).
If γH (�)<γ <

1
4 n2, then Proposition 3.1(4) yields that γH (�) is attained. We let u0 be such an extremal.

In particular J�γH (�),s(u)≥ 0= J�γH (�),s(u0), and therefore µγH (�),s(�)= 0. Since γH (�) < γ <
1
4 n2, we

have that J�γ,s(u0) < 0, and therefore µγ,s(�) < 0 when γH (�) < γ <
1
4 n2. �

Remark 3.4. The case γ = 1
4 n2 is unclear and anything can happen at that value of γ. For example, if

γH (�) <
1
4 n2 then µn2/4,s(�) < 0, while if γH (�)=

1
4 n2 then µn2/4,s(�)≥ 0. It is our guess that many

examples reflecting different regimes can be constructed.

We shall need the following standard result.

Proposition 3.5. Assume γ < 1
4 n2 and s ∈ [0, 2]. Then, for any ε > 0, there exists Cε > 0 such that, for

all u ∈ D1,2(�),(∫
�

|u|2
?(s)

|x |s
dx
)2/2?(s)

≤

(
1

µγ,s(R
n
+)
+ ε

)∫
�

(
|∇u|2− γ

u2

|x |2

)
dx +Cε

∫
�

u2 dx . (3-10)

This result says that, up to adding an L2-term (indeed, any subcritical term fits), the best constant in
the Hardy–Sobolev embedding can be chosen to be as close as one wishes to the best constant in the
model space Rn

+
. One can see this by noting that for functions that are supported in a small neighborhood
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of 0, the domain � looks like Rn
+

, and the distortion is determined by the radius of the neighborhood.
The case of general functions in D1,2(�) is dealt with by using a cut-off, which induces the L2-norm. A
detailed proof is given in [Ghoussoub and Robert 2016].

The following result is central for the sequel. The proof is standard, ever since T. Aubin’s proof of the
Yamabe conjecture in high dimensions, where he noted that the compactness of minimizing sequences is
restored if the infimum is strictly below the energy of a “bubble”. In our case below, this translates to
µγ,s(�) < µγ,s(R

n
+
). We omit the proof, which can be found in [Ghoussoub and Robert 2016].

Theorem 3.6. Assume that γ < 1
4 n2, 0 ≤ s ≤ 2 and µγ,s(�) < µγ,s(R

n
+
). Then there are extremals

for µγ,s(�). In particular, there exists a minimizer u in D1,2(�) \ {0} that is a positive solution to the
equation 

−1u− γ
u
|x |2
= µγ,s(�)

u2?(s)−1

|x |s
in �,

u > 0 in ∂�,

u = 0 on ∂�.

(3-11)

4. Profile at 0 of the variational solutions of Lγ u = a(x)u

Here and in the sequel, we shall assume that 0 ∈ ∂�, where � is a smooth domain. Recall from the
Introduction that two solutions for Lγ u = 0, with u = 0 on ∂Rn

+
, are of the form uα(x)= x1|x |−α, where

α ∈ {α−(γ ), α+(γ )} with

α−(γ ) :=
1
2 n−

√
1
4 n2− γ and α+(γ ) :=

1
2 n+

√
1
4 n2− γ . (4-1)

These solutions will be the building blocks for sub- and supersolutions of more general linear equations
involving Lγ on other domains. This section is devoted to the proof of the following result. To state the
theorem, we use the following terminology:

We say that u ∈ D1,2(�)loc,0 if there exists η ∈ C∞c (R
n) such that η ≡ 1 around 0 and ηu ∈ D1,2(�).

We say that u ∈ D1,2(�)loc,0 is a weak solution to the equation

−1u = F ∈ (D1,2(�)loc,0)
′

if for any ϕ ∈ D1,2(�) and η ∈ C∞c (R
n) with sufficiently small support around 0, we have∫
�

(∇u,∇(ηϕ)) dx = 〈F, ηϕ〉.

Theorem 4.1. Fix γ < 1
4 n2 and τ > 0, and let u ∈ D1,2(�)loc,0 be a weak solution of

−1u−
γ + O(|x |τ )
|x |2

u = 0 in D1,2(�)loc,0. (4-2)

Then, there exists K ∈ R such that

lim
x→0

u(x)
d(x, ∂�)|x |−α−(γ )

= K .

Moreover, if u ≥ 0 and u 6≡ 0, we have that K > 0.
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By a slight abuse of notation,

u 7→ −1u−
γ + O(|x |τ )
|x |2

u

will denote an operator

u 7→ −1u−
γ + a(x)
|x |2

u,

where a ∈C0(�) such that a(x)= O(|x |τ ) as τ→ 0. In Section 6, we will give a full description of solu-
tions to (4-2) that are not necessarily variational (we also refer to [Pinchover 1994] for related problems).

We need the following lemmas, which will be used frequently throughout the paper. The first is only the
initial step towards proving rigidity for the solutions of Lγ u = 0 on Rn

+
. Indeed, the pointwise assumption

u(x)≤ C |x |1−α will not be necessary as it will be eventually removed in Proposition 6.4, which will be a
consequence of the classification Theorem 6.1. We omit the proof as it can be inferred from the work of
Pinchover and Tintarev [2005].

Lemma 4.2 (rigidity). Let u ∈ C2(Rn
+ \ {0}) be a nonnegative solution of−1u−

γ

|x |2
u = 0 in Rn

+
,

u = 0 on ∂Rn
+
.

(4-3)

Suppose u(x)≤C |x |1−α on Rn
+

for α ∈ {α−(γ ), α+(γ )}, then there exists λ≥ 0 such that u(x)=λx1|x |−α

for all x ∈ Rn
+

.

We now construct basic sub- and supersolutions for the equation Lγ u=a(x)u, where a(x)=O(|x |τ−2)

for some τ > 0.

Proposition 4.3. Let γ < 1
4 n2 and α∈{α−(γ ), α+(γ )}. Let 0<τ ≤1 and β ∈R be such that α−τ <β<α

and β 6∈ {α−(γ ), α+(γ )}. Then, there exist r > 0, and uα,+, uα,− ∈ C∞(� \ {0}) such that

uα,+, uα,− > 0 in �∩ Br (0),

uα,+, uα,− = 0 on ∂�∩ Br (0),

−1uα,+−
γ + O(|x |τ )
|x |2

uα,+ > 0 in �∩ Br (0),

−1uα,−−
γ + O(|x |τ )
|x |2

uα,− < 0 in �∩ Br (0).

(4-4)

Moreover, we have as x→ 0, x ∈�, that

uα,+(x)=
d(x, ∂�)
|x |α

(1+ O(|x |α−β)) and uα,−(x)=
d(x, ∂�)
|x |α

(1+ O(|x |α−β)). (4-5)

Proof. We first choose an adapted chart to lift the basic solutions from Rn
+

. Since 0 ∈ ∂� and � is
smooth, there exist Ũ, Ṽ two bounded domains of Rn such that 0 ∈ Ũ and 0 ∈ Ṽ, and there exists a
C∞-diffeomorphism c ∈ C∞(Ũ, Ṽ ) such that c(0)= 0,

c(Ũ ∩ {x1 > 0})= c(Ũ )∩� and c(Ũ ∩ {x1 = 0})= c(Ũ )∩ ∂�.
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The orientation of ∂� is chosen in such a way that for any x ′ ∈ Ũ ∩ {x1 = 0},{
∂1c(0, x ′), ∂2c(0, x ′), . . . , ∂nc(0, x ′)

}
is a direct basis of Rn (canonically oriented). For x ′ ∈ Ũ∩{x1= 0}, we define ν(x ′) as the unique orthonor-
mal inner vector at the tangent space Tc(0,x ′)∂� (it is chosen such that {ν(x ′), ∂2c(0, x ′), . . . , ∂nc(0, x ′)}
is a direct basis of Rn). In particular, on Rn

+
:= {x1 > 0}, we have ν(x ′) := (1, 0, . . . , 0).

Here and in the sequel, we write for any r > 0

B̃r := (−r, r)× B(n−1)
r (0), (4-6)

where B(n−1)
r (0) denotes the ball of center 0 and radius r in Rn−1. It is standard that there exists δ > 0

such that
ϕ : B̃2δ→ Rn,

(x1, x ′) ∈ R×Rn−1
7→ c(0, x ′)+ x1ν(x ′),

(4-7)

is a C∞-diffeomorphism onto its open image ϕ(B̃2δ), and

ϕ(B̃2δ ∩ {x1>0})= ϕ(B̃2δ)∩� and ϕ(B̃2δ ∩ {x1=0})= ϕ(B̃2δ)∩ ∂�. (4-8)

We also have, for all x ′ ∈ Bδ(0)(n−1),

ν(x ′) is the inner orthonormal unit vector at the tangent space Tϕ(0,x ′)∂�. (4-9)

An important remark is that

d
(
ϕ(x1, x ′), ∂�

)
= |x1| for all (x1, x ′) ∈ B̃2δ close to 0. (4-10)

Consider the metric g := ϕ?Eucl on B̃2δ, that is, the pull-back of the Euclidean metric Eucl via the
diffeomorphism ϕ. Following classical notations, we define

gi j (x) :=
(
∂iϕ(x), ∂jϕ(x)

)
Eucl for all x ∈ B̃2δ and i, j = 1, . . . , n. (4-11)

Up to a change of coordinates, we can assume that (∂2ϕ(0), . . . , ∂nϕ(0)) is an orthogonal basis of
T0∂�. In other words, we then have that

gi j (0)= δi j for all i, j = 1, . . . , n. (4-12)

As one checks,
gi1(x)= δi1 for all x ∈ B̃2δ and i = 1, . . . , n. (4-13)

Fix now α ∈ R and consider 2 ∈ C∞(B̃2δ) such that 2(0) = 0 and which will be constructed later
(independently of α) with additional needed properties. Fix η ∈ C∞c (B̃2δ) such that η(x) = 1 for all
x ∈ B̃δ. Define uα ∈ C∞(� \ {0}) as

uα ◦ϕ(x1, x ′) := η(x)x1|x |−α(1+2(x)) for all (x1, x ′) ∈ B̃2δ \ {0}. (4-14)

In particular, uα(x) > 0 for all x ∈ ϕ(B̃2δ)∩� and uα(x)= 0 on � \ϕ(B̃2δ).
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We claim that with a good choice of 2, we have that

−1uα =
α(n−α)
|x |2

uα + O
(

uα(x)
|x |

)
as x→ 0. (4-15)

Indeed, using the chart ϕ, we have that

(−1uα) ◦ϕ(x1, x ′)=−1g(uα ◦ϕ)(x1, x ′)

for all (x1, x ′) ∈ B̃δ \ {0}. Here, −1g is the Laplace operator associated to the metric g; that is,

−1g := −gi j (∂i j −0
k
i j∂k),

where
0k

i j :=
1
2 gkm(∂i g jm + ∂j gim − ∂m gi j ),

and (gi j ) is the inverse of the matrix (gi j ). Here and in the sequel, we have adopted Einstein’s convention
of summation. It follows from (4-13) that

(−1uα)◦ϕ =−1Eucl(uα◦ϕ)−
∑

i, j≥2

(gi j
−δi j )∂i j (uα◦ϕ)+gi j01

i j ∂1(uα◦ϕ)+
∑
k≥2

gi j0k
i j ∂k(uα◦ϕ). (4-16)

It follows from the definition (4-14) that there exists C > 0 such that for any i, j, k ≥ 2, we have that∣∣∂i j (uα ◦ϕ)(x1, x ′)
∣∣≤ C |x1| · |x |−α−2 and

∣∣∂k(uα ◦ϕ)(x1, x ′)
∣∣≤ C |x1| · |x |−α−1

for all (x1, x ′) ∈ B̃δ \ {0}. It follows from (4-12) that gi j
− δi j

= O(|x |) as x → 0. Therefore, (4-16)
yields that as x→ 0,

(−1uα) ◦ϕ =−1Eucl(uα ◦ϕ)+ gi j01
i j ∂1(uα ◦ϕ)+ O(x1|x |−α−1). (4-17)

The definition of gi j and the expression of ϕ(x1, x ′) then yield that as x→ 0,

gi j01
i j =−

1
2

∑
i, j≥2

gi j ∂1gi j

=−

∑
i, j≥2

gi j (x1, x ′)
((
∂iϕ(0, x ′), ∂jν(x ′)

)
+ x1

(
∂i (x ′), ∂jν(x ′)

))
=−

∑
i, j≥2

gi j (0, x ′)
(
∂iϕ(0, x ′), ∂jν(x ′)

)
+ O(|x1|)= H(x ′)+ O(|x1|),

where H(x ′) is the mean curvature of the (n−1)-manifold ∂� at ϕ(0, x ′) oriented by the outer normal
vector −ν(x ′). Using the expression (4-14) and using the smoothness of 2, (4-17) yields

(−1uα)◦ϕ = (−1Eucl(x1|x |−α)) · (1+2)+|x |−α
(
H(x ′)(1+2)−2∂12

)
+O(x1|x |−α−1) as x→ 0.

We now define
2(x1, x ′) := e−x1 H(x ′)/2

− 1 for all x = (x1, x ′) ∈ B̃2δ.

Clearly 2(0)= 0 and 2 ∈ C∞(B̃2δ). We then get that as x→ 0,

(−1uα) ◦ϕ =
α(n−α)
|x |2

x1|x |−α · (1+2)+ O(x1|x |−α−1). (4-18)
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With the choice that gi j (0)= δi j , we have that (∂iϕ(0))i=1,...,n is an orthonormal basis of Rn, and therefore
|ϕ(x)| = |x |(1+ O(|x |)) as x→ 0. It then follows from (4-18) and (4-14) that

−1uα =
α(n−α)
|x |2

uα + O(|x |−1uα) as x→ 0. (4-19)

This proves (4-15). We now proceed with the construction of the sub- and supersolutions. Let α ∈
{α−(γ ), α+(γ )} in such a way that α(n− α) = γ and consider β, λ ∈ R to be chosen later. It follows
from (4-15) that(
−1−

γ + O(|x |τ )
|x |2

)
(uα + λuβ)=

λ(β(n−β)− γ )
|x |2

uβ +
O(|x |τ )
|x |2

uα + O(|x |−1uα)+ O(|x |τ−2uβ)

=
uβ
|x |2

(
λ(β(n−β)− γ )+ O(|x |τ )+ O(|x |τ+β−α)+ O(|x |1+β−α)

)
as x→ 0. Choose β such that α−τ < β < α in such a way that β 6= α−(γ ) and β 6= α+(γ ). In particular,
β > α− 1 and β(n−β)− γ 6= 0. We then have(

−1−
γ + O(|x |τ )
|x |2

)
(uα + λuβ)=

uβ
|x |2

(
λ(β(n−β)− γ )+ O(|x |τ+β−α)

)
(4-20)

as x→ 0. Choose λ∈R such that λ(β(n−β)−γ )> 0. Finally, let uα,+ := uα+λuβ and uα,− := uα−λuβ .
They clearly satisfy (4-4) and (4-5), which completes the proof of Proposition 4.3. �

Lemma 4.4. Assume that u ∈ D1,2(�)loc,0 is a weak solution of−1u−
γ + O(|x |τ )
|x |2

u = 0 in D1,2(�)loc,0,

u = 0 on B2δ(0)∩ ∂�
(4-21)

for some τ > 0 and δ > 0. Then, there exists C1 > 0 such that

|u(x)| ≤ C1d(x, ∂�)|x |−α−(γ ) for x ∈�∩ Bδ(0). (4-22)

Moreover, if u > 0 in �, then there exists C2 > 0 such that

u(x)≥ C2d(x, ∂�)|x |−α−(γ ) for x ∈�∩ Bδ(0). (4-23)

Proof. Assume first that u ∈ D1,2(�)loc,0 and u > 0 on Bδ(0)∩�. We claim that there exists C0 > 0 such
that

1
C0

d(x, ∂�)
|x |α−(γ )

≤ u(x)≤ C0
d(x, ∂�)
|x |α−(γ )

for all x ∈�∩ Bδ(0). (4-24)

Indeed, since u is smooth outside 0, it follows from Hopf’s maximum principle that there exists C1,C2> 0
such that

C1d(x, ∂�)≤ u(x)≤ C2d(x, ∂�) for all x ∈�∩ ∂Bδ(0). (4-25)

Let uα−(γ ),+ be the supersolution constructed in Proposition 4.3. It follows from (4-25) and the asymptotics
(4-5) of uα−(γ ),+ that there exists C3 > 0 such that

u(x)≤ C3uα−(γ ),+(x) for all x ∈ ∂(Bδ(0)∩�).
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Since u is a solution and uα−(γ ),+ is a supersolution, both being in D1,2(�)loc,0, it follows from the
maximum principle (by choosing δ > 0 small enough so that −1− (γ + O(|x |τ ))|x |−2 is coercive on
Bδ(0)∩�) that u(x)≤C3uα−(γ ),+(x) for all x ∈ Bδ(0)∩�. In particular, it follows from the asymptotics
(4-5) of uα−(γ ),+ that there exists C4 > 0 such that u(x) ≤ C4d(x, ∂�)|x |−α−(γ ) for all x ∈ �∩ Bδ(0).
Arguing similarly with the lower-bound in (4-25) and the subsolution uα−(γ ),−, we get the existence of
C0 > 0 such that (4-24) holds. This yields Lemma 4.4 for u > 0.

Now we deal with the case when u is a sign-changing solution for (4-21). We then define u1, u2 :

Bδ(0)∩�→ R such that−1u1−
γ+O(|x |τ )
|x |2

u1 = 0 in Bδ(0)∩�,

u1(x)=max{u(x), 0} on ∂(Bδ(0)∩�),

−1u2−
γ+O(|x |τ )
|x |2

u2 = 0 in Bδ(0)∩�,

u2(x)=max{−u(x), 0} on ∂(Bδ(0)∩�).

The existence of such solutions is ensured by choosing δ > 0 small enough so that the operator −1−(γ +
O(|x |τ ))|x |−2 is coercive on Bδ(0)∩�. In particular, u1, u2 ∈ D1,2(�)loc,0, u1, u2≥ 0 and u= u1− u2.
It follows from the maximum principle that for all i , either ui ≡ 0 or ui > 0. The first part of the proof
yields the upper bound for u1, u2. Since u = u1− u2, we then get (4-22). �

The following lemma allows to construct sub- and supersolutions with Dirichlet boundary conditions
on any small smooth domain.

Proposition 4.5. Let � be a smooth bounded domain of Rn , and let W be a smooth domain of Rn such
that for some r > 0 small enough, we have

Br (0)∩�⊂W ⊂ B2r (0)∩� and Br (0)∩ ∂W = Br (0)∩ ∂�. (4-26)

Fix γ < 1
4 n2, 0<τ ≤ 1 and β ∈R such that α+(γ )− τ < β < α+(γ ) and β 6= α−(γ ). Then, for r small

enough, there exists u(d)α+(γ ),+, u(d)α+(γ ),− ∈ C∞(W \ {0}) such that

u(d)α+(γ ),+, u(d)α+(γ ),+ = 0 in ∂W \ {0},

−1u(d)α+(γ ),+−
γ + O(|x |τ )
|x |2

u(d)α+(γ ),+ > 0 in W,

−1u(d)α+(γ ),−−
γ + O(|x |τ )
|x |2

u(d)α+(γ ),− < 0 in W.

(4-27)

Moreover, we have as x→ 0, x ∈� that

u(d)α+(γ ),+(x)=
d(x, ∂�)
|x |α+(γ )

(1+ O(|x |α−β)), (4-28)

u(d)α+(γ ),−(x)=
d(x, ∂�)
|x |α+(γ )

(1+ O(|x |α−β)). (4-29)

Proof. Take η ∈ C∞(Rn) such that η(x)= 0 for x ∈ Bδ/4(0) and η(x)= 1 for x ∈ Rn
\ Bδ/3(0). Define

on W the function

f (x) :=
(
−1−

γ + O(|x |τ )
|x |2

)
(ηuα+(γ ),+),
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where uα+(γ ),+ is given by Proposition 4.3. Note that f vanishes around 0 and that it is in C∞(W ). Let
v ∈ D1,2(W ) be such that −1v−

γ + O(|x |τ )
|x |2

v = f in W,

v = 0 on ∂W.

Note that for r > 0 small enough, −1−(γ +O(|x |τ ))|x |−2 is coercive on W, and therefore, the existence
of v is ensured for small r . Define

u(d)α+(γ ),+ := uα+(γ ),+− ηuα+(γ ),++ v.

The properties of W and the definitions of η and v yieldu(d)α+(γ ),+ = 0 in ∂W \ {0},

−1u(d)α+(γ ),+−
γ + O(|x |τ )
|x |2

u(d)α+(γ ),+ > 0 in W.

Since −1v − (γ + O(|x |τ ))|x |−2v = 0 around 0 and v ∈ D1,2(W ), it follows from Lemma 4.4 that
there exists C > 0 such that |v(x)| ≤ Cd(x,W )|x |−α−(γ ) for all x ∈ W. Then (4-28) follows from the
asymptotics (4-5) of uα+(γ ),+ and the fact that α−(γ ) < α+(γ ). We argue similarly for u(d)α+(γ ),−. �

Lemma 4.6. Let u∈D1,2(�)loc,0 such that (4-2) holds. Assume there exists C>0 and α∈{α+(γ ), α−(γ )}
such that

|u(x)| ≤ C |x |1−α for x→ 0, x ∈�. (4-30)

(1) Then, there exists C1 > 0 such that

|∇u(x)| ≤ C1|x |−α as x→ 0, x ∈�. (4-31)

(2) If limx→0 |x |α−1u(x)= 0, then limx→0 |x |α |∇u(x)| = 0. Moreover, if u > 0, then there exists l ≥ 0
such that

lim
x→0

|x |αu(x)
d(x, ∂�)

= l and lim
x→0, x∈∂�

|x |α |∇u(x)| = l. (4-32)

Proof. Assume that (4-30) holds. Set ω(x) := |x |αu(x)/d(x, ∂�) for x ∈�. Let (xi )i ∈� be such that

lim
i→+∞

xi = 0 and lim
i→+∞

ω(xi )= l. (4-33)

Choose a chart ϕ as in (4-7) such that dϕ0 = IdRn . For any i , define X i ∈ Rn
+

such that xi = ϕ(X i ),
ri := |X i | and θi := X i/|X i |. In particular, limi→+∞ ri = 0 and |θi | = 1 for all i . Set

ũi (x) := rα−1
i u(ϕ(ri x)) for all i and x ∈ BR(0)∩Rn

+
, x 6= 0.

Equation (4-2) can then be rewritten as−1gi ũi −
γ + o(1)
|x |2

ũi = 0 in BR(0)∩Rn
+
,

ũi = 0 in BR(0)∩ ∂Rn
+
,

(4-34)
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where gi (x) := (ϕ?Eucl)(ri x) is a metric that goes to Eucl on every compact subset of Rn as i →∞.
Here, o(1)→ 0 in C0

loc(R
n
+ \ {0}). It follows from (4-30) and (4-33) that

|ũi (x)| ≤ C |x |1−α for all i and all x ∈ BR(0)∩Rn
+
, (4-35)

It follows from elliptic theory that there exists ũ ∈ C2(Rn
+ \ {0}) such that ũi → ũ in C1

loc(R
n
+ \ {0}). By

letting θ := limi→+∞ θi (|θ | = 1), we then have that ∂j ũi (θi )→ ∂j ũ(θ) as i→+∞ for any j = 1, . . . , n,
which can be rewritten as

lim
i→+∞

|xi |
α ∂j u(xi )= ∂j ũ(θ) for all j = 1, . . . , n. (4-36)

We now prove (4-31). For that, we argue by contradiction and assume that there exists a sequence
(xi )i ∈ � that goes to 0 as i →+∞ and such that |xi |

α
|∇u(xi )| → +∞ as i →+∞. It then follows

from (4-36) that |xi |
α
|∇u(xi )| = O(1) as i →+∞. This is a contradiction to our assumption, which

proves (4-31). The case when |x |αu(x)→ 0 as x→ 0 goes similarly.

Now we consider the case when u > 0, which implies that ũi ≥ 0 and ũ ≥ 0. We let l ∈ [0,+∞] and
(xi )i ∈� be such that

lim
i→+∞

xi = 0 and lim
i→+∞

ω(xi )= l. (4-37)

We claim that
0≤ l <+∞ and lim

x→0
ω(x)= l ∈ [0,+∞). (4-38)

Indeed, using the notations above, we get that

lim
i→+∞

ũi (θi )

(θi )1
= l.

The convergence of ũi in C1
loc(R

n
+ \ {0}) then yields l <+∞. Passing to the limit as i→+∞ in (4-34),

we get 
−1Euclũ−

γ

|x |2
ũ = 0 in Rn

+
,

ũ ≥ 0 in Rn
+
,

ũ = 0 in ∂Rn
+
.

The limit (4-37) can be rewritten as ũ(θ)= lθ1 if θ ∈ Rn
+

and ∂1ũ(θ)= l if θ ∈ ∂Rn
+

. The rigidity lemma,
Lemma 4.2, then yields

ũ(x)= lx1|x |−α for all x ∈ Rn
+
.

In particular, since the differential of ϕ at 0 is the identity map, it follows from the convergence of ũi to ũ
locally in C1 that

lim
i→+∞

sup
x∈�∩∂Bri (0)

u(x)
d(x, ∂�)|x |−α

= sup
x∈Rn

+∩∂B1(0)

ũ(x)
x1|x |−α

= l (4-39)

and

lim
i→+∞

inf
x∈�∩∂Bri (0)

u(x)
d(x, ∂�)|x |−α

= inf
x∈Rn

+∩∂B1(0)

ũ(x)
x1|x |−α

= l. (4-40)
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We distinguish two cases:

Case 1: α = α+(γ ). Let W and u(d)α+(γ ),− be as in Proposition 4.5, and fix ε > 0. Note that the existence
and properties of u(d)α+(γ ),− do not use the lemma that is currently being proved. It follows from (4-40)
that there exists i0 such that for i ≥ i0, we have

u(x)≥ (l − ε)u(d)α+(γ ),−(x) for all x ∈W ∩ ∂Bri (0).

Since
(
−1− (γ +O(|x |τ ))|x |−2

)(
u− (l− ε)u(d)α+(γ ),−

)
≥ 0 in W \ Bri (0) and since uα+(γ ),− vanishes on

∂W \ {0}, it follows from the comparison principle that

u(x)≥ (l − ε)u(d)α+(γ ),−(x) for all x ∈W \ ∂Bri (0).

Letting i→+∞ yields

u(x)≥ (l − ε)u(d)α+(γ ),−(x) for all x ∈W \ {0}.

It follows from this inequality and the asymptotics for u(d)α+(γ ),− that

lim inf
x→0

ω(x)≥ l.

Note that this is valid for any l ∈ R satisfying (4-37). By taking l := lim supx→0 ω(x), we then get that
limx→0 ω(x)= l.

Case 2: α=α−(γ ). Consider the super- and subsolutions uα−(γ ),+, uα−(γ ),− constructed in Proposition 4.3.
It follows from (4-39) and (4-40) that for ε > 0, there exists i0 such that, for i ≥ i0, we have

(l − ε)uα−(γ ),−(x)≤ u(x)≤ (l + ε)uα−(γ ),+(x) for all x ∈�∩ ∂Bri (0).

Since the operator −1− (γ +O(|x |τ ))|x |−2 is coercive on �∩ Bri (0) and the functions we consider are
in D1,2

loc,0(�∩ Bri (0)) (i.e., they are variational), it follows from the maximum principle that

(l − ε)uα−(γ ),−(x)≤ u(x)≤ (l + ε)uα−(γ ),+(x) for all x ∈�∩ Bri (0).

Using the asymptotics (4-5) of the sub- and supersolutions, we get that

(l − ε)≤ lim inf
x→0

u(x)
d(x, ∂�)|x |−α−(γ )

≤ lim sup
x→0

u(x)
d(x, ∂�)|x |−α−(γ )

≤ (l + ε).

Letting ε→ 0 yields limx→0 ω(x)= l ≥ 0. This ends Case 2 and completes the proof of (4-38).

The case u > 0 is a consequence of (4-38) and (4-36) (note that for the second limit, xi ∈ ∂� can be
rewritten as θi ∈ ∂Rn

+
and therefore (θi )1 = 0). This ends the proof of Lemma 4.6. �

Proof of Theorem 4.1. First, assume that u ∈ D1,2(�)loc,0 satisfies (4-2) and u > 0 on Bδ(0)∩�. It then
follows from Lemma 4.4 that there exists C0 > 0 such that

1
C0

d(x, ∂�)
|x |α−(γ )

≤ u(x)≤ C0
d(x, ∂�)
|x |α−(γ )

for all x ∈�∩ Bδ(0).

Since u > 0, this estimate coupled with Lemma 4.6 yields the theorem for u > 0.
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If now u is a sign-changing solution for (4-2), we define u1, u2 : Bδ(0)∩�→ R≥0 as in the proof of
Lemma 4.4. The first part of the proof yields that there exist l1, l2 ≥ 0 such that

lim
x→0

u1(x)
d(x, ∂�)|x |−α−(γ )

= l1 and lim
x→0

u2(x)
d(x, ∂�)|x |−α−(γ )

= l2.

Since u = u1− u2, we get Theorem 4.1 by taking l := l1− l2. �

Here is an immediate consequence.

Corollary 4.7. Suppose γ < γH (�) and consider the first eigenvalue of Lγ , i.e.,

λ1(�, γ ) := inf
u∈D1,2(�)\{0}

∫
�

(
|∇u|2− u2γ /|x |2

)
dx∫

�
u2 dx

> 0.

If u0 ∈ D1,2(�) \ {0} is a minimizer, then there exists A 6= 0 such that

u0(x)∼x→0 A
d(x, ∂�)
|x |α−(γ )

.

Proof. The existence of a minimizer u0 that doesn’t change sign is standard. The Euler–Lagrange equation
is −1u− uγ /|x |2 = ku for some k ∈ R. We then apply Theorem 4.1. �

5. Regularity of solutions for related nonlinear variational problems

This section is devoted to the proof of the following key result.

Theorem 5.1 (optimal regularity and generalized Hopf’s lemma). Fix γ < 1
4 n2 and let f :�×R→ R

be a Carathéodory function such that

| f (x, v)| ≤ C |v|
(

1+
|v|2

?(s)−2

|x |s

)
for all x ∈� and v ∈ R.

Let u ∈ D1,2(�)loc,0 be a weak solution of

−1u−
γ + O(|x |τ )
|x |2

u = f (x, u) in D1,2(�)loc,0 (5-1)

for some τ > 0. Then, there exists K ∈ R such that

lim
x→0

u(x)
d(x, ∂�)|x |−α−(γ )

= K . (5-2)

Moreover, if u ≥ 0 and u 6≡ 0, we have that K > 0.

Note that when f ≡ 0, this is nothing but Theorem 4.1. The result can be viewed as a generalization
of Hopf’s lemma in the following sense: when γ = 0 (and then α−(γ )= 0), the classical Nash–Moser
regularity scheme yields u ∈ C1

loc, and when u≥ 0, u 6≡ 0, Hopf’s comparison principle yields ∂νu(0) < 0,
which is a reformulation of (5-2) when α−(γ )= 0.

The following lemma will be of frequent use in the sequel.
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Lemma 5.2. Let f : �×R→ R be as in the statement of Theorem 5.1, and consider u ∈ D1,2(�)loc,0

such that (5-1) holds. Assume that for some C > 0,

|u(x)| ≤ C |x |1−α−(γ ) for x→ 0, x ∈�. (5-3)

Then, u satisfies the conclusion of Lemma 4.6.

Proof. Assume that (5-3) holds. We claim that we can assume that for some τ > 0,

−1u−
γ + O(|x |τ )
|x |2

u = 0 in D1,2(�)loc,0. (5-4)

Indeed, we have as x→ 0,

| f (x, u)| ≤ C |u|
(
1+|x |−s

|x |−(2
?(s)−2)(α−(γ )−1))

≤ C
|u|
|x |2

(
|x |2+|x |(2

?(s)−2)(n/2−α−(γ ))
)
= O

(
|x |τ

′ u
|x |2

)
for some τ ′> 0. Plugging this inequality into (5-1) and replacing τ by min{τ, τ ′} yields (5-4). The lemma
now follows from Lemma 4.6. �

Proof of Theorem 5.1. We let here u ∈ D1,2(�)loc,0 be a solution to (5-1); that is,

−1u−
γ + O(|x |τ )
|x |2

u = f (x, u) weakly in D1,2(�)loc,0 (5-5)

for some τ > 0. We shall first use the classical De Giorgi–Nash–Moser iterative scheme (see [Gilbarg
and Trudinger 1998; Hebey 1997] for expositions in book form). We skip most of the computations and
refer to [Ghoussoub and Robert 2006a, Proposition A.1] for the details. We fix δ0 > 0 such that

(i) there exists η̃ ∈ C∞(B4δ0(0)) such that η̃(x)= 1 for x ∈ B2δ0(0),

(ii) η̃u ∈ D1,2(�), and

(iii) u is a weak solution to (5-5) when tested on η̃ϕ with ϕ ∈ D1,2(�) (see the definition of weak solution
given in the preceding section).

The proof goes through four steps.

Step 1: Let β ≥ 1 be such that 4β/(β + 1)2 > 4γ /n2. Assume that u ∈ Lβ+1(�∩ Bδ0(0)). We claim that

u ∈ Ln/(n−2)(β+1)(�∩ Bδ0(0)). (5-6)

Indeed, fix β ≥ 1, L > 0, and define GL , HL : R→ R as

GL(t) :=


|t |β−1t if |t | ≤ L ,
βLβ−1(t − L)+ Lβ if t ≥ L ,
βLβ−1(t + L)− Lβ if t ≤−L

(5-7)

and

HL(t) :=


|t |(β−1)/2t if |t | ≤ L ,
1
2(β + 1)L(β−1)/2(t − L)+ L(β+1)/2 if t ≥ L ,
1
2(β + 1)L(β−1)/2(t + L)− L(β+1)/2 if t ≤−L .

(5-8)
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As is easily checked,

0≤ tGL(t)≤ HL(t)2 and G ′L(t)=
4β

(β + 1)2
(H ′L(t))

2 (5-9)

for all t ∈ R and all L > 0. We fix δ > 0 small, which will be chosen later. We let η ∈ C∞c (R
n) be

such that η(x) = 1 for x ∈ Bδ/2(0) and η(x) = 0 for x ∈ Rn
\ Bδ(0). Multiplying equation (5-5) with

η2GL(u) ∈ D1,2(�), we get that∫
�

(∇u,∇(η2GL(u))) dx −
∫
�

γ + O(|x |τ )
|x |2

η2uGL(u) dx =
∫
�

f (x, u)η2GL(u) dx . (5-10)

Integrating by parts, and using formulae (5-7)–(5-9) (see [Ghoussoub and Robert 2006a] for details) yields∫
�

(
∇u,∇(η2GL(u))

)
dx

=
4β

(β + 1)2

∫
�

(
|∇(ηHL(u))|2− η(−1)ηHL(u)2

)
dx +

∫
�

−1(η2)JL(u) dx, (5-11)

where JL(t) :=
∫ t

0 GL(τ ) dτ . This identity and (5-10) yield

4β
(β + 1)2

∫
�

|∇(ηHL(u))|2 dx −
∫
�

γ + O(|x |τ )
|x |2

η2uGL(u) dx

≤

∫
�

| −1(η2)| · |JL(u)| dx +C(β, δ)
∫
�∩Bδ(0)

|HL(u)|2 dx +C
∫
�

|u|2
?(s)−2

|x |s
(ηHL(u))2 dx . (5-12)

Hölder’s inequality and the Sobolev constant given in (1-16) yield∫
�

|u|2
?(s)−2

|x |s
(ηHL(u))2 dx ≤

(∫
�∩Bδ(0)

|u|2
?(s)

|x |s
dx
)(2?(s)−2)/2?(s)(∫

�

|ηHL(u)|2
?(s)

|x |s
dx
)2/2?(s)

≤

(∫
�∩Bδ(0)

|u|2
?(s)

|x |s
dx
)(2?(s)−2)/2?(s)

·
1

µ0,s(�)

∫
�

|∇(ηHL(u))|2 dx .

Plugging this estimate into (5-12) and defining γ+ :=max{γ, 0} yields

4β
(β + 1)2

∫
�

‖∇(ηHL(u))‖2 dx − (γ++Cδτ )
∫
�

(ηHL(u))2

|x |2
dx

≤ C(β, δ)
∫
�∩Bδ(0)

(
|HL(u)|2+ |JL(u)|

)
dx +α(δ)

∫
�

|∇(ηHL(u))|2 dx,

where

α(δ) := C
(∫

�∩Bδ(0)

|u|2
?(s)

|x |s
dx
)(2?(s)−2)/2?(s)

·
1

µ0,s(�)
,

so that
lim
δ→0

α(δ)= 0.

It follows from Hardy’s inequality that

n2

4

∫
�

(ηHL(u))2

|x |2
dx ≤ (1+ ε(δ))

∫
�

|∇(ηHL(u))|2 dx,
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where limδ→0 ε(δ)= 0. Therefore, we get that(
4β

(β + 1)2
−α(δ)− (γ++Cδτ )

4
n2 (1+ ε(δ))

)∫
�

|∇(ηHL(u))|2 dx

≤ C(β, δ)
∫
�∩Bδ(0)

(
|HL(u)|2+ |JL(u)|

)
dx ≤ C(β, δ)

∫
Bδ(0)∩�

|u|β+1 dx .

Let δ ∈ (0, δ0) be such that

4β
(β + 1)2

−α(δ)− (γ++Cδτ )
4
n2 (1+ ε(δ)) > 0.

This is possible since 4β/(β + 1)2 > 4γ /n2. Using Sobolev’s embedding, we then get that(∫
Bδ/2(0)∩�

|HL(u)|2
?

dx
)2/2?

≤

(∫
Rn
|ηHL(u)|2

?

dx
)2/2?

≤ µ0,0(�)
−1
∫
�

|∇(ηHL(u))|2 dx ≤ C(β, δ, γ )
∫

Bδ(0)∩�
|u|β+1 dx .

Since u∈Lβ+1(Bδ0(0)∩�), let L→+∞ and use Fatou’s lemma to obtain that u∈L(2
?/2)(β+1)(Bδ/2(0)∩�).

The standard iterative scheme then yields u ∈C1(�∩Bδ0(0)\{0}). Therefore u ∈ L(2
?/2)(β+1)(Bδ0(0)∩�).

Step 2: We now show that

if γ ≤ 0, then u ∈ L p(�∩ Bδ(0)) for all p ≥ 1, (5-13)

if γ > 0, then u ∈ L p(�∩ Bδ(0)) for all p ∈
(

1,
n

n− 2
n

α−(γ )

)
. (5-14)

The case γ ≤0 is standard, so we only consider the case where γ >0. Fix p≥2 and set β := p−1. We have

4β
(β + 1)2

>
4
n2 γ ⇐⇒

n
α+(γ )

< p <
n

α−(γ )
.

Since α+(γ ) > 1
2 n and p ≥ 2,

4β
(β + 1)2

>
4
n2 γ ⇐⇒ p <

n
α−(γ )

.

Therefore, it follows from Step 1 that if u ∈ L p(�∩Bδ0), with p< n/α−(γ ), then u ∈ L pn/(n−2)(�∩Bδ0).
Since u ∈ L2(�∩ Bδ0), (5-14) follows.

Step 3: We claim that for any λ > 0,

|x |(n−2)/2
|u(x)| = O(|x |(n−2)/n(n/2−max{α−(γ ),0}−λ)) as x→ 0. (5-15)

Indeed, take p∈
(
2?, n2/((n−2)α−(γ ))

)
if γ >0, and p>2? if γ ≤0. This is possible since 2?=2n/(n−2)

and α−(γ ) < 1
2 n. We fix a sequence (εi )i ∈ (0,+∞) such that limi→+∞ εi = 0 and we fix a chart ϕ as

in (4-7) to (4-12). For any i ∈ N, we define

ui (x) := ε
n/p
i u(ϕ(εi x)) for all x ∈ B̃δ/εi .
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Equation (5-5) then can be written as

−1gi ui −
ε2

i (γ + O(ετi |x |
τ ))

|ϕ(εi x)|2
ui = fi (x, ui ), ui = 0 on ∂Rn

+
∩ B̃δ/εi , (5-16)

where gi (x) := ϕ?Eucl(εi x) and

| fi (x, ui )| ≤ Cε2
i |ui | +Cε(2

?(s)−2)((n−2)/2−n/p)
i |x |−s

|ui |
2?(s)−1 in B̃δ/εi .

We fix R> 0 and define ωR := (B̃R \ B̃R−1)∩Rn
+

. With our choice of p above and using (5-14), we get that

‖ui‖L p(ωR) ≤ C, (5-17)

and
| fi (x, ui )| ≤ CR|ui | +CR|ui |

2?(s)−1 for all x ∈ ωR . (5-18)

Fix q ≥ p > 2?. It follows from elliptic regularity that

‖ui‖Lq (ωR) ≤ C =⇒


‖ui‖Lq′ (ωR/2)

≤ C ′ if q < 1
2 n(2?(s)− 1),

‖ui‖Lr (ωR/2) ≤ C ′ for all r ≥ 1 if q = 1
2 n(2?(s)− 1),

‖ui‖L∞(ωR/2) ≤ C ′ if q > 1
2 n(2?(s)− 1),

where
1
q ′
=

2?(s)− 1
q

−
2
n

and the constants C,C ′ are uniform with respect to i . It then follows from the standard bootstrap iterative
argument and the initial bound (5-17) that ‖ui‖L∞(ωR/4) ≤ C ′. Taking R > 0 large enough and going back
to the definition of ui , we get that for all i ∈ N,

|x |n/p
|u(x)| ≤ C for all x ∈�∩ B2εi (0)\Bεi/2(0).

Since this holds for any sequence (εi )i , we get that |x |n/p
|u(x)| ≤ C around 0 for any

2? < p <
n2

(n− 2)α−(γ )

when γ > 0. Letting p go to n2/((n− 2)α−(γ )) yields (5-15) when γ > 0. For γ ≤ 0, we let p→+∞.

To finish the proof of Theorem 5.1, we rewrite equation (5-5) as

−1u−
a(x)
|x |2

u = 0,

where for x ∈�,

a(x)= γ + O(|x |τ )+ O(|x |2)+ O(|x |2−s
|u|2

?(s)−2)

= γ + O(|x |τ )+ O(|x |2)+ O(|x |(n−2)/2
|u(x)|)2

?(s)−2.

Since α−(γ )< 1
2 n, it then follows from (5-15) that there exists τ ′>0 such that a(x)=γ+O(|x |τ

′

) as x→0.
We are therefore back to the linear case; hence we can apply Theorem 4.1 and deduce Theorem 5.1. �
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As a consequence we get the following result, which will be crucial for the sequel.

Corollary 5.3. Suppose u ∈ D1,2(Rn
+
), u≥ 0, u 6≡ 0 is a weak solution of

−1u−
γ

|x |2
u =

u2?−1

|x |s
in Rn

+
.

Then, there exist K1, K2 > 0 such that

u(x)∼x→0 K1
x1

|x |α−(γ )
and u(x)∼|x |→+∞ K2

x1

|x |α+(γ )
. (5-19)

Proof. Theorem 5.1 yields the behavior when x→ 0. The Kelvin transform û(x) := |x |2−nu(x/|x |2) is a
solution to the same equation in D1,2(Rn

+
), and its behavior at 0 is given by Theorem 5.1. Going back

to u yields the behavior at∞. �

6. Profile around 0 of positive singular solutions of Lγ u = a(x)u

In this section we describe the profile of any positive solution — variational or not — of linear equations
involving Lγ . Here is the main result of this section.

Theorem 6.1. Let u ∈ C2(Bδ(0)∩ (� \ {0})) be such that
−1u−

γ + O(|x |τ )
|x |2

u = 0 in �∩ Bδ(0),

u > 0 in �∩ Bδ(0),

u = 0 on (∂�∩ Bδ(0)) \ {0}.

(6-1)

Then, there exists K > 0 such that either

u(x)∼x→0 K
d(x, ∂�)
|x |α−(γ )

or u(x)∼x→0 K
d(x, ∂�)
|x |α+(γ )

.

In the first case, the solution u ∈ D1,2(�)loc,0 is a variational solution to (6-1).

It is worth noting that Pinchover [1994] tackled similar issues. The proof of Theorem 6.1 will require
two additional results. The first is a Harnack-type result.

Proposition 6.2. Let � be a smooth bounded domain of Rn , and let a ∈ L∞(�) be such that ‖a‖∞ ≤ M
for some M > 0. Assume U is an open subset of Rn and consider u ∈ C2(U ∩�) to be a solution of

−1gu+ au = 0 in U ∩�,
u ≥ 0 in U ∩�,
u = 0 on U ∩ ∂�.

Here g is a smooth metric on U. If U ′ b U is such that U ′ ∩� is connected, then there exists C > 0
depending only on �, U ′, M and g such that

u(x)
d(x, ∂�)

≤ C
u(y)

d(y, ∂�)
for all x, y ∈U ′ ∩�. (6-2)
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Proof. We first prove a local result. The global result will be the consequence of a covering of U ′. Fix
x0 ∈ ∂�. For δ > 0 small enough, there exists a smooth open domain W such that

Bδ(x0)∩�⊂W ⊂ B2δ(x0)∩� and Bδ(x0)∩ ∂W = Bδ(x0)∩ ∂�. (6-3)

Let G be the Green’s function of −1g+a with Dirichlet boundary condition on W, then its representation
formula reads as

u(x)=
∫
∂W

u(σ )(−∂ν,σG(x, σ )) dσ =
∫
∂W\∂�

u(σ )(−∂ν,σG(x, σ )) dσ (6-4)

for all x ∈W, where ∂ν,σG(x, σ ) is the normal derivative of y 7→ G(x, y) at σ ∈ ∂W. Estimates of the
Green’s function (see [Robert 2010; Ghoussoub and Robert 2006a]) yield the existence of C > 0 such
that for all x ∈W and σ ∈ ∂W,

1
C

d(x, ∂W )

|x − σ |n
≤−∂ν,σG(x, σ )≤ C

d(x, ∂W )

|x − σ |n
.

It follows from (6-3) that there exists C(δ) > 0 such that for all x ∈ Bδ/2(x0)∩�⊂W and σ ∈ ∂W \ ∂�,

1
C(δ)

d(x, ∂W )≤−∂ν,σG(x, σ )≤ C(δ)d(x, ∂W ).

Since u vanishes on ∂�, it then follows from (6-4) that for all x ∈ Bδ/2(x0)∩�,

1
C(δ)

d(x, ∂W )

∫
∂W

u(σ ) dσ ≤ u(x)≤ C(δ)d(x, ∂W )

∫
∂W

u(σ ) dσ.

It is easy to check that under the assumption (6-3), we have that d(x, ∂�)= d(x, ∂W ). Therefore, we
have for all x ∈ Bδ/2(x0)∩�,

1
C(δ)

∫
∂W

u(σ ) dσ ≤
u(x)

d(x, ∂�)
≤ C(δ)

∫
∂W

u(σ ) dσ.

Since these lower and upper bounds are independent of x , we get inequality (6-2) for any x, y∈Bδ/2(x0)∩�.

The general case is a consequence of a covering of U ′ ∩� by finitely many balls. Note that for balls
intersecting ∂�, we apply the preceding result, while for balls not intersecting ∂�, we apply the classical
Harnack inequality. This completes the proof of Proposition 6.2. �

Proof of Theorem 6.1. Let u be a solution of (6-1) as in the statement of Theorem 6.1. We claim that

u(x)= O(d(x, ∂�)|x |−α+(γ )) for x→ 0, x ∈�. (6-5)

Indeed, otherwise we can assume that

lim sup
x→0

u(x)
d(x, ∂�)|x |−α+(γ )

=+∞. (6-6)

In particular, there exists (xk)k ∈� such that for all k ∈ N,

lim
k→+∞

xk = 0 and
u(xk)

d(xk, ∂�)|xk |
−α+(γ )

≥ k. (6-7)



HARDY-SINGULAR BOUNDARY MASS AND SOBOLEV-CRITICAL VARIATIONAL PROBLEMS 1047

We claim that there exists C > 0 such that

u(x)
d(x, ∂�)|x |−α+(γ )

≥ Ck for all x ∈�∩ ∂Brk (0),with rk := |xk | → 0. (6-8)

We prove the claim by using the Harnack inequality (6-2): first take the chart ϕ at 0 as in (4-7), and define

uk(x) := u ◦ϕ(rk x) for x ∈ Rn
+
∩ B3(0) \ {0}.

Equation (6-1) can be written as

−1gk uk + akuk = 0 in Rn
+
∩ B3(0) \ {0}, (6-9)

with

ak(x) := −r2
k
γ + O(r τk |x |

τ )

|ϕ(rk x)|2
.

In particular, there exists M > 0 such that |ak(x)| ≤ M for all x ∈ Rn
+
∩ B3(0) \ B1/3(0). Since uk ≥ 0,

the Harnack inequality (6-2) yields the existence of C > 0 such that

uk(y)
y1
≥ C

uk(x)
x1

for all x, y ∈ Rn
+
∩ B2(0) \ B1/2(0). (6-10)

Let x̃k ∈ Rn
+

be such that xk = ϕ(rk x̃k). In particular, |x̃k | = 1+ o(1) as k→+∞. It then follows from
(6-7), (6-9) and (6-10) that

u ◦ϕ(rk y)
d(ϕ(rk y), ∂�)

≥ C · k for all y ∈ Rn
+
∩ B2(0) \ B1/2(0).

In particular, (6-8) holds.

We let now W be a smooth domain such that (4-26) holds for r >0 small enough. Take the supersolution
u(d)α+(γ ),− defined in Proposition 4.5. We have that

u(x)≥
C · k

2
u(d)α+(γ ),−(x) for all x ∈W ∩ ∂Brk (0).

Since u(d)α+(γ ),− vanishes on ∂W, we have u(x)≥ 1
2(C ·k)u

(d)
α+(γ ),−

(x) for all x ∈ ∂(W ∩ Brk (0)). Moreover,
we have that

−1u(d)α+(γ ),−−
γ + O(|x |τ )
|x |2

u(d)α+(γ ),− < 0=−1u−
γ + O(|x |τ )
|x |2

u on W.

Up to taking r even smaller, it follows from the coercivity of the operator and the maximum principle
that

u(x)≥
C · k

2
u(d)α+(γ ),−(x) for all x ∈W ∩ Brk (0). (6-11)

For any x ∈ W, we let k0 ∈ N such that rk < |x | for all k ≥ k0. It then follows from (6-11) that
u(x)≥ 1

2(C · k)u
(d)
α+(γ ),−

(x) for all k ≥ k0. Letting k→+∞ yields that u(d)α+(γ ),−(x) goes to zero for all
x ∈W. This is in contradiction with (4-29). Hence (6-6) does not hold, and therefore (6-5) holds.
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A straightforward consequence of (6-5) and Lemma 5.2 is that there exists l ∈ R such that

lim
x→0

u(x)
d(x, ∂�)|x |−α+(γ )

= l. (6-12)

We now show the following lemma:

Lemma 6.3. If

lim
x→0

u(x)
d(x, ∂�)|x |−α+(γ )

= 0,

then u ∈ D1,2(�)loc,0 and there exists K > 0 such that u(x)∼x→0 K d(x, ∂�)/|x |α−(γ ).

Proof. We shall use Theorem 4.1. Take W as in (4-26) and let η ∈ C∞(Rn) be such that η(x) = 0 for
x ∈ Bδ/4(0) and η(x)= 1 for x ∈ Rn

\ Bδ/3(0). Define

f (x) :=
(
−1−

γ + O(|x |τ )
|x |2

)
(ηu) for x ∈W.

The function f ∈ C∞(W ) vanishes around 0. Let v ∈ D1,2(�) be such that−1v−
γ + O(|x |τ )
|x |2

v = f in W,

v = 0 on ∂W.

Note again that for r > 0 small enough, −1− (γ + O(|x |τ ))|x |−2 is coercive on W, and therefore, the
existence of v is ensured for small r . Define

ũ := u− ηu+ v.

The properties of W and the definition of η and v yield−1ũ−
γ + O(|x |τ )
|x |2

ũ = 0 in W,

ũ = 0 in ∂W \ {0}.

Moreover, since −1v−(γ +O(|x |τ ))|x |−2v= 0 around 0 and v ∈ D1,2(W ), it follows from Theorem 4.1
that there exists C > 0 such that |v(x)| ≤ Cd(x,W )|x |−α−(γ ) for all x ∈W. Therefore, we have that

lim
x→0

ũ(x)
d(x, ∂�)|x |−α+(γ )

= 0. (6-13)

It then follows from Lemma 5.2 that

lim
x→0
|x |α+(γ )|∇ũ(x)| = 0. (6-14)

Let ψ ∈ C∞c (W ) and w ∈ D1,2(W ) be such that−1w−
γ + O(|x |τ )
|x |2

w = ψ in W,

w = 0 on ∂W.
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Since ψ vanishes around 0, it follows from Theorem 4.1 and Lemma 5.2 that

w(x)= O(d(x, ∂W )|x |−α−(γ )) and |∇w(x)| = O(|x |−α−(γ )) as x→ 0. (6-15)

Fix ε > 0 small and integrate by parts, using that both ũ and w vanish on ∂W, to get

0=
∫

W\Bε(0)

(
−1ũ−

γ + O(|x |τ )
|x |2

ũ
)
w dx

=

∫
W\Bε(0)

(
−1w−

γ + O(|x |τ )
|x |2

w

)
ũ dx +

∫
∂(W\Bε(0))

(−w∂ν ũ+ ũ∂νw) dσ

=

∫
W\Bε(0)

ψ ũ dx −
∫
�∩∂Bε(0)

(−w∂ν ũ+ ũ∂νw) dσ.

Using the limits and estimates (6-13), (6-14) and (6-15), and that ψ vanishes around 0, we get

0=
∫

W\Bε(0)
ψ ũ dx+o

(
εn−1(ε1−α−(γ )ε−α+(γ )+ε1−α+(γ )ε−α−(γ ))

)
=

∫
W\Bε(0)

ψ ũ dx+o(1), as ε→ 0.

Therefore, we have
∫

W ψ ũ dx = 0 for all ψ ∈ C∞c (W ). Since ũ ∈ L p is smooth outside 0, we then get
that ũ ≡ 0, and therefore u = ηu+v. In particular, u ∈ D1,2(�)loc,0 is a distributional positive solution to

−1u−
γ + O(|x |τ )
|x |2

u = 0

on W. It then follows from Theorem 4.1 that there exists K > 0 such that u(x)∼x→0 K d(x, ∂�)/|x |α−(γ ).
This proves Lemma 6.3. �

Combining Lemma 6.3 with (6-12) completes the proof of Theorem 6.1. �

As a consequence of Theorem 6.1, we improve Lemma 4.2 as follows.

Proposition 6.4. Let u ∈ C2(Rn
+ \ {0}) be a nonnegative function such that−1u−

γ

|x |2
u = 0 in Rn

+
,

u = 0 on ∂Rn
+
.

(6-16)

Then there exist λ−, λ+ ≥ 0 such that

u(x)= λ−x1|x |−α−(γ )+ λ+x1|x |−α+(γ ) for all x ∈ Rn
+
.

Proof. Without loss of generality, we assume that u 6≡ 0, so that u > 0. We consider the Kelvin transform
of u defined by û(x) := |x |2−nu(x/|x |2) for all x ∈ Rn

+
. Both u and û are then nonnegative solutions

of (6-16). It follows from Theorem 6.1 that, after performing back the Kelvin transform, there exist
α1, α2 ∈ {α+(γ ), α−(γ )} such that

lim
x→0

u(x)
x1|x |−α1

= l1 > 0 and lim
|x |→∞

u(x)
x1|x |−α2

= l2 > 0.
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If α1 ≤ α2, then u(x)≤ Cx1|x |−α1 for all x ∈ Rn
+

. The result then follows from Lemma 4.2. If α1 > α2,
then α1 = α+(γ ) and α2 = α−(γ ). We define

ũ(x) := u(x)− l1x1|x |−α+(γ ) for all x ∈ Rn
+
.

to obtain that −1ũ− ũγ /|x |2 = 0 in Rn
+

, ũ = 0 on ∂Rn
+

, and ũ(x)= o(x1|x |−α+(γ )) as x→ 0. Arguing
as in the proof of Lemma 6.3, we get that ũ ∈ D1,2(Rn

+
)loc,0 and ũ(x) = O(x1|x |−α−(γ )) as x → 0.

Moreover, we have that ũ(x) = (l2 + o(1))x1|x |−α−(γ ) as |x | → +∞; therefore ũ(x) > 0 for |x | � 1.
Since ũ ∈ D1,2(Rn

+
)loc,0, the comparison principle then yields ũ > 0 everywhere. We also have that

ũ(x)≤ Cx1|x |−α−(γ ) for all x ∈ Rn
+

. It then follows from Lemma 4.2 that there exists λ− ≥ 0 such that
ũ(x)= λ−x1|x |−α−(γ ) for all x ∈ Rn

+
, from which Proposition 6.4 follows. �

7. The Hardy singular boundary mass of a domain � when 0 ∈ ∂�

We shall proceed in the following theorem to define the mass of a smooth bounded domain � of Rn such
as 0 ∈ ∂�. It will involve the expansion of positive singular solutions of the Dirichlet boundary problem
Lγ u = 0.

Theorem 7.1. Let � be a smooth bounded domain � of Rn such as 0 ∈ ∂�, and assume that 1
4(n

2
−1) <

γ <γH (�). Then, up to multiplication by a positive constant, there exists a unique function H ∈C2(�\{0})
such that 

−1H −
γ

|x |2
H = 0 in �,

H > 0 in �,

H = 0 on ∂� \ {0}.

(7-1)

Moreover, there exists c1 > 0 and c2 ∈ R such that

H(x)= c1
d(x, ∂�)
|x |α+(γ )

+ c2
d(x, ∂�)
|x |α−(γ )

+ o
(

d(x, ∂�)
|x |α−(γ )

)
as x→ 0. (7-2)

The quantity mγ (�) := c2/c1 ∈ R, which is independent of the choice of H satisfying (7-1), will be called
the Hardy b-mass of � associated to Lγ .

Proof. First, we start by constructing a singular solution H0 for (7-1). For that, consider uα+(γ ) as in
(4-14) and let η ∈ C∞c (R

n) be such that η(x)= 1 for x ∈ Bδ/2(0) and η(x)= 0 for x ∈ Rn
\ Bδ(0). Set

f := −1(ηuα+(γ ))−
γ

|x |2
(ηuα+(γ )) in � \ {0}.

It follows from (4-19) and (4-5) that f is smooth outside 0 and that

f (x)= O
(
d(x, ∂�)|x |−α+(γ )−1)

= O(|x |−α+(γ )) in �∩ Bδ/2(0).

Since γ > 1
4(n

2
− 1), we have that α+(γ ) < 1

2(n + 1), and therefore f ∈ L2n/(n+2)(�) = (L2?(�))′ ⊂

(D1,2(�))′. It then follows from the coercivity assumption γ < γH (�) that there exists v ∈ D1,2(�)

such that
−1v−

γ

|x |2
v = f in (D1,2(�))′.
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Let v1, v2 ∈ D1,2(�) be such that

−1v1−
γ

|x |2
v1 = f+ and −1v2−

γ

|x |2
v2 = f− in (D1,2(�))′. (7-3)

In particular, v = v1− v2 and v1, v2 ∈ C1(� \ {0}), and they vanish on ∂� \ {0}.

Assume that f+ 6≡ 0. Since f+ ≥ 0, the comparison principle yields v1 > 0 on � \ {0} and ∂νv1 < 0 on
∂� \ {0}. Therefore, for any δ > 0 small enough, there exists C(δ) > 0 such that v1(x)≥ C(δ)d(x, ∂�)
for all x ∈ ∂Bδ(0)∩�. Let uα−(γ ),− be the subsolution defined in (4-4). It follows from the asymptotic
(4-5) that there exists C ′(δ) > 0 such that v1 ≥ C ′(δ)uα−(γ ),− in ∂Bδ(0)∩�. Since this inequality also
holds on ∂(Bδ(0)∩�) and(

−1−
γ

|x |2

)
(v1−C ′(δ)uα−(γ ),−)≥ 0 in Bδ(0)∩�,

coercivity and the maximum principle yield v1 ≥ C ′(δ)uα−(γ ),− in Bδ(0)∩�. It then follows from (4-5)
that there exists c > 0 such that

v1(x)≥ c · d(x, ∂�)|x |−α−(γ ) in Bδ(0)∩�.

Therefore, we have for x ∈ Bδ(0)∩�,

f+(x)≤ Cd(x, ∂�)|x |−α+(γ )−1
≤

C
c
|x |α−(γ )−α+(γ )−1v1(x)≤

C
c
|x |α−(γ )−α+(γ )+1 v1(x)

|x |2
.

Therefore, (7-3) yields

−1v1+
γ + O(|x |α−(γ )−α+(γ )+1)

|x |2
v1 = 0 in Bδ(0)∩�.

Since γ > 1
4(n

2
− 1), we have that α−(γ )− α+(γ )+ 1 > 0. Since v1 ∈ D1,2(�), v1 ≥ 0 and v1 6≡ 0, it

follows from Theorem 4.1 that there exists K1 > 0 such that

v1(x)= K1
d(x, ∂�)
|x |α−(γ )

+ o
(

d(x, ∂�)
|x |α−(γ )

)
as x→ 0. (7-4)

If f+ ≡ 0, then v1 ≡ 0 and (7-4) holds with K1 = 0. Arguing similarly for f−, and using that v = v1−v2,
we then get that there exists K ∈ R such that

v(x)=−K
d(x, ∂�)
|x |α−(γ )

+ o
(

d(x, ∂�)
|x |α−(γ )

)
as x→ 0. (7-5)

Set

H0(x) := η(x)uα+(γ )(x)− v(x) for all x ∈� \ {0}. (7-6)

It follows from the definition of v and the regularity outside 0 that

−1H0−
γ

|x |2
H0 = 0 in �, H0(x)= 0 in ∂� \ {0}.
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Moreover, the asymptotics (4-5) and (7-5) yield H0(x) > 0 on �∩ Bδ′(0) for some δ′ > 0 small enough.
It follows from the comparison principle that H0 > 0 in �.

We now perform an expansion of H0. First note that from the definition (4-14) of uα+(γ ), the asymptotic
(7-5) of v and the fact that α+(γ )−α−(γ ) < 1, we have

H0(x)=
d(x, ∂�)
|x |α+(γ )

(1+O(|x |))+K
d(x, ∂�)
|x |α−(γ )

+o
(

d(x, ∂�)
|x |α−(γ )

)
=

d(x, ∂�)
|x |α+(γ )

+K
d(x, ∂�)
|x |α−(γ )

+o
(

d(x, ∂�)
|x |α−(γ )

)
as x→ 0. In particular, since in addition H0 > 0 in �, there exists c > 1 such that

1
c

d(x, ∂�)
|x |α+(γ )

≤ H0(x)≤ c
d(x, ∂�)
|x |α+(γ )

for all x ∈�. (7-7)

Finally, we establish the uniqueness. For that, we let H ∈ C2(� \ {0}) be as in (7-1) and set

λ0 :=max{λ≥ 0 : H ≥ λH0}.

The number λ0 is clearly defined, and so we set H̃ := H − λ0 H0 ≥ 0. Assume that H̃ 6≡ 0. Since
−1H̃ − γ |x |−2 H̃ = 0, it follows from Theorem 6.1 that there exists α ∈ {α+(γ ), α−(γ )} and K > 0
such that

H(x)∼x→0 K
d(x, ∂�)
|x |α

. (7-8)

If α = α−(γ ), then H̃ ∈ D1,2(�) is a variational solution to −1H̃ − H̃γ /|x |2 = 0 in �. The coercivity
then yields that H̃ ≡ 0, contradicting the initial hypothesis.

Therefore α = α+(γ ). Since H̃ > 0 vanishes on ∂� \ {0}, we have that for any δ > 0, there exists
c(δ) > 0 such that

H̃(x)≥ c(δ)d(x, ∂�) for x ∈� \ Bδ(0). (7-9)

Therefore, (7-8), (7-9) and (7-7) yield the existence of c> 0 such that H̃ ≥ cH0, and then H ≥ (λ0+c)H0,
contradicting the definition of λ0. It follows that H̃ ≡ 0, which means that H = λ0 H0 for some λ0 > 0.
This proves uniqueness and completes the proof of Theorem 7.1. �

Now we establish the monotonicity of the mass with respect to set inclusion.

Proposition 7.2. The mass mγ is a strictly increasing set-function in the following sense: Assume �1, �2

are two smooth bounded domains such that 0 ∈ ∂�1 ∩ ∂�2, and 1
4(n

2
− 1) < γ <min{γH (�1), γH (�2)}.

Then
�1 (�2 =⇒ mγ (�1) < mγ (�2). (7-10)

Moreover, if �( Rn
+

and 1
4(n

2
− 1) < γ < 1

4 n2, then mγ (�) < 0.

Proof. It follows from the definition of the mass that for i = 1, 2, there exists Hi ∈C2(�i \ {0}) such that
−1Hi −

γ

|x |2
Hi = 0 in �i ,

Hi > 0 in �i ,

Hi = 0 on ∂�i ,

(7-11)
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with

Hi (x)=
d(x, ∂�i )

|x |α+(γ )
+mγ (�i )

d(x, ∂�i )

|x |α−(γ )
+ o

(
d(x, ∂�i )

|x |α−(γ )

)
(7-12)

as x→ 0, x ∈�i . Set h := H2− H1 on �1. Since �1 (�2, we have that−1h−
γ

|x |2
h = 0 in �1,

h ≥ 0, h 6≡ 0 on ∂�1.
(7-13)

First, we claim that h ∈ H 1,2(�1). Indeed, it follows from the construction of the singular function in
(7-6) that there exists w ∈ H 1,2(�1) such that

h(x)=
d(x, ∂�2)− d(x, ∂�1)

|x |α+(γ )
+w(x) for all x ∈�1. (7-14)

Since �1 ⊂�2 and 0 is on the boundary of both domains, the tangent spaces at 0 of �1 and �2 are equal,
and one gets that d(x, ∂�1)−d(x, ∂�2)= O(|x |2) as x→ 0. Since α+(γ )−α−(γ ) < 1, we then get that

h̃(x) :=
d(x, ∂�2)− d(x, ∂�1)

|x |α+(γ )
= O(|x |1−α−(γ )) as x→ 0.

Similarly, |∇h̃(x)| = O(|x |−α−(γ )) as x→ 0. Therefore, we deduce that h̃ ∈ H 1,2(�1). It then follows
from (7-14) that h ∈ H 1,2(�1).

To prove the monotonicity, note first that since γ < γH (�1) and h ∈ H 1,2(�1), it follows from
(7-13) and the comparison principle that h ≥ 0 in �1 (indeed, this is obtained by multiplying (7-13) by
h− ∈ D2

1(�) and integrating; therefore, coercivity yields h− ≡ 0). Since h 6≡ 0, it follows from Hopf’s
maximum principle that for any δ > 0 small, there exists C(δ) > 0 such that h(x)≥ C(δ)d(x, ∂�1) for
all x ∈ ∂Bδ(0)∩�1. We define the subsolution uα−(γ ),− as in Proposition 4.3. It then follows from the
inequality above and the asymptotics in (4-5) that there exists ε0 > 0 such that h(x) ≥ 2ε0uα−(γ ),−(x)
for all x ∈ ∂Bδ(0)∩�1. This inequality also holds on Bδ(0)∩ ∂�1 since uα−(γ ),− vanishes on ∂�1. It
then follows from the maximum principle that h(x) ≥ 2ε0uα−(γ ),−(x) for all x ∈ Bδ(0)∩�1. With the
definition of h and the asymptotic (4-5), we then have that for δ′ > 0 small enough

H2(x)− H1(x)≥ ε0
d(x, ∂�1)

|x |α−(γ )
for all x ∈ Bδ′(0)∩�1. (7-15)

We let Eν be the inner unit normal vector of ∂�1 at 0. This is also the inner unit normal vector of ∂�2 at 0.
Therefore, for any t > 0 small enough, we have that d(tEν, ∂�i )= t for i = 1, 2. It then follows from the
expressions (7-12) and (7-15) that

(mγ (�2)−mγ (�1))
t

tα−(γ )
+ o

(
t

tα−(γ )

)
≥ ε0

t
tα−(γ )

as t ↓ 0.

We then get that mγ (�2)−mγ (�1)≥ ε0, and therefore mγ (�2) >mγ (�1). This proves (7-10) and ends
the first part of Proposition 7.2.

The proof of the second part is similar. Indeed, we take �2 := Rn
+

and we define H2(x) := x1/|x |α+(γ ).
Arguing as above, we get that 0> mγ (�), which completes the proof of Proposition 7.2. �
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Note that we have used above that the mass mγ (R
n
+
) is 0 even though we had only defined the mass

for bounded sets. In the rest of the section, we shall extend the notion of mass to certain unbounded sets
that include Rn

+
. For that, we shall use the Kelvin transformation, defined as follows: for any x0 ∈ Rn, let

ix0(x) := x0+ |x0|
2 x − x0

|x − x0|2
for all x ∈ Rn

\ {x0}. (7-16)

The inversion ix0 is clearly the identity map on ∂B|x0|(x0) (the ball of center x0 and of radius |x0|), and in
particular ix0(0)= 0.

Definition 7.3. We say that a domain � ⊂ Rn (0 ∈ ∂�) is conformally bounded if there exists x0 6∈ �

such that ix0(�) is a smooth bounded domain of Rn having both 0 and x0 on its boundary ∂(ix0(�)).

One can easily check that Rn
+

is a smooth domain at infinity. For instance, take x0 := (−1, 0, . . . , 0). The
following proposition shows that the notion of mass extends to unbounded domains that are conformally
bounded.

Proposition 7.4. Let � be a conformally bounded domain in Rn such that 0 ∈ ∂�. Assume that γH (�) >
1
4(n

2
− 1) and that γ ∈

( 1
4(n

2
− 1), γH (�)

)
. Then, up to a multiplicative constant, there exists a unique

function H ∈ C2(� \ {0}) such that
−1H −

γ

|x |2
H = 0 in �,

H > 0 in �,

H = 0 on ∂� \ {0},

H(x)≤ C |x |1−α+(γ ) for x ∈�.

(7-17)

Moreover, there exists c1 > 0 and c2 ∈ R such that

H(x)= c1
d(x, ∂�)
|x |α+(γ )

+ c2
d(x, ∂�)
|x |α−(γ )

+ o
(

d(x, ∂�)
|x |α−(γ )

)
as x→ 0.

We define the mass bγ (�) := c2/c1, which is independent of the choice of H in (7-17).

Proof. For convenience, up to a rotation and a dilation, we can assume that x0 := (−1, 0, . . . , 0) ∈ Rn so
that the inversion becomes

i(x) := x0+
x − x0

|x − x0|2
for all x ∈ Rn

\ {x0}.

For any u ∈ C2(U ), with U ⊂ Rn, we define its Kelvin transform û : Û → R by

û(x) := |x − x0|
2−nu(i(x)) for all x ∈ Û := i−1(U \ {x0}).

This transform leaves the Laplacian invariant in the following sense:

−1û(x)= |x − x0|
−(n+2)(−1u)(i(x)) for all x ∈ Û. (7-18)
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Define �̃ := i(�) and suppose u ∈ C2(� \ {0}) is such that
−1u−

γ

|x |2
u = 0 in �,

u > 0 in �,

u = 0 on ∂�.

The Kelvin transform ũ of u then satisfies

−1ũ− V ũ = 0 in �̃,

where
V (x) :=

γ

|x |2 |x − x0|2
for x ∈ Rn

\ {0, x0}. (7-19)

It is easy to check that

V (x)=
γ + O(|x |)
|x |2

as x→ 0 and V (x)=
γ + O(|x − x0|)

|x − x0|2
as x→ x0.

In other words, the Kelvin transform allows us to reduce the study of the Hardy-singular boundary mass of a
conformally bounded domain � into defining a notion of mass for the Schrödinger operator −1+V on �̃.

Note that the coercivity of −1− γ |x |−2 on � (since γ < γH (�)) yields the coercivity of −1− V
on �̃; that is, there exists c0 > 0 such that∫

�̃

(|∇u|2− V (x)u2) dx ≥ c0

∫
�̃

|∇u|2 dx for all u ∈ D1,2(�̃).

Arguing as is Section 4, we get for δ > 0 small enough, a function uα+ satisfying
(−1− V )uα+ = O(d(x, ∂�̃)|x |−α+(γ )−1) in �̃∩ B̃δ,
uα+ > 0 in �̃∩ B̃δ,
uα+ = 0 on ∂�̃ \ {0},

and

uα+(x)=
d(x, ∂�̃)
|x |α+(γ )

(1+ O(|x |) as x→ 0.

The function f0 := −1uα+ − V uα+ then satisfies for all x ∈ �̃∩ B̃δ,

| f0(x)| ≤ Cd(x, ∂�̃)|x |−α+(γ )−1
≤ C |x |−α+(γ ),

where C is a positive constant. Since γ > 1
4(n

2
− 1), it follows that f0 ∈ L2n/(n+2)(�̃). Let now

v0 ∈ D1,2(�̃) be such that

−1v0− V v0 = f0 weakly in D1,2(�̃). (7-20)

The existence follows from the coercivity of−1−V on �̃, and the proof of Theorem 7.1 yields that |v0(x)|
is bounded by |x |1−α−(γ ) around 0. Note that around x0, we have −1v0− V v0 = 0 and the regularity
theorem, Theorem 5.1, yields a control by |x − x0|

1−α−(γ ), which means that there exists C > 0 such that

|v0(x)| ≤ Cd(x, ∂�̃)
(
|x |−α−(γ )+ |x − x0|

−α−(γ )
)

for all x ∈ �̃.
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The construction of the mass, Theorem 7.1, and the regularity theorem, Theorem 5.1, then yield that
there exists K0 ∈ R such that

v0(x)= K0
d(x, ∂�̃)
|x |α−(γ )

+ o
(

d(x, ∂�̃)
|x |α−(γ )

)
. (7-21)

Define now H̃0(x) := uα+(γ )(x)− v0(x) for all x ∈ �̃ \ {0, x0}, and consider its Kelvin transform

H0(x) := |x − x0|
2−n H̃0(i(x))= |x − x0|

2−n(uα+(γ )− v0)(i(x)), x ∈�. (7-22)

It follows from (7-18) and the definitions of uα+(γ ) and v0 that H0 satisfies the properties
−1H0−

γ

|x |2
H0 = 0 in �,

H0 > 0 in �,

H0 = 0 in ∂� \ {0}.

(7-23)

Concerning the pointwise behavior, we have that

H0(x)=
d(x, ∂�)
|x |α+

− K0
d(x, ∂�)
|x |α−

+ o
(

d(x, ∂�)
|x |α−

)
as x→ 0, x ∈�, (7-24)

and

H0(x)≤ C |x |1−α+ for all x ∈�, |x |> 1. (7-25)

This proves the existence part in Proposition 7.4. In order to show uniqueness, we let H ∈ C2(�\ {0}) be
as in Proposition 7.4, and consider its Kelvin transform H̃(x) := |x−x0|

2−n H(i(x)) for all x ∈ �̃\{0, x0}.
The transformation law (7-18) yields

−1H̃ − V H̃ = 0 in �̃,
H̃ > 0 in �̃,
H̃ = 0 in ∂�̃ \ {0, x0}.

(7-26)

Moreover, we have that H̃(x) ≤ C |x |1−α+(γ ) + C |x − x0|
1−α−(γ ) for all x ∈ �̃. It then follows from

Theorem 6.1 that there exist C1,C2 > 0 such that

H̃(x)∼x→0 C1
d(x, ∂�̃)
|x |α

and H̃(x)∼x→x0 C2
d(x, ∂�̃)
|x − x0|α−(γ )

, (7-27)

where α ∈ {α−(γ ), α+(γ )}. We claim that α = α+(γ ). Indeed, otherwise, we would have H̃ ∈ D1,2(�̃)

(see Theorem 6.1) and then (7-26) and coercivity would yield H̃ ≡ 0, which is a contradiction. Therefore
α = α+(γ ). By the same reasoning, the estimates (7-27) hold for H̃0 (with different constants C1,C2).
Arguing as in the proof of Theorem 7.1, we get that there exists λ > 0 such that H̃ = λH̃0, and therefore
H = λH0. This proves uniqueness and completes the proof of Proposition 7.4. �

Note that as a consequence of (7-24), the mass mγ (�) is well-defined and is equal to −K0.
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8. Test functions and the existence of extremals

Let � be a domain of Rn such that 0 ∈ ∂�. For γ ∈ R and s ∈ [0, 2), recall that

µγ,s(�) := inf
u∈D1,2(�)\{0}

J�γ,s(u), (8-1)

where

J�γ,s(u) :=

∫
�
(|∇u|2− u2γ /|x |2) dx(∫
�
|u|2?/|x |s dx

)2/2? .

Note that critical points u ∈ D1,2(�) of J�γ,s are weak solutions to the PDE

−1u−
γ

|x |2
= λ
|u|2

?
−2u
|x |s

for some λ ∈ R, (8-2)

which can be rescaled to be equal to 1 if λ > 0 and to be −1 if λ < 0. In this section, we investigate the
existence of minimizers for J�γ,s . We start with the following easy case, where we do not have extremals.

Proposition 8.1. Let �⊂ Rn be a smooth domain such that 0 ∈ ∂� (no boundedness is assumed). When
s = 0 and γ ≤ 0, we have that µγ,0(�)= 1/K (n, 2)2 (where 1/K (n, 2)2 = µ0,0(R

n) is the best constant
in the Sobolev inequality (1-19)) and there is no extremal.

Proof. Note that 2?(s)= 2?(0)= 2?. Since γ ≤ 0, we have for any u ∈ C∞c (�) \ {0},∫
�
(|∇u|2− u2γ /|x |2) dx(∫

�
|u|2? dx

)2/2? ≥

∫
�
|∇u|2 dx(∫

�
|u|2? dx

)2/2? ≥
1

K (n, 2)2
, (8-3)

and therefore µγ,0(�)≥ 1/K (n, 2)2. Fix now x0 ∈� and let η ∈C∞c (�) be such that η(x)= 1 around x0.
Set

uε(x) := η(x)
(

ε

ε2+ |x − x0|2

)(n−2)/2

for all x ∈� and ε >0. Since x0 6=0, it is classical (see, for example, [Aubin 1976]) that limε→0 J�0,0(uε)=
1/K (n, 2)2. It follows that µγ,0(�)≤ 1/K (n, 2)2. This proves that µγ,0(�)= 1/K (n, 2)2.

Assume now that there exists an extremal u0 for µγ,0(�) in D1,2(�) \ {0}. It then follows from
(8-3) that u0 ∈ D1,2(�)⊂ D1,2(Rn) is an extremal for the classical Sobolev inequality on Rn. But these
extremals are known (see [Aubin 1976]) and their support is the whole of Rn , which is a contradiction
since u0 has bounded support in �. It follows that there is no extremal for µγ,0(�). �

The remainder of the section is devoted to the proof of the following.

Theorem 8.2. Let � be a smooth bounded domain in Rn (n ≥ 3) such that 0 ∈ ∂� and let 0≤ s < 2 and
γ < 1

4 n2. Assume that either s > 0, or that {s= 0, n≥ 4 and γ > 0}. There are then extremals for µγ,s(�)
under one of the following two conditions:

(1) γ ≤ 1
4(n

2
− 1) and the mean curvature of ∂� at 0 is negative.

(2) γ > 1
4(n

2
− 1) and the mass mγ (�) of � is positive.
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Moreover, if γ < γH (�) (resp., γ ≥ γH (�)), then such extremals are positive solutions for (8-2) with
λ > 0 (resp., λ≤ 0).

The remaining case n= 3, s= 0 and γ > 0 will be dealt with in Section 10.

According to Theorem 3.6, in order to establish existence of extremals, it suffices to show that
µγ,s(�) < µγ,s(R

n
+
). The rest of the section consists in showing that the above-mentioned geometric

conditions lead to such a gap. The existence of extremals on Rn
+

as described in Proposition 1.3 is essential
here.

In the sequel, h�(0) will denote the mean curvature of ∂� at 0. The orientation is chosen such that the
mean curvature of the canonical sphere (as the boundary of the ball) is positive. Since {s > 0}, or {s= 0,
n≥ 4 and γ > 0}, it follows from Proposition 1.3 that there are extremals for µγ,s(Rn

+
). The following

proposition combined with Theorem 3.6 clearly yield the claims in Theorem 8.2.

Proposition 8.3. We fix γ < 1
4 n2. Assume that there are extremals for µγ,s(Rn

+
). There exist then two

families (u1
ε)ε>0 and (u2

ε)ε>0 in D1,2(�), and two positive constants c1
γ,s and c2

γ,s such that:

(1) For γ < 1
4(n

2
− 1), we have that

J (u1
ε)= µγ,s(R

n
+
)
(
1+ c1

γ,s · h�(0) · ε+ o(ε)
)

when ε→ 0. (8-4)

(2) For γ = 1
4(n

2
− 1), we have that

J (u1
ε)= µγ,s(R

n
+
)
(

1+ c1
γ,s · h�(0) · ε ln 1

ε
+ o

(
ε ln 1

ε

))
when ε→ 0. (8-5)

(3) For γ > 1
4(n

2
− 1), we have as ε→ 0, that

J (u2
ε)= µγ,s(R

n
+
)
(
1− c2

γ,s ·mγ (�) · ε
α+(γ )−α−(γ )+ o(εα+(γ )−α−(γ ))

)
. (8-6)

Remark. When γ < 1
4(n

2
−1), this result is due to Chern and Lin [2010]. Actually, they stated the result

for γ < 1
4(n− 2)2, but their proof works for γ < 1

4(n
2
− 1). However, when γ ≥ 1

4(n
2
− 1), we need the

exact asymptotic profile of U that was described by Corollary 5.3.

Proof. By assumption, there exists U ∈ D1,2(Rn
+
) \ {0}, U ≥ 0, that is a minimizer for µγ,s(Rn

+
). In other

words,

J
Rn
+

γ,s (U )=

∫
Rn
+

(|∇U |2−U 2γ /|x |2) dx(∫
Rn
+

|U |2?(s)/|x |s dx
)2/2?(s) = µγ,s(R

n
+
).

Therefore, there exists λ > 0 such that
−1U −

γ

|x |2
U = λ

U 2?(s)−1

|x |s
in Rn

+
,

U > 0 in Rn
+
,

U = 0 in ∂Rn
+
,

(8-7)

and there exist K1, K2 > 0 such that

U (x)∼x→0 K1
x1

|x |α−
and U (x)∼|x |→+∞ K2

x1

|x |α+
, (8-8)
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where here and in the sequel, we write for convenience

α+ := α+(γ ) and α− := α−(γ ).

In particular, it follows from Lemma 5.2 (after reducing all limits to happen at 0 via the Kelvin transform)
that there exists C > 0 such that

U (x)≤ Cx1|x |−α+ and |∇U (x)| ≤ C |x |−α+ for all x ∈ Rn
+
. (8-9)

We shall now construct a suitable test function for each range of γ . First note that

γ < 1
4(n

2
− 1) ⇐⇒ α+−α− > 1,

γ = 1
4(n

2
− 1) ⇐⇒ α+−α− = 1.

Concerning terminology, here and in the sequel, we define as in (4-6)

B̃r := (−r, r)× B(n−1)
r (0)⊂ R×Rn−1

for all r > 0 and
V+ := V ∩Rn

+

for all V ⊂ Rn. Since � is smooth, up to a rotation, there exist δ > 0 and ϕ0 : B
(n−1)
δ (0)→ R such that

ϕ0(0)= |∇ϕ0(0)| = 0 and
ϕ : B̃3δ→ Rn,

(x1, x ′) 7→ (x1+ϕ0(x ′), x ′),
(8-10)

that realizes a diffeomorphism onto its image and such that

ϕ(B̃3δ ∩Rn
+
)= ϕ(B̃3δ)∩� and ϕ(B̃3δ ∩ ∂Rn

+
)= ϕ(B̃3δ)∩ ∂�.

Let η ∈ C∞c (R
n) be such that η(x)= 1 for all x ∈ B̃δ and η(x)= 0 for all x 6∈ B̃2δ.

Case 1: γ ≤ 1
4(n

2
− 1). As in [Chern and Lin 2010], for any ε > 0, we define

uε(x) :=
(
ηε−(n−2)/2U (ε−1x)

)
◦ϕ−1(x) for x ∈ ϕ(B̃2δ)∩� and 0 elsewhere.

This case is devoted to giving a Taylor expansion of J�γ,s(uε) as ε → 0. In the sequel, we adopt the
following notation: given (aε)ε>0 ∈ R, let 2γ (aε) denote a quantity such that, as ε→ 0,

2γ (aε) :=
{

o(aε) if γ < 1
4(n

2
− 1),

O(aε) if γ = 1
4(n

2
− 1).

A. Estimate of
∫
�
|∇uε |2 dx . It follows from (8-9) that

|∇uε(x)| ≤ Cεα+−n/2
|x |−α+ for all x ∈� and ε > 0. (8-11)

Therefore,
∫
ϕ((B̃3δ\B̃δ)∩Rn

+)
|∇uε |2 dx =2γ (ε) as ε→ 0. It follows that∫

�

|∇uε |2 dx =
∫

B̃δ,+
|∇(uε ◦ϕ)|2ϕ?Eucl|Jacϕ| dx +2γ (ε) as ε→ 0,
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where B̃δ,+ := B̃δ ∩Rn
+

. The definition (8-10) of ϕ yields Jacϕ = 1. Moreover, for any θ ∈ (0, 1), we
have as x→ 0,

ϕ?Eucl :=
(

1 ∂jϕ0

∂iϕ0 δi j+∂iϕ0 ∂jϕ0

)
= Id+ H + O(|x |1+θ ),

where

H :=
(

0 ∂jϕ0

∂iϕ0 0

)
.

It follows that∫
�

|∇uε |2 dx =
∫

B̃δ,+
|∇(uε ◦ϕ)|2Eucl dx −

∫
B̃δ,+

H i j∂i (uε ◦ϕ)∂j (uε ◦ϕ) dx

+O
(∫

B̃δ,+
|x |1+θ |∇(uε ◦ϕ)|2 dx

)
+2γ (ε) as ε→ 0. (8-12)

We have that∫
B̃δ,+

H i j∂i (uε◦ϕ)∂j (uε◦ϕ)dx

= 2
∑
i≥2

∫
B̃δ,+

H 1i∂1(uε◦ϕ)∂i (uε◦ϕ)dx = 2
∑
i≥2

∫
B̃δ,+
∂iϕ0(x ′)∂1(uε◦ϕ)∂i (uε◦ϕ)dx

= 2
∑

i, j≥2

∫
B̃δ,+
∂i jϕ0(0)(x ′) j∂1(uε◦ϕ)∂i (uε◦ϕ)dx+O

(∫
B̃δ,+
|x |2|∇(uε◦ϕ)|2 dx

)
as ε→ 0. (8-13)

We let II be the second fundamental form at 0 of the oriented boundary ∂�. By definition, for any
X, Y ∈ T0∂�, we have that

II(X, Y ) := (dEν0(X), Y )Eucl,

where Eν : ∂�→Rn is the outer unit normal vector of ∂�. In particular, we have that Eν(0)= (−1, 0, · , 0).
For any i, j ≥ 2, we have that

IIi j := II(∂iϕ(0), ∂jϕ(0))=
(
∂i (Eν ◦ϕ)(0), ∂jϕ(0)

)
=−(Eν(0), ∂i jϕ(0))= ∂i jϕ0(0).

Plugging (8-13) in (8-12), and using a change of variables, we get that∫
�

|∇uε |2 dx =
∫

B̃
ε−1δ,+

|∇U |2 dx − 2IIi j

∑
i, j≥2

∫
B̃
ε−1δ,+

(x ′) j∂1U∂iU dx

+O
(∫

B̃δ,+
|x |1+θ |∇(uε ◦ϕ)|2 dx

)
+2γ (ε) as ε→ 0. (8-14)

We now choose θ in the following way:

(i) If γ < 1
4(n

2
− 1), then take θ in (0, α+−α−− 1).

(ii) If γ = 1
4(n

2
− 1), take θ ∈ (0, 1).
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In both cases, we get by using (8-11), that∫
B̃δ,+
|x |1+θ |∇(uε ◦ϕ)|2 dx =2γ (ε) as ε→ 0. (8-15)

Moreover, using (8-9), we have that∫
B̃
ε−1δ,+

|∇U |2 dx =
∫

Rn
+

|∇U |2 dx +2γ (ε) as ε→ 0. (8-16)

Plugging together (8-14)–(8-16) yields∫
�

|∇uε |2 dx =
∫

Rn
+

|∇U |2 dx − 2I Ii j

∑
i, j≥2

∫
B̃
ε−1δ,+

(x ′) j∂1U∂iU dx +2γ (ε). (8-17)

B. Estimate for
∫
�
|uε |2

?(s)/|x |s dx. Fix σ ∈ [0, 2]. We will apply the estimates below to σ = s ∈ [0, 2)
or to σ := 2. The first estimate in (8-9) yields

|uε(x)| ≤ Cεα+−n/2d(x, ∂�)|x |−α+ ≤ Cεα+−n/2
|x |1−α+ (8-18)

for all ε > 0 and all x ∈�. Since Jacϕ = 1, this estimate then yields∫
�

|uε |2
?(σ )

|x |σ
dx =

∫
ϕ(B̃δ,+)

|uε |2
?(σ )

|x |σ
dx +2γ (ε)

=

∫
B̃δ,+

|uε ◦ϕ|2
?(σ )

|ϕ(x)|σ
dx +2γ (ε) as ε→ 0. (8-19)

If γ < 1
4(n

2
− 1) or if γ = 1

4(n
2
− 1) and σ < 2, we choose θ ∈

(
0, (α+− α−)2?(σ )/2− 1

)
∩ (0, 1). If

γ = 1
4(n

2
−1) and σ = 2, we choose any θ ∈ (0, 1). Using the expression of ϕ(x1, x ′), a Taylor expansion

yields

|ϕ(x)|−σ = |x |−σ
(

1−
σ

2
x1

|x |2
∑

i, j≥2

∂i jϕ0(0)(x ′)i (x ′) j
+ O(|x |1+θ )

)
as ε→ 0. (8-20)

The choice of θ yields ∫
B̃δ,+

|uε ◦ϕ|2
?(σ )

|ϕ(x)|σ
|x |1+θ dx =2γ (ε) as ε→ 0. (8-21)

Putting together (8-19)–(8-21), using a change of variable and (8-9), we get as ε→ 0 that∫
�

|uε |2
?(σ )

|x |σ
dx =

∫
Rn
+

|U |2
?(σ )

|x |σ
dx −

σ

2

∑
i, j≥2

ε IIi j

∫
B̃
ε−1δ,+

|U |2
?(σ )

|x |σ
x1

|x |2
(x ′)i (x ′) j dx +2γ (ε). (8-22)

We now compute the terms in U by using its symmetry property established in [Chern and Lin 2010].
Indeed, there exists Ũ : (0,+∞)×R such that U (x1, x ′)= Ũ (x1, |x ′|) for all (x1, x ′) ∈ Rn

+
. Therefore,
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for any i, j ≥ 2, we get that∫
B̃
ε−1δ,+

|U |2
?(σ )

|x |σ
x1

|x |2
(x ′)i (x ′) j dx =

δi j

n− 1

∫
B̃
ε−1δ,+

|U |2
?(σ )

|x |σ
x1

|x |2
|x ′|2 dx

and that ∫
B̃
ε−1δ,+

(x ′) j ∂1U ∂iU dx =
δi j

n− 1

∫
B̃
ε−1δ,+

∂1U (x ′,∇U ) dx,

where x = (x1, x ′) ∈ Rn
+

. Therefore, the identities (8-17) and (8-22) can be rewritten as∫
�

|∇uε |2 dx =
∫

Rn
+

|∇U |2 dx −
2h�(0)
n− 1

ε

∫
B̃
ε−1δ,+

∂1U (x ′,∇U ) dx +2γ (ε) (8-23)

and ∫
�

|uε |2
?(σ )

|x |σ
dx =

∫
Rn
+

|U |2
?(σ )

|x |σ
dx −

σh�(0)
2(n− 1)

ε

∫
B̃
ε−1δ,+

|U |2
?(σ )

|x |σ
x1

|x |2
|x ′|2 dx +2γ (ε) (8-24)

as ε→ 0, where h�(0)=
∑

i IIi i is the mean curvature at 0.

C. An intermediate identity. We now claim that as ε→ 0,∫
B̃
ε−1δ,+

∂1U (x ′,∇U ) dx

=

∫
B̃
ε−1δ,+

|x ′|2x1

2|x |2

(
λ

s
2?(s)

U 2?(s)

|x |s
+ γ

U 2

|x |2

)
dx −

∫
∂Rn
+∩B̃

ε−1δ

|x ′|2(∂1U )2

4
dx +2γ (1), (8-25)

where λ > 0 is as in (8-7). This was shown by Chern and Lin [2010], and we include it for the sake of
completeness. Here and in the sequel, νi denotes the i-th coordinate of the direct outward normal vector
on the boundary of the relevant domain (for instance, on ∂Rn

+
, we have that νi =−δ1i ). We write∫

B̃
ε−1δ,+

∂1U (x ′,∇U )dx =
∑
j≥2

∫
B̃
ε−1δ,+

∂1U (x ′) j ∂jU dx

=

∑
j≥2

∫
B̃
ε−1δ,+

∂1U ∂j

(
|x ′|2

2

)
∂jU dx

=

∑
j≥2

∫
∂(B̃

ε−1δ,+)

∂1U
|x ′|2

2
∂jUν j dσ−

∑
j≥2

∫
B̃
ε−1δ,+

|x ′|2

2
∂j (∂1U ∂jU )dx

=

∑
j≥2

∫
∂Rn
+∩B̃

ε−1δ

∂1U
|x ′|2

2
∂jUν j dσ+O

(∫
Rn
+∩∂ B̃

ε−1δ

|x ′|2 |∇U |2(x)dσ
)

−

∑
j≥2

∫
B̃
ε−1δ,+

|x ′|2

2
(∂1 jU ∂jU+∂1U ∂j jU )dx . (8-26)
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Since U (0, x ′)= 0 for all x ′ ∈Rn−1, using the upper-bound (8-9) and writing ∇ ′= (∂2, . . . , ∂n), we get that∫
B̃
ε−1δ,+

∂1U (x ′,∇U ) dx =−
∑
j≥2

∫
B̃
ε−1δ,+

|x ′|2

2
(∂1 jU ∂jU + ∂1U ∂j jU ) dx+2γ (1)

=−

∫
B̃
ε−1δ,+

|x ′|2

4
∂1(|∇

′U |2) dx +
∫

B̃
ε−1δ,+

|x ′|2

2
∂1U (−1U + ∂11U ) dx+2γ (1)

=−

∫
∂(B̃

ε−1δ,+)

|x ′|2 |∇ ′U |2

4
ν1 dx +

∫
B̃
ε−1δ,+

|x ′|2

2
∂1U (−1U ) dx

+

∫
B̃
ε−1δ,+

∂1

(
|x ′|2(∂1U )2

4

)
dx+2γ (1). (8-27)

Using again that U vanishes on ∂Rn
+

and the bound (8-9), we get as ε→ 0,∫
B̃
ε−1δ,+

∂1U (x ′,∇U )dx

=

∫
B̃
ε−1δ,+

|x ′|2

2
∂1U (−1U )dx+

∫
∂Rn
+∩B̃

ε−1δ

|x ′|2(∂1U )2

4
ν1 dx+O

(∫
∂(B̃

ε−1δ)∩Rn
+

|x ′|2 |∇U |2 dx
)
+2γ (1)

=

∫
B̃
ε−1δ,+

|x ′|2

2
∂1U (−1U )dx−

∫
∂Rn
+∩B̃

ε−1δ

|x ′|2(∂1U )2

4
dx+2γ (1). (8-28)

Now use equation (8-7) to get that∫
B̃
ε−1δ,+

|x ′|2

2
∂1U (−1U ) dx =

∫
B̃
ε−1δ,+

|x ′|2

2
∂1U

(
λ

U 2?(s)−1

|x |s
+ γ

U
|x |2

)
dx . (8-29)

Integrating by parts, using that U vanishes on ∂Rn
+

and the upper-bound (8-9), for σ ∈ [0, 2], we get that∫
B̃
ε−1δ,+

|x ′|2 ∂1U
U 2?(σ )−1

|x |σ
dx =

∫
B̃
ε−1δ,+

|x ′|2 |x |−σ ∂1

(
U 2?(σ )

2?(σ )

)
dx

=

∫
∂(B̃

ε−1δ,+)

|x ′|2 |x |−σ
U 2?(σ )

2?(σ )
ν1 dx −

∫
B̃
ε−1δ,+

∂1(|x ′|2 |x |−σ )
(

U 2?(σ )

2?(σ )

)
dx

= O
(∫

Rn
+∩∂ B̃

ε−1δ,+

|x |2−σU 2?(σ ) dσ
)
+

σ

2?(s)

∫
B̃
ε−1δ,+

|x ′|2x1

|x |σ+2 U 2?(σ ) dx

=
σ

2?(s)

∫
B̃
ε−1δ,+

|x ′|2x1

|x |σ+2 U 2?(σ ) dx +2γ (1) as ε→ 0. (8-30)

Putting together (8-28)–(8-30) yields (8-25).

D. Estimate for J�γ,s(uε). Since U ∈ D1,2(Rn), it follows from (8-7) that∫
Rn
+

(
|∇U |2−

γ

|x |2
U 2
)

dx = λ
∫

Rn
+

U 2?(s)

|x |s
dx . (8-31)
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This equality, combined with (8-23) and (8-24) gives

J�γ,s(uε)=

∫
�

(
|∇uε |2− u2

εγ /|x |
2
)

dx(∫
�
|uε |2

?(s)/|x |s dx
)2/2?(s)

=

∫
Rn
+

(
|∇U |2−U 2γ /|x |2

)
dx(∫

Rn
+

|U |2?(s)/|x |s dx
)2/2?(s)

(
1+ ε

h�(0)
(n− 1)λ

∫
Rn
+

|U |2?(s)/|x |s dx
Cε +2γ (ε)

)
, (8-32)

where for all ε > 0,

Cε := −2
∫

B̃
ε−1δ,+

∂1U (x ′,∇U ) dx + γ
∫

B̃
ε−1δ,+

|x ′|2x1

|x |2
U 2

|x |2
dx + λ

s
2?(s)

∫
B̃
ε−1δ,+

|x ′|2x1

|x |2
U 2?(s)

|x |s
dx .

The identity (8-25) then yields as ε→ 0,

Cε =
∫
∂Rn
+∩B̃

ε−1δ

|x ′|2(∂1U )2

2
dx +2γ (1).

Therefore, (8-32) yields that as ε→ 0,

J�γ,s(uε)= µγ,s(R
n
+
)

(
1+ ε

h�(0)
∫
∂Rn
+∩B̃

ε−1δ
|x ′|2(∂1U )2 dx ′

2(n− 1)λ
∫

Rn
+

|U |2?(s)/|x |s dx
+2γ (ε)

)
. (8-33)

We now distinguish two cases:

(i) γ < 1
4(n

2
− 1). The bound (8-9) then yields x ′ 7→ |x ′|2 |∂1U (x ′)|2 is in L1(∂Rn

+
) and so we get from

(8-33) that
J�γ,s(uε)= µγ,s(R

n
+
)
(
1+C0 · h�(0) · ε+ o(ε)

)
as ε→ 0, (8-34)

with

C0 :=

∫
∂Rn
+

|x ′|2(∂1U )2 dx ′

2(n− 1)λ
∫

Rn
+

|U |2?(s)/|x |s dx
> 0.

(ii) γ = 1
4(n

2
− 1). From (8-8), Lemma 5.2 and the Kelvin transform, we have that

lim
|x ′|→+∞

|x ′|α+ |∂1U (0, x ′)| = K2 > 0.

Since 2α+− 2= n− 1, we get that∫
∂Rn
+∩B̃

ε−1δ

|x ′|2(∂1U )2 dx ′ = ωn−1K 2
2 ln 1

ε
+ o

(
ln 1
ε

)
as ε→ 0. Therefore, (8-33) yields

J�γ,s(uε)= µγ,s(R
n
+
)
(

1+C ′0h�(0)ε ln 1
ε
+ o

(
ln 1
ε

))
as ε→ 0, (8-35)

where

C ′0 :=
ωn−1K 2

2

2(n− 1)λ
∫

Rn
+

|U |2?(s)/|x |s dx
> 0.

Cases (i) and (ii) prove Proposition 8.3 when γ ≤ 1
4(n

2
− 1).
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Case 2: γ > 1
4(n

2
−1). In this case, the construction of test functions is more subtle. First, use Theorem 7.1

to obtain H ∈ C2(� \ {0}) such that (7-1) holds and

H(x)=
d(x, ∂�)
|x |α+

+mγ (�)
d(x, ∂�)
|x |α−

+ o
(

d(x, ∂�)
|x |α−

)
when x→ 0. (8-36)

As above, we fix η ∈ C∞c (R
n) such that η(x)= 1 for all x ∈ B̃δ and η(x)= 0 for all x 6∈ B̃2δ. We then

define β such that

H(x)=
(
η

x1

|x |α+

)
◦ϕ−1(x)+β(x) for all x ∈�.

Here ϕ is as in (4-7)–(4-12). Note that β ∈ D1,2(�) and

β(x)= mγ (�)
d(x, ∂�)
|x |α−

+ o
(

d(x, ∂�)
|x |α−

)
as x→ 0. (8-37)

Indeed, since α+−α− < 1, an essential point underlying all of this case is that

|x | = o(|x |α+−α−) as x→ 0.

We choose U as in (8-7). By multiplying by a constant if necessary, we assume that K2 = 1; that is,

U (x)∼x→0 K1
x1

|x |α−
and U (x)∼|x |→+∞

x1

|x |α+
. (8-38)

Now define

uε(x) := (ηε−(n−2)/2U (ε−1
· )) ◦ϕ−1(x)+ ε(α+−α−)/2β(x) for x ∈� and ε > 0. (8-39)

We start by showing that for any k ≥ 0,

lim
ε→0

uε
ε(α+−α−)/2

= H in Ck
loc(� \ {0}). (8-40)

Indeed, the convergence in C0
loc(� \ {0}) is a consequence of the definition of uε , the choice K2 = 1 and

the asymptotic behavior (8-38). For convergence in Ck, we need in addition that ∇ i (U − x1|x |−α+) =
o(|x |1−α+−i ) as x→+∞ for all i ≥ 0. This estimate follows from (8-38) and Lemma 5.2.

In the sequel, we adopt the following notation: θ εc will denote any quantity such that there exists
θ : R→ R such that limc→0 limε→0 θ

ε
c = 0.

We first claim that for any c > 0, we have that∫
�\ϕ(Bc(0)+)

(
|∇uε |2−

γ

|x |2
u2
ε

)
dx

= εα+−α−
(
(α+− 1)cn−2α+ ωn−1

2n
+mγ (�)

(n− 2)ωn−1

2n

)
+ θ εc ε

α+−α−. (8-41)

Indeed, it follows from (8-40) that

lim
ε→0

∫
�\ϕ(Bc(0)+)

(
|∇uε |2− u2

εγ /|x |
2
)

dx

εα+−α−
=

∫
�\ϕ(Bc(0)+)

(
|∇H |2−

γ

|x |2
H 2
)

dx . (8-42)
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Since H vanishes on ∂� \ {0} and satisfies −1H − Hγ /|x |2 = 0, integrating by parts yields∫
�\ϕ(Bc(0)+)

(
|∇H |2−

γ

|x |2
H 2
)

dx =−
∫
ϕ(Rn

+∩∂Bc(0))
H ∂νH dσ

=−

∫
Rn
+∩∂Bc(0)

H ◦ϕ ∂ϕ?ν(H ◦ϕ) d(ϕ?σ), (8-43)

where in the two last equalities, ν(x) is the outer normal vector of Bc(0) at x ∈ ∂Bc(0).

We now estimate H ◦ϕ ∂ϕ?νH ◦ϕ. Since ϕ?ν(x)= x/|x |+O(|x |) as x→ 0, it follows from (8-36) that

H ◦ϕ ∂ϕ?ν(H ◦ϕ)=
(α+− 1)x2

1

|x |2α++1 + (n− 2)mγ (�)
x2

1

|x |n+1 + o(|x |1−n) as x→ 0.

Integrating this expression on Bc(0)+ = Rn
+
∩ ∂Bc(0) and plugging into (8-43) yields∫

�\ϕ(Bc(0)+)

(
|∇H |2−

γ

|x |2
H 2
)

dx =
(α+− 1)cn−2α+ωn−1

2n
+ (n− 2)mγ (�)

ωn−1

2n
+ θc,

where limc→0 θc = 0. Here, we have used that∫
Sn−1
+

x2
1 dσ =

1
2

∫
Sn−1

x2
1 dσ =

1
2n

∫
Sn−1
|x |2 dσ =

ωn−1

2n
, ωn−1 :=

∫
Sn−1

dσ.

This equality and (8-42) prove (8-41).

We now claim that∫
�

(
|∇uε |2−

γ

|x |2
u2
ε

)
dx=λ

∫
Rn
+

U 2?(s)

|x |s
dx+mγ (�)

(n−2)ωn−1

2n
εα+−α−+o(εα+−α−) as ε→0. (8-44)

Indeed, define Uε(x) := ε−(n−2)/2U (ε−1x) for all x ∈ Rn
+

. The definition (8-39) of uε can be rewritten as

uε ◦ϕ(x)=Uε(x)+ ε(α+−α−)/2β ◦ϕ(x) for all x ∈ Rn
+
∩ B̃δ.

Fix c ∈ (0, δ), which we will eventually let go to 0. Since dϕ0 is an isometry, we get that∫
ϕ(Bc(0)+)

(
|∇uε |2−

γ

|x |2
u2
ε

)
dx

=

∫
Bc(0)+

(
|∇(uε ◦ϕ)|2ϕ?Eucl−

γ

|ϕ(x)|2
(uε ◦ϕ)2

)
|Jacϕ| dx

=

∫
Bc(0)+

(
|∇Uε |

2
ϕ?Eucl−

γ

|ϕ(x)|2
U 2
ε

)
|Jacϕ| dx

+ 2ε(α+−α−)/2
∫

Bc(0)+

(
(∇Uε,∇(β ◦ϕ))ϕ?Eucl−

γ

|ϕ(x)|2
Uε(uε ◦ϕ)

)
|Jacϕ| dx

+ εα+−α−
∫

Bc(0)+

(
|∇(β ◦ϕ)|2ϕ?Eucl−

γ

|ϕ(x)|2
(β ◦ϕ)2

)
|Jacϕ| dx . (8-45)
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Since ϕ?Eucl=Eucl+O(|x |), |ϕ(x)| = |x | + O(|x |2) and β ∈ D1,2(�), we get that∫
ϕ(Bc(0)+)

(
|∇uε |2−

γ

|x |2
u2
ε

)
dx

=

∫
Bc(0)+

(
|∇Uε |

2
Eucl−

γ

|x |2
U 2
ε

)
dx + O

(∫
Bc(0)+

|x |
(
|∇Uε |

2
Eucl+

U 2
ε

|x |2

)
dx
)

+ 2ε(α+−α−)/2
∫

Bc(0)+

(
(∇Uε,∇(β ◦ϕ))Eucl−

γ

|x |2
Uε(β ◦ϕ)

)
dx

+ O
(
ε(α+−α−)/2

∫
Bc(0)+

|x |
(
|∇Uε | · |∇(β ◦ϕ)| +

Uε |β ◦ϕ|

|x |2

)
dx
)
+ εα+−α−θ εc (8-46)

as ε→ 0. The pointwise estimates (8-38) yield∫
ϕ(Bc(0)+)

(
|∇uε |2−

γ

|x |2
u2
ε

)
dx =

∫
Bc(0)+

(
|∇Uε |

2
Eucl−

γ

|x |2
U 2
ε

)
dx

+2ε(α+−α−)/2
∫

Bc(0)+

(
(∇Uε,∇(β◦ϕ))Eucl−

γ

|x |2
Uε(β◦ϕ)

)
dx+εα+−α−θ εc

as ε→ 0. Integrating by parts yields∫
ϕ(Bc(0)+)

(
|∇uε |2−

γ

|x |2
u2
ε

)
dx

=

∫
Bc(0)+

(
−1Uε −

γ

|x |2
Uε

)
Uε dx +

∫
∂(Bc(0)+)

Uε ∂νUε dσ

+ 2ε(α+−α−)/2
(∫

Bc(0)+

(
−1Uε −

γ

|x |2
Uε

)
β ◦ϕ dx +

∫
∂(Bc(0)+)

β ◦ϕ ∂νUε dσ
)
+ εα+−α−θ εc

as ε→ 0. Since both U and β ◦ϕ vanish on ∂Rn
+
\ {0}, we get that∫

ϕ(Bc(0)+)

(
|∇uε |2−

γ

|x |2
u2
ε

)
dx

=

∫
Bc(0)+

(
−1Uε −

γ

|x |2
Uε

)
Uε dx +

∫
Rn
+∩∂Bc(0)

Uε ∂νUε dσ

+ 2ε(α+−α−)/2
(∫

Bc(0)+

(
−1Uε −

γ

|x |2
Uε

)
β ◦ϕ dx +

∫
Rn
+∩∂Bc(0)

β ◦ϕ ∂νUε dσ
)
+ εα+−α−θ εc

(8-47)
as ε→ 0. The asymptotic estimate (8-38) of U and Lemma 5.2 yield (after a Kelvin transform)

∂νUε =−(α+− 1)ε(α+−α−)/2x1|x |−α+−1
+ o(ε(α+−α−)/2|x |−α+)

as ε→ 0 uniformly on compact subsets of Rn
+ \ {0}. We then get that

β ◦ϕ ∂νUε = ε
(α+−α−)/2

(
−mγ (�)(α+− 1)x2

1 |x |
−n−1
+ o(|x |1−n)

)
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and

Uε ∂νUε = ε
α+−α−

(
−(α+− 1)x2

1 |x |
−2α+−1

+ o(|x |1−2α+)
)

as ε → 0 uniformly on compact subsets of Rn
+ \ {0}. Plugging these identities into (8-47) and using

equation (8-7) yields, as ε→ 0,∫
ϕ(Bc(0)+)

(
|∇uε |2−

γ

|x |2
u2
ε

)
dx =

∫
Bc(0)+

λ
U 2?(s)
ε

|x |s
dx − (α+− 1)

ωn−1

2n
cn−2α+εα+−α−

+ 2ε(α+−α−)/2
∫

Bc(0)+
λ
U 2?(s)−1
ε

|x |s
β ◦ϕ dx

− (α+− 1)
ωn−1

n
mγ (�)ε

α+−α− + εα+−α−θ εc . (8-48)

As ε→ 0, we have that ∫
Bc(0)+

λ
U 2?(s)
ε

|x |s
dx =

∫
Rn
+

λ
U 2?(s)
ε

|x |s
dx + o(εα+−α−). (8-49)

The expansion (8-37) and the change of variable x := εy yield as ε→ 0,∫
Bc(0)+

λ
U 2?(s)−1
ε

|x |s
β ◦ϕ dx = λmγ (�)ε

(α+−α−)/2
∫

Rn
+

U 2?(s)−1

|y|s
y1

|y|α−
dy+ ε(α+−α−)/2θ c

ε . (8-50)

Integrating by parts, and using the asymptotics (8-38) for U, we have

λ

∫
Rn
+

U 2?(s)−1

|y|s
y1

|y|α−
dy

= lim
R→+∞

∫
BR(0)+

λ
U 2?(s)−1

|y|s
y1

|y|α−
dy = lim

R→+∞

∫
BR(0)+

(
−1U −

γ

|y|2
U
)

y1

|y|α−
dy

= lim
R→+∞

∫
BR(0)+

U
(
−1−

γ

|y|2

)(
y1

|y|α−

)
dy−

∫
∂BR(0)+

∂νU
y1

|y|α−
dσ = (α+− 1)

ωn−1

2n
. (8-51)

Putting together (8-49)–(8-51) gives∫
�

(
|∇uε |2−

γ

|x |2
u2
ε

)
dx = λ

∫
Rn
+

U 2?(s)

|x |s
dx +mγ (�)

(n− 2)ωn−1

2n
εα+−α− + o(εα+−α−)

as ε→ 0. This finally yields (8-44).
We finally claim that∫
�

u2?(s)
ε

|x |s
dx =

∫
Rn
+

U 2?(s)

|x |s
dx +

2?(s)
λ

mγ (�)
(α+− 1)ωn−1

2n
εα+−α− + o(εα+−α−) as ε→ 0. (8-52)
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Indeed, fix c > 0. Due to estimates (8-37) and (8-38), we have that∫
�

u2?(s)
ε

|x |s
dx =

∫
ϕ(Bc(0)+)

u2?(s)
ε

|x |s
dx + o(εα+−α−)

=

∫
Bc(0)+

|Uε + ε
(α+−α−)/2β ◦ϕ|2

?(s)

|ϕ(x)|s
|Jacϕ| dx + o(εα+−α−)

=

∫
Bc(0)+

|Uε + ε
(α+−α−)/2β ◦ϕ|2

?(s)

|x |s
(1+ O(|x |)) dx + o(εα+−α−)

as ε→ 0. As one checks, there exists C > 0 such that for all X, Y ∈ R,∣∣|X + Y |2
?(s)
− |X |2

?(s)
− 2?(s)|X |2

?(s)−2 XY
∣∣≤ C(|X |2

?(s)−2
|Y |2+ |Y |2

?(s)). (8-53)

Therefore, using the asymptotics (8-37) and (8-38) of U and β, we get that∫
�

u2?(s)
ε

|x |s
dx =

∫
Bc(0)+

U 2?(s)
ε

|x |s
|(1+O(|x |))dx

+2?(s)ε(α+−α−)/2
∫

Bc(0)+

U 2?(s)−1
ε

|x |s
β◦ϕ(1+O(|x |))dx+ε(α+−α−)/2θ c

ε

=

∫
Bc(0)+

U 2?(s)
ε

|x |s
dx+2?(s)ε(α+−α−)/2

∫
Bc(0)+

U 2?(s)−1
ε

|x |s
β◦ϕ dx+ε(α+−α−)/2θ c

ε as ε→ 0.

Then (8-52) follows from this latest identity, combined with (8-49)–(8-51).

We finally use (8-31), (8-44) and (8-52) to get

J�γ,s(uε)= J
Rn
+

γ,s (U )
(

1−

(
α+−

1
2 n
)
ωn−1

nλ
∫

Rn
+

U 2?(s)/|x |s dx
mγ (�)ε

α+−α− + o(εα+−α−)
)

as ε→ 0,

which proves (8-6). This completes Proposition 8.3 and therefore Theorem 8.2. �

9. Domains with positive mass and an arbitrary geometry at 0

In this section, we construct smooth bounded domains in Rn with positive or negative mass, regardless of
the local geometry of ∂� at 0. This is illustrated by the following result.

Theorem 9.1. Let ω be a smooth open set of Rn. Then, there exist r0 > 0 and two smooth bounded
domains �+, �− of Rn such that

�+ ∩ Br0(0)=�− ∩ Br0(0)= ω∩ Br0(0), (9-1)

min{γH (�+), γH (�−)}>
1
4(n

2
− 1), (9-2)

mγ (�+) > 0> mγ (�−), (9-3)

whenever 1
4(n

2
− 1) < γ <min{γH (�+), γH (�−)}.

We shall need the following stability result for the mass under continuous deformations and truncations.
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Proposition 9.2. Let �⊂ Rn be a conformally bounded domain such that 0 ∈ ∂�. Assume that γH (�) >
1
4(n

2
− 1) and fix γ ∈

( 1
4(n

2
− 1), γH (�)

)
. For any R > 0, let DR be a smooth domain of Rn such that

• BR(x0)⊂ DR ⊂ B2R(x0),

• �∩ DR is a smooth domain of Rn.

Let 8 ∈ C∞(R×Rn,Rn) be such that

• 8t :=8(t, · ) is a smooth diffeomorphism of Rn,

• 8t(x)= x for all |x |> 1
2 and all t ∈ R,

• 8t(0)= 0 for all t ∈ R,

• 80 = IdRn .

Set �t,R :=8t(�)∩ DR . Then as t→ 0, R→+∞, we have that γH (�t,R) >
1
4(n

2
− 1) and mγ (�t,R)

is well defined. In addition,

lim
t→0, R→+∞

mγ (�t,R)= mγ (�).

As a preliminary remark, we claim that if � is a conformally bounded domain of Rn such that 0 ∈ ∂�,
then

lim inf
t→0,R→∞

γH (�t,R)≥ γH (�), (9-4)

where �t,R are defined as in Proposition 9.2. Indeed, by definition, γH (�t,R)≥ γH (�t)= γH (8t(�)).
Inequality (9-4) then follows from (3-7) of Lemma 3.2.

We shall use the same approach as in the proof of Proposition 7.4. Assuming x0 := (−1, 0, . . . , 0)∈Rn,
and denoting the corresponding Kelvin inversion by i , this transformation allows us to map the operator
−1−γ /|x |2 on a conformally bounded domain � into the Schrödinger operator −1+V on the bounded
domain �̃, where V is the potential defined in (7-19).

Set now �̃ := i(�), 8̃(t, x) := i ◦8(t, i(x)) for (t, x)∈R×Rn, and D̃r :=Rn
\ i(Dr−1) in Rn. Observe

that R→+∞ in Proposition 9.2 is equivalent to r→ 0 in here. Note that 8̃∈C∞(R×Rn,Rn) is such that:

• For any t ∈ (−2, 2), the map 8̃t := 8̃(t, · ) is a C∞-diffeomorphism onto its open image 8̃t(R
n).

• 8̃0 = Id.

• 8̃t(0)= 0 for all t ∈ (−2, 2).

• 8̃t(x)= x for all t ∈ (−2, 2) and all x ∈ B2δ(x0) with δ < 1
4 .

Set �̃t := 8̃t(�̃) and note that the sets D̃r satisfy the following properties:

• Br/2(x0)⊂ D̃r ⊂ Br (x0).

• �̃t,r := �̃t \ D̃r is a smooth domain of Rn.
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In particular, we have that �̃t,r = i(�t,r−1). Let u ∈ C2(�t,r \ {0}) be such that
−1u−

γ

|x |2
u = 0 in �t,r ,

u > 0 in �t,r ,

u = 0 on ∂�t,r .

We shall need the following.

Lemma 9.3. For any t ∈ (−1, 1), there exists ut ∈ C2(�̃t \ {0, x0}) such that
−1ut − V ut = 0 in �̃t ,

ut > 0 in �̃t ,

ut = 0 on ∂�̃t \ {0, x0},

ut(x)≤ C |x |1−α+(γ )+C |x − x0|
1−α−(γ ) for x ∈ �̃t .

(9-5)

Moreover, we have that

ut(x)=
d(x, ∂�̃t)

|x |α+(γ )
(1+ O(|x |α+(γ )−α−(γ ))) (9-6)

as x→ 0, uniformly with respect to t ∈ (−1, 1).

Proof. We construct approximate singular solutions as in Section 4. For all t ∈ (−2, 2), there exists
a chart ϕt that satisfies (4-7)–(4-12) for �̃t . Without restriction, we assume that limt→0 ϕt = ϕ0 in
Ck(B̃2δ,Rn). We define a cut-off function ηδ such that ηδ(x)= 1 for x ∈ B̃δ and ηδ(x)= 0 for x 6∈ B̃2δ.
As in (4-14), we define uα+(γ ),t ∈ C2(�̃t \ {0}) with compact support in ϕt(B̃2δ) such that

uα+,t ◦ϕt(x1, x ′) := ηδ(x1, x ′)x1|x |−α+(1+2t(x)) for all (x1, x ′) ∈ B̃2δ \ {0}, (9-7)

where 2t(x1, x ′) := e−x1 Ht (x ′)/2−1 for all x = (x1, x ′)∈ B̃2δ and all t ∈ (−2, 2). Here, Ht(x ′) is the mean
curvature of ∂�̃t at the point ϕt(0, x ′). Note that limt→02t =20 in Ck(U ). Arguing as in Section 4, we
get that 

(−1− V )uα+,t = O(d(x, ∂�̃t)|x |−α+(γ )−1) in �̃t ∩ B̃δ,
uα+,t > 0 in �̃t ∩ B̃δ,
uα+,t = 0 on ∂�̃t \ {0},

and

uα+,t(x)=
d(x, ∂�̃t)

|x |α+(γ )
(1+ O(|x |) as x→ 0.

The construction in Section 4 also yields

lim
t→0

uα+,t ◦8t = uα+,0 in C2
loc(�̃ \ {0}). (9-8)

Note also that all these estimates are uniform in t ∈ (−1, 1). In particular, defining

ft := −1uα+,t − V uα+,t , (9-9)



1072 NASSIF GHOUSSOUB AND FRÉDÉRIC ROBERT

there exists C > 0 such that

| ft(x)| ≤ Cd(x, ∂�̃t)|x |−α+(γ )−1
≤ C |x |−α+(γ ) (9-10)

for all t ∈ (−1, 1) and all x ∈ �̃t ∩ B̃δ. Therefore, since γ > 1
4(n

2
− 1), it follows from (9-8) and this

pointwise control that ft ∈ L2n/(n+2)(�̃t) for all t ∈ (−1, 1) and that

lim
t→0
‖ ft ◦8t − f0‖L2n/(n+2)(�̃) = 0. (9-11)

For any t ∈ (−1, 1), we let vt ∈ D1,2(�̃t) be such that

−1vt − V vt = ft weakly in D1,2(�̃t).

The existence follows from the coercivity of −1− V on �̃t , which follows itself from the coercivity on
�̃= �̃0. We then get from (9-11) and the uniform coercivity on �̃t that

lim
t→0

vt ◦8t = v0 in D1,2(�̃) and C1
loc(�̃ \ {0, x0}).

It follows from the construction of the mass in Section 7 (see the proof of Theorem 7.1) that around
0, |vt(x)| is bounded by |x |1−α−(γ ). Around x0, we know −1vt − V vt = 0 and the regularity theorem,
Theorem 4.1, yields a control by |x − x0|

1−α−(γ ). These controls are uniform with respect to t ∈ (−1, 1).
Therefore, there exists C > 0 such that

|vt(x)| ≤ Cd(x, ∂�̃t)
(
|x |−α−(γ )+ |x − x0|

−α−(γ )
)

for all t ∈ (−1, 1) and all x ∈ �̃t . Now define ut(x) := uα+,t(x)− vt(x) for all t ∈ (−1, 1) and x ∈ �̃t .
This function satisfies all the requirements of Lemma 9.3. �

Proof of Proposition 9.2. Let �̃t,r = �̃t\D̃r , and note that for r ∈
(
0, 1

2δ
)
, we have �̃t,r∩Bδ(0)= �̃∩Bδ(0).

We shall define a mass associated to the potential V as in Proposition 7.4 and prove its continuity.

Step 1: The function ft : �̃t → R defined in (9-9) has compact support in B2δ(0); therefore, it is well
defined also on �̃t,r . Let vt,r ∈ D1,2(�̃t,r ) be such that

−1vt,r − V vt,r = ft weakly in D1,2(�̃t,r ). (9-12)

Since the operator −1−V is uniformly coercive on �̃t , it is also uniformly coercive on �̃t,r with respect
to (t, r), so that the definition of vt,r via (9-12) makes sense. The uniform coercivity and (9-9)–(9-10)
yield the existence of C > 0 such that ‖vt,r‖D1,2(�̃t,r )

≤ C for all t, r . Since x0 6∈ �̃t,r , (9-9)–(9-10) and

regularity theory yield vt,r ∈ C1(�̃t,r \ {0}) and for all ρ > 0, there exists C(ρ) > 0 independent of t
and r such that

‖vt,r‖C1(�̃t,r\(Bρ(0)∪Bρ(x0)))
≤ C(ρ). (9-13)

Step 2: There exists C > 0 such that for all t ∈ (−1, 1) and all x ∈ �̃t,r ,

|vt,r (x)| ≤ Cd(x, ∂�t)(|x |−α−(γ )+ |x − x0|
−α−(γ )). (9-14)
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Indeed, around 0, we know �̃t,r coincides with �̃t , and the proof of the control goes as in the construction
of the mass in Section 7 (see the proof of Theorem 7.1). The argument is different around x0. We let
r0 > 0 be such that �̃t ∩ B2r0(x0)= �̃∩ B2r0(x0). Therefore, for r ∈ (0, r0), we have that

�̃t,r ∩ B2r0(x0)= (�̃ \ D̃r )∩ B2r0(x0).

Arguing as in the proof of Proposition 4.3, there exists ũα− ∈ C∞(�̃ \ {0}) and τ ′ > 0 such that
ũα− > 0 in �̃∩ B2r0(x0),

ũα− = 0 in (∂�̃)∩ B2r0(x0),

−1ũα− − V ũα− > 0 in �̃∩ B2r0(x0).

Moreover, we have that

ũα−(x)=
d(x, ∂�̃)
|x − x0|α−

(1+ O(|x − x0|)) as x→ x0, x ∈ �̃. (9-15)

Therefore, since vt,r vanishes on B2r0(x0)∩ ∂(�̃ \ D̃r ), it follows from (9-13) and the properties of ũα−
that there exists C > 0 such that vt,r ≤ Cũα− on the boundary of (�̃∩ D̃r )∩ B2r0(x0). Since in addition
(−1− V )vt,r = 0 < (−1− V )(Cũα−), it follows from the comparison principle that vt,r ≤ Cũα− in
(�̃ \ D̃r )∩ B2r0(x0). Arguing similarly with −vt,r and using the asymptotic (9-15), we get (9-14).

Step 3: We have
lim

t,r→0
vt,r ◦8t = v0 in D1,2(�̃)loc,{x0}c ∩C1

loc(�̃ \ {0, x0}), (9-16)

where v0 was defined in (7-20), and the convergence in D1,2(�̃)loc,{x0}c means that limt,r→0 ηvt,r◦8t =ηv0

in D1,2(�̃) for all η ∈ C∞(Rn) vanishing around x0. Indeed, vt,r ◦ 8t ∈ D1,2(�̃ \ D̃r ) ⊂ D1,2(�̃).
Uniform coercivity yields weak convergence in D1,2(�̃) to ṽ ∈ D1,2(�̃). Passing to the limit, one gets
(−1−V )ṽ = f0, so that ṽ = v0. Uniqueness then yields convergence in C1

loc(�̃\ {0, x0}). With a change
of variable, (9-12) yields an elliptic equation for vt,r ◦8t . Multiplying this equation by η2

· (vt,r ◦8t−v0)

for η ∈ C∞(Rn) vanishing around x0, one gets convergence of ηvt,r ◦8t to ηv0 in D1,2(�̃). This proves
the claim.

It follows from the construction of the mass (see Theorem 7.1) and the regularity theorem, Theorem 4.1,
that there exists K0 ∈ R and for all (t, r) small, there exists Kt,r ∈ R such that

vt,r (x)= Kt,r
d(x, ∂�̃t)

|x |α−(γ )
+ o

(
d(x, ∂�̃t)

|x |α−(γ )

)
and v0(x)= K0

d(x, ∂�̃)
|x |α−(γ )

+ o
(

d(x, ∂�̃)
|x |α−(γ )

)
(9-17)

as x ∈ �̃ goes to 0. Note that around 0, we know �̃t,r coincides with �̃t .

Step 4: We claim that
lim

t,r→0
Kt,r = K0. (9-18)

We only give a sketch. Noting ṽt,r := vt,r ◦8t , the proof relies on (9-16) and the fact that

−18?t Euclṽt,r − V ◦8t ṽt,r = ft ◦8t in �̃∩ Bδ(0).

The comparison principle and the definitions (9-17) then yield (9-18).
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Note that

mγ (�)=−K0, (9-19)

where the mass of a conformally bounded � is defined as in Proposition 7.4.

Step 5: convergence of the mass. We claim that

lim
t→0,R→∞

mγ (�t,R)= mγ (�). (9-20)

We define H̃t,r := uα+,t − vt,r so that

−1H̃t,r − V H̃t,r = 0 in �̃t,r .

It follows from (9-6) and (9-17) that H̃t,r > 0 around 0. From the maximum principle, we deduce that
H̃t,r > 0 on �̃t,r and that it vanishes on ∂�̃t,r \ {0, x0}.

It follows from (9-6) and (9-17) that

H̃t,r (x)=
d(x, ∂�̃t,r )

|x |α+
− Kt,r

d(x, ∂�̃t,r )

|x |α−
+ o

(
d(x, ∂�̃t,r )

|x |α−

)
as x→ 0, x ∈ �̃t,r . Coming back to �t,R with R = r−1 via the inversion i with

Ht,R(x) := |x − x0|
2−n H̃t,r (i(x))

for all x ∈�t,R , we get that 
−1Ht,R −

γ

|x |2
Ht,R = 0 in �t,R,

Ht,R > 0 in �t,R,

Ht,R = 0 in ∂�t,R \ {0}

and

Ht,R(x)=
d(x, ∂�t,R)

|x |α+
− Kt,r

d(x, ∂�t,R)

|x |α−
+ o

(
d(x, ∂�t,R)

|x |α−

)
as x → 0, x ∈ �t,R . Therefore, it follows from the definition of the mass (see Theorem 7.1) that
mγ (�t,R)=−Kt,r for all t , r , R = r−1. Claim (9-20) then follows from (9-18) and (9-19). �

In order to prove Theorem 9.1, we need to exhibit prototypes of unbounded domains with either
positive or negative mass.

Proposition 9.4. Let � be a domain such that 0 ∈ ∂� and � is conformally bounded. Assume that
γH (�) >

1
4(n

2
− 1) and fix γ ∈

(1
4(n

2
− 1), γH (�)

)
. Then mγ (�) > 0 if Rn

+
( �, and mγ (�) < 0 if

�( Rn
+

.

Proof. With H0 defined as in (7-22), we set

U(x) := H0(x)− x1|x |−α+ for all x ∈�.
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We first assume that Rn
+
(�. We then have that−1U−

γ

|x |2
U= 0 in Rn

+
,

U	 0 in ∂Rn
+
\ {0}.

(9-21)

We claim that ∫
Rn
+

|∇U|2 dx <+∞. (9-22)

Indeed, at infinity, this is the consequence of the fact that |∇U|(x)≤ C |x |−α+ for all x ∈ Rn
+

large, this
latest bound being a consequence of (7-25) combined with elliptic regularity theory. At 0, the argument
is different. Indeed, one first notes that d(x, ∂�′)= x1+ O(|x |2) for x ∈ Rn

+
close to 0, and therefore,

U(x) = O(|x |1−α−) for x → 0. The control on the gradient |∇U|(x) ≤ C |x |−α− at 0 follows from the
construction of H̃0. This yields integrability at 0 and proves (9-22).

We claim that U> 0 in Rn
+

. Indeed, it follows from (9-21) and (9-22) that U− ∈ D1,2(Rn
+
). Multiplying

equation (7-23) by U−, integrating by parts on (BR(0) \ Bε(0))∩Rn
+

, and letting ε→ 0 and R→+∞
by using (9-22), one gets U− ≡ 0, and then U≥ 0. The result follows from Hopf’s maximum principle.

We now claim that

mγ (�) > 0. (9-23)

Indeed, since U> 0 in Rn
+

, there exists c0 > 0 such that U(x)≥ c0x1|x |−α− for all x ∈ ∂(B1(0)+). It then
follows from (9-22), (9-21) and the comparison principle that U(x)≥ c0x1|x |−α− for all x ∈ B1(0)+. The
expansion (7-24) then yields −K0 ≥ c0 > 0. This combined with (9-19) proves the claim.

When �⊂ Rn
+

, the argument is similar except that one works on � (and not Rn
+

) and that U� 0 in
∂� \ {0}. This ends the proof of Proposition 9.4. �

Proof of Theorem 9.1. Let ω be a smooth domain of Rn such that 0 ∈ ∂�. Up to a rotation, there exists
ϕ ∈C∞(Rn−1) such that ϕ(0)= 0, ∇ϕ(0)= 0 and there exists δ0> 0 such that

ω∩ Bδ0(0)= {x1 > ϕ(x ′) : (x1, x ′) ∈ Bδ0(0)}.

Let η ∈ C∞c (Bδ0(0)) be such that η(x)= 1 for all x ∈ Bδ0/2(0), and define

8t(x) :=
(

x1+ η(x)
ϕ(t x ′)

t
, x ′
)

for all t > 0 and x ∈ Rn,

and 80 := IdRn . It is easy to see that 8t satisfies the hypotheses of Proposition 9.2. Moreover, for
0< t < 1, we have that

ω

t
∩8t(Bδ0/2(0))=8t(R

n
+
∩ Bδ0/2(0)).

We let � be a smooth domain at infinity such that

�∩ B1(0)= Rn
+
∩ B1(0) and γH (�) >

1
4(n

2
− 1), (9-24)
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(for example, Rn
+

), and let �t,R be as in Proposition 9.2. It is easy to see that

ω∩ t8t(Bδ0/2(0))= t�t,R ∩ t8t(Bδ0/2(0)).

Therefore, for t > 0 small enough, we have that

ω∩ Btδ0/3(0)= t�t,R ∩ Btδ0/3(0).

Moreover, γH (t�t,R)= γH (�t,R) >
1
4(n

2
− 1) as t→ 0 and R→+∞; see (9-4). Concerning the mass,

we have

tα+(γ )−α−(γ )mγ (t�t,R)= mγ (�t,R)→ mγ (�) as t→ 0, R→+∞.

We now choose � appropriately.
To get a negative mass, we choose � smooth at infinity such that �∩ B1(0)=Rn

+
∩ B1(0) and �(Rn

+
.

Then γH (�)=
1
4 n2, (9-24) holds and Proposition 9.4 yields mγ (�) < 0. With this choice of �, we take

�− :=�t,R for t small and R large.
To get a positive mass, we choose Rn

+
( � such that (9-24) holds (this is possible for any value of

γH (�) arbitrarily close to 1
4 n2, see point (5) of Proposition 3.1). Then Proposition 9.4 yields mγ (�) > 0.

With this choice of �, we take �+ :=�t,R for t small and R large. This proves Theorem 9.1. �

10. The Hardy singular interior mass and the remaining cases

The remaining situation not covered by Proposition 8.1 and Theorem 8.2 is s= 0, n= 3 and γ ∈
(
0, 1

4 n2
)
.

If γ ≥ γH (�), then Proposition 3.3 and Theorem 3.6 yield µγ,0(�)≤ 0<µγ,0(Rn
+
) and the existence of

extremals is guaranteed. When µγ,0(Rn
+
) does have an extremal U, then Proposition 8.3 and Theorem 3.6

provide sufficient conditions for the existence of extremals. The rest of this section addresses the
remaining case, that is, when γ ∈ (0, γH (�)) and when µγ,0(Rn

+
) has no extremal, and therefore

µγ,0(R
3
+
)= 1/K (3, 2)2 according to Proposition 1.3.

We first define the “interior” mass in the spirit of Schoen and Yau [1988].

Proposition 10.1. Let � ⊂ R3 be an open smooth bounded domain such that 0 ∈ ∂�. Fix x0 ∈ �. If
γ ∈ (0, γH (�)), then the equation

−1G−
γ

|x |2
G = 0 in � \ {x0},

G > 0 in � \ {x0},

G = 0 on ∂� \ {0}

has a solution G ∈ C2(� \ {0, x0})∩ D2
1(� \ {x0})loc,0 that is unique up to multiplication by a constant.

Moreover, for any x0 ∈�, there exists a unique Rγ (x0) ∈ R independent of the choice of G and cG > 0
such that

G(x)= cG

(
1

|x − x0|
+ Rγ (x0)

)
+ o(1) as x→ x0.
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Proof. Since γ < γH (�), the operator −1− γ |x |−2 is coercive and we can consider G to be its Green’s
function at x0 on � with Dirichlet boundary condition. In particular, for any ϕ ∈ C∞c (�), we have that

ϕ(x)=
∫
�

Gx(y)
(
−1ϕ(y)− γ

ϕ(y)
|y|2

)
dy for x ∈�,

where Gx := G(x, · ). Fix x0 ∈ � and let η ∈ C∞c (�) be such that η(x) = 1 around x0. Define the
distribution βx0 :�→ R as

Gx0(x)=
1
ω2

(
η(x)
|x − x0|

+βx0(x)
)

for all x ∈�,

where ω2 := 4π is the volume of the canonical 2-sphere. As one checks,(
−1−

γ

|x |2

)
βx0 =−

(
−1−

γ

|x |2

)(
η(x)
|x − x0|

)
:= f = O(|x − x0|

−1)

in the distributional sense. Since f ∈ L2(�) and, by uniqueness of the Green’s function (since the operator
is coercive), we have that βx0 ∈ D1,2(�). It follows from standard elliptic theory that

βx0 ∈ C∞(� \ {0, x0})∩C0,θ (� \ Bδ(0))

for all θ ∈ (0, 1) and δ > 0. Since f vanishes around 0, it follows from Theorem 4.1 and Lemma 5.2 that

βx0(x)= O(|x |1−α−(γ )) and |∇βx0(x)| = O(|x |−α−(γ )) when x→ 0. (10-1)

We can therefore define the mass of � at x0 associated to the operator Lγ by Rγ (�, x0) := βx0(x0). As
one checks, βx0(x0) is independent of the choice of η.

The uniqueness is proved as in Theorem 7.1. The behavior on the boundary is given by Theorem 4.1
and the interior behavior around x0 is classical. �

Lemma 10.2. Let �⊂R3 be an open smooth bounded domain such that 0 ∈ ∂� and x0 ∈�. Assume that
γ ∈ (0, γH (�)) and that µγ,0(R3

+
)= 1/K (3, 2)2. Then, there exists a family (uε)ε in D1,2(�) such that

J�γ,0(uε)=
1

K (n, 2)2

(
1−

ω2 Rγ (x0)

3
∫

R3 U 2? dx
ε+ o(ε)

)
as ε→ 0, (10-2)

where U (x) := (1+ |x |2)−1/2 for all x ∈ R3 and 2? = 2?(0)= 2n/(n− 2).

Proof. The proof is very similar to what was performed by Schoen [1984] (see [Druet 2002a; 2002b;
Jaber 2014]). For ε > 0, define the functions

uε(x) := η(x)
(

ε

ε2+ |x − x0|2

)1/2

+ ε1/2βx0(x) for all x ∈�.

As one checks, uε ∈ D1,2(�). Proceeding as in the case γ > 1
4(n

2
− 1) of Section 8, we get (10-2). We

omit the details that are standard. This proves Lemma 10.2. �

We finally get the following.
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Theorem 10.3. Let � be a bounded smooth domain of R3 such that 0 ∈ ∂�.

(1) If γ ≥ γH (�), then there are extremals for µγ,0(�).

(2) If γ ≤ 0, then there are no extremals for µγ,0(�).

(3) If 0< γ < γH (�) and there are extremals for µγ,0(Rn
+
), then there are extremals for µγ,0(�) under

either one of the following conditions:
• γ ≤ 1

4(n
2
− 1) and the mean curvature of ∂� at 0 is negative.

• γ > 1
4(n

2
− 1) and the mass mγ (�) is positive.

(4) If 0< γ < γH (�) and there are no extremals for µγ,0(Rn
+
), then there are extremals for µγ,0(�) if

there exists x0 ∈� such that Rγ (�, x0) > 0.

Proof. The two first points of the theorem follow from Proposition 8.1 and Theorem 3.6. The third point
follows from Proposition 8.3. For the fourth point, in this situation, it follows from Proposition 1.3 that
µγ,0(R

n
+
)= 1/K (n, 2)2, and then Lemma 10.2 gives µγ,0(�) < µγ,0(Rn

+
), which yields the existence of

extremals by Theorem 3.6. This proves Theorem 10.3. �
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