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L p ESTIMATES FOR BILINEAR
AND MULTIPARAMETER HILBERT TRANSFORMS

WEI DAI AND GUOZHEN LU

Muscalu, Pipher, Tao and Thiele proved that the standard bilinear and biparameter Hilbert transform does
not satisfy any L p estimates. They also raised a question asking if a bilinear and biparameter multiplier
operator defined by

Tm( f1, f2)(x) :=
∫

R4
m(ξ, η) f̂1(ξ1, η1) f̂2(ξ2, η2)e2π i x ·((ξ1,η1)+(ξ2,η2)) dξ dη

satisfies any L p estimates, where the symbol m satisfies

|∂αξ ∂
β
η m(ξ, η)|.

1
dist(ξ, 01)|α|

·
1

dist(η, 02)|β|

for sufficiently many multi-indices α = (α1, α2) and β = (β1, β2), 0i (i = 1, 2) are subspaces in R2 and
dim01 = 0, dim02 = 1. Silva partially answered this question and proved that Tm maps L p1× L p2→ L p

boundedly when 1
p1
+

1
p2
=

1
p with p1, p2 > 1, 1

p1
+

2
p2
< 2 and 1

p2
+

2
p1
< 2. One notes that the admissible

range here for these tuples (p1, p2, p) is a proper subset of the admissible range of the bilinear Hilbert
transform (BHT) derived by Lacey and Thiele.

We establish the same L p estimates as BHT in the full range for the bilinear and d-parameter (d ≥ 2)
Hilbert transforms with arbitrary symbols satisfying appropriate decay assumptions and having singularity
sets 01, . . . , 0d with dim0i = 0 for i = 1, . . . , d − 1 and dim0d = 1. Moreover, we establish the same
L p estimates as BHT for bilinear and biparameter Fourier multipliers of symbols with dim01=dim02=1
and satisfying some appropriate decay estimates. In particular, our results include the L p estimates as
BHT in the full range for certain modified bilinear and biparameter Hilbert transforms of tensor-product
type with dim01 = dim02 = 1 but with a slightly better logarithmic decay than that of the bilinear and
biparameter Hilbert transform BHT⊗BHT.
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1. Introduction

The bilinear Hilbert transform is defined by

BHT( f1, f2)(x) := p.v.
∫

R

f1(x − t) f2(x + t)
dt
t
; (1-1)

or, equivalently, it can be written as the bilinear multiplier operator

BHT : ( f1, f2) 7→

∫
ξ<η

f̂1(ξ) f̂2(η)e2π i x(ξ+η) dξ dη, (1-2)

where f1 and f2 are Schwartz functions on R. M. Lacey and C. Thiele proved the following celebrated
L p estimates for the bilinear Hilbert transform:

Theorem 1.1 [Lacey and Thiele 1997; 1999]. The bilinear operator BHT maps L p(R)× Lq(R) into
Lr (R) boundedly for any 1< p, q ≤∞ with 1

p +
1
q =

1
r and 2

3 < r <∞.

There are lots of works related to bilinear operators of BHT type. J. Gilbert and A. Nahmod [2001] and
F. Bernicot [2008] proved that the same L p estimates as BHT are valid for bilinear operators with more
general symbols. Uniform estimates were obtained by Thiele [2002], L. Grafakos and X. Li [2004] and Li
[2006]. A maximal variant of Theorem 1.1 was proved by Lacey [2000]. C. Muscalu, Thiele and T. Tao
[Muscalu et al. 2004b] and J. Jung [≥ 2015] investigated various trilinear variants of the bilinear Hilbert
transform. For more related results involving estimates for multilinear singular multiplier operators, we
refer to, for example, [Christ and Journé 1987; Coifman and Meyer 1978; 1997; Fefferman and Stein
1982; Grafakos and Torres 2002a; 2002b; Journé 1985; Kenig and Stein 1999; Muscalu and Schlag 2013;
Muscalu et al. 2002; Thiele 2006] and the references therein.

Since Lacey and Thiele [1997; 1999] established the L p estimates for 2
3 < p<∞, whether the bilinear

operators of BHT type satisfy L p estimates all the way down to 1
2 has remained an open problem. Though

we do not have a counterexample yet for the L p estimates for the bilinear Hilbert transform in the range
of 1

2 < p < 2
3 , we have established in [Dai and Lu ≥ 2015b] a counterexample for a modified version of

bilinear operators of BHT type. To describe this result, we denote by FL p(R) the space consisting of all
functions f whose Fourier transform f̂ satisfies f̂ ∈ L p(R). The Hausdorff–Young inequality indicates
that ‖ f̂ ‖L p′ (R) .p ‖ f ‖L p(R) for 1 ≤ p ≤ 2. Then, by Theorem 1.1, it implies that the bilinear Hilbert
transform maps FL p′1× L p2→ L p for p1 ≥ 2 and maps L p1×FL p′2→ L p for p2 ≥ 2 with 1

p1
+

1
p2
=

1
p .

Thus it will be interesting to know whether the bilinear operators of BHT type map FL p′1× L p2→ L p for
p1 < 2 or L p1×FL p′2→ L p for p2 < 2 boundedly with 1

p1
+

1
p2
=

1
p . Our work in [Dai and Lu ≥ 2015b]

gives a negative answer to the boundedness of FL p′1 × L p2 → L p for p1 < 2 and L p1 ×FL p′2 → L p

for p2 < 2.
To date, we are still not aware of any uniform L p estimates for bilinear Fourier multiplier operator of

BHT type in the range p ∈
( 1

2 ,
2
3

)
. By decomposing the bilinear multiplier operator Tm into a summation

of infinitely many bilinear paraproducts without modulation invariance, we have proved in [Dai and Lu
≥ 2015b] that there exists a class of symbols m (with one-dimensional singularity sets), which also satisfy
the symbol estimates of BHT type operators investigated in [Gilbert and Nahmod 2001] and are arbitrarily
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close to the symbols of BHT type operators, such that the corresponding bilinear multiplier operators Tm

associated with symbols m satisfy L p estimates all the way down to 1
2 .

In multiparameter cases, there are also large amounts of literature devoted to studying the estimates
of multiparameter and multilinear operators (see [Chen and Lu 2014; Dai and Lu ≥ 2015a; Demeter
and Thiele 2010; Hong and Lu 2014; Kesler ≥ 2015; Luthy 2013; Muscalu and Schlag 2013; Muscalu
et al. 2004a; 2006; Silva 2014] and the references therein). In the bilinear and biparameter cases, let 0i

(i = 1, 2) be subspaces in R2, we consider operators Tm defined by

Tm( f1, f2)(x) :=
∫

R4
m(ξ, η) f̂1(ξ1, η1) f̂2(ξ2, η2)e2π i x ·((ξ1,η1)+(ξ2,η2)) dξ dη, (1-3)

where the symbol m satisfies1

|∂αξ ∂
β
η m(ξ, η)|.

1
dist(ξ, 01)|α|

·
1

dist(η, 02)|β|
(1-4)

for sufficiently many multi-indices α = (α1, α2) and β = (β1, β2). If dim01 = dim02 = 0, Muscalu,
J. Pipher, Tao and Thiele proved in [Muscalu et al. 2004a; 2006] that Hölder-type L p estimates are
available for Tm ; however, if dim01 = dim02 = 1, let Tm be the double bilinear Hilbert transform on
polydisks BHT⊗BHT defined by

BHT⊗BHT( f1, f2)(x, y) := p.v.
∫

R2
f1(x − s, y− t) f2(x + s, y+ t)

ds
s

dt
t
; (1-5)

they also proved in [Muscalu et al. 2004a] that the operator BHT⊗BHT does not satisfy any L p estimates
of Hölder type by constructing a counterexample. In fact, consider bounded functions f1(x, y) =
f2(x, y)= ei xy ; one has formally

BHT⊗BHT( f1, f2)(x, y)= ( f1 · f2)(x, y)
∫

R2

e2ist

st
ds dt = iπ( f1 · f2)(x, y)

∫
R

sgn(s)
s

ds,

then localize functions f1, f2 and let f N
1 (x, y)= f N

2 (x, y)= ei xyχ[−N ,N ](x)χ[−N ,N ](y). One can verify
the pointwise estimate

|BHT⊗BHT( f N
1 , f N

2 )(x, y)| ≥
∣∣∣∣∫ N

10

−
N
10

∫ N
10

−
N
10

e2ist

st
ds dt

∣∣∣∣+ O(1)≥ C log N + O(1) (1-6)

for every x , y ∈
[
−

1
100 N , 1

100 N
]

and sufficiently large N ∈ Z+, which indicates that no Hölder-type L p

estimates are available for the bilinear operator BHT⊗BHT. When dim01 = 0 and dim02 = 1, there is
the following problem:

Question 1.2 [Muscalu et al. 2004a, Question 8.2]. Let dim01= 0 and dim02= 1 with 02 nondegenerate
in the sense of [Muscalu et al. 2002]. If m is a multiplier satisfying (1-4), does the corresponding operator
Tm defined by (1-3) satisfy any L p estimates?

1Throughout this paper, A . B means that there exists a universal constant C > 0 such that A ≤ C B. If necessary, we use
explicitly A .?,...,? B to indicate that there exists a positive constant C?,...,?, continuously depending only on the quantities
appearing in the subscript, such that A ≤ C?,...,?B.
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P. Silva [2014] answered this question partially and proved that Tm defined by (1-3), (1-4) with
dim01 = 0 and dim02 = 1 maps L p

× Lq
→ Lr boundedly when 1

p +
1
q =

1
r with p, q > 1, 1

p +
2
q < 2

and 1
q +

2
p < 2. One should observe that the admissible range for these tuples (p, q, r) is a proper subset

of the region p, q > 1 and 3
4 < r <∞, which is also properly contained in the admissible range of BHT

(see Theorem 1.1).
Naturally, we may wonder whether the biparameter bilinear operator Tm given by (1-3), (1-4) (with

appropriate decay assumptions on the symbol m and singularity sets 01, 02 satisfying dim01 = 0 or 1,
dim02 = 1) satisfies the same L p estimates as BHT.

To study this problem, we must find the implicit decay assumptions on symbol m to preclude the
existence of those kinds of counterexamples constructed in (1-6) for BHT⊗BHT. To this end, let us
consider first the bilinear operator Tm ⊗BHT of tensor product type that is defined by

Tm ⊗BHT( f1, f2)(x, y) := p.v.
∫

R2
f1(x − s, y− t) f2(x + s, y+ t)

K (s)
t

ds dt, (1-7)

where the symbol m(ξ 1
1 , ξ

1
2 ) = m(ζ ) := K̂ (ζ ) with ζ := ξ 1

1 − ξ
1
2 has one-dimensional nondegenerate

singularity set 01. Let f1(x, y)= f2(x, y)= ei xy ; one can easily derive that

Tm ⊗BHT( f1, f2)(x, y)= ( f1 · f2)(x, y)
∫

R2
K (s)

e2ist

t
ds dt. (1-8)

From (1-8) and the above counterexample constructed in (1-6) for the operator BHT⊗BHT, we observe
that one sufficient condition for precluding the existence of these kinds of counterexamples is K ∈ L1

or, equivalently, m = K̂ ∈ F(L1). From the Riemann–Lebesgue theorem, we know that a necessary
condition for m ∈ F(L1) is m(ζ )→ 0 as |ζ | →∞. Moreover, if K ∈ L1(R) is odd, one can even derive
that

∣∣∫
R

m(ζ )/ζ dζ
∣∣. ‖K‖L1 (this indicates that many uniformly continuous functions with logarithmic

decay rate do not belong to F(L1)). Therefore, in order to guarantee that the same L p estimates as the
bilinear Hilbert transform are available for the bilinear operators Tm ⊗BHT and BHT⊗BHT, we need
some appropriate decay assumptions on the symbol.

The purpose of this paper is to prove the same L p estimates as BHT for modified bilinear operators
Tm ⊗BHT with arbitrary nonsmooth symbols which decay faster than the logarithmic rate.

For d ≥ 2, any two generic vectors ξ1 = (ξ
i
1)

d
i=1, ξ2 = (ξ

i
2)

d
i=1 in Rd generate naturally the following

collection of d vectors in R2:

ξ̄1 = (ξ
1
1 , ξ

1
2 ), ξ̄2 = (ξ

2
1 , ξ

2
2 ), . . . , ξ̄d = (ξ

d
1 , ξ

d
2 ). (1-9)

Let m = m(ξ) = m(ξ̄ ) be a bounded symbol in L∞(R2d) that is smooth away from the subspaces
01 ∪ · · · ∪0d−1 ∪0d and satisfies

dist(ξ̄d , 0d)
|αd | ·

∫
R2(d−1)

∣∣∂α1
ξ̄1
· · · ∂

αd

ξ̄d
m(ξ̄ )

∣∣∏d−1
i=1 dist(ξ̄i , 0i )2−|αi |

d ξ̄1 · · · d ξ̄d−1 ≤ B <+∞ (1-10)
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for sufficiently many multi-indices α1, . . . , αd , where dim0i = 0 for i = 1, . . . , d − 1 and 0d :=

{(ξ d
1 , ξ

d
2 ) ∈ R2

: ξ d
1 = ξ

d
2 }. Denote by T (d)

m the bilinear multiplier operator defined by

T (d)
m ( f1, f2)(x) :=

∫
R2d

m(ξ) f̂1(ξ1) f̂2(ξ2)e2π i x ·(ξ1+ξ2) dξ. (1-11)

Our result for bilinear operators T (d)
m satisfying (1-10) and (1-11) is the following:

Theorem 1.3. For any d≥ 2, the bilinear, d-parameter multiplier operator T (d)
m maps L p1(Rd)×L p2(Rd)

into L p(Rd) boundedly for any 1< p1, p2 ≤∞ with 1
p =

1
p1
+

1
p2

and 2
3 < p<∞. The implicit constants

in the bounds depend only on p1, p2, p, d and B.

Remark 1.4. For arbitrarily small ε > 0, let mε
= mε(ξ) = mε(ξ̄ ) be a bounded symbol in L∞(R2d)

that is smooth away from the subspaces 01 ∪ · · · ∪0d−1 ∪0d defined as in Theorem 1.3 and satisfying
differential estimates

|∂
α1
ξ̄1
· · · ∂

αd

ξ̄d
mε(ξ̄ )|.

d−1∏
i=1

(
1

dist(ξ̄i , 0i )|αi |
· 〈log2 dist(ξ̄i , 0i )〉

−(1+ε)
)
·

1
dist(ξ̄d , 0d)|αd |

(1-12)

for sufficiently many multi-indices α1, . . . , αd ; then mε satisfies conditions (1-10).

As shown in [Muscalu et al. 2004a], the bilinear and biparameter Hilbert transform does not satisfy any
L p estimates. This is the case when the singularity sets 01 and 02 satisfy dim01 = dim02 = 1. Thus, it
is natural to ask if the L p estimates will break down for any bilinear and biparameter Fourier multiplier
operator with dim01 = dim02 = 1. In other words, will a nonsmooth symbol with the same dimensional
singularity sets but with a slightly better decay than that for the bilinear and biparameter Hilbert transform
assure the L p estimates? Our next two theorems will address this issue.

For d = 2 and arbitrarily small ε > 0, let m̃ε
= m̃ε(ξ)= m̃ε(ξ̄ ) be a bounded symbol in L∞(R4) that

is smooth away from the subspaces 01 ∪02 and satisfies

|∂
α1
ξ̄1
∂
α2
ξ̄2

m̃ε(ξ̄ )|.
2∏

i=1

1
dist(ξ̄i , 0i )|αi |

· 〈log2 dist(ξ̄1, 01)〉
−(1+ε) (1-13)

for sufficiently many multi-indices α1, α2, where 〈x〉 :=
√

1+ x2 and 0i := {(ξ
i
1, ξ

i
2) ∈ R2

: ξ i
1 = ξ

i
2}

for i = 1, 2. Denote by T (2)
m̃ε the bilinear multiplier operator defined by

T (2)
m̃ε ( f1, f2)(x) :=

∫
R4

m̃ε(ξ) f̂1(ξ1) f̂2(ξ2)e2π i x ·(ξ1+ξ2) dξ. (1-14)

Our result for bilinear operators T (2)
m̃ε satisfying (1-13) and (1-14) is the following:

Theorem 1.5. For d = 2 and any ε > 0, the bilinear and biparameter multiplier operator T (2)
m̃ε maps

L p1(R2)× L p2(R2)→ L p(R2) boundedly for any 1 < p1, p2 ≤∞ with 1
p =

1
p1
+

1
p2

and 2
3 < p <∞.

The implicit constants in the bounds depend only on p1, p2, p, ε and tend to infinity as ε→ 0.

Our result for modified bilinear and biparameter Hilbert transform of tensor product type with a slightly
better decay than that of BHT⊗BHT is the following:
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Theorem 1.6. For any ε > 0, let the bilinear and biparameter operator BHTε⊗BHT be defined by

BHTε⊗BHT( f1, f2)(x1, x2)= p.v.
∫

R2
f1(x − s) f2(x + s)

9ε(s1)

s2
ds1 ds2

with the function 9ε satisfying

|∂
α1
ξ̄1
9̂ε(ξ 1

1 − ξ
1
2 )|. |ξ

1
1 − ξ

1
2 |
−|α1| · 〈log2 |ξ

1
1 − ξ

1
2 |〉
−(1+ε) (1-15)

for sufficiently many multi-indices α1; then it satisfies the same L p estimates as T (2)
m̃ε .

Remark 1.7. For simplicity, we will only consider the biparameter case d = 2 and 0i = {(0, 0)}
(i = 1, . . . , d− 1) in the proof of Theorem 1.3. It will be clear from the proof (see Section 4) that we can
extend the argument to the general d-parameter and dim0i = 0 (i = 1, . . . , d−1) cases straightforwardly.
We will only prove Theorem 1.5 in Section 5 and omit the proof of Theorem 1.6, since one can observe
from the discretization procedure in Section 2 that the bilinear and biparameter operator BHTε⊗BHT
can be reduced to the same bilinear model operators 5̃ε

EP
as T (2)

m̃ε .

It’s well known that a standard approach to prove L p estimates for one-parameter n-linear operators
with singular symbols (e.g., Coifman–Meyer multiplier, BHT and one-parameter paraproducts) is by the
generic estimates of the corresponding (n+1)-linear forms consisting of estimates for different sizes and
energies (see [Jung ≥ 2015; Muscalu and Schlag 2013; Muscalu et al. 2002; 2004b]), which relies on
the one-dimensional BMO theory, or, more precisely, the John–Nirenberg-type inequalities to get good
control over the relevant sizes. Unfortunately, there is no routine generalization of such approach to
multiparameter settings, for instance, we don’t have analogues of the John–Nirenberg inequalities for
dyadic rectangular BMO spaces in the two-parameter case (see [Muscalu and Schlag 2013]). To overcome
these difficulties, Muscalu et al. [2004a] developed a completely new approach to prove L p estimates
for biparameter paraproducts; their essential idea is to apply the stopping-time decompositions based
on hybrid square and maximal operators MM, MS, SM and SS, the one-dimensional BMO theory and
Journé’s lemma, and hence could not be extended to solve the general d-parameter (d ≥ 3) cases. As to the
general d-parameter (d ≥ 3) cases, by proving a generic decomposition (see Lemma 4.1), Muscalu et al.
[2006] simplified the arguments they introduced in [Muscalu et al. 2004a], and this simplification works
equally well in all d-parameter settings. Recently, a pseudodifferential variant of the theorems in [Muscalu
et al. 2004a; 2006] has been established in [Dai and Lu ≥ 2015a]. Moreover, J. Chen and G. Lu [Chen and
Lu 2014] offer a different proof than those in [Muscalu et al. 2004a; 2006] to establish a Hörmander-type
theorem of L p estimates (and weighted estimates as well) for multilinear and multiparameter Fourier
multiplier operators with limited smoothness in multiparameter Sobolev spaces.

However, in this paper, in order to prove our main results, Theorems 1.3 and 1.5 in biparameter settings,
we have at least two different difficulties from [Muscalu et al. 2004a; 2006]. First, observe that if one
restricts the sum of tritiles P ′′ ∈ P′′ in the definitions of discrete model operators (see Section 2) to a
tree then one essentially gets a tensor product of two discrete paraproducts on x1 and x2, respectively,
which can be estimated by the MM, MS, SM and SS functions, but, due to the extra degree of freedom
in frequency in the x2 direction, there are infinitely many such tensor products of paraproducts in the
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summation, so it’s difficult for us to carry out the stopping-time decompositions by using the hybrid
square and maximal operators as in [Muscalu et al. 2004a; 2006]. Second, in the proof of Theorem 1.5,
note that there are infinitely many tritiles P ′ ∈ P′ with the property that IP ′ = I0 for a certain fixed
dyadic interval I0 of the same length as IP ′ , so we can’t estimate

∑
P ′ |IP ′ |. | Ĩ | for all dyadic intervals

IP ′ ⊆ Ĩ with comparable lengths, and hence we can’t apply Journé’s lemma as in [Muscalu et al. 2004a]
either. By making use of the L2 sizes and L2 energies estimates of the trilinear forms, the almost
orthogonality of wave packets associated with different tiles of distinct trees and the decay assumptions on
the symbols, we are able to overcome these difficulties in the proof of Theorems 1.3 and 1.5 in biparameter
settings.

Nevertheless, in the proof of Theorem 1.5 in general d-parameter settings (d ≥ 3), one easily observes
that the generic decomposition will destroy the perfect orthogonality of wave packets associated with
distinct tiles which have disjoint frequency intervals in both the x1 and x2 directions, thus we can’t
apply the generic decomposition to extend the results of Theorem 1.5 to higher parameters d ≥ 3 as in
[Muscalu et al. 2006]. For the proof of Theorem 1.3, we are able to apply the generic decomposition
lemma (Lemma 4.1) to the d−1 variables x1, . . . , xd−1. Although one can’t obtain that supp83,`

P̃ ′3
⊗83

P ′′3
is entirely contained in the exceptional set U as in [Muscalu et al. 2006], one can observe that the support
set is contained in U in all the variables x1, . . . , xd−1, but not the last, xd . Therefore, we only need to
consider the distance from the support set to the set E ′3 in the xd direction and obtain enough decay factors
for summation; the extension of the proof to the general d-parameter (d ≥ 3) cases is straightforward.

The rest of this paper is organized as follows. In Section 2 we reduce the proof of Theorem 1.3 and
Theorem 1.5 to proving restricted weak type estimates of discrete bilinear model operators 5EP and 5̃ε

EP

(Proposition 2.17). Section 3 is devoted to giving a review of the definitions and useful properties about
trees, L2 sizes and L2 energies introduced in [Muscalu et al. 2004b]. In Sections 4 and 5 we carry
out the proof of Proposition 2.17, which completes the proof of our main theorems, Theorem 1.3 and
Theorem 1.5, respectively.

2. Reduction to restricted weak type estimates of discrete bilinear model operators 5EP
and 5̃ε

EP

2A. Discretization. As we can see from the study of multiparameter and multilinear Coifman–Meyer
multiplier operators (see, e.g., [Muscalu et al. 2002; 2004a; 2004b; 2006]), a standard approach to obtain
L p estimates of bilinear operators T (d)

m and T (2)
m̃ε is to reduce them into discrete sums of inner products

with wave packets (see [Thiele 2006]).

2A1. Discretization for bilinear, biparameter operators T (2)
m with 01={(0, 0)}. We will use the following

discretization procedure. First, we need to decompose the symbol m(ξ) in a natural way. To this end, for
the first spatial variable x1, we decompose the region {ξ̄1 = (ξ

1
1 , ξ

1
2 ) ∈ R2

\ {(0, 0)}} by using Whitney
squares with respect to the singularity point {ξ 1

1 = ξ
1
2 = 0}, while, for the last spatial variable x2, we

decompose the region {ξ̄2 = (ξ
2
1 , ξ

2
2 ) ∈ R2

: ξ 2
1 6= ξ

2
2 } by using Whitney squares with respect to the

singularity line 02 = {ξ
2
1 = ξ

2
2 }. In order to describe our discretization procedure clearly, let us first recall

some standard notation and definitions in [Muscalu et al. 2004b].
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An interval I on the real line R is called dyadic if it is of the form I = 2−k
[n, n+1] for some k, n ∈ Z.

An interval is said to be a shifted dyadic interval if it is of the form 2−k
[ j + α, j + 1+ α] for some

k, j ∈ Z and α ∈
{
0, 1

3 ,−
1
3

}
. A shifted dyadic cube is a set of the form Q = Q1× Q2× Q3, where each

Q j is a shifted dyadic interval and they all have the same length. A shifted dyadic quasicube is a set
Q = Q1× Q2× Q3, where Q j ( j = 1, 2, 3) are shifted dyadic intervals satisfying the less restrictive
condition |Q1| ' |Q2| ' |Q3|. One easily observes that, for every cube Q ⊆ R3, there exists a shifted
dyadic cube Q̃ such that Q ⊂ 7

10 Q̃ (the cube having the same center as Q̃ but with side length 7
10 that

of Q̃) and diam(Q)' diam(Q̃).
The same terminology will also be used in the plane R2. The only difference is that the previous cubes

become squares. For any cube or square Q, we will denote the side length of Q by `(Q) and denote the
reflection of Q with respect to the origin by −Q hereafter.

Definition 2.1 [Muscalu and Schlag 2013; Muscalu et al. 2006]. For J ⊆ R an arbitrary interval, we say
that a smooth function 8J is a bump adapted to J if and only if the following inequalities hold:

|8
(l)
J (x)|.l,α

1
|J |l
·

1
(1+ dist(x, J )/|J |)α

(2-1)

for every integer α ∈N and for sufficiently many derivatives l ∈N. If 8J is a bump adapted to J , we say
that |J |−

1
28J is an L2-normalized bump adapted to J .

Now let ϕ ∈ S(R) be an even Schwartz function such that supp ϕ̂ ⊆
[
−

3
16 ,

3
16

]
and ϕ̂(ξ) = 1

on
[
−

1
6 ,

1
6

]
, and define ψ ∈ S(R) to be the Schwartz function whose Fourier transform satisfies

ψ̂(ξ) := ϕ̂(ξ/4) − ϕ̂(ξ/2) and supp ψ̂ ⊆
[
−

3
4 ,−

1
3

]
∪
[ 1

3 ,
3
4

]
, such that 0 ≤ ϕ̂(ξ), ψ̂(ξ) ≤ 1. Then,

for every integer k ∈ Z, we define ϕ̂k , ψ̂k ∈ S(R) by

ϕ̂k(ξ) := ϕ̂

(
ξ

2k

)
, ψ̂k(ξ) := ψ̂

(
ξ

2k

)
= ϕ̂k+2(ξ)− ϕ̂k+1(ξ) (2-2)

and observe that

supp ϕ̂k ⊆
[
−

3
16 · 2

k, 3
16 · 2

k], supp ψ̂k ⊆
[
−

3
4 · 2

k,− 1
3 · 2

k]
∪
[1

3 · 2
k, 3

4 · 2
k],

and supp ψ̂k ∩ supp ψ̂k′ =∅ for any integers k, k ′ ∈ Z such that |k− k ′| ≥ 2, and supp ϕ̂ ∩ supp ψ̂k =∅
for any integer k ≥ 0. One easily obtains the homogeneous Littlewood–Paley dyadic decomposition

1=
∑
k∈Z

ψ̂k(ξ) for all ξ ∈ R \ {0} (2-3)

and inhomogeneous Littlewood–Paley dyadic decomposition

1= ϕ̂(ξ)+
∑

k≥−1

ψ̂k(ξ) for all ξ ∈ R. (2-4)

As a consequence, we get a decomposition for the product 1(ξ 1
1 , ξ

1
2 )= 1(ξ 1

1 ) · 1(ξ
1
2 ) as follows:

1(ξ 1
1 , ξ

1
2 )=

∑
k′∈Z

ϕ̂k′(ξ
1
1 )ψ̂k′(ξ

1
2 )+

∑
k′∈Z

ψ̂k′(ξ
1
1 )
ˆ̃
ψk′(ξ

1
2 )+

∑
k′∈Z

ψ̂k′(ξ
1
1 )ϕ̂k′(ξ

1
2 ) (2-5)
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for every (ξ 1
1 , ξ

1
2 ) 6= (0, 0), where

ˆ̃
ψk′ :=

∑
|k−k′|≤1, k∈Z

ψ̂k for all k ′ ∈ Z.

By breaking the characteristic function of the plane (ξ 1
1 , ξ

1
2
) into finite sums of smoothed versions of

characteristic functions of cones as in (2-5), we can decompose the operator T (2)
m into a finite sum of

several parts in the x1 direction. Since all the operators obtained in this decomposition can be treated in
the same way, we will only discuss one of them in detail. More precisely, let

Q̃′ :=
{

Q̃′ = Q̃′1× Q̃′2 ⊆ R2
: Q̃′1 := 2k′[

−
1
2 ,

1
2

]
, Q̃′2 := 2k′[ 1

24 ,
25
24

]
for all k ′ ∈ Z

}
. (2-6)

For each square Q̃′ ∈ Q̃′, we define bump functions φQ̃′i ,i
(i = 1, 2) adapted to intervals Q̃′i and satisfying

supp φQ̃′i ,i
⊆

9
10 Q̃′i by

φQ̃′1,1
(ξ) := ϕ̂

(
ξ

`(Q̃′)

)
= ϕ̂k′(ξ) (2-7)

and

φQ̃′2,2
(ξ) := ψ̂

(
ξ

`(Q̃′)

)
·χ{ξ>0} = ψ̂k′(ξ) ·χ{ξ>0}, (2-8)

respectively, and finally define smooth bump functions φQ̃′ adapted to Q̃′ and satisfying suppφQ̃′ ⊆
9
10 Q̃′

by
φQ̃′(ξ

1
1 , ξ

1
2 ) := φQ̃′1,1

(ξ 1
1 ) ·φQ̃′2,2

(ξ 1
2 ). (2-9)

Without loss of generality, we will only consider the smoothed characteristic function of the cone
{(ξ 1

1 , ξ
1
2 ) ∈ R2

: |ξ 1
1 |. |ξ

1
2 |, ξ

1
2 > 0} in the decomposition (2-5) from now on, which is defined by∑

Q̃′∈Q̃′

φQ̃′(ξ
1
1 , ξ

1
2 ). (2-10)

As to the x2 direction, we consider the collection Q′′ of all shifted dyadic squares Q′′ = Q′′1 × Q′′2
satisfying

Q′′ ⊆ {(ξ 2
1 , ξ

2
2 ) ∈ R2

: ξ 2
1 6= ξ

2
2 }, dist(Q′′, 02)' 104 diam(Q′′). (2-11)

We can split the collection Q′′ into two disjoint subcollections, that is, define

Q′′I := {Q
′′
∈Q′′ : Q′′ ⊆ {ξ 2

1 < ξ
2
2 }}, Q′′II := {Q

′′
∈Q′′ : Q′′ ⊆ {ξ 2

1 > ξ
2
2 }}. (2-12)

Since the set of squares
{ 7

10 Q′′ : Q′′ ∈Q′′
}

also forms a finitely overlapping cover of the region {ξ 2
1 6= ξ

2
2 },

we can apply a standard partition of unity and write the symbol χ
{ξ2

1 6=ξ
2
2 }

as

χ
{ξ2

1 6=ξ
2
2 }
=

∑
Q′′∈Q′′

φQ′′(ξ
2
1 , ξ

2
2 )=

( ∑
Q′′∈Q′′I

+

∑
Q′′∈Q′′II

)
φQ′′(ξ

2
1 , ξ

2
2 )= χ{ξ2

1<ξ
2
2 }
+χ
{ξ2

1>ξ
2
2 }
, (2-13)

where each φQ′′ is a smooth bump function adapted to Q′′ and supported in 8
10 Q′′.
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One can easily observe that we only need to discuss in detail one term in the decomposition (2-13),
since the other term can be treated in the same way. Without loss of generality, we will only consider the
first term in (2-13), that is, the characteristic function χ

{ξ2
1<ξ

2
2 }

of the upper half plane with respect to the
singularity line 02, which can be written as

χ
{ξ2

1<ξ
2
2 }
=

∑
Q′′∈Q′′I

φQ′′(ξ
2
1 , ξ

2
2 ). (2-14)

In a word, we only need to consider the bilinear operator T (2)
m,(lh,I) given by

T (2)
m,(lh,I)( f1, f2)(x) :=

∑
Q̃′∈Q̃′

Q′′∈Q′′I

∫
R4

m(ξ)φQ̃′(ξ̄1)φQ′′(ξ̄2) f̂1(ξ1) f̂2(ξ2)e2π i x ·(ξ1+ξ2) dξ (2-15)

from now on, and the proof of Theorem 1.3 can be reduced to proving the L p estimates

‖T (2)
m,(lh,I)( f1, f2)‖L p(R2) .p,p1,p2,B ‖ f1‖L p1 (R2) · ‖ f2‖L p2 (R2) (2-16)

as long as 1< p1, p2 ≤∞ and 0< 1
p =

1
p1
+

1
p2
< 3

2 .
On one hand, since ξ 1

1 ∈ suppφQ̃′1,1
⊆ `(Q̃′)

[
−

3
16 ,

3
16

]
and ξ 1

2 ∈ suppφQ̃′2,2
⊆ `(Q̃′)

[ 1
3 ,

3
4

]
, it follows

that−ξ 1
1 −ξ

1
2 ∈ `(Q̃

′)
[
−

15
16 ,−

7
48

]
, and, as a consequence, there exists an interval Q̃′3 := `(Q̃

′)
[
−

25
24 ,−

1
24

]
and a bump function φQ̃′3,3

adapted to Q̃′3 such that suppφQ̃′3,3
⊆ `(Q̃′)

[
−

23
24 ,−

1
8

]
⊆

9
10 Q̃′3 and φQ̃′3,3

≡ 1
on `(Q̃′)

[
−

15
16 ,−

7
48

]
.

On the other hand, observe that there exist bump functions φQ′′i ,i (i = 1, 2) adapted to the shifted
dyadic interval Q′′i such that suppφQ′′i ,i ⊆

9
10 Q′′i and φQ′′i ,i ≡ 1 on 8

10 Q′′i (i = 1, 2), respectively, and
suppφQ′′ ⊆

8
10 Q′′, thus one has φQ′′1,1 · φQ′′2,2 ≡ 1 on suppφQ′′ . Since ξ 2

1 ∈ suppφQ′′1,1 ⊆
9

10 Q′′1 and
ξ 2

2 ∈ suppφQ′′2,2 ⊆
9
10 Q′′2, it follows that −ξ 2

1 − ξ
2
2 ∈ −

9
10 Q′′1 −

9
10 Q′′2, and, as a consequence, one can

find a shifted dyadic interval Q′′3 with the property that − 9
10 Q′′1 −

9
10 Q′′2 ⊆

7
10 Q′′3 and also satisfying

|Q′′1| = |Q
′′

2| ' |Q
′′

3|. In particular, there exists a bump function φQ′′3,3 adapted to Q′′3 and supported in
9

10 Q′′3 such that φQ′′3,3 ≡ 1 on − 9
10 Q′′1 −

9
10 Q′′2.

We denote by Q̃′ the collection of all cubes Q̃′ := Q̃′1× Q̃′2× Q̃′3 with Q̃′1× Q̃′2 ∈ Q̃′ and Q̃′3 defined
as above, and denote by Q′′ the collection of all shifted dyadic quasicubes Q′′ := Q′′1 × Q′′2 × Q′′3 with
Q′′1 × Q′′2 ∈Q′′I and Q′′3 defined as above.

Definition 2.2 [Muscalu et al. 2004b]. We say that a collection of shifted dyadic quasicubes (cubes) is
sparse if and only if, for every j = 1, 2, 3:

(i) If Q and Q̃ belong to this collection and |Q j |< |Q̃ j |, then 108
|Q j | ≤ |Q̃ j |.

(ii) If Q and Q̃ belong to this collection and |Q j | = |Q̃ j |, then 108 Q j ∩ 108 Q̃ j =∅.

In fact, it is not difficult to see that the collection Q′′ can be split into a sum of finitely many sparse
collection of shifted dyadic quasicubes. Therefore, we can assume from now on that the collection Q′′ is
sparse.

Assuming this we then observe that, for any Q′′ in such a sparse collection Q′′, there exists a unique
shifted dyadic cube Q̃′′ in R3 such that Q′′ ⊆ 7

10 Q̃′′ and with the property that diam(Q′′)' diam(Q̃′′).
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This allows us in particular to assume further that Q′′ is a sparse collection of shifted dyadic cubes (that
is, |Q′′1| = |Q

′′

2| = |Q
′′

3| = `(Q
′′)).

Now consider the trilinear form3
(2)
m,(lh,I)( f1, f2, f3) associated to T (2)

m,(lh,I)( f1, f2), which can be written
as

3
(2)
m,(lh,I)( f1, f2, f3)

:=
∫

R2
T (2)

m,(lh,I)( f1, f2)(x) f3(x) dx

=

∑
Q̃′∈ Q̃′
Q′′∈Q′′

∫
ξ1+ξ2+ξ3=0

m Q̃′,Q′′(ξ1, ξ2, ξ3)

3∏
i=1

( fi ∗ (φ̌Q̃′i ,i
⊗ φ̌Q′′i ,i ))

∧(ξi ) dξ1 dξ2 dξ3, (2-17)

where ξi = (ξ
1
i , ξ

2
i ) for i = 1, 2, 3, while

m Q̃′,Q′′(ξ1, ξ2, ξ3) := m(ξ1, ξ2) · (φ̃Q̃′ ⊗ (φQ′′1×Q′′2 · φ̃Q′′3,3))(ξ1, ξ2, ξ3), (2-18)

where φ̃Q̃′ is an appropriate smooth function of (ξ 1
1 , ξ

1
2 , ξ

1
3 ) which is supported on a slightly larger

cube (with a constant magnification independent of `(Q̃′)) than supp(φQ̃′1,1
(ξ 1

1 )φQ̃′2,2
(ξ 1

2 )φQ̃′3,3
(ξ 1

3 )) and
equals 1 on supp(φQ̃′1,1

(ξ 1
1 )φQ̃′2,2

(ξ 1
2 )φQ̃′3,3

(ξ 1
3 )), the function φQ′′1×Q′′2 (ξ

2
1 , ξ

2
2 ) is one term of the partition

of unity defined in (2-14), and φ̃Q′′3,3 is an appropriate smooth function of ξ 2
3 supported on a slightly

larger interval (with a constant magnification independent of `(Q′′)) than suppφQ′′3,3 which equals 1 on
suppφQ′′3,3. We can decompose m Q̃′,Q′′(ξ1, ξ2, ξ3) as a Fourier series,

m Q̃′,Q′′(ξ1, ξ2, ξ3)=
∑

En1,En2,En3∈Z2

C Q̃′,Q′′

En1,En2,En3
e2π i(n′1,n

′

2,n
′

3)·(ξ
1
1 ,ξ

1
2 ,ξ

1
3 )/`(Q̃

′)e2π i(n′′1,n
′′

2,n
′′

3)·(ξ
2
1 ,ξ

2
2 ,ξ

2
3 )/`(Q

′′), (2-19)

where the Fourier coefficients C Q̃′,Q′′

En1,En2,En3
are given by

C Q̃′,Q′′

En1,En2,En3
=

∫
R6

m Q̃′,Q′′
(
(`(Q̃′)ξ 1

1 , `(Q
′′)ξ 2

1 ), (`(Q̃
′)ξ 1

2 , `(Q
′′)ξ 2

2 ), (`(Q̃
′)ξ 1

3 , `(Q
′′)ξ 2

3 )
)

× e−2π i(En1·ξ1+En2·ξ2+En3·ξ3) dξ1 dξ2 dξ3. (2-20)

Then, by a straightforward calculation, we can rewrite (2-17) as

3
(2)
m,(lh,I)( f1, f2, f3)

=

∑
Q̃′∈ Q̃′
Q′′∈Q′′

∑
En1,En2,En3∈Z2

C Q̃′,Q′′

En1,En2,En3

∫
R2

3∏
j=1

( f j ∗ (φ̌Q̃′j , j ⊗ φ̌Q′′j , j ))

(
x −

( n′j
`(Q̃′)

,
n′′j

`(Q′′)

))
dx . (2-21)

Definition 2.3 [Muscalu et al. 2004b; Thiele 2006]. An arbitrary dyadic rectangle of area 1 in the phase-
space plane is called a Heisenberg box or tile. Let P := IP×ωP be a tile. An L2-normalized wave packet
on P is a function 8P which has Fourier support supp 9̂P ⊆

9
10ωP and obeys the estimates

|8P(x)|. |IP |
−

1
2

(
1+

dist(x, IP)

|IP |

)−M
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for all M > 0, where the implicit constant depends on M .

Now we define φ
n′i
Q̃′i ,i
:= e2π in′i ξ

1
i /`(Q̃

′)
· φQ̃′i ,i

and φ
n′′i
Q′′i ,i
:= e2π in′′i ξ

2
i /`(Q

′′)
· φQ′′i ,i for i = 1, 2, 3. Since

any Q̃′ ∈ Q̃′ and Q′′ ∈ Q′′ are both shifted dyadic cubes, there exist integers k ′, k ′′ ∈ Z such that
`(Q̃′) = |Q̃′1| = |Q̃

′

2| = |Q̃
′

3| = 2k′ and `(Q′′) = |Q′′1| = |Q
′′

2| = |Q
′′

3| = 2k′′ , respectively. By splitting
the integral region R2 into the union of unit squares, using the L2-normalization procedure and simple
calculations, we can rewrite (2-21) as
3
(2)
m,(lh,I)( f1, f2, f3)

=

∑
En1,En2,En3∈Z2

∑
Q̃′∈ Q̃′
Q′′∈Q′′

∫ 1

0

∫ 1

0

∑
Ĩ ′ dyadic,
| Ĩ ′|=2−k′

∑
I ′′ dyadic,
|I ′′|=2−k′′

C Q̃′,Q′′

En1,En2,En3

| Ĩ ′|
1
2 × |I ′′|

1
2

3∏
j=1

〈 f j , φ̌
n′j ,ν

′

Ĩ ′,Q̃′j , j
⊗ φ̌

n′′j ,ν
′′

I ′′,Q′′j , j 〉 dν
′ dν ′′

=:

∑
En1,En2,En3∈Z2

∫ 1

0

∫ 1

0

∑
EP:=P̃ ′⊗P ′′∈EP

CQ EP ,En1,En2,En3

|I EP |
1
2

3∏
j=1

〈 f j ,8
j,En j ,ν

EPj
〉 dν, (2-22)

where 〈 · , · 〉 denotes the complex scalar L2 inner product, and we have:

• Fourier coefficients CQ EP ,En1,En2,En3 := C Q̃′,Q′′

En1,En2,En3
;

• tritiles P̃ ′ := (P̃ ′1, P̃ ′2, P̃ ′3) and P ′′ := (P ′′1 , P ′′2 , P ′′3 );

• tiles P̃ ′i := I P̃ ′i
×ωP̃ ′i

, where I P̃ ′i
:= Ĩ ′= 2−k′

[l ′, l ′+1]=: I P̃ ′ and the frequency intervals are ωP̃ ′i
:= Q̃′i

for i = 1, 2, 3;

• tiles P ′′j := IP ′′j ×ωP ′′j , where IP ′′j := I ′′ = 2−k′′
[l ′′, l ′′ + 1] =: IP ′′ and the frequency intervals are

ωP ′′j := Q′′j for j = 1, 2, 3;

• frequency cubes Q P̃ ′ := ωP̃ ′1
×ωP̃ ′2

×ωP̃ ′3
and Q P ′′ := ωP ′′1 ×ωP ′′2 ×ωP ′′3 ;

• P̃′ denotes a collection of such tritiles P̃ ′ and P′′ denotes a collection of such tritiles P ′′;

• bitiles EP1, EP2 and EP3 defined by

EP1 := (P̃ ′1, P ′′1 )=
(
2−k′
[l ′, l ′+ 1]× 2k′[

−
1
2 ,

1
2

]
, 2−k′′

[l ′′, l ′′+ 1]× Q′′1
)
,

EP2 := (P̃ ′2, P ′′2 )=
(
2−k′
[l ′, l ′+ 1]× 2k′[ 1

24 ,
25
24

]
, 2−k′′

[l ′′, l ′′+ 1]× Q′′2
)
,

EP3 := (P̃ ′3, P ′′3 )=
(
2−k′
[l ′, l ′+ 1]× 2k′[

−
25
24 ,−

1
24

]
, 2−k′′

[l ′′, l ′′+ 1]× Q′′3
)
;

• the biparameter tritile EP := P̃ ′⊗ P ′′ = ( EP1, EP2, EP3);

• rectangles I EPi
:= I P̃ ′i

× IP ′′i = I P̃ ′ × IP ′′ =: I EP for i = 1, 2, 3, and hence |I EP | = |I P̃ ′ × IP ′′ | = |I EP1
| =

|I EP2
| = |I EP3

| = 2−k′
· 2−k′′ ;

• the double frequency cube Q EP := (Q P̃ ′, Q P ′′)= (ωP̃ ′1
×ωP̃ ′2

×ωP̃ ′3
, ωP ′′1 ×ωP ′′2 ×ωP ′′3 );

• EP := P̃′×P′′ denotes a collection of such biparameter tritiles EP;

• L2-normalized wave packets 8
i,n′i ,ν

′

P̃ ′i
associated with the Heisenberg boxes P̃ ′i defined by

8
i,n′i ,ν

′

P̃ ′i
(x1) := φ̌

n′i ,ν
′

Ĩ ′,Q̃′i ,i
(x1) := 2−k′/2φ̌

n′i
Q̃′i ,i
(2−k′(l ′+ ν ′)− x1) for i = 1, 2, 3;
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• L2-normalized wave packets 8
i,n′′i ,ν

′′

P ′′i
associated with the Heisenberg boxes P ′′i defined by

8
i,n′′i ,ν

′′

P ′′i
(x2) := φ̌

n′′i ,ν
′′

I ′′,Q′′i ,i
(x2) := 2−k′′/2φ̌

n′′i
Q′′i ,i

(2−k′′(l ′′+ ν ′′)− x2) for i = 1, 2, 3;

• smooth bump functions 8i,Eni ,ν

EPi
:=8

i,n′i ,ν
′

P̃ ′i
⊗8

i,n′′i ,ν
′′

P ′′i
for i = 1, 2, 3.

We have the following rapid decay estimates of the Fourier coefficients CQ EP ,En1,En2,En3 with respect to the
parameters En1, En2, En3 ∈ Z2:

Lemma 2.4. The Fourier coefficients CQ EP ,En1,En2,En3 satisfy estimates

|CQ EP ,En1,En2,En3 |.
3∏

j=1

1
(1+ |En j |)M ·C|I P̃ ′ |

(2-23)

for any biparameter tritile EP ∈ EP, where M is sufficiently large and the sequence Ck′ := C|I P̃ ′ |
for

|I P̃ ′ | = 2−k′ (k ′ ∈ Z) satisfies ∑
k′∈Z

Ck′ ≤ B <+∞. (2-24)

Proof. Let `(Q P̃ ′)= 2k′ and `(Q P ′′)= 2k′′ for k ′, k ′′ ∈ Z. For any En1, En2, En3 ∈ Z2 and EP ∈ EP, we deduce
from (2-18) and (2-20) that

CQ EP ,En1,En2,En3

=

∫
R6

m Q P̃ ′ ,Q P ′′
((2k′ξ 1

1 , 2k′′ξ 2
1 ), (2

k′ξ 1
2 , 2k′′ξ 2

2 ), (2
k′ξ 1

3 , 2k′′ξ 2
3 ))e

−2π i(En1·ξ1+En2·ξ2+En3·ξ3) dξ1 dξ2 dξ3, (2-25)

where

m Q P̃ ′ ,Q P ′′
((2k′ξ 1

1 , 2k′′ξ 2
1 ), (2

k′ξ 1
2 , 2k′′ξ 2

2 ), (2
k′ξ 1

3 , 2k′′ξ 2
3 ))

:= m(2k′ ξ̄1, 2k′′ ξ̄2)φ̃Q P̃ ′
(2k′ξ 1

1 , 2k′ξ 1
2 , 2k′ξ 1

3 )φωP ′′1
×ωP ′′2

(2k′′ ξ̄2)φ̃ωP ′′3
,3(2k′′ξ 2

3 ). (2-26)

Since supp(φ̃Q P̃ ′
(ξ 1

1 , ξ
1
2 , ξ

1
3 )φωP ′′1

×ωP ′′2
(ξ̄2)φ̃ωP ′′3

,3(ξ
2
3 ))⊆ Q P̃ ′ × Q P ′′ , we have that

supp(φ̃Q P̃ ′
(2k′ξ 1

1 , 2k′ξ 1
2 , 2k′ξ 1

3 )φωP ′′1
×ωP ′′2

(2k′′ ξ̄2)φ̃ωP ′′3
,3(2k′′ξ 2

3 ))⊆ Q0
P̃ ′
× Q0

P ′′,

where the cubes Q0
P̃ ′

and Q0
P ′′ are defined by

Q0
P̃ ′
= ω0

P̃ ′1
×ω0

P̃ ′2
×ω0

P̃ ′3
:= {(ξ 1

1 , ξ
1
2 , ξ

1
3 ) ∈ R3

: (2k′ξ 1
1 , 2k′ξ 1

2 , 2k′ξ 1
3 ) ∈ Q P̃ ′}, (2-27)

Q0
P ′′ = ω

0
P ′′1
×ω0

P ′′2
×ω0

P ′′3
:= {(ξ 2

1 , ξ
2
2 , ξ

2
3 ) ∈ R3

: (2k′′ξ 2
1 , 2k′′ξ 2

2 , 2k′′ξ 2
3 ) ∈ Q P ′′} (2-28)

and satisfy |Q0
P̃ ′
| ' |Q0

P ′′ | ' 1. From the properties of the Whitney squares we constructed above, one
obtains that dist(2k′ ξ̄1, 01)' 2k′ for any ξ̄1 ∈ ω

0
P̃ ′1
×ω0

P̃ ′2
and dist(2k′′ ξ̄2, 02)' 2k′′ for any ξ̄2 ∈ ω

0
P ′′1
×ω0

P ′′2
.
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One can deduce from (2-25), (2-26) and integrating by parts sufficiently many times that

|CQ EP ,En1,En2,En3 |

.
3∏

j=1

1
(1+ |En j |)M

×

∫
Q0

P̃ ′
×Q0

P ′′

∣∣∂α1
ξ1
∂
α2
ξ2
∂
α3
ξ3

[
m Q P̃ ′ ,Q P ′′

((2k′ξ 1
1 , 2k′′ξ 2

1 ), (2
k′ξ 1

2 , 2k′′ξ 2
2 ), (2

k′ξ 1
3 , 2k′′ξ 2

3 ))
]∣∣ dξ1 dξ2 dξ3

.
3∏

j=1

1
(1+ |En j |)M

∫
ω0

P ′′1
×ω0

P ′′2

dist(2k′′ ξ̄2, 02)
|α′′|

∫
ω0

P̃ ′1
×ω0

P̃ ′2

dist(2k′ ξ̄1, 01)
|α′|
|∂α

′

ξ̄1
∂α
′′

ξ̄2
m(2k′ ξ̄1, 2k′′ ξ̄2)| d ξ̄1 d ξ̄2

.
3∏

j=1

1
(1+ |En j |)M ·

1
`(Q P ′′)2

∫
ωP ′′1
×ωP ′′2

dist(ξ̄2, 02)
|α′′|

∫
ωP̃ ′1
×ωP̃ ′2

dist(ξ̄1, 01)
|α′|−2
|∂α

′

ξ̄1
∂α
′′

ξ̄2
m(ξ̄1, ξ̄2)| d ξ̄1 d ξ̄2

=:

3∏
j=1

1
(1+ |En j |)M ·C|I P̃ ′ |

,

where the multi-indices αi := (α
1
i , α

2
i ) for i = 1, 2, 3 and |α1| = |α2| = |α3| = M are sufficiently large,

the multi-indices α′ := (α′1, α
′

2, α
′

3), α
′′
:= (α′′1 , α

′′

2 , α
′′

3 ) with α′i ≤ α
1
i and α′′j ≤ α

2
j for i , j = 1, 2, 3. This

proves the estimates (2-23).
Moreover, for |I P̃ ′ | = 2−k′ , we define the sequence Ck′ := C|I P̃ ′ |

(k ′ ∈ Z). From the estimates (1-10)
for symbol m(ξ̄1, ξ̄2), we get that

dist(ξ̄2, 02)
|α′′|
·

∫
R2

dist(ξ̄1, 01)
|α′|−2
|∂α

′

ξ̄1
∂α
′′

ξ̄2
m(ξ̄ )| d ξ̄1 ≤ B <+∞, (2-29)

and hence we can deduce the following summable property for the sequence {Ck′}k′∈Z:

∑
k′∈Z

Ck′ ≤
1

`(Q P ′′)2

∫
ωP ′′1
×ωP ′′2

dist(ξ̄2, 02)
|α′′|

∫
⋃

P̃ ′∈P̃′

(ωP̃ ′1
×ωP̃ ′2

)P̃ ′

dist(ξ̄1, 01)
|α′|−2
|∂α

′

ξ̄1
∂α
′′

ξ̄2
m(ξ̄1, ξ̄2)| d ξ̄1 d ξ̄2

≤
1

`(Q P ′′)2

∫
ωP ′′1
×ωP ′′2

B d ξ̄2 ≤ B <+∞. (2-30)

This ends the proof of the summable estimate (2-24). �

Observe that the rapid decay with respect to the parameters En1, En2, En3 ∈ Z2 in (2-23) is acceptable for
summation, all the functions 8

i,n′i ,ν
′

P̃ ′i
(i = 1, 2, 3) are L2-normalized and are wave packets associated

with the Heisenberg boxes P̃ ′i uniformly with respect to the parameters n′i , and all the functions 8
j,n′′j ,ν

′′

P ′′j
( j = 1, 2, 3) are L2-normalized and are wave packets associated with the Heisenberg boxes P ′′j uniformly
with respect to the parameters n′′j ; therefore we only need to consider from now on the part of the trilinear
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form 3
(2)
m,(lh,I)( f1, f2, f3) defined in (2-22) corresponding to En1 = En2 = En3 = E0,

3̇
(2)
m,(lh,I)( f1, f2, f3) :=

∫ 1

0

∫ 1

0

∑
EP∈EP

CQ EP

|I EP |
1
2

〈 f1,8
1,ν
EP1
〉〈 f2,8

2,ν
EP2
〉〈 f3,8

3,ν
EP3
〉 dν, (2-31)

where CQ EP := CQ EP ,E0,E0,E0
, we have parameters ν = (ν ′, ν ′′) and 8i,ν

EPi
:=8

i,E0,ν
EPi

for i = 1, 2, 3.

Remark 2.5. We should point out two important properties of the tritiles in P′′ (see [Muscalu and Schlag
2013; Muscalu et al. 2004b]). First, if one knows the position of P ′′1 , P ′′2 or P ′′3 , then one knows precisely
the positions of the other two as well. Second, if one assumes for instance that all the frequency intervals
ωP ′′1 of the P ′′1 tiles intersect each other (say, they are nonlacunary about a fixed frequency ξ0), then
the frequency intervals ωP ′′2 of the corresponding P ′′2 tiles are disjoint and lacunary around ξ0 (that is,
dist(ξ0, ωP ′′2 )' |ωP ′′2 | for all P ′′ ∈ P′′). A similar conclusion can also be drawn for the P ′′3 tiles modulo
certain translations. This observation motivates the introduction of trees in Definition 3.1.

We review the following definitions from [Muscalu et al. 2004b].

Definition 2.6. A collection P of tritiles is called sparse if all tritiles in P have the same shift and the
sets {Q P : P ∈ P} and {IP : P ∈ P} are sparse.

Definition 2.7. Let P and P ′ be tiles. Then we write:

(i) P ′ < P if IP ′ ( IP and ωP ⊆ 3ωP ′ ;

(ii) P ′ ≤ P if P ′ < P or P ′ = P;

(iii) P ′ . P if IP ′ ⊆ IP and ωP ⊆ 106ωP ′ ;

(iv) P ′ .′ P if P ′ . P but P ′ � P .

Definition 2.8. A collection P of tritiles is said to have rank 1 if the following properties are satisfied for
all P , P ′ ∈ P:

(i) If P 6= P ′, then Pj 6= P ′j for 1≤ j ≤ 3.

(ii) If ωPj = ωP ′j for some j , then ωPj = ωP ′j for all 1≤ j ≤ 3.

(iii) If P ′j ≤ Pj for some j , then P ′j . Pj for all 1≤ j ≤ 3.

(iv) If in addition to P ′j ≤ Pj one also assumes that 108
|IP ′ | ≤ |IP |, then one has P ′i .

′ Pi for every i 6= j .

It is not difficult to see that the collection of tritiles P′′ can be written as a finite union of sparse
collections of rank 1; thus we may assume further that P′′ is a sparse collection of rank 1 from now on.

The bilinear operator corresponding to the trilinear form 3̇
(2)
m,(lh,I)( f1, f2, f3) can be written as

5̇EP( f1, f2)(x)=
∫ 1

0

∫ 1

0

∑
EP∈EP

CQ EP

|I EP |
1
2

〈 f1,8
1,ν
EP1
〉〈 f2,8

2,ν
EP2
〉8

3,ν
EP3
(x) dν. (2-32)

Since 5̇EP( f1, f2) is an average of some discrete bilinear model operators depending on the parameters
ν = (ν1, ν2) ∈ [0, 1]2, it is enough to prove the Hölder-type L p estimates for each of them, uniformly
with respect to parameters ν = (ν1, ν2). From now on, we will do this in the particular case when the
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parameters ν = (ν1, ν2)= (0, 0), but the same argument works in general. By Fatou’s lemma, we can also
replace the summation in the definition (2-32) of 5̇EP( f1, f2) on the collection EP= P̃′×P′′ by arbitrary
finite collections P̃′ and P′′ of tritiles, and prove the estimates are uniform with respect to different choices
of the set EP.

Therefore, one can reduce the bilinear operator 5̇EP further to the discrete bilinear model operator 5EP
defined by

5EP( f1, f2)(x) :=
∑
EP∈EP

CQ EP

|I EP |
1
2

〈 f1,8
1
EP1
〉〈 f2,8

2
EP2
〉83
EP3
(x), (2-33)

where 8 j
EPj
:= 8

j,(0,0)
EPj

for j = 1, 2, 3, respectively, EP = P̃′ ×P′′ with an arbitrary finite collection P̃′

of tritiles and an arbitrary finite sparse collection P′′ of rank 1. As discussed above, we now reach a
conclusion that the proof of Theorem 1.3 can be reduced to proving the following L p estimates for
discrete bilinear model operators 5EP:

Proposition 2.9. If the finite set EP is chosen arbitrarily, as above, then the operator 5EP given by (2-33)
maps L p1(R2)× L p2(R2)→ L p(R2) boundedly for any 1 < p1, p2 ≤ ∞ satisfying 1

p =
1
p1
+

1
p2

and
2
3 < p < ∞. Moreover, the implicit constants in the bounds depend only on p1, p2, p, B and are
independent of the particular choice of the finite collection EP.

2A2. Discretization for bilinear, biparameter operators T (2)
m̃ε . We will use the discretization procedure

as follows. First, we need to decompose the symbol m̃ε(ξ) in a natural way. To this end, for both the
spatial variables xi (i = 1, 2), we decompose the regions {ξ̄i = (ξ

i
1, ξ

i
2) ∈ R2

: ξ i
1 6= ξ

i
2} by using Whitney

squares with respect to the singularity lines 0i = {ξ
i
1 = ξ

i
2} (i = 1, 2) respectively. Since the Whitney

dyadic square decomposition for the x2 direction has already been described in (2-11), (2-12), (2-13) and
(2-14) in Section 2A1, we only need to discuss the Whitney decomposition with respect to the singularity
line 01 in the x1 direction.

To be specific, we consider the collection Q′ of all shifted dyadic squares Q′ = Q′1× Q′2 satisfying

Q′ ⊆ {(ξ 1
1 , ξ

1
2 ) ∈ R2

: ξ 1
1 6= ξ

1
2 }, dist(Q′, 01)' 104 diam(Q′). (2-34)

We can split the collection Q′ into two disjoint subcollections, that is, define

Q′I := {Q
′
∈Q′ : Q′ ⊆ {ξ 1

1 < ξ
1
2 }}, Q′II := {Q

′
∈Q′ : Q′ ⊆ {ξ 1

1 > ξ
1
2 }}. (2-35)

Since the set of squares { 7
10 Q′ : Q′ ∈Q′} also forms a finitely overlapping cover of the region {ξ 1

1 6= ξ
1
2 },

we can apply a standard partition of unity and write the symbol χ
{ξ1

1 6=ξ
1
2 }

as

χ
{ξ1

1 6=ξ
1
2 }
=

∑
Q′∈Q′

φQ′(ξ
1
1 , ξ

1
2 )=

( ∑
Q′∈Q′I

+

∑
Q′∈Q′II

)
φQ′(ξ

1
1 , ξ

1
2 )= χ{ξ1

1<ξ
1
2 }
+χ
{ξ1

1>ξ
1
2 }
, (2-36)

where each φQ′ is a smooth bump function adapted to Q′ and supported in 8
10 Q′.

Notice that, by splitting the symbol m̃ε(ξ), we can decompose the operator T (2)
m̃ε correspondingly into

a finite sum of several parts, and we only need to discuss one of them in detail. From the decompositions
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(2-13) and (2-36), we obtain that

m̃ε(ξ̄1, ξ̄2)=

( ∑
Q′∈Q′I
Q′′∈Q′′I

+

∑
Q′∈Q′I
Q′′∈Q′′II

+

∑
Q′∈Q′II
Q′′∈Q′′I

+

∑
Q′∈Q′II
Q′′∈Q′′II

)
φQ′(ξ

1
1 , ξ

1
2 )φQ′′(ξ

2
1 , ξ

2
2 ) · m̃

ε(ξ̄1, ξ̄2)

=: m̃ε
I,I(ξ̄1, ξ̄2)+ m̃ε

I,II(ξ̄1, ξ̄2)+ m̃ε
II,I(ξ̄1, ξ̄2)+ m̃ε

II,II(ξ̄1, ξ̄2). (2-37)

One can easily see that we only need to discuss in detail one term in the decomposition (2-37), since the
other terms can be treated in the same way. Without loss of generality, we will only consider the third
term in (2-37), which can be written as

m̃ε
II,I(ξ̄1, ξ̄2) :=

∑
Q′∈Q′II
Q′′∈Q′′I

m̃ε(ξ̄1, ξ̄2)φQ′(ξ
1
1 , ξ

1
2 )φQ′′(ξ

2
1 , ξ

2
2 ). (2-38)

In other words, we only need to consider the bilinear operator T (2)
m̃ε

II,I
given by

T (2)
m̃ε

II,I
( f1, f2)(x) :=

∑
Q′∈Q′II
Q′′∈Q′′I

∫
R4

m̃ε(ξ)φQ′(ξ̄1)φQ′′(ξ̄2) f̂1(ξ1) f̂2(ξ2)e2π i x ·(ξ1+ξ2) dξ (2-39)

from now on, and the proof of Theorem 1.5 can be reduced to proving the following L p estimates for T (2)
m̃ε

II,I
:

‖T (2)
m̃ε

II,I
( f1, f2)‖L p(R2) .ε,p,p1,p2 ‖ f1‖L p1 (R2) · ‖ f2‖L p2 (R2) (2-40)

as long as 1< p1, p2 ≤∞ and 0< 1
p =

1
p1
+

1
p2
< 3

2 .
Observe that there exist bump functions φQ′i ,i (i = 1, 2) adapted to the shifted dyadic interval Q′i such

that suppφQ′i ,i ⊆
9

10 Q′i and φQ′i ,i ≡ 1 on 8
10 Q′i (i = 1, 2) respectively, and suppφQ′ ⊆

8
10 Q′, so one has

φQ′1,1 ·φQ′2,2 ≡ 1 on suppφQ′ . Since ξ 1
1 ∈ suppφQ′1,1 ⊆

9
10 Q′1 and ξ 1

2 ∈ suppφQ′2,2 ⊆
9
10 Q′2, it follows that

−ξ 1
1 − ξ

1
2 ∈ −

9
10 Q′1−

9
10 Q′2, and, as a consequence, one can find a shifted dyadic interval Q′3 with the

property that − 9
10 Q′1−

9
10 Q′2 ⊆

7
10 Q′3 and also satisfying |Q′1| = |Q

′

2| ' |Q
′

3|. In particular, there exists
a bump function φQ′3,3 adapted to Q′3 and supported in 9

10 Q′3 such that φQ′3,3 ≡ 1 on − 9
10 Q′1 −

9
10 Q′2.

Recall that the smooth functions φQ′′j , j ( j = 1, 2, 3) and shifted dyadic intervals Q′′3 have already been
defined in Section 2A1.

We denote by Q′ the collection of all shifted dyadic quasicubes Q′ :=Q′1×Q′2×Q′3 with Q′1×Q′2 ∈Q′II
and Q′3 defined as above, and denote by Q′′ the collection of all shifted dyadic quasicubes Q′′ :=
Q′′1 × Q′′2 × Q′′3 with Q′′1 × Q′′2 ∈Q′′I and Q′′3 defined in Section 2A1.

In fact, it is not difficult to see that the collections Q′ and Q′′ can be split into a sum of finitely many
sparse collection of shifted dyadic quasicubes. Therefore, we can assume from now on that the collections
Q′ and Q′′ are sparse.

Assuming this, we then observe that, for any Q′ in such a sparse collection Q′, there exists a unique
shifted dyadic cube Q̃′ in R3 such that Q′ ⊆ 7

10 Q̃′ and with the property that diam(Q′)' diam(Q̃′). This
allows us in particular to assume further that Q′ is a sparse collection of shifted dyadic cubes (that is,
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|Q′1| = |Q
′

2| = |Q
′

3| = `(Q
′)). Similarly, we can also assume that Q′′ is a sparse collection of shifted

dyadic cubes.
Now consider the trilinear form 3

(2)
m̃ε

II,I
( f1, f2, f3) associated to T (2)

m̃ε
II,I
( f1, f2), which can be written as

3
(2)
m̃ε

II,I
( f1, f2, f3)

:=
∫

R2
T (2)

m̃ε
II,I
( f1, f2)(x) f3(x) dx

=

∑
Q′∈Q′
Q′′∈Q′′

∫
ξ1+ξ2+ξ3=0

m̃ε
Q′,Q′′(ξ1, ξ2, ξ3)

3∏
j=1

( f j ∗ (φ̌Q′j , j ⊗ φ̌Q′′j , j ))
∧(ξ j ) dξ1 dξ2 dξ3, (2-41)

where ξi = (ξ
1
i , ξ

2
i ) for i = 1, 2, 3, while

m̃ε
Q′,Q′′(ξ1, ξ2, ξ3) := m̃ε(ξ1, ξ2) · ((φQ′1×Q′2 · φ̃Q′3,3)⊗ (φQ′′1×Q′′2 · φ̃Q′′3,3))(ξ1, ξ2, ξ3), (2-42)

where φ̃Q′3,3 is an appropriate smooth function of ξ 1
3 which equals 1 on suppφQ′3,3 and is supported on a

slightly larger interval (with a constant magnification independent of `(Q′)) than suppφQ′3,3, and φ̃Q′′3,3

is an appropriate smooth function of ξ 2
3 which equals 1 on suppφQ′′3,3 and is supported on a slightly

larger interval (with a constant magnification independent of `(Q′′)) than suppφQ′′3,3. We can decompose
m̃ε

Q′,Q′′(ξ1, ξ2, ξ3) as a Fourier series,

m̃ε
Q′,Q′′(ξ1, ξ2, ξ3)=

∑
El1,El2,El3∈Z2

C̃ε,Q′,Q′′

El1,El2,El3
e2π i(l ′1,l

′

2,l
′

3)·(ξ
1
1 ,ξ

1
2 ,ξ

1
3 )/`(Q

′)e2π i(l ′′1 ,l
′′

2 ,l
′′

3 )·(ξ
2
1 ,ξ

2
2 ,ξ

2
3 )/`(Q

′′), (2-43)

where the Fourier coefficients Cε,Q′,Q′′

El1,El2,El3
are given by

C̃ε,Q′,Q′′

El1,El2,El3
=

∫
R6

m̃ε
Q′,Q′′

(
(`(Q′)ξ 1

1 , `(Q
′′)ξ 2

1 ), (`(Q
′)ξ 1

2 , `(Q
′′)ξ 2

2 ), (`(Q
′)ξ 1

3 , `(Q
′′)ξ 2

3 )
)

× e−2π i(El1·ξ1+El2·ξ2+El3·ξ3) dξ1 dξ2 dξ3. (2-44)

Then, by a straightforward calculation, we can rewrite (2-41) as

3
(2)
m̃ε

II,I
( f1, f2, f3)

=

∑
Q′∈Q′
Q′′∈Q′′

∑
El1,El2,El3∈Z2

C̃ε,Q′,Q′′

El1,El2,El3

∫
R2

3∏
i=1

( fi ∗ (φ̌Q′i ,i ⊗ φ̌Q′′i ,i ))

(
x −

(
l ′i

`(Q′)
,

l ′′i
`(Q′′)

))
dx . (2-45)

Now we define φ
l ′i
Q′i ,i
:= e2π il ′i ξ

1
i /`(Q

′)
·φQ′i ,i and φ

l ′′i
Q′′i ,i
:= e2π il ′′i ξ

2
i /`(Q

′′)
·φQ′′i ,i for i = 1, 2, 3. Since any

Q′ ∈ Q′ and Q′′ ∈ Q′′ are shifted dyadic cubes, there exist integers k ′, k ′′ ∈ Z such that `(Q′)= |Q′1| =
|Q′2| = |Q

′

3| = 2k′ and `(Q′′)= |Q′′1| = |Q
′′

2| = |Q
′′

3| = 2k′′ , respectively. By splitting the integral region
R2 into the union of unit squares, the L2-normalization procedure and simple calculations, we can
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rewrite (2-45) as

3
(2)
m̃ε

II,I
( f1, f2, f3)

=

∑
El1,El2,El3∈Z2

∑
Q′∈Q′
Q′′∈Q′′

∫ 1

0

∫ 1

0

∑
I ′ dyadic
|I ′|=2−k′

∑
I ′′ dyadic
|I ′′|=2−k′′

C̃ε,Q′,Q′′

El1,El2,El3

|I ′|
1
2 × |I ′′|

1
2

3∏
i=1

〈 fi , φ̌
l ′i ,λ
′

I ′,Q′i ,i
⊗ φ̌

l ′′i ,λ
′′

I ′′,Q′′i ,i
〉 dλ′ dλ′′

=:

∑
El1,El2,El3∈Z2

∫ 1

0

∫ 1

0

∑
EP:=P ′⊗P ′′∈EP

C̃ε

Q EP ,El1,El2,El3

|I EP |
1
2

3∏
i=1

〈 fi ,8
i,Eli ,λ
EPi
〉 dλ, (2-46)

where we have:

• Fourier coefficients C̃ε

Q EP ,El1,El2,El3
:= C̃ε,Q′,Q′′

El1,El2,El3
;

• tritiles P ′ := (P ′1, P ′2, P ′3) and P ′′ := (P ′′1 , P ′′2 , P ′′3 );

• tiles P ′i := IP ′i × ωP ′i , where IP ′i := I ′ = 2−k′
[n′, n′ + 1] =: IP ′ and the frequency intervals are

ωP ′i := Q′i for i = 1, 2, 3;

• tiles P ′′j := IP ′′j ×ωP ′′j , where IP ′′j := I ′′ = 2−k′′
[n′′, n′′+ 1] =: IP ′′ and the frequency intervals are

ωP ′′j := Q′′j for j = 1, 2, 3;

• frequency cubes Q P ′ := ωP ′1 ×ωP ′2 ×ωP ′3 and Q P ′′ := ωP ′′1 ×ωP ′′2 ×ωP ′′3 ;

• P′ denotes a collection of such tritiles P ′ and P′′ denotes a collection of such tritiles P ′′;

• bitiles EP1, EP2 and EP3 defined by

EPi := (P ′i , P ′′i )= (2
−k′
[n′, n′+ 1]× Q′i , 2−k′′

[n′′, n′′+ 1]× Q′′i ) for i = 1, 2, 3;

• the biparameter tritile EP := P ′⊗ P ′′ = ( EP1, EP2, EP3);

• rectangles I EPi
:= IP ′i × IP ′′i = IP ′ × IP ′′ =: I EP for i = 1, 2, 3, and hence |I EP | = |IP ′ × IP ′′ | = |I EP1

| =

|I EP2
| = |I EP3

| = 2−k′
· 2−k′′ ;

• the double frequency cube Q EP := (Q P ′, Q P ′′)= (ωP ′1 ×ωP ′2 ×ωP ′3, ωP ′′1 ×ωP ′′2 ×ωP ′′3 );

• EP := P′×P′′ denotes a collection of such biparameter tritiles EP;

• L2-normalized wave packets 8
i,l ′i ,λ

′

P ′i
associated with the Heisenberg boxes P ′i defined by

8
i,l ′i ,λ

′

P ′i
(x1) := φ̌

l ′i ,λ
′

I ′,Q′i ,i
(x1) := 2−k′/2φ̌

l ′i
Q′i ,i
(2−k′(n′+ λ′)− x1) for i = 1, 2, 3,

• L2-normalized wave packets 8
i,l ′′i ,λ

′′

P ′′i
associated with the Heisenberg boxes P ′′i defined by

8
i,l ′′i ,λ

′′

P ′′i
(x2) := φ̌

l ′′i ,λ
′′

I ′′,Q′′i ,i
(x2) := 2−k′′/2φ̌

l ′′i
Q′′i ,i

(2−k′′(n′′+ λ′′)− x2) for i = 1, 2, 3,

• smooth bump functions 8i,Eli ,λ
EPi
:=8

i,l ′i ,λ
′

P ′i
⊗8

i,l ′′i ,λ
′′

P ′′i
for i = 1, 2, 3.

We have the following rapid decay estimates of the Fourier coefficients C̃ε

Q EP ,El1,El2,El3
with respect to the

parameters El1, El2, El3 ∈ Z2:
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Lemma 2.10. The Fourier coefficients C̃ε

Q EP ,El1,El2,El3
satisfy estimates

|C̃ε

Q EP ,El1,El2,El3
|.

3∏
j=1

1

(1+ |El j |)M
· 〈log2 `(Q P ′)〉

−(1+ε) (2-47)

for any biparameter tritile EP ∈ EP, where M is sufficiently large.

Proof. Let `(Q P ′) = 2k′ and `(Q P ′′) = 2k′′ for k ′, k ′′ ∈ Z. For any ε > 0, El1, El2, El3 ∈ Z2 and EP ∈ EP, we
deduce from (2-42) and (2-44) that

C̃ε

Q EP ,El1,El2,El3

=

∫
R6

m̃ε
Q P ′ ,Q P ′′

((2k′ξ 1
1 , 2k′′ξ 2

1 ), (2
k′ξ 1

2 , 2k′′ξ 2
2 ), (2

k′ξ 1
3 , 2k′′ξ 2

3 ))e
−2π i(El1·ξ1+El2·ξ2+El3·ξ3) dξ1 dξ2 dξ3, (2-48)

where

m̃ε
Q P ′ ,Q P ′′

((2k′ξ 1
1 , 2k′′ξ 2

1 ), (2
k′ξ 1

2 , 2k′′ξ 2
2 ), (2

k′ξ 1
3 , 2k′′ξ 2

3 ))

:= m̃ε(2k′ ξ̄1, 2k′′ ξ̄2)φωP ′1
×ωP ′2

(2k′ ξ̄1)φ̃ωP ′3
,3(2k′ξ 1

3 )φωP ′′1
×ωP ′′2

(2k′′ ξ̄2)φ̃ωP ′′3
,3(2k′′ξ 2

3 ). (2-49)

Since supp(φωP ′1
×ωP ′2

(ξ̄1)φ̃ωP ′3
,3(ξ

1
3 )φωP ′′1

×ωP ′′2
(ξ̄2)φ̃ωP ′′3

,3(ξ
2
3 ))⊆ Q P ′ × Q P ′′ , we have that

supp(φωP ′1
×ωP ′2

(2k′ ξ̄1)φ̃ωP ′3
,3(2k′ξ 1

3 )φωP ′′1
×ωP ′′2

(2k′′ ξ̄2)φ̃ωP ′′3
,3(2k′′ξ 2

3 ))⊆ Q0
P ′ × Q0

P ′′,

where the cubes Q0
P ′ and Q0

P ′′ are defined by

Q0
P ′ = ω

0
P ′1
×ω0

P ′2
×ω0

P ′3
:= {(ξ 1

1 , ξ
1
2 , ξ

1
3 ) ∈ R3

: (2k′ξ 1
1 , 2k′ξ 1

2 , 2k′ξ 1
3 ) ∈ Q P ′}, (2-50)

Q0
P ′′ = ω

0
P ′′1
×ω0

P ′′2
×ω0

P ′′3
:= {(ξ 2

1 , ξ
2
2 , ξ

2
3 ) ∈ R3

: (2k′′ξ 2
1 , 2k′′ξ 2

2 , 2k′′ξ 2
3 ) ∈ Q P ′′} (2-51)

and satisfy |Q0
P ′ | ' |Q

0
P ′′ | ' 1. From the properties of the Whitney squares we constructed above, one

obtains that dist(2k′ ξ̄1, 01)' 2k′ for any ξ̄1 ∈ ω
0
P ′1
×ω0

P ′2
and dist(2k′′ ξ̄2, 02)' 2k′′ for any ξ̄2 ∈ ω

0
P ′′1
×ω0

P ′′2
.

By taking advantage of the estimates (1-13) for symbol m̃ε(ξ̄ ), one can deduce from (2-48), (2-49)
and integrating by parts sufficiently many times that

|C̃ε

Q EP ,El1,El2,El3
|

.
3∏

j=1

1

(1+ |El j |)M

×

∫
Q0

P ′×Q0
P ′′

∣∣∂α1
ξ1
∂
α2
ξ2
∂
α3
ξ3

[
m̃ε

Q P ′ ,Q P ′′
((2k′ξ 1

1 , 2k′′ξ 2
1 ), (2

k′ξ 1
2 , 2k′′ξ 2

2 ), (2
k′ξ 1

3 , 2k′′ξ 2
3 ))
]∣∣ dξ1 dξ2 dξ3

.
3∏

j=1

1

(1+ |El j |)M

∫
ω0

P ′′1
×ω0

P ′′2

dist(2k′′ ξ̄2, 02)
|α′′|

∫
ω0

P ′1
×ω0

P ′2

dist(2k′ ξ̄1, 01)
|α′|
|∂α

′

ξ̄1
∂α
′′

ξ̄2
m̃ε(2k′ ξ̄1, 2k′′ ξ̄2)| d ξ̄1 d ξ̄2
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.
3∏

j=1

1

(1+ |El j |)M
·2−2k′2−2k′′

∫
ωP ′′1
×ωP ′′2

∫
ωP ′1
×ωP ′2

dist(ξ̄2, 02)
|α′′|
·dist(ξ̄1, 01)

|α′|
|∂α

′

ξ̄1
∂α
′′

ξ̄2
m̃ε(ξ̄1, ξ̄2)| d ξ̄1 d ξ̄2

.
3∏

j=1

1

(1+ |El j |)M
· 〈log2 `(Q P ′)〉

−(1+ε),

where the multi-indices αi := (α
1
i , α

2
i ) for i = 1, 2, 3 and |α1| = |α2| = |α3| = M are sufficiently large,

the multi-indices α′ := (α′1, α
′

2, α
′

3), α
′′
:= (α′′1 , α

′′

2 , α
′′

3 ) with α′i ≤ α
1
i and α′′j ≤ α

2
j for i , j = 1, 2, 3. This

ends our proof of the estimates (2-47). �

Note that the rapid decay with respect to the parameters El1, El2, El3 ∈ Z2 in (2-47) is acceptable for
summation, all the functions8

i,l ′i ,λ
′

P ′i
(i=1, 2, 3) are L2-normalized and are wave packets associated with the

Heisenberg boxes P ′i uniformly with respect to the parameters l ′i , and all the functions8
j,l ′′j ,λ

′′

P ′′j
( j = 1, 2, 3)

are L2-normalized and are wave packets associated with the Heisenberg boxes P ′′j uniformly with respect
to the parameters l ′′j , therefore we only need to consider from now on the part of the trilinear form
3
(2)
m̃ε

II,I
( f1, f2, f3) defined in (2-46) corresponding to El1 = El2 = El3 = E0,

3̇
(2)
m̃ε

II,I
( f1, f2, f3) :=

∫ 1

0

∫ 1

0

∑
EP∈EP

C̃ε
Q EP

|I EP |
1
2

〈 f1,8
1,λ
EP1
〉〈 f2,8

2,λ
EP2
〉〈 f3,8

3,λ
EP3
〉 dλ, (2-52)

where C̃ε
Q EP
:= C̃ε

Q EP ,E0,E0,E0
, we have parameters λ= (λ′, λ′′), and 8i,λ

EPi
:=8

i,E0,λ
EPi

for i = 1, 2, 3.
The tritiles P ′= (P ′1, P ′2, P ′3) in the collection P′ also satisfy the same properties (as P ′′ ∈P′′) described

in Remark 2.5. It is not difficult to see that both the collections of tritiles P′ and P′′ can be written as
a finite union of sparse collections of rank 1; thus we may assume further that P′ and P′′ are sparse
collections of rank 1 from now on.

The bilinear operator corresponding to the trilinear form 3̇
(2)
m̃ε

II,I
( f1, f2, f3) can be written as

˙̃
5ε
EP
( f1, f2)(x)=

∫ 1

0

∫ 1

0

∑
EP∈EP

C̃ε
Q EP

|I EP |
1
2

〈 f1,8
1,λ
EP1
〉〈 f2,8

2,λ
EP2
〉8

3,λ
EP3
(x) dλ. (2-53)

Since ˙̃5ε
EP
( f1, f2) is an average of some discrete bilinear model operators depending on the parameters

λ = (λ1, λ2) ∈ [0, 1]2, it is enough to prove the Hölder-type L p estimates for each of them, uniformly
with respect to parameters λ= (λ1, λ2). From now on, we will do this in the particular case when the
parameters λ= (λ1, λ2)= (0, 0), but the same argument works in general. By Fatou’s lemma, we can also
replace the summation in the definition (2-53) of ˙̃5ε

EP
( f1, f2) on the collection EP= P′×P′′ by arbitrary

finite collections P′ and P′′ of tritiles, and prove the estimates are uniform with respect to different choices
of the set EP.

Definition 2.11. A finite collection EP= P′×P′′ of biparameter tritiles is said to be sparse and of rank 1
if both the finite collections P′ and P′′ are sparse and of rank 1.
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Therefore, one can reduce the bilinear operator ˙̃5ε
EP

further to the discrete bilinear model operator 5̃ε
EP

defined by

5̃ε
EP
( f1, f2)(x) :=

∑
EP∈EP

C̃ε
Q EP

|I EP |
1
2

〈 f1,8
1
EP1
〉〈 f2,8

2
EP2
〉83
EP3
(x), (2-54)

where 8 j
EPj
:= 8

j,(0,0)
EPj

for j = 1, 2, 3, and the finite set EP = P′ ×P′′ is an arbitrary sparse collection
(of biparameter tritiles) of rank 1. As discussed above, we now reach a conclusion that the proof of
Theorem 1.5 can be reduced to proving the following L p estimates for discrete bilinear model operators 5̃ε

EP
:

Proposition 2.12. If the finite set EP is an arbitrary sparse collection of rank 1, then the operator 5̃ε
EP

given
by (2-54) maps L p1(R2)× L p2(R2)→ L p(R2) boundedly for any 1< p1, p2 ≤∞ satisfying 1

p =
1
p1
+

1
p2

and 2
3 < p <∞. Moreover, the implicit constants in the bounds depend only on ε, p1, p2, p and are

independent of the particular finite sparse collection EP of rank 1.

2B. Multilinear interpolations. First, let’s review the following terminologies and definitions of multi-
linear interpolation arguments:

Definition 2.13 [Muscalu and Schlag 2013; Muscalu et al. 2002]. An n-tuple β = (β1, . . . , βn) is said to
be admissible if and only if β j < 1 for every 1≤ j ≤ n,

∑n
j=1 β j = 1 and there is at most one index j for

which β j < 0. An index j is called good if β j ≥ 0 and bad if β j < 0. A good tuple is an admissible tuple
that contains only good indices; a bad tuple is an admissible tuple that contains precisely one bad index.

Definition 2.14 [Muscalu et al. 2002]. Let E , E ′ be sets of finite measure. We say that E ′ is a major
subset of E if E ′ ⊆ E and |E ′| ≥ 1

2 |E |.

Definition 2.15 [Muscalu and Schlag 2013; Muscalu et al. 2002]. If β = (β1, . . . , βn) is an admissible
tuple, we say that an n-linear form 3 is of restricted weak type β if and only if, for every sequence
E1, . . . , En of measurable sets with positive and finite measure, there exists a major subset E ′j of E j for
the bad index j (if there is one) such that

|3( f1, . . . , fn)|. |E1|
β1 · · · |En|

βn (2-55)

for all measurable functions | fi | ≤ χE ′i (i = 1, . . . , n), where we adopt the convention E ′i = Ei for good
indices i . If β is bad with bad index j0, and it happens that one can choose the major subset E ′j0 ⊆ E j0 in
a way that depends only on the measurable sets E1, . . . , En and not on β, we say that 3 is of uniformly
restricted weak type.

Definition 2.16 [Muscalu and Schlag 2013]. Let 1< p1, p2≤∞ and 0< p<∞ be such that 1
p =

1
p1
+

1
p2

.
An arbitrary bilinear operator T is said to be of the restricted weak type (p1, p2, p) if and only if, for all
measurable sets E1, E2, E of finite measure, there exists E ′ ⊆ E with |E ′| ' |E | such that∣∣∣∣∫

Rd
T ( f1, f2)(x) f (x) dx

∣∣∣∣. |E1|
1/p1 |E2|

1/p2 |E ′|1/p′ (2-56)

for every | f1| ≤ χE1 , | f2| ≤ χE2 and | f | ≤ χE ′ .
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By using multilinear interpolation (see [Grafakos and Tao 2003; Janson 1988; Muscalu and Schlag
2013; Muscalu et al. 2002]) and the symmetry of the operators 5EP and 5̃ε

EP
, we can reduce further the

proof of Proposition 2.9 and Proposition 2.12 to proving the following restricted weak type estimates for
the model operators 5EP and 5̃ε

EP
:

Proposition 2.17. Let p1 and p2 be such that p1 is strictly larger than 1 and arbitrarily close to 1 and p2

is strictly smaller than 2 and arbitrarily close to 2 and such that, for 1
p :=

1
p1
+

1
p2

, one has 2
3 < p < 1.

Then both the model operators 5EP and 5̃ε
EP

defined in (2-33) and (2-54) are of the restricted weak type
(p1, p2, p). Moreover, the implicit constants in the bounds depend only on p1, p2, p, ε and B, and are
independent of the particular choice of the finite collection EP.

Indeed, first we should note that, if p1, p2, p are as in Propositions 2.9 and 2.12, then the 3-tuple( 1
p1
, 1

p2
, 1

p′
)

lies in the interior of the convex hull of the following six extremal points: β1
:=
(
−

1
2 ,

1
2 , 1

)
,

β2
:=
(
−

1
2 , 1, 1

2

)
, β3
:=
( 1

2 ,−
1
2 , 1

)
, β4
:=
(
1,− 1

2 ,
1
2

)
, β5
:=
( 1

2 , 1,−1
2

)
and β6

:=
(
1, 1

2 ,−
1
2

)
. Then,

if we assume that Proposition 2.17 has been proved, from the symmetry of operators 5EP and 5̃ε
EP

and
their adjoints we deduce that both the trilinear forms associated to bilinear operators 5EP and 5̃ε

EP
are

of uniformly restricted weak type β for 3-tuples β = (β1, β2, β3) arbitrarily close to the six extremal
points β1, . . . , β6 inside their convex hull and satisfying that, if β j is close to 1

2 for some j = 1, 2, 3,
then β j is strictly larger than 1

2 . By using the multilinear interpolation lemma, [Muscalu and Schlag 2013,
Lemmas 9.4 and 9.6] or [Muscalu et al. 2002, Lemma 3.8], we first obtain restricted weak type estimates
of 3 for good tuples inside the smaller convex hull of the three coordinate points (1, 0, 0), (0, 1, 0) and
(0, 0, 1). After that, we use the interpolation lemma [Muscalu and Schlag 2013, Lemma 9.5] or [Muscalu
et al. 2002, Lemma 3.10] to obtain restricted weak type estimates of 3 for bad tuples and finally conclude
that restricted weak type estimates of 3 hold for all tuples β inside the convex hull of the six extremal
points β1, . . . , β6.

It only remains to convert these restricted weak type estimates into strong type estimates. To do this,
one just has to apply (exactly as in [Muscalu et al. 2002]) the multilinear Marcinkiewicz interpolation
theorem in [Janson 1988] in the case of good tuples and the interpolation lemma [Muscalu et al. 2002,
Lemma 3.11] in the case of bad tuples. This ends the proof of Propositions 2.9 and 2.12, and, as a
consequence, completes the proof of our main results, Theorems 1.3 and 1.5. Therefore, we only have
the task of proving Proposition 2.17 from now on.

3. Trees, L2 sizes and L2 energies

3A. Trees. We should recall that, for discrete bilinear paraproducts, the frequency intervals have already
been organized with the lacunary properties (see [Muscalu and Schlag 2013; Muscalu et al. 2004a; 2006]),
so we could use square function and maximal function estimates to handle the corresponding terms
easily, at least in the Banach case. By the properties of the collection P′′ of tritiles we have explained in
Remark 2.5, we can organize our collections of tritiles P′, P′′ into trees as in [Grafakos and Li 2004],
which satisfy lacunary properties about a certain frequency. We review the following standard definitions
and properties for trees from [Muscalu et al. 2004b]:
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Definition 3.1. Let P be a sparse rank-1 collection of tritiles and j ∈ {1, 2, 3}. A subcollection T ⊆ P is
called a j-tree if and only if there exists a tritile PT (called the top of the tree) such that

Pj ≤ PT, j (3-1)

for every P ∈ T .

Remark 3.2. A tree does not necessarily have to contain the corresponding top PT . From now on, we
will write IT and ωT, j for IPT and ωPT , j for j = 1, 2, 3. Then, we simply say that T is a tree if it is a
j-tree for some j = 1, 2, 3.

For every given dyadic interval I0, there are potentially many tritiles P in P′ and P′′ with the property
that IP = I0. Due to this extra degree of freedom in frequency, we have infinitely many trees in our
collections P′ and P′′. We need to estimate each of these trees separately, and then add all these estimates
together, by using the almost orthogonality conditions for distinct trees. This motivates the following
definition:

Definition 3.3. Let 1 ≤ i ≤ 3. A finite sequence of trees T1, . . . , TM is said to be a chain of strongly
i-disjoint trees if and only if:

(i) Pi 6= P ′i for every P ∈ Tl1 and P ′ ∈ Tl2 with l1 6= l2.

(ii) Whenever P ∈ Tl1 and P ′ ∈ Tl2 with l1 6= l2 are such that 2ωPi ∩2ωP ′i 6=∅, then if |ωPi |< |ωP ′i | one
has IP ′ ∩ ITl1

=∅ and if |ωP ′i |< |ωPi | one has IP ∩ ITl2
=∅.

(iii) Whenever P ∈ Tl1 and P ′ ∈ Tl2 with l1 < l2 are such that 2ωPi ∩2ωP ′i 6=∅, then if |ωPi | = |ωP ′i | one
has IP ′ ∩ ITl1

=∅.

3B. L2 sizes and L2 energies. Following [Muscalu et al. 2004b], we give the definitions of standard
norms on sequences of tiles:

Definition 3.4. Let P be a finite collection of tritiles, j ∈ {1, 2, 3}, and let f be an arbitrary function. We
define the size of the sequence (〈 f,8 j

Pj
〉)P∈P by

size j
(
(〈 f,8 j

Pj
〉)P∈P

)
:= sup

T⊆P

(
1
|IT |

∑
P∈T

|〈 f,8 j
Pj
〉|

2
)1

2

, (3-2)

where T ranges over all trees in P that are i-trees for some i 6= j . For j = 1, 2, 3, we define the energy
of the sequence (〈 f,8 j

Pj
〉)P∈P by

energy j
(
(〈 f,8 j

Pj
〉)P∈P

)
:= sup

n∈Z

sup
T

2n
(∑

T∈T

|IT |

)1
2

, (3-3)

where now T ranges over all chains of strongly j-disjoint trees in P (which are i-trees for some i 6= j)
having the property that (∑

P∈T

|〈 f,8 j
Pj
〉|

2
)1

2

≥ 2n
|IT |

1
2 (3-4)
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for all T ∈ T and such that (∑
P∈T ′
|〈 f,8 j

Pj
〉|

2
)1

2

≤ 2n+1
|IT ′ |

1
2 (3-5)

for all subtrees T ′ ⊆ T ∈ T.

The size measures the extent to which the sequences (〈 f,8 j
Pj
〉)P∈P ( j = 1, 2, 3) can concentrate

on a single tree and should be thought of as a phase-space variant of the BMO norm. The energy is a
phase-space variant of the L2 norm. As the notation suggests, the number 〈 f,8 j

Pj
〉 should be thought of

as being associated with the tile Pj ( j = 1, 2, 3) rather than the full tritile P .
Let P be a finite collection of tritiles. Denote by 5P the discrete bilinear operator given by

5P( f1, f2)(x)=
∑
P∈P

1

|IP |
1
2

〈 f1,8
1
P1
〉〈 f2,8

2
P2
〉83

P3
(x).

The following proposition provides a way of estimating the trilinear form associated with the bilinear
operator 5P( f1, f2). We define

3P( f1, f2, f3) :=

∫
R

5P( f1, f2)(x) f3(x) dx .

Proposition 3.5 [Muscalu et al. 2004b]. Let P be a finite collection of tritiles. Then

|3P( f1, f2, f3)|.
3∏

j=1

(
size j

(
(〈 f j ,8

j
Pj
〉)P∈P

))θ j
(
energy j

(
(〈 f j ,8

j
Pj
〉)P∈P

))1−θ j (3-6)

for any 0≤ θ1, θ2, θ3 < 1 with θ1+θ2+θ3= 1; the implicit constants depend on the θ j but are independent
of the other parameters.

3C. Estimates for sizes and energies. In order to apply Proposition 3.5, we need to estimate further the
sizes and energies appearing on the right-hand side of (3-6).

Lemma 3.6 [Muscalu and Schlag 2013; Muscalu et al. 2004b]. Let j ∈ {1, 2, 3} and f ∈ L2(R). Then
one has

size j
(
(〈 f,8 j

Pj
〉)P∈P

)
. sup

P∈P

1
|IP |

∫
R

| f |χ̃M
IP

dx (3-7)

for every M > 0, where the approximate cutoff function χ̃M
IP
(x) equals (1+ dist(x, IP)/|IP |)

−M and the
implicit constants depend on M.

Lemma 3.7 (Bessel-type estimates [Muscalu et al. 2004b]). Let j ∈ {1, 2, 3} and f ∈ L2(R). Then

energy j
(
(〈 f,8 j

Pj
〉)P∈P

)
. ‖ f ‖L2 . (3-8)

4. Proof of Theorem 1.3

In this section, we prove Theorem 1.3 by carrying out the proof of Proposition 2.17 for model operators
5EP defined in (2-33) with EP= P̃′×P′′.
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Fix indices p1, p2, p as in the hypothesis of Proposition 2.17. Fix arbitrary measurable sets E1, E2, E3

of finite measure (by using the scaling invariance of 5EP, we can assume further that |E3| = 1). Our
goal is to find E ′3 ⊆ E3 with |E ′3| ' |E3| = 1 such that, when | f1| ≤ χE1 , | f2| ≤ χE2 and | f3| ≤ χE ′3 , the
trilinear form 3EP( f1, f2, f3) defined by

3EP( f1, f2, f3) :=

∫
R2
5EP( f1, f2)(x) f3(x) dx (4-1)

satisfies the estimate

|3EP( f1, f2, f3)| =

∣∣∣∣∑
EP∈EP

CQ EP

|I EP |
1
2

〈 f1,8
1
EP1
〉〈 f2,8

2
EP2
〉〈 f3,8

3
EP3
〉

∣∣∣∣.p,p1,p2,B |E1|
1/p1 |E2|

1/p2, (4-2)

where p1 is larger than but close to 1, while p2 is smaller than but close to 2.
In order to prove our Theorem 1.3 in biparameter settings, one can easily observe that the main difficulty

from [Muscalu et al. 2004a; 2006] is that, if we restrict the sum of tritiles P ′′ ∈ P′′ in the definition of
discrete model operators5EP to a tree, then we essentially get a tensor product of two discrete paraproducts
on x1 and x2 respectively, which can be estimated by the MM, MS, SM and SS functions, but, due to the
extra degree of freedom in frequency in the x2 direction, there are infinitely many such tensor products of
paraproducts in the summation, so it’s difficult for us to carry out the stopping-time decompositions by
using the hybrid square and maximal operators as in [Muscalu et al. 2004a; 2006]. Instead, we will make
use of the L2 size and L2 energy estimates of the trilinear forms, the almost orthogonality of wave packets
associated with different tiles and the decay assumptions on the symbols. Furthermore, we can extend
our proof of Theorem 1.3 to general d-parameter settings (d ≥ 3) by applying the generic decomposition
lemma (Lemma 4.1) to the d−1 variables x1, . . . , xd−1. Although one can’t obtain that supp83,`

P̃ ′3
⊗83

P ′′3
is entirely contained in the exceptional set U as in [Muscalu et al. 2006], one can show that this support
set is contained in U in all the variables x1, . . . , xd−1, but not xd . Therefore, we only need to consider
the distance from this support set to the set E ′3 in the xd direction and obtain enough decay factors for
summation; the extension of the proof from biparameter case to the general d-parameter (d ≥ 3) cases is
straightforward.

From [Muscalu et al. 2006], we can find the following generic decomposition lemma:

Lemma 4.1. Let J ⊆ R be a fixed interval. Then every smooth bump function φJ adapted to J can be
naturally decomposed as

φJ =
∑
`∈N

2−100`φ`J ,

where, for every ` ∈ N, φ`J is also a bump function adapted to J but having the additional property that
supp(φ`J )⊆ 2` J . If in addition we assume that

∫
R
φJ (x) dx = 0, then the functions φ`J can be chosen so

that
∫

R
φ`J (x) dx = 0 for every ` ∈ N.

We use 2` J to denote the interval having the same center as J but with length 2` times that of J .
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By using Lemma 4.1, we can estimate the left-hand side of (4-2) by

|3EP( f1, f2, f3)|.
∑
`∈N

2−100`3`
EP
( f1, f2, f3). (4-3)

The trilinear forms 3`
EP
( f1, f2, f3) (` ∈ N) are defined by

3`
EP
( f1, f2, f3) :=

∑
EP∈EP

|CQ EP |

|I EP |
1
2

|〈 f1,8
1
EP1
〉||〈 f2,8

2
EP2
〉||〈 f3,8

3,`
EP3
〉|, (4-4)

where the new biparameter wave packets are 83,`
EP3
:= 8

3,`
P̃ ′3
⊗ 83

P ′′3
with the additional property that

supp(83,`
P̃ ′3
)⊆ 2` I P̃ ′3

= 2` I P̃ ′ .

For every ` ∈ N, we define the sets

�−10` :=

2⋃
j=1

{
x ∈ R2

:MM
(
χE j

|E j |

)
(x) > C210`

}
(4-5)

and

�̃−10` := {x ∈ R2
:MM(χ�−10`)(x) > 2−`}, (4-6)

where the double maximal operator MM is given by

MM(h)(x, y) := sup
dyadic rectangle R

(x,y)∈R

1
|R|

∫
R
|h(u, v)| du dv. (4-7)

Finally, we define the exceptional set

U :=
⋃
`∈N

�̃−10`. (4-8)

It is clear that |U | < 1
10 if C is a large enough constant, which we fix from now on. Then, we define

E ′3 := E3 \U and note that |E ′3| ' 1.
Now fix ` ∈ N, and split the trilinear form 3`

EP
( f1, f2, f3) defined in (4-4) into two parts as follows:

3`
EP
( f1, f2, f3)

=

∑
EP∈EP:

I EP∩�
c
−10` 6=∅

|CQ EP |

|I EP |
1
2

|〈 f1,8
1
EP1
〉||〈 f2,8

2
EP2
〉||〈 f3,8

3,`
EP3
〉|+

∑
EP∈EP:

I EP∩�
c
−10`=∅

|CQ EP |

|I EP |
1
2

|〈 f1,8
1
EP1
〉||〈 f2,8

2
EP2
〉||〈 f3,8

3,`
EP3
〉|

=:3`
EP,I
( f1, f2, f3)+3

`
EP,II
( f1, f2, f3), (4-9)

where Ac denotes the complement of a set A.

4A. Estimates for trilinear form 3`
EP,I

( f1, f2, f3). We can decompose the collection P̃′ of tritiles into

P̃′ =
⋃
k′∈Z

P̃′k′, (4-10)
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where

P̃′k′ := {P̃
′
∈ P̃′ : |I P̃ ′ | = 2−k′

}. (4-11)

As a consequence, we can split the trilinear form 3`
EP,I
( f1, f2, f3) into

3`
EP,I
( f1, f2, f3)=

∑
k′∈Z

∑
EP∈P̃′k′×P′′:

I EP∩�
c
−10` 6=∅

|CQ EP |
|I P̃ ′ |

|IP ′′ |
1
2

2∏
j=1

∣∣∣∣〈〈 f j ,8
j
P̃ ′j
〉

|I P̃ ′ |
1
2

,8
j
P ′′j

〉∣∣∣∣× ∣∣∣∣〈〈 f3,8
3,l
P̃ ′3
〉

|I P̃ ′ |
1
2

,83
P ′′3

〉∣∣∣∣. (4-12)

By Lemma 2.4, we can estimate the Fourier coefficients CQ EP :=CQ EP ,E0,E0,E0
for each EP ∈ P̃′k′×P′′ (k ′ ∈Z)

by

|CQ EP |. Ck′ with
∑
k′∈Z

Ck′ ≤ B <+∞. (4-13)

For each fixed P̃ ′ ∈ P̃′, we define the subcollection

P′′
P̃ ′
:= {P ′′ ∈ P′′ : I EP ∩�

c
−10` 6=∅}.

Therefore, by using Proposition 3.5, we derive the estimates

3`
EP,I
( f1, f2, f3)

.
∑
k′∈Z

Ck′
∑

P̃ ′∈P̃′k′

|I P̃ ′ |

×

[ 2∏
j=1

(
energy j

((〈〈 f j ,8
j
P̃ ′j
〉

|I P̃ ′ |
1
2

,8
j
P ′′j

〉)
P ′′∈P′′

P̃ ′

))1−θ j
(

size j

((〈〈 f j ,8
j
P̃ ′j
〉

|I P̃ ′ |
1
2

,8
j
P ′′j

〉)
P ′′∈P′′

P̃ ′

))θ j
]

×

(
size3

((〈〈 f3,8
3,`
P̃ ′3
〉

|I P̃ ′ |
1
2

,83
P ′′3

〉)
P ′′∈P′′

P̃ ′

))θ3
(

energy3

((〈〈 f3,8
3,`
P̃ ′3
〉

|I P̃ ′ |
1
2

,83
P ′′3

〉)
P ′′∈P′′

P̃ ′

))1−θ3

(4-14)

for any 0≤ θ1, θ2, θ3 < 1 with θ1+ θ2+ θ3 = 1.
To estimate the right-hand side of (4-14), note that I EP ∩�

c
−10` 6=∅ and supp f3 ⊆ E ′3 ⊆ R2

\U ; we
apply the size estimates in Lemma 3.6 and get, for each P̃ ′ ∈ P̃′k′ ,

size1

((〈〈 f1,8
1
P̃ ′1
〉

|I P̃ ′ |
1
2

,81
P ′′1

〉)
P ′′∈P′′

P̃ ′

)
. sup

P ′′∈P′′
P̃ ′

1
|IP ′′ |

∫
R

∣∣∣∣〈 f1,8
1
P̃ ′1
〉

|I P̃ ′ |
1
2

∣∣∣∣χ̃M
IP ′′

dx . 210`
|E1|, (4-15)

size2

((〈〈 f2,8
2
P̃ ′2
〉

|I P̃ ′ |
1
2

,82
P ′′2

〉)
P ′′∈P′′

P̃ ′

)
. sup

P ′′∈P′′
P̃ ′

1
|IP ′′ |

∫
R

∣∣∣∣〈 f2,8
2
P̃ ′2
〉

|I P̃ ′ |
1
2

∣∣∣∣χ̃M
IP ′′

dx . 210`
|E2|, (4-16)

size3

((〈〈 f3,8
3,`
P̃ ′3
〉

|I P̃ ′ |
1
2

,83
P ′′3

〉)
P ′′∈P′′

P̃ ′

)
. sup

P ′′∈P′′
P̃ ′

1
|IP ′′ |

∫
R

∣∣∣∣〈 f3,8
3,`
P̃ ′3
〉

|I P̃ ′ |
1
2

∣∣∣∣χ̃M
IP ′′

dx . 1, (4-17)
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where M > 0 is sufficiently large. By applying the energy estimates in Lemma 3.7 and Hölder estimates,
we have, for each P̃ ′ ∈ P̃′k′ ,

energy1

((〈〈 f1,8
1
P̃ ′1
〉

|I P̃ ′ |
1
2

,81
P ′′1

〉)
P ′′∈P′′

P̃ ′

)
.

∥∥∥∥〈 f1,8
1
P̃ ′1
〉

|I P̃ ′ |
1
2

∥∥∥∥
L2(R)

.

(∫
E1

χ̃100
I P̃ ′
(x1)

|I P̃ ′ |
dx1 dx2

)1
2

, (4-18)

energy2

((〈〈 f2,8
2
P̃ ′2
〉

|I P̃ ′ |
1
2

,82
P ′′2

〉)
P ′′∈P′′

P̃ ′

)
.

∥∥∥∥〈 f2,8
2
P̃ ′2
〉

|I P̃ ′ |
1
2

∥∥∥∥
L2(R)

.

(∫
E2

χ̃100
I P̃ ′
(x1)

|I P̃ ′ |
dx1 dx2

)1
2

, (4-19)

energy3

((〈〈 f3,8
3,`
P̃ ′3
〉

|I P̃ ′ |
1
2

,83
P ′′3

〉)
P ′′∈P′′

P̃ ′

)
.

∥∥∥∥〈 f3,8
3,`
P̃ ′3
〉

|I P̃ ′ |
1
2

∥∥∥∥
L2(R)

.

(∫
E ′3

χ̃
100,`
I P̃ ′

(x1)

|I P̃ ′ |
dx1 dx2

)1
2

, (4-20)

where the approximate cutoff function χ̃100,`
I P̃ ′

(x1) decays rapidly (of order 100) away from the interval I P̃ ′

at scale |I P̃ ′ | and satisfies the additional property that supp χ̃100,`
I P̃ ′
⊆ 2` I P̃ ′ .

Now we insert the size and energy estimates (4-15)–(4-20) into (4-14) and get

3`
EP,I
( f1, f2, f3)

. 210`
|E1|

θ1 |E2|
θ2
∑
k′∈Z

Ck′
∑

P̃ ′∈P̃′k′

(∫
E1

χ̃100
I P̃ ′

dx
)1−θ1

2
(∫

E2

χ̃100
I P̃ ′

dx
)1−θ2

2
(∫

E ′3

χ̃
100,`
I P̃ ′

dx
)1−θ3

2
. (4-21)

Since |I P̃ ′ | = 2−k′ for every P̃ ′ ∈ P̃′k′ , all the dyadic intervals I P̃ ′ are disjoint, thus, by using Hölder’s
inequality, we can estimate the inner sum in the right-hand side of (4-21) by

2∏
j=1

( ∑
P̃ ′∈P̃′k′

∫
E j

χ̃100
I P̃ ′

dx
)1−θ j

2
( ∑

P̃ ′∈P̃′k′

∫
E ′3

χ̃
100,`
I P̃ ′

dx
)1−θ3

2
. |E1|

(1−θ1)/2|E2|
(1−θ2)/2. (4-22)

Combining the estimates (4-13), (4-21) and (4-22), we arrive at

3`
EP,I
( f1, f2, f3). 210`

|E1|
θ1 |E2|

θ2 |E1|
(1−θ1)/2|E2|

(1−θ2)/2
∑
k′∈Z

Ck′

.θ1,θ2,θ3,B 210`
|E1|

(1+θ1)/2|E2|
(1+θ2)/2 (4-23)

for every ` ∈ N and 0≤ θ1, θ2, θ3 < 1 with θ1+ θ2+ θ3 = 1.
By taking θ1 sufficiently close to 1 and θ2 sufficiently close to 0, one can make the exponent

2/(1 + θ1) = p1 strictly larger than 1 and close to 1, and 2/(1 + θ2) = p2 strictly smaller than 2
and close to 2. We finally get the estimate

3`
EP,I
( f1, f2, f3).p,p1,p2,B 210`

|E1|
1/p1 |E2|

1/p2 (4-24)

for every ` ∈ N and p, p1, p2 satisfying the hypothesis of Proposition 2.17.
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4B. Estimates for the trilinear form 3`
EP,II

( f1, f2, f3). If I EP ⊆�−10`, then 2` I P̃ ′× IP ′′ ⊆ �̃−10`. There-

fore, for each fixed P̃ ′ ∈ P̃′, we define the corresponding subcollection of P′′ by

P′′
P̃ ′
:= {P ′′ ∈ P′′ : I EP ⊆�−10`},

then we can decompose the collection P′′
P̃ ′

further, as follows:

P′′
P̃ ′
=

⋃
d ′′∈N

P′′
P̃ ′,d ′′

, (4-25)

where
P′′

P̃ ′,d ′′
:= {P ′′ ∈ P′′

P̃ ′
: 2` I P̃ ′ × 2d ′′ IP ′′ ⊆ �̃−10`} (4-26)

and d ′′ is maximal with this property.
Now we apply both the decompositions of P̃′ and P′′

P̃ ′
defined in (4-10) and (4-25) at the same time,

and split the trilinear form 3`
EP,II
( f1, f2, f3) into

3`
EP,II
( f1, f2, f3)

=

∑
k′∈Z

∑
P̃ ′∈P̃′k′

|CQ EP ||I P̃ ′ |
∑
d ′′∈N

∑
P ′′∈P′′

P̃ ′,d′′

1

|IP ′′ |
1
2

2∏
j=1

∣∣∣∣〈〈 f j ,8
j
P̃ ′j
〉

|I P̃ ′ |
1
2

,8
j
P ′′j

〉∣∣∣∣× ∣∣∣∣〈〈 f3,8
3,`
P̃ ′3
〉

|I P̃ ′ |
1
2

,83
P ′′3

〉∣∣∣∣. (4-27)

In the inner sum of (4-27), since 2` I P̃ ′ × 2d ′′ IP ′′ ⊆ �̃−10`,

supp(83,`
P̃ ′3
)⊆ 2` I P̃ ′ and supp f3 ⊆ E ′3 ⊆ R2

\U,

we can assume hereafter in this subsection that

| f3| ≤ χE ′3χ2` I P̃ ′
χ(2d′′ IP ′′ )

c . (4-28)

By using Proposition 3.5 and (4-13), we derive from (4-27) the estimates

3`
EP,II
( f1, f2, f3)

.
∑
k′∈Z

Ck′
∑

P̃ ′∈P̃′k′

|I P̃ ′ |
∑
d ′′∈N

[ 2∏
j=1

(
energy j

((〈〈 f j ,8
j
P̃ ′j
〉

|I P̃ ′ |
1
2

,8
j
P ′′j

〉)
P ′′∈P′′

P̃ ′,d′′

))1−θ j

×

(
size j

((〈〈 f j ,8
j
P̃ ′j
〉

|I P̃ ′ |
1
2

,8
j
P ′′j

〉)
P ′′∈P′′

P̃ ′,d′′

))θ j
]

×

(
size3

((〈〈 f3,8
3,`
P̃ ′3
〉

|I P̃ ′ |
1
2

,83
P ′′3

〉)
P ′′∈P′′

P̃ ′,d′′

))θ3
(

energy3

((〈〈 f3,8
3,`
P̃ ′3
〉

|I P̃ ′ |
1
2

,83
P ′′3

〉)
P ′′∈P′′

P̃ ′,d′′

))1−θ3

(4-29)

for any 0≤ θ1, θ2, θ3 < 1 with θ1+ θ2+ θ3 = 1.
To estimate the inner sum in the right-hand side of (4-29), note that I EP ⊆�−10`, P ′′ ∈ P′′

P̃ ′,d ′′
and f3

satisfies (4-28), so we apply the size estimates in Lemma 3.6 and get, for each P̃ ′ ∈ P̃′k′ and d ′′ ∈ N,
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size1

((〈〈 f1,8
1
P̃ ′1
〉

|I P̃ ′ |
1
2

,81
P ′′1

〉)
P ′′∈P′′

P̃ ′,d′′

)
. sup

P ′′∈P′′
P̃ ′,d′′

1
|IP ′′ |

∫
R

∣∣∣∣〈 f1,8
1
P̃ ′1
〉

|I P̃ ′ |
1
2

∣∣∣∣χ̃M
IP ′′

dx . 211`+d ′′
|E1|, (4-30)

size2

((〈〈 f2,8
2
P̃ ′2
〉

|I P̃ ′ |
1
2

,82
P ′′2

〉)
P ′′∈P′′

P̃ ′,d′′

)
. sup

P ′′∈P′′
P̃ ′,d′′

1
|IP ′′ |

∫
R

∣∣∣∣〈 f2,8
2
P̃ ′2
〉

|I P̃ ′ |
1
2

∣∣∣∣χ̃M
IP ′′

dx . 211`+d ′′
|E2|, (4-31)

size3

((〈〈 f3,8
3,`
P̃ ′3
〉

|I P̃ ′ |
1
2

,83
P ′′3

〉)
P ′′∈P′′

P̃ ′,d′′

)
. sup

P ′′∈P′′
P̃ ′,d′′

1
|IP ′′ |

∫
R

∣∣∣∣〈 f3,8
3,`
P̃ ′3
〉

|I P̃ ′ |
1
2

∣∣∣∣χ̃M
IP ′′

dx . 2−(M−100)d ′′, (4-32)

where M > 0 is arbitrarily large. Similar to the energy estimates obtained in (4-18), (4-19) and (4-20), by
applying the energy estimates in Lemma 3.7 and Hölder estimates we have, for each P̃ ′ ∈ P̃′k′ and d ′′ ∈N,

energy1

((〈〈 f1,8
1
P̃ ′1
〉

|I P̃ ′ |
1
2

,81
P ′′1

〉)
P ′′∈P′′

P̃ ′,d′′

)
.

(∫
E1

χ̃100
I P̃ ′
(x1)

|I P̃ ′ |
dx1 dx2

)1
2

, (4-33)

energy2

((〈〈 f2,8
2
P̃ ′2
〉

|I P̃ ′ |
1
2

,82
P ′′2

〉)
P ′′∈P′′

P̃ ′,d′′

)
.

(∫
E2

χ̃100
I P̃ ′
(x1)

|I P̃ ′ |
dx1 dx2

)1
2

, (4-34)

energy3

((〈〈 f3,8
3,`
P̃ ′3
〉

|I P̃ ′ |
1
2

,83
P ′′3

〉)
P ′′∈P′′

P̃ ′,d′′

)
.

(∫
E ′3

χ̃
100,`
I P̃ ′

(x1)

|I P̃ ′ |
dx1 dx2

)1
2

, (4-35)

where the approximate cutoff function χ̃100,`
I P̃ ′

(x1) decays rapidly (of order 100) away from the interval I P̃ ′

at scale |I P̃ ′ | and satisfies the additional property that supp χ̃100,`
I P̃ ′
⊆ 2` I P̃ ′ .

Now we insert the size and energy estimates (4-30)–(4-35) into (4-29); by using the estimates (4-13),
(4-22) and Hölder’s inequality, we then get

3`
EP,II
( f1, f2, f3)

. 211`
|E1|

θ1 |E2|
θ2
∑
k′∈Z

Ck′
∑
d ′′∈N

2−(Mθ3−100)d ′′
2∏

j=1

( ∑
P̃ ′∈P̃′k′

∫
E j

χ̃100
I P̃ ′

dx
)1−θ j

2
×

( ∑
P̃ ′∈P̃′k′

∫
E ′3

χ̃
100,`
I P̃ ′

dx
)1−θ3

2

.θ1,θ2,θ3,B,M 211`
|E1|

(1+θ1)/2|E2|
(1+θ2)/2

∑
d ′′∈N

2−(Mθ3−100)d ′′ . (4-36)

for every ` ∈ N and 0≤ θ1, θ2, θ3 < 1 with θ1+ θ2+ θ3 = 1.
By taking θ1 sufficiently close to 1 and θ2 sufficiently close to 0, one can make the exponent

2/(1+ θ1)= p1 strictly larger than 1 and close to 1, and 2/(1+ θ2)= p2 strictly smaller than 2 and close
to 2. The series over d ′′ ∈N in (4-36) is summable if we choose M large enough (say, M ' 200θ−1

3 ). We
finally get the estimate

3`
EP,II
( f1, f2, f3).p,p1,p2,B 211`

|E1|
1/p1 |E2|

1/p2 (4-37)

for every ` ∈ N and p, p1, p2 satisfying the hypothesis of Proposition 2.17.
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4C. Conclusions. By inserting the estimates (4-9), (4-24) and (4-37) into (4-3), we finally get

|3EP( f1, f2, f3)|.p,p1,p2,B

∑
`∈N

2−100`212`
|E1|

1/p1 |E2|
1/p2 .p,p1,p2,B |E1|

1/p1 |E2|
1/p2, (4-38)

which completes the proof of Proposition 2.17 for the model operators 5EP.
This concludes the proof of Theorem 1.3.

5. Proof of Theorem 1.5

In this section, we prove Theorem 1.5 by carrying out the proof of Proposition 2.17 for the model
operators 5̃ε

EP
defined in (2-54) with EP= P′×P′′.

Fix indices p1, p2, p as in the hypothesis of Proposition 2.17. Fix arbitrary measurable sets E1, E2, E3

of finite measure (by using the scaling invariance of 5̃ε
EP
, we can assume further that |E3| = 1). Our goal

is to find E ′3 ⊆ E3 with |E ′3| ' |E3| = 1 such that, for any functions | f1| ≤ χE1 , | f2| ≤ χE2 and | f3| ≤ χE ′3 ,
one has the corresponding trilinear forms 3̃ε

EP
( f1, f2, f3) defined by

3̃ε
EP
( f1, f2, f3) :=

∫
R2
5̃ε
EP
( f1, f2)(x) f3(x) dx (5-1)

satisfy estimates

|3̃ε
EP
( f1, f2, f3)| =

∣∣∣∣∑
EP∈EP

C̃ε
Q EP

|I EP |
1
2

〈 f1,8
1
EP1
〉〈 f2,8

2
EP2
〉〈 f3,8

3
EP3
〉

∣∣∣∣.ε,p,p1,p2 |E1|
1/p1 |E2|

1/p2, (5-2)

where p1 is larger than but close to 1, while p2 is smaller than but close to 2.
In the proof of Theorem 1.5 in biparameter settings, besides the difficulty that one can’t carry out

the stopping-time decompositions by using the hybrid square and maximal operators as in [Muscalu
et al. 2004a; 2006], we can’t apply Journé’s lemma as in [Muscalu et al. 2004a] either, since we can’t
get the estimate

∑
P ′ |IP ′ | . | Ĩ | for all dyadic intervals IP ′ ⊆ Ĩ with comparable lengths. Therefore,

in order to prove Theorem 1.5, we will take advantage of the almost orthogonality of wave packets
associated with different tiles of distinct trees and the decay assumptions on the symbols to overcome
these difficulties.

We define the exceptional set

� :=

2⋃
j=1

{
x ∈ R2

:MM
(
χE j

|E j |

)
(x) > C

}
(5-3)

It is clear that |�| < 1
10 if C is a large enough constant, which we fix from now on. Then, we define

E ′3 := E3 \� and observe that |E ′3| ' 1.
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Now we estimate the trilinear form 3̃ε
EP
( f1, f2, f3) defined in (5-1) by two terms as follows:

|3̃ε
EP
( f1, f2, f3)|

.
∑
EP∈EP:

I EP∩�
c
6=∅

|C̃ε
Q EP
|

|I EP |
1
2

|〈 f1,8
1
EP1
〉||〈 f2,8

2
EP2
〉||〈 f3,8

3
EP3
〉| +

∑
EP∈EP:

I EP∩�
c
=∅

|C̃ε
Q EP
|

|I EP |
1
2

|〈 f1,8
1
EP1
〉||〈 f2,8

2
EP2
〉||〈 f3,8

3
EP3
〉|

=: 3̃ε
EP,I
( f1, f2, f3)+ 3̃

ε
EP,II
( f1, f2, f3). (5-4)

5A. Estimates for trilinear form 3̃ε
EP,I

( f1, f2, f3). We can decompose the collection P̃′ of tritiles into

P′ =
⋃
k′∈Z

P′k′, (5-5)

where

P′k′ := {P
′
∈ P′ : `(Q P ′)= 2k′

}. (5-6)

As a consequence, we can split the trilinear form 3̃ε
EP,I
( f1, f2, f3) into

3̃ε
EP,I
( f1, f2, f3)=

∑
k′∈Z

∑
EP∈P′k′×P′′:

I EP∩�
c
6=∅

|C̃ε
Q EP
|
|IP ′ |

|IP ′′ |
1
2

3∏
j=1

∣∣∣∣〈〈 f j ,8
j
P ′j
〉

|IP ′ |
1
2

,8
j
P ′′j

〉∣∣∣∣. (5-7)

By Lemma 2.10, we can estimate the Fourier coefficients C̃ε
Q EP
:= C̃ε

Q EP ,E0,E0,E0
for each EP ∈P′k′×P′′ (k ′∈Z)

by

|C̃ε
Q EP
|. C̃ε

k′ := 〈k
′
〉
−(1+ε)

= (1+ |k ′|2)−(1+ε)/2. (5-8)

For each fixed P ′ ∈ P′, we define the subcollection P′′P ′ of P′′ by

P′′P ′ := {P
′′
∈ P′′ : I EP ∩�

c
6=∅}.

Therefore, by using Proposition 3.5, we derive the estimates

3̃ε
EP,I
( f1, f2, f3)

.
∑
k′∈Z

C̃ε
k′
∑

P ′∈P′k′

|IP ′ |

3∏
j=1

[(
energy j

((〈〈 f j ,8
j
P ′j
〉

|IP ′ |
1
2

,8
j
P ′′j

〉)
P ′′∈P′′P ′

))1−θ j

×

(
size j

((〈〈 f j ,8
j
P ′j
〉

|IP ′ |
1
2

,8
j
P ′′j

〉)
P ′′∈P′′P ′

))θ j
]

(5-9)

for any 0≤ θ1, θ2, θ3 < 1 with θ1+ θ2+ θ3 = 1.
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To estimate the right-hand side of (5-9), note that I EP ∩�
c
6=∅ and supp f3 ⊆ E ′3, so we apply the size

estimates in Lemma 3.6 and get, for each P ′ ∈ P′k′ and j = 1, 2, 3,

size j

((〈〈 f j ,8
j
P ′j
〉

|IP ′ |
1
2

,8
j
P ′′j

〉)
P ′′∈P′′P ′

)
. sup

P ′′∈P′′P ′

1
|IP ′′ |

∫
R

∣∣∣∣〈 f j ,8
j
P ′j
〉

|IP ′ |
1
2

∣∣∣∣χ̃M
IP ′′

dx . |E j |, (5-10)

where M > 0 is sufficiently large. By applying the energy estimates in Lemma 3.7, we have, for each
P ′ ∈ P′k′ and j = 1, 2, 3,

energy j

((〈〈 f j ,8
j
P ′j
〉

|IP ′ |
1
2

,8
j
P ′′j

〉)
P ′′∈P′′P ′

)
.

1

|IP ′ |
1
2

(∫
R

|〈 f j ,8
j
P ′j
〉|

2 dx2

)1
2

. (5-11)

Now we insert the size and energy estimates (5-10) and (5-11) into (5-9) and get

3̃ε
EP,I
( f1, f2, f3). |E1|

θ1 |E2|
θ2
∑
k′∈Z

C̃ε
k′
∑

P ′∈P′k′

3∏
j=1

(∫
R

|〈 f j ,8
j
P ′j
〉|

2 dx2

)1−θ j
2
. (5-12)

Observe that, for any different tritiles P ′ ∈ P′k′ and P
′
∈ P′k′ , one has IP ′ ∩ IP ′ = ∅, or otherwise one

has IP ′ = IP ′ but ωP ′j
∩ωP ′j

= ∅ for every j = 1, 2, 3. By taking advantage of such orthogonality in

L2 of the wave packets 8 j
P ′j

corresponding to the tiles P ′j ( j = 1, 2, 3), one has that, for any function
F ∈ L2(R) and k ′ ∈ Z,∥∥∥∥ ∑

P ′∈P′k′

〈F,8 j
P ′j
〉8

j
P ′j

∥∥∥∥2

L2
≤

∑
P ′, P ′∈P′k′ :
ωP ′j
=ωP′j

IP ′∩IP′=∅

|〈F,8 j
P ′j
〉||〈F,8 j

P ′j
〉||〈8

j
P ′j
,8

j
P ′j
〉|

. 2k′
∑

P ′∈P′k′

|〈F,8 j
P ′j
〉|

2
∑

P ′∈P′k′ :
ωP ′j
=ωP′j

IP ′∩IP′=∅

|〈χ̃1000
IP ′

, χ̃1000
IP′
〉|

.
∑

P ′∈P′k′

|〈F,8 j
P ′j
〉|

2
∑

P ′∈P′k′ :
ωP ′j
=ωP′j

IP ′∩IP′=∅

(
1+

dist(IP ′, IP ′)

|IP ′ |

)−100

.
∑

P ′∈P′k′

|〈F,8 j
P ′j
〉|

2, (5-13)

from which we deduce the Bessel-type inequality∑
P ′∈P′k′

|〈F,8 j
P ′j
〉|

2
=

∣∣∣∣〈 ∑
P ′∈P′k′

〈F,8 j
P ′j
〉8

j
P ′j
, F
〉∣∣∣∣≤ ∥∥∥∥ ∑

P ′∈P′k′

〈F,8 j
P ′j
〉8

j
P ′j

∥∥∥∥
L2
· ‖F‖L2 . ‖F‖2L2, (5-14)
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where the implicit constants in the bounds are independent of k ′ ∈ Z. Then, we can use the Bessel-type
inequality (5-14) and Hölder’s inequality to estimate the inner sum in the right-hand side of (5-12) by

∑
P ′∈P′k′

3∏
j=1

(∫
R

|〈 f j ,8
j
P ′j
〉|

2 dx2

)1−θ j
2
.

3∏
j=1

(∫
R

∑
P ′∈P′k′

|〈 f j ,8
j
P ′j
〉|

2 dx2

)1−θ j
2

.
3∏

j=1

‖ f j‖
1−θ j

L2(R2)
. |E1|

(1−θ1)/2|E2|
(1−θ2)/2. (5-15)

Combining the estimates (5-8), (5-12) and (5-15), we arrive at

3̃ε
EP,I
( f1, f2, f3). |E1|

θ1 |E2|
θ2 |E1|

(1−θ1)/2|E2|
(1−θ2)/2

∑
k′∈Z

C̃ε
k′ .ε,θ1,θ2,θ3 |E1|

(1+θ1)/2|E2|
(1+θ2)/2 (5-16)

for any 0≤ θ1, θ2, θ3 < 1 with θ1+ θ2+ θ3 = 1.
By taking θ1 sufficiently close to 1 and θ2 sufficiently close to 0, one can make the exponent

2/(1 + θ1) = p1 strictly larger than 1 and close to 1, and 2/(1 + θ2) = p2 strictly smaller than 2
and close to 2. We finally get the estimate

3̃ε
EP,I
( f1, f2, f3).ε,p,p1,p2 |E1|

1/p1 |E2|
1/p2 (5-17)

for every ε > 0, and p, p1, p2 satisfy the hypothesis of Proposition 2.17.

5B. Estimates for the trilinear form 3̃ε
EP,II

( f1, f2, f3). For each fixed P ′ ∈ P′, we define the corre-
sponding subcollection of P′′ by

P′′P ′ := {P
′′
∈ P′′ : I EP ⊆�},

then we can decompose the collection P′′P ′ further, as follows:

P′′P ′ =
⋃
µ∈N

P′′P ′,µ, (5-18)

where
P′′P ′,µ := {P

′′
∈ P′′P ′ : Dil2µ(IP ′ × IP ′′)⊆�} (5-19)

and µ is maximal with this property. By Dil2µ(I EP) we mean the rectangle having the same center as the
original I EP but whose side lengths are 2µ times larger.

Now we apply both the decompositions of P̃′ and P′′P ′ defined in (5-5) and (5-18) at the same time,
and split the trilinear form 3̃ε

EP,II
( f1, f2, f3) into

3̃ε
EP,II
( f1, f2, f3)=

∑
k′∈Z

∑
P ′∈P′k′

|C̃ε
Q EP
||IP ′ |

∑
µ∈N

∑
P ′′∈P′′P ′,µ

1

|IP ′′ |
1
2

3∏
j=1

∣∣∣∣〈〈 f j ,8
j
P ′j
〉

|IP ′ |
1
2

,8
j
P ′′j

〉∣∣∣∣ (5-20)

In the inner sum of (5-20), since Dil2µ(IP ′ × IP ′′)⊆� and supp f3 ⊆ E ′3 ⊆ R2
\�, we get that

| f3| ≤ χE ′3χ(Dil2µ (IP ′×IP ′′ ))
c = χE ′3{χ(2

µ IP ′ )
c +χ(2µ IP ′′ )

c −χ(2µ IP ′ )
cχ(2µ IP ′′ )

c}, (5-21)
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and hence we can assume hereafter in this subsection that

| f3| ≤ χE ′3χ(2
µ IP ′ )

c , (5-22)

and the other two terms can be handled similarly.
By using Proposition 3.5 and (5-8), we derive from (5-20) the estimates

3̃ε
EP,II
( f1, f2, f3)

.
∑
k′∈Z

C̃ε
k′
∑

P ′∈P′k′

|IP ′ |
∑
µ∈N

3∏
j=1

[(
energy j

((〈〈 f j ,8
j
P ′j
〉

|IP ′ |
1
2

,8
j
P ′′j

〉)
P ′′∈P′′P ′,µ

))1−θ j

×

(
size j

((〈〈 f j ,8
j
P ′j
〉

|IP ′ |
1
2

,8
j
P ′′j

〉)
P ′′∈P′′P ′,µ

))θ j
]

(5-23)

for any 0≤ θ1, θ2, θ3 < 1 with θ1+ θ2+ θ3 = 1.
To estimate the inner sum in the right-hand side of (5-23), note that I EP ⊆ �, P ′′ ∈ P′′P ′,µ and f3

satisfies (5-22), so we apply the size estimates in Lemma 3.6 and get, for each P ′ ∈ P′k′ and µ ∈ N,

size1

((〈
〈 f1,8

1
P ′1
〉

|IP ′ |
1
2

,81
P ′′1

〉)
P ′′∈P′′P ′,µ

)
. sup

P ′′∈P′′P ′,µ

1
|IP ′′ |

∫
R

∣∣∣∣〈 f1,8
1
P ′1
〉

|IP ′ |
1
2

∣∣∣∣χ̃M
IP ′′

dx . 22µ
|E1|, (5-24)

size2

((〈
〈 f2,8

2
P ′2
〉

|IP ′ |
1
2

,82
P ′′2

〉)
P ′′∈P′′P ′,µ

)
. sup

P ′′∈P′′P ′,µ

1
|IP ′′ |

∫
R

∣∣∣∣〈 f2,8
2
P ′2
〉

|IP ′ |
1
2

∣∣∣∣χ̃M
IP ′′

dx . 22µ
|E2|, (5-25)

size3

((〈
〈 f3,8

3
P ′3
〉

|IP ′ |
1
2

,83
P ′′3

〉)
P ′′∈P′′P ′,µ

)
. sup

P ′′∈P′′P ′,µ

1
|IP ′′ |

∫
R

∣∣∣∣〈 f3,8
3
P ′3
〉

|IP ′ |
1
2

∣∣∣∣χ̃M
IP ′′

dx . 2−Nµ, (5-26)

where M > 0 and N > 0 are arbitrarily large. By applying the energy estimates in Lemma 3.7, we have,
for each P ′ ∈ P′k′ , µ ∈ N and j = 1, 2, 3,

energy j

((〈〈 f j ,8
j
P ′j
〉

|IP ′ |
1
2

,8
j
P ′′j

〉)
P ′′∈P′′P ′,µ

)
.

1

|IP ′ |
1
2

(∫
R

|〈 f j ,8
j
P ′j
〉|

2 dx2

)1
2

. (5-27)

Now we insert the size and energy estimates (5-24)–(5-27) into (5-23); by using the estimates (5-8)
and (5-15), we derive that

3̃ε
EP,II
( f1, f2, f3). |E1|

θ1 |E2|
θ2
∑
k′∈Z

C̃ε
k′
∑
µ∈N

2−(Nθ3−2)µ
∑

P ′∈P′k′

3∏
j=1

(∫
R

|〈 f j ,8
j
P ′j
〉|

2 dx2

)1−θ j
2

.ε,θ1,θ2,θ3,N |E1|
(1+θ1)/2|E2|

(1+θ2)/2
∑
µ∈N

2−(Nθ3−2)µ. (5-28)

for every 0≤ θ1, θ2, θ3 < 1 with θ1+ θ2+ θ3 = 1.
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By taking θ1 sufficiently close to 1 and θ2 sufficiently close to 0, one can make the exponent
2/(1 + θ1) = p1 strictly larger than 1 and close to 1, and 2/(1 + θ2) = p2 strictly smaller than 2
and close to 2. The series over µ∈N in (5-28) is summable if we choose N large enough (say, N ' 4θ−1

3 ).
We finally get the estimate

3̃ε
EP,II
( f1, f2, f3).ε,p,p1,p2 |E1|

1/p1 |E2|
1/p2 (5-29)

for any ε > 0, and p, p1, p2 satisfy the hypothesis of Proposition 2.17.

5C. Conclusions. By inserting the estimates (5-17) and (5-29) into (5-4), we finally get

|3̃ε
EP
( f1, f2, f3)|.ε,p,p1,p2 |E1|

1/p1 |E2|
1/p2 (5-30)

for any ε > 0, which completes the proof of Proposition 2.17 for the model operators 5̃ε
EP
.

This concludes the proof of Theorem 1.5.
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