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QUANTIZED SLOW BLOW-UP DYNAMICS FOR THE COROTATIONAL
ENERGY-CRITICAL HARMONIC HEAT FLOW

PIERRE RAPHAEL AND REMI SCHWEYER

We consider the energy-critical harmonic heat flow from R? into a smooth compact revolution surface of
R3. For initial data with corotational symmetry, the evolution reduces to the semilinear radially symmetric
parabolic problem

3ru+f(u):0

r r2

du—3%u —

for a suitable class of functions f. Given an integer L € N*, we exhibit a set of initial data arbitrarily
close to the least energy harmonic map Q in the energy-critical topology such that the corresponding
solution blows up in finite time by concentrating its energy

r

Vu(t,r)— VQ(A(I)

>—>u* in L?

at a speed given by the quantized rates

(T —nt
[log(T — 1) P/GE=D”

in accordance with the formal predictions of van den Berg et al. (2003). The case L = 1 corresponds to the
stable regime exhibited in our previous work (CPAM, 2013), and the data for L > 2 leave on a manifold
of codimension L—1 in some weak sense. Our analysis is a continuation of work by Merle, Rodnianski,
and the authors (in various combinations) and it further exhibits the mechanism for the existence of the
excited slow blow-up rates and the associated instability of these threshold dynamics.

A(t) = c(uo)(1 +o(1))

1. Introduction

The parabolic heat flow. The harmonic heat flow between two embedded Riemannian manifolds (N, gn),
(M, gy) is the gradient flow associated to the Dirichlet energy of maps from N — M:

{8IU = [P)TUM(AgNU)’
V=0 = Vo,

(t,x) eRxN, v(t,x) e M, (1-1)
where Pz, is the projection onto the tangent space to M at v. The special case N = R>, M =S?
corresponds to the harmonic heat flow to the 2-sphere

dv=Av+ Vv, (r,x)eRxR% v, x)eS? (1-2)
and is related to the Landau-Lifschitz equation of ferromagnetism; we refer to [van den Berg et al. 2003;
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Angenent et al. 2009; Guan et al. 2009; Gustafson et al. 2010] for a complete introduction to this class of
problems. We shall from now on restrict our discussion to the case
N =R%.

Smooth initial data yield unique local-in-time smooth solutions which dissipate the Dirichlet energy

d
—: |Vv|2} =21 18,v)*
dt R2 R2

An essential feature of the problem is that the scaling symmetry
u > up (t, x) =u(A’t, rx), A >0,
leaves the Dirichlet energy unchanged, and hence the problem is energy-critical.

Corotational flows. We restrict our attention in this paper to flows with so-called corotational symmetry.
More precisely, let us consider a smooth closed curve in the plane parametrized by arclength

. g(u) N2 N2 _
uel-mnl— 2, E)r+@@) =1,

where
g € *°(R)is odd and 27 periodic,

(H) g0)=g(m) =0, gu) >0 forO0O<u<m, (1-3)
gO)=1,g'@m=-1
Then the revolution surface M with parametrization
g(u)cosb

g(u)siné
z(u)

is a smooth ! compact revolution surface of R3 with metric (du)?+ gz(u)(de)z. Given a homotopy degree
k € 7*, the k-corotational reduction to (1-1) corresponds to solutions of the form

g(u(t, r))cos(kf)
g(u(t, r))sin(k6) (1-4)
z(u(t, r)),

which leads to the semilinear parabolic equation

o,
{Btu—arzu——u—i—sz(—?) =0,

©O,u)e[0,27]x [0, 7] —

v(t,r) =

r r f=gg. (1-5)
ut:O == MO?

The k-corotational Dirichlet energy becomes
+00 2
E(u) =/ [|a,u|2 +k2@]rdr (1-6)
0 r

ISee [Gallot et al. 2004], for example.
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and is minimized among maps with boundary conditions
u(0) =0, lim u(r)y=m 1-7)
r——+00
onto the least energy harmonic map Qy, which is the unique, up-to-scaling solution to

roy Ok = kg(Qk) (1-8)

satisfying (1-7); see for example [Cote 2005]. In the case of S? target g(u) = sin u, the harmonic map is
explicitly given by

Qi (r) =2tan” ' (r5). (1-9)

The blow-up problem. The question of the existence of blow-up solutions and the description of the
associated concentration of energy scenario has attracted considerable attention for the past thirty years.
In the pioneering works of Struwe [1985], Ding and Tian [1995], and Qing and Tian [1997] (see [Topping
2004] for a complete history of the problem), it was shown that if occurring, the concentration of energy
implies the bubbling off of a nontrivial harmonic map at a finite number of blow-up points

v(ti, ai + A(t)x) = Qi,  A(ti) -0 (1-10)

locally in space. In particular, this shows the existence of a global in time flow on negatively curved
targets where no nontrivial harmonic map exists.

For corotational data and homotopy number k£ > 2, Guan, Gustaffson, Nakanishi, and Tsai [Guan et al.
2009; Gustafson et al. 2010] proved that the flow is globally defined near the ground state harmonic
map. In fact, Oy is asymptotically stable for k£ > 3, and in particular no blow-up will occur. Eternally
oscillating solutions and infinite time grow up solutions are exhibited for k = 2.

In contrast, for k = 1, the existence of finite time blow-up solutions has been proved in various
geometrical settings strongly using the maximum principle; see in particular the work of Chang, Ding,
and Ye [Chang et al. 1992], Coron and Ghidaglia [1989], Qing and Tian [1997], and Topping [2004].
Despite some serious efforts and the use of the maximum principle (see in particular [Angenent et al.
2009]), very little was known until recently about the description of the blow-up bubble and the derivation
of the blow-up speed, in particular due to the critical nature of the problem.

For the rest of the paper, we focus on the degree

k=1

case, which generates the least energy, nontrivial harmonic map Q = Q. For D? initial manifold and
S? target, van den Berg, Hulshof, and King [van den Berg et al. 2003], in continuation of [Herrero
and Veldazquez 1994], implemented a formal analysis based on the matched asymptotics techniques and
predicted the existence of blow-up solutions of the form

u(t,r)~ Q(ﬁ) (1-11)
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with blow-up speed governed by the quantized rates
(T "
llog(T —n)PE/@L="

We will further discuss the presence of quantized rates which is reminiscent of the classification of type

A2) L eN*.

II blow-up for the supercritical nonlinear heat equation [Mizoguchi 2007].

We completely revisited the blow-up analysis in [Raphaél and Schweyer 2013] by adapting the strategy
developed in [Raphaél and Rodnianski 2012; Merle et al. 2011] for the study of wave and Schrodinger
maps, with two main new approaches:

o We completely avoid the formal matched asymptotics approach and replace it by an elementary
derivation of an explicit and universal system of ODE’s which drives the blow-up speed. A similar
simplification further occurred in related critical settings; see in particular [Rapha&l and Schweyer
2014].

» We designed a robust universal energy method to control the solution in the blow-up regime, which
applies both to parabolic and dispersive problems. In particular, we aim to make no use of the
maximum principle.

These techniques led to [Raphaél and Schweyer 2013] the construction of an open set of corotational
initial data arbitrarily close to the ground state harmonic map in the energy-critical topology such that the
corresponding solution to (1-5) bubbles off a harmonic map according to (1-11) at the speed

MO e =P

thatis, L = 1.

This is the stable* blow-up regime.

Statement of the result. Our main claim in this paper is that the analysis in [Raphaél and Schweyer 2013]
can be further extended to exhibit the unstable modes which are responsible for a discrete sequence of
quantized slow blow-up rates.

Theorem 1.1 (excited slow blow-up dynamics for the 1-corotational heat flow). Let k = 1 and g satisfy
(1-3). Let Q be the least energy harmonic map. Let L € N*. Then there exists a smooth corotational
initial data uy(r) such that the corresponding solution to (1-5) blows up in finite time T =T (ug) > 0 by
bubbling off a harmonic map

’

Vu(t,r) —VQ(Mt)

) —Vu* inl? ast—T (1-12)

at the excited rate
(T —n)t

A1) = c(ug)(1 4+ 0,-7(1)) log(T — 1)L/

c(ug) > 0. (1-13)

Moreover, ug can be taken arbitrarily close to Q in the energy-critical topology.

2In the presence of corotational symmetry, blow-up dynamics are expected to be unstable by rotation under general
perturbations; see [Merle et al. 2011].
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Comments on the result. 1. Regularity of the asymptotic profile. Arguing as in [Rapha&l and Schweyer
2013] and using the estimates of Proposition 3.1, one can directly relate the rate of blow-up (1-13) to the
regularity of the remaining excess of energy, in the sense that u* exhibits an H**! regularity is some
suitable Sobolev sense; see Remark 4.1. See also [Merle and Rapha&l 2005b] for a related phenomenon
in the dispersive setting.

2. Stable and excited blow-up rates. The case L = 1 is treated in [Raphaél and Schweyer 2013] and
corresponds to stable blow-up. For L > 2, the set of initial data leading to (1-13) is of codimension (L —1)
in the following sense: there exist fixed directions (;)2<;<z. such that, for any suitable perturbation &g of
0, there exist (a;(&0))2<i<L € RL~! such that the solution to (1-5) with data

L
Q+eo+ )y aie)v
i=2
blows up in finite time with the blow-up speed (1-13). Building a smooth manifold would require proving
local uniqueness and smoothness of the flow ¢y — a;(&p))2<i <1, Which is a separate problem; see, for
example, [Krieger and Schlag 2009] for an introduction to this kind of issue. The control of the unstable

modes relies on a classical soft and powerful Brouwer type topological argument in continuation of [Cote
et al. 2011; Cote and Zaag 2013; Hillairet and Raphaél 2012].

3. On quantized blow-up rates. There is an important formal and rigorous literature on the existence of
quantized blow-up rates for parabolic problems. In the pioneering works [Herrero and Veldzquez 1994;
Filippas et al. 2000], the authors predicted the existence of a sequence of quantized blow-up rates for the
supercritical power nonlinearity heat equation

du=Au+u?, xeR¢ p>pW)),d<T,

and this sequence is in one to one correspondence with the spectrum of the linearized operator close to
the explicit singular self similar solution. After this formal work, and using the a priori bounds on radial
type II blow-up solutions of Matano and Merle [2009; 2004], Mizogushi completely classified the radial
data type II blow-up according to these quantized rates. Note that Mizogushi finishes the classification
using the Matano—Merle a priori estimates on threshold dynamics, which heavily rely on the maximum
principle, but the argument is not constructive. One of the main points of our work is to revisit the formal
derivation of the sequence of blow-up rates and to relate it not to a spectral problem, but to the structure of
the resonances of the linearized operator H close to Q and of its iterates, that is, the growing solutions to

H*T, =0, keN*

In particular, we show how the dynamics of tails as initiated in [Raphaél and Rodnianski 2012; Merle et al.
2011] lead to a universal dynamical system driving the blow-up speed, which admits unstable solutions
(1-13) corresponding to a codimension (L — 1) set of initial data. Another by-product of this analysis is
the first explicit construction of type II blow-up for the energy-critical nonlinear heat equation [Schweyer
2012].
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4. Classification of the flow near Q. The question of the classification of the flow near the harmonic map,
and more generally near the ground state solitary wave in nonlinear evolution problems, has attracted
considerable attention recently; see, for example, [Rapha&l 2013]. This program has been concluded for
the mass-critical (gKdV) equation in [Martel et al. 2012a; 2012b; 2012c], where it is shown that, provided
the data is taken close enough to the ground state in a suitable topology which is strictly smaller than
the energy norm, the blow-up dynamics are completely classified. In contrast, arbitrarily slow blow-up
can be achieved for large deformations of the ground state in this restricted sense. The existence of
such slow blow-up regimes remains however open in many important instances, in particular for the
mass-critical NLS equation; see [Merle et al. 2013] for a further introduction to this delicate problem. For
energy-critical problems like wave or Schrodinger maps, Krieger et al. [2008] showed that arbitrarily slow
blow-up can be achieved, but the known examples so far are never 6°° smooth. The structure of the flow
near Q is also somewhat mysterious, and various new kinds of global dynamics have been constructed;
see [Donninger and Krieger 2013; Bejenaru and Tataru 2014]. One of the new results of our analysis
in this paper is to show the essential role played by the control of higher order Sobolev norms, which
provide a new topology to measure the distance to the solitary wave which is sharp enough to see all
the blow-up regimes (1-13). The control of these norms acts in the energy method as a replacement of
the counting of the number of intersections of the solution with the ground state, which, in the parabolic
setting, plays an essential role for the classification of the blow-up dynamics [Mizoguchi 2007], but relies
in an essential way on maximum principle techniques. We believe that the blow-up solutions we construct
in this paper are the building blocks to classify the blow-up dynamics near the ground state in a suitable
topology.

5. Extension to dispersive problems. We treat in this paper the parabolic problem, but the robustness
of our approach has been shown in [Raphaél and Rodnianski 2012; Merle et al. 2011], which treat
the dispersive wave and Schrodinger maps with S? target. We expect that similar constructions can be
performed there as well to produce arbitrarily slow €°° blow-up solutions with quantized rate, hence
completing the analysis of these excited regimes, which started in the seminal work [Krieger et al. 2008].

Notations. We introduce the differential operator
Af =y-Vf (energy-critical scaling).
Given a parameter A > 0, we let

w,(r) =u(y) with y = %

Given a positive number b; > 0, we let
1 log b
By— . Bl=|0g 1|‘
N N

We let x be a positive nonincreasing smooth cut-off function with

(1-14)

1 fory <1,

X(y):{O for y > 2.
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Given a parameter B > 0, we denote

xB@)=x(%>. (1-15)

We shall systematically omit the measure in all radial two dimensional integrals and note that

+00
/f = f(r)rdr.
0

Given a p-uplet J = (ji, ..., jp) € N?, we introduce the norms
P P
=)k =) ki (1-16)
k=1 k=1

‘We note that
d 1
2
%Mﬂ):{xeR{Lﬂ:(E ﬁ) SR}
i=1

Strategy of the proof. Let us give brief insight into the strategy of the proof of Theorem 1.1.

(1). Renormalized flow and iterated resonances. Let us look for a modulated solution u(z, r) of (1-5) in

renormalized form
(t.r) = (s, y) rooods (1-17)
u\t,r)=uvl(s, s = —, —_— =, -
Yoo YENay a2

which leads to the self-similar equation

FO o = (1-18)

osv — Av+biAv+
s 1 y2 X

We know from theoretical ground that if blow-up occurs, v(s, y) = Q(y) +&(s, y) for some small (s, y),
and hence the linear part of the ¢ flow is governed by the Schrodinger operator
1'(0)
y2

The energy-critical structure of the problem induces an explicit resonance

H=—A+

H(AQ) =0,

where from explicit computation,

AQN% as y — o0. (1-19)
More generally, the iterates of the kernel of H computed iteratively through the scheme
HTy1 =T, To=AQ, (1-20)
display a nontrivial tail at infinity:

Te(y) ~ y*crlogy +di) fory> 1. (1-21)
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(ii). Tail dynamics. We now generalize the approach developed in [Raphaél and Rodnianski 2012; Merle
et al. 2011] and claim that (7} )x>1 correspond to unstable directions which can be excited in a universal
way. To see this, let us look for a slowly modulated solution to (1-18) of the form v(s, y) = Qp)(y)
with

L L+2
b=, ....b), Qp=00+Y bTi(M+Y Sk (1-22)
i=1 i=2

and with a priori bounds
bi ~ by, 1SS by,

so that S; is in some sense homogeneous of degree i in b;. Our strategy is the following: choose the
universal dynamical system driving the modes (b;)1<;<; which generates the least growing in space
solution S;. Let us illustrate the procedure.

O(by). We do not adjust the law of b; for the first term.> We therefore obtain from (1-18) the equation
bi(HT1 +AQ)=0.
O (b?, by). We obtain
(b)sTy +bIATI + b2 HT> + HS, = i NL(T1, Q),

where N L(Ty, Q) corresponds to nonlinear interaction terms. When considering the far away tail (1-21),
we have, for y large,
ATy ~T,, HT,=—T,
and thus
(b1)sTi +bIAT, + by HT> ~ ((by)s + b} — b)Ty.

Hence the leading order growth is canceled by the choice
(b1)s + b7 — by =0. (1-23)

We then solve for
HS> =—b{(AT) —T1) + NL(Ty, Q)

and check that S, < b7 T; for y large.
O(b'fH, br+1). At the k-th iteration, we obtain an elliptic equation of the form
(bi)s Ty + b1k ATy + b 1 HTjpy + HS) = b]fHNLk(Tl, ooy Ty, Q).

From (1-21), we have, for tails,
ATk ~ (2k - 1)Tk,
and therefore

(b)sTi + b1 ATy + b1 HT 1 ~ ((br)s + 2k — 1)b1b — by 1) Ty

31t (b1)s = —c1by, then —Ag /A ~ b; ~ ¢~ 1% and hence after integration in time, |log A| < 1 and there is no blow-up.
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The cancellation of the leading order growth occurs for
(br)s + (2k — D)b1bg — b1 =0.

We then solve for the remaining Si4; term and check that Si; < be+1 Ti+1 fory large.

(iii). The universal system of ODE’s. The above approach leads to the universal system of ODE’s which
we stop after the L-th iterate:

br)s + 2k —1Db1by — b1 =0, 1<k<L, br4+1=0, ——=by. (1-24)

It turns out, and this is classical for critical problems, that an additional logarithmic gain related to the
growth (1-21) can be captured, and this turns out to be essential for the analysis.* This leads to the sharp
dynamical system

N (1-25)

It is easily seen (see Lemma 2.14) that (1-25) rewritten in the original ¢ time variable admits solutions such
that A(¢) touches O in finite time 7 with the asymptotic (1-13). Equivalently in renormalized variables,

dy = —2L 1-26
1= a1 (1-26)

A(s)

(log s)|d1|
§€1

c .
, b(s)~ L with c1 =
¢ K

2L—1°
Moreover (see Lemma 2.15), the corresponding solution is stable for L = 1. This is the stable blow-up

regime, and unstable with (L — 1) directions of instabilities for L > 2.

(iv). Decomposition of the flow and modulation equations. Let the approximate solution Qp be given by
(1-22), which by construction generates an approximate solution to the renormalized flow (1-18):

W, =0,0p, — AQp+bAQp+ f(szb) = Mod(r) + 0 (b*L+?),

where, roughly,

L 2
Mod(z) = Z[(bi)s + (2i -1+ |logb1|>b1bi —bi+1]Ti-
i=1

We localize Qj in the zone y < Bj to avoid the irrelevant growing tails for y >> 1/4/b;. We then pick an
initial data of the form

uo(y) = Qp(y) +e0(y), leo(WIK1

4See, for example, [Raphaél and Rodnianski 2012] for further discussion.
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in some suitable sense where »(0) is chosen initially close to the exact excited solution to (1-24). From
standard modulation argument, we dynamically introduce a modulated decomposition of the flow

u(t, r)—(Qb(z)-i-E)(t m) :(Qb(z))( e ))+w(t r), (1-27)

where the L 4 1 modulation parameters (b(¢), A(¢)) are chosen in order to manufacture the orthogonality
conditions

(e(t), H*®)) =0, 0<k<M. (1-28)

Here ®,,(y) is some fixed direction depending on some large constant M which generates an approxima-
tion of the kernel of the iterates of H; see (3-7). This orthogonal decomposition, which, for each fixed
time t, directly follows from the implicit function theorem, now allows us to compute the modulation
equations governing the parameters (b(¢), A(f)). The Qp construction is precisely manufactured to
produce the expected ODE’s:

L

%+b1'+z

i=1

L+3
S lelhoe +by 7, (1-29)

(bi)s + (21’ -1+

b1b; — b;
|10gb1|) 10 i+1

where ||¢||1oc measures a local-in-space interaction with the harmonic map.

(v). Control of the radiation and monotonicity formula. According to (1-29), the core of our analysis
is now to show that local norms of ¢ are under control and do not perturb the dynamical system (1-24).
This is achieved using high order Sobolev norms adapted to the linear flow, and in particular we claim
that the orthogonality conditions (1-28) ensure the Hardy type coercivity of the iterated operator

8|2
3 = Hk+]82>/ | ., 0<k<L.
22 /' "R asm i sy 0SFE

We now claim the we can control theses norms thanks to an energy estimate seen on the linearized

equation in original variables, that is, by working with w in (1-27) and not &, as initiated in [Raphaél and
Rodnianski 2012; Merle et al. 2011]. Here the parabolic structure of the problem simplifies the analysis
and displays a repulsive property of the renormalized linearized operator; see the proof of (3-48). The
outcome is an estimate of the form

|log by |, (1-30)

d |éus2]| bt
ds | p4k+2 | ~ p4kt2

where the right hand side is controlled by the size of the error in the construction of the approximate
blow-up profile. Integrating this in time yields two contributions, one from data and one from the error:

2k+3

Cos2(5) S A2 (5)80s42(0) + 172 (s) / llog by|* do.

)"4k+2

5See Lemma 3.3.
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The second contribution is estimated in the regime (1-26) using the fundamental algebra

(2k+3)—c1(4k+2):1+%{i1 g’;ii_l (1-31)
Hence data dominates for k < L — 1 up to a logarithmic error
2k+3 s do
A4k+2(s)/ e llog by | do ~ A¥+2(log §)€ /;0 S ™ AH+2 (100 5)C
which yields the bound
o2 SAF P logs|€, 0<k<L-1, (1-32)

which simply expresses the boundedness up to a log of w in some Sobolev type H**! norm. On the other
hand, for k = L, we can first derive a sharp logarithmic gain in (1-30),

dflual o b (1-33)
ds | p4+2 | ~ )\4L+2|10gb1|2’
and then the integral diverges from (1-31) and
b2L+3 b2L+2 b2L+2
3 4k+2 / do ~ H%+2 / do ~ 1 A4k+2
(s) )‘4L+2|1 gb |2 () 50 O X4L+2|10gb1|2 o |10gb1|2 >
We therefore obtain
b2L+2
G S o (1-34)

The difference between the controls (1-32) for 0 < k < L — 1 and the sharp control (1-34) is an essential
feature of the analysis and explains the introduction of an exactly order L + 1 Sobolev energy.

We can now reinject this bound into (1-29) and, thanks to the logarithmic gain in (1-33), show that
¢ does not perturb the system (1-25), modulo the control of the associated unstable L — 1 modes by a
further adjusted choice of the initial data. This concludes the proof of Theorem 1.1.

This paper is organized as follows. In Section 2, we construct the approximate self-similar solutions
0O and obtain sharp estimates on the error term W,. We also exhibit an explicit solution to the dynamical
system (1-25) and show that it displays (L — 1) directions of instability. In Section 3, we set up the
bootstrap argument in Proposition 3.1 and derive the fundamental monotonicity of the Sobolev-type norm
|HL e ||%2 in Proposition 3.6, which is the heart of the analysis. In Section 4, we close the bootstrap
bounds, which easily imply the blow-up statement of Theorem 1.1.

2. Construction of the approximate profile

This section is devoted to the construction of the approximate Qj blow-up profile and the study of the
associated dynamical system for b = (by, ..., br).
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The linearized Hamiltonian. Let us start by recalling the structure of the harmonic map Q, which is the

unique up-to-scaling solution to

AQ=g(Q), Q=0 lim Q@)=

(2-1)

This equation can be integrated explicitly.6 Q is smooth Q € €°°([0, +00), [0, 7)) and using (1-3) admits

a Taylor expansion’ to all order at the origin,

p
Q) =Y iy’ '+ 0¥ ) asy—0,
i=0

and at infinity,

p
2 d; 1
Q()’)ZJT—;—E y2i+1+0 ] as y — 400.
i=1

The linearized operator close to Q displays a remarkable structure. Indeed, let the potentials
Z=¢(Q), V=Z"+AZ=[(Q), V=>1+2)-

which, from (2-2),(2-3), satisfy the following behavior at 0, 4+-00:

IJFZ{7 ciy2i+0(y2p+2) as y — 0,
Z(y) = 1

—1+Zl 1y (—y2P+2) as y = +o0o,

+y" Ciy2i+0(y2”+2) as y — 0,
Viy) = 1

143 G0 ) w e

y y

N 4437 ey +00MD) asy -0,
Vy)= P C 1

Zi:l ﬁ + 0 —y2p+2 as y — 400,

(2-2)

(2-3)

(2-4)

(2-5)

(2-6)

2-7)

where (c;);>1 stands for some generic sequence of constants which depend on the Taylor expansion of g

at (0, ). The linearized operator close to Q is the Schrodinger operator

\%
y
and admits the factorization
H=A%A
with
Z N 1+Z7 ,

6See [Raphaél and Schweyer 2013] for more details.
7up to scaling

(2-8)

(2-9)
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Observe that, equivalently,

u « L 0
—AQ (AQ) Au_yA—Qa(uyAQ), (2-10)

and thus the kernels of A and A* on R? are explicit:

1
Au =0 ifandonlyif u € Span(AQ), A*u=0 ifandonlyif ue Span( AQ)' (2-11)
y

Hence the kernel of H on R is
Hu=0 ifandonlyif ueSpan(AQ,T) (2-12)
with
l) asy — 0,

, 0
rM=Ap | —— = Y 2-13
o ¢‘/1 x(Ag(x))? %+0<10gy) as y — 400. 1
y

In particular, H is a positive operator on Hrlad with a resonance A Q at the origin induced by the energy-
critical scaling invariance. We also introduce the conjugate Hamiltonian

~

~ 14
H=AA"=-A+—, (2-14)
Yy
which is definite positive by construction and (2-11); see Lemma B.2.

Admissible functions. Explicit knowledge of the Green’s functions allows us to introduce the formal
inverse

y y
H1f=—F(y)f fAQxdx—i—AQ(y)/ fTxdx. (2-15)
0 0
Given a function f, we introduce the suitable derivatives of f by considering the sequence

A* fi for k odd, -0 (2-16)

fo=to fin= {Afk for k even, -

We shall introduce the formal notation
fe=sF.
We define a first class of admissible functions which display a suitable behavior both at the origin and
infinity.
Definition 2.1 (admissible functions). We say a smooth function f € €°°(R,, R) is admissible of degree
(p1, p2) eNx Z if
(i) f admits a Taylor expansion at the origin to all order

p
f =) ay*™ '+ 00, 2-17)
k=p,
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(i) f and its suitable derivatives admit a bound, for y > 2,

y?2 (1 4 Jlogyl) for2py—k > 1,

2-18
y2pa—k=l for 2p, —k <0. ( )

forallk>0, |fin|< {

H naturally acts on the class of admissible functions in the following way.

Lemma 2.2 (action of H and H~! on admissible functions). Let f be an admissible function of degree
(p1, p2). Then

() foralll > 1, H' f is admissible of degree
(max(p1 —1,0), p2 —1D), (2-19)
(i) foralll, p» > 0, H™' f is admissible of degree
(p1+1 p2+D). (2-20)

Proof of Lemma 2.2. This a simple consequence of the expansions (2-2), (2-3).

Let us first show that H f is admissible of degree at least (max(p; — 1, 1), p» — 1), which yields (2-19)
by induction. We inject the Taylor expansions (2-17), (2-18) into (2-8). Near the origin, the claim directly
follows from the Taylor expansion (2-6) and the cancellation H (y) =cy+ O (y?) at the origin. The claim
at infinity directly follows from the relation u; = fi» by definition.

Now let p» >0 and u = H~' f be given by (2-15), and let us show that u is admissible of degree at
least (p; + 1, p2 + 1), which yields (2-20) by induction. From the relation u; = f;_, for k > 2, we need
only consider k =0, 1. We first observe from the Wronskian relation I''(A Q) — (AQ)'T = 1/y that

Z AQ) 1
AF:—F/+—F:—F/+( Q)F:— .
y AQ yAQ
Thus, using the cancellation AA Q = 0, we compute
y 1 y
Au=—AT fAQxdx:—/ fAQxdx. (2-21)
0 yAQ Jo

Moreover, we may invert A using (2-10) and the boundary condition u = 0(y3) from (2-15), which
yields

Y Au Y dx *
u=-AQ —dx=—AQ(y)/0 W/O f(@DAQ(z)zdz. (2-22)

Using (2-2), this yields the Taylor expansion near the origin:

y Y Au P
Au = Z C/(cl)y2k+2 + 0(y2p+4), u= —AQf  dx = Z C,(f)yzkH + O(y2p+5)’
0
k=p: =,
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and hence u is of degree at least p; + 1 near the origin. For y > 1, from (2-21), (2-22), (2-18), we estimate
by brute force, for py > 1,

Yy
|Au| = |u;| sf 22711 + |log T]) dT < y*P2(1 + |log y)),
0

1 y
ul < ;[ £27(1 4 [log Tt dr < P+ (1 + [log ).
0

and, for p, =0,
y
IAMIZIMIS/ t'dr S 1+]logyl,
1
1 [
lul < ;f (1+logzhrdr S y(1+|logyl).
0
Hence u satisfies (2-18) with pp — p»+1and k =0, 1. O

Let us give an explicit example of admissible functions which will be essential for the analysis. From
(2-2) and the cancellation AA Q =0, A Q is admissible of degree (0, 0), and hence Lemma 2.2 ensures
the following.

Lemma 2.3 (generators of the kernel of H'). Let the sequence of profiles for i > 1 be
T,=(—1)'H'AQ. (2-23)

Then T; is admissible of degree (i, 1).

bi-admissible functions. We will need an extended notion of admissible functions for the construction

of the blow-up profile. In the sequel, we consider a small enough 0 < b; < 1 and let By, x5, be given by
(1-14), (1-15). Given l € Z, we let

1+ |log(v/1)|

1,35, forli>1,

aby, y) =1, Mgl (2-24)
=3 for [ <0,
|log by]
and, similarly,
)
Tl—obgyllygwo for > 1,
Gibr,y) =1 4oEP (2-25)
=3 for I < 0.
llog b1 -

We then define the extended class of b;-admissible functions.

Definition 2.4 (b-admissible functions). We say a smooth function f € 6> (R%. xR, R) is b1-admissible
of degree (p1, p2) € N x Z if the following hold:

(i) For y <1, f admits a representation

J
Fry)=> ki) f) (2-26)

j=1
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for some finite order J € N*, some smooth functions f ;i (y) with a Taylor expansion at the origin to

all order, for all y <1,

)4
fi;n = apy™ '+ oG, (2-27)
k=p:

and some smooth functions 4 ;(by) away from the origin with

a'h;
I

ob;

< L (2-28)

forall [l > 0, ST
b

(i1) The function f and its suitable derivatives (2-16) satisfy a uniform bound for some constant ¢, > 0:
forall y > 2 and all k > 0,

| febr, IS Y2 gy, (b, y) + 22 P log y|22 + Fpp i 0(b1)y* P2 * 1035, (2:29)

and, forall/ > 1,

81
— Ji (D1, )’)‘
I
ob;
1 ~ ke . —k—
S {7 g, kb1, y) + ¥ P log y [} + Fpy s (b)) y? P T 1 ysap,, (2-30)
bl llogb|
where, for all [ > 0,
0 for2p, —k—3 < —1,
sz,k,l(bl) = I+1 P2 _ (2-31)
1/(b]" logh|) for2p,—k—3>0.

Remark 2.5. Let us consider the solution T to
HT,=—AQ.
An explicit computation reveals the growth for y large
AQ~ % Ti(y) ~ ylogy.

The b-admissibility corresponds to a log by gain on the growth at 0o, which is an essential feature of the
slowly growing tails in the construction of the modulated blow-up profile in Proposition 2.12. Observe for
example that (2-29), (2-31) imply the rough bound

3 fi
b’

2pr—1—k
A+

N k>0,1>1, (2-32)
[log b |

| fil S (14 y)2 ik,

and hence a logarithmic improvement with respect to (2-18). This gain will be measured in a sharp way
through the computation of suitable weighted Sobolev bounds; see Lemma 2.8.

We claim that H, H~! and the scaling operators naturally act on the class of hj-admissible functions

in the following way.
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Lemma 2.6 (action of H, H~! and scaling operators on b;-admissible functions). Let f be a by-admissible
function of degree (p1, p2). Then we get:

() Foralll > 1, H' f is by-admissible of degree
(max(p; —1,0), po —1). (2-33)
(ii) Foralll, p» > 1, H™' f is by-admissible of degree
(p1+1, p2+D). (2-34)

(iii) Af =y, f is admissible of degree (p1, p2).
@iv) b10f/(9by) is admissible of degree (p1, p2).

Proof of Lemma 2.6. Proof of (). We show that u = H f is b;-admissible of degree (max(p;—1, 0), po—1),
which yields (2-33) by induction. Near the origin, the claim directly follows from the Taylor expansion
(2-27) with (2-26) and the cancellation H(y) =cy + O(y3) at the origin. For y > 1, H is independent of
by so that, by definition,

ur 9 fiyo

forall [ > 0, — =
ob; ob;

’

which satisfies (2-29), (2-30), (2-31) with p» — p>— 1 and F), 1 x1(b1) = Fp, k+2,1(b1). Equation (2-33)
follows.

Proof of (ii). Now let p, > 1 and let us show that u = H~! f is admissible of degree (p; + 1, p» + 1),
which yields (2-34) by induction. Observe that, for k > 2 and all / > 0,

Nlur 9 fia
apt — abt

’

which satisfies (2-29), (2-30), (2-31) with p» — p> +1 and F,111(b1) = Fp, k—2,(b1). It thus only
remains to estimate u, Au, and their derivatives in b;.

Estimate for u near the origin. The inversion formulas (2-21), (2-22) ensure the decomposition of variables
near the origin

J
(b, y) =Y hjb)ii;(y).

j=1

where, using (2-2) the Taylor expansion near the origin,

~ Al )
Ailj = Z C]((ljy2k+2+ 0(y*P ), uj = —AQ/ 20 gy = ’(c;y2k+3+ 0(y2P+5).
k=p1

Hence u is of degree at least p; + 1 near the origin.
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Estimate for u; = Au for y > 1. We use the formula (2-21) and the assumption p, > 1 to estimate, for
1 <y <3By,

y y
|Au| < / |fldr < f (2P gy 1(by, T) + 722 3|log T|7 ] dt
0 0

S Y oghi| / my o271 (1 4 |loga|) do + O (y*P>2|log y|'*<r2)
~ bp2|logb1|

< g 1 I0eCWPIN o)
VT Jloghl

2t D=2 ) )1 (b1, ) + Y2 PV log y| 1

llog y|'ter:

=Yy

and, for y > 3By,

y 3By y
Aul < / flde < f 2P g by, ) dr + / Fry00(b) 72773 dt + 022 log y| ' +m)
0 0

3By

1

)7
S bPlloghi] | /33 Fpa00(b1)T 7 d7 4 077 log y|'7m).
1 0

If p» =1, which is the borderline case 2p, —3 = —1, then F),, 9 o =0, and we thus get the bound, for all
p2=1,y =3By,

|Au| < yzm—z( + sz,o,()(bl)) + y* 22 [log y| ' T2

1
bi|log by |

2pr—2 + y2(p2+1)—4 l—l—c,,2
9

<
S y [log y|
b [log b1 g

and (2-31) is satisfied for (py > po + 1,k =1) thanks to 2(p, +1) —1—-3> 0.
We now pick / > 1. H is independent of by, so

3! 3!
ob; ob;
and therefore, from (2-21), we compute

81141

YV Q z

ob; yAQ ob;
This yields the bound, for |y| < 3By,
0lu,
ab!

y 1 i )
f<v/ ] — {7 g1 (b1, ¥) + ¥ [log y|72} dy
o billogbh|

< - 2p2 = b , + 2pr—2 10 L‘pz-‘rl
”bﬁ|logb1|[y g1(b1, y) +y 2 |log y|"» "]
1

- m[yz(pz+l)_2§2(pz+l)—l (b1, y) + y* P log y|r2F1],
1 1
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and, for |y| > 3By,

0lu,
b}

1 1 2py—2 1 Y 2pr—3
< — +y P22 logy| T [+ | Fp00(b1)y™? 7 dy.
bl log by | [b{” 38,

Again, if p, =1, then F), o; = 0, and we therefore obtain the bound, for all p> > 1,

ol 2m=2|Jog y[cr T
11 < 2p2—2|:l+1— + sz,o,z(bl)] 2 7 o]
ab; b |log by brllog b
2(pa+1)—1-3 1
y y2 P2t D=1=31 100 yien

S I+1 + 7
b 'lloghy|  byllogh|
and (2-31) is satisfied for (p, = pp+1,k=1) thanks to 2(p, +1)—1 -3 > 0.

Estimate for u. Now, from the above bounds and (2-22), for 1 < y < 3B; we estimate

1 1 [
ul <~ / |Aulzdr < — / [P gy 1 (b, T) + 272 Hlog | Fm ] de
Yy Jo Yy Jo

— g L+ 1log(v/Bry)]
~Y
|log by|

= 2P0 gy (b1, y) + ¥ PV log yPrer

+y* " log yPFn

and for y > 3B( we estimate
1 3By y
ul < —[/ Pt e(by, 1) dr +/ Fpyt1,1,0(b1)T27! df] + Y20 g y 2T
YLJo 3By

1
< 2p2—l|: ] 2(p2+1)-3 2+cp,
Sy —— |+ |log y| ,
b1|log b1 |

which satisfies (2-29) for (p» — p2 + 1,k = 0) thanks to 2(p, + 1) —3 — 1 > 0. Finally, for / > 1,

1§y§3B(),
y
s
Yy Jo

L
b |log by|

9luy
—F T
b

olu
anl
ob;

1 y
dt < S Togbil /O (2P gy 1 (b, T) + 272 Hlog 7| T ] de
1 1
[yX Pt g i1y (B, y) 4+ y2 P2 D3 log ylr ),

and, for y > 3By,

olu 1 3Bo 72pa+lg (p T y 2(p2+D=31o 2+¢p,
— S_[/ #dt-l—/ Fp2+1,1,l(b1)f2p2_ld‘t:|+y : | gy|
ob; yLJo b |log by| 3B, b |log by|

< y2(p2+D—3 y2(pz+l)—3|10gy|2+cp2

~ b log by bl |log by |

Hence u is bi-admissible of degree (p; + 1, po» + 1).
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Proof of (iii) and (iv). The property (iv) is a direct consequence of the definition of b; admissible functions
(Definition 2.4) and the trivial bound

gi(b1,y)

| < gi(br, y).
[log by |

We now turn to the proof of (iii). First we rewrite the scaling operator as
A=ydy=—Ild—yA+(1+2).

Near the origin, the existence of the decomposition (2-26) follows directly from the even parity of the
Taylor expansion of Z at the origin (2-5). Far out, let

Af==f-yh+U+2D)f

A simple induction argument similar to Lemma D.1 yields the expansion for £ > 1,

k
f)k = Cop1¥irt +ceafi+ D Pei(y) fro (2-35)

i=1
with the improved decay

100 Pei (D] < forall/ >0, y> 1. (2-36)

1+ y2+l+k—i

We therefore obtain from (2-32), (2-35), (2-36), (2-5) the bound

k

1 i

(A S Iy fentl +1fel + ijk,,.szz il
i=0

Sy P N gap ety + 82po—k) + Y log (2 + (Fpy k0 + Fpy k1,00 9272 * 1,535,

We now observe the monotonicity g2,—k—1 S &2p,—k from (2-24) and F), i4+1,0 S Fp, k0 from (2-31),
and thus (A f); satisfies (2-30), (2-31) for / = 0. Similarly, for k > 0,/ > 1, we use the bound, for y = By,

2pr—k—5 2pr—k—3

y <Y
b ogby| ™ billogby|’

YRS F b)) S

to estimate

o' (A <‘y31fk+1 3 fi
abt |~ |7 abl b
k
1 1 2pr—i—1 | 2pr—i—3 e 2pr—i—3
+Z yk—i+2{b1 |10gb1|[)’ P2t 4y 2 log y |12 ]+ Fy 10 (D) y 2T T 1y23,

i=0 1

1 k]~ - ke

S gty + 82pa—i) + ¥ log y| 2]
by |log by|

2pr—k—3
+ (Fpykg + Fpp 1,0y 1,33,

and the bounds g2,, -1 S &2p,—k» Fpyk+1,1 S Fp, k1 now ensure (2-30), (2-31) for [ > 1. [l
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Slowly growing tails. Let us give an example of admissible profiles which will be central in the con-
struction of the leading order slowly modulated blow-up profile. Given b; > 0 small enough, we let the
radiation be

Y, = H {—cp, xBy/ahQ +dp, H[(1 — x5,) A Q1) (2-37)
with 5
4 0
Ch = dy =, / X5o/aAOTy dy. (2-38)
1 f XBO/4(A Q)2 1 1 0 Bo/4 yay

Lemma 2.7 (slowly growing tails). Let (T;);>1 be given by (2-23). Then the sequence of profiles fori > 1
0, = AT, — 2i — DT; — (=)' H= Ty, (2-39)
is bi-admissible of degree (i, i).

Proof of Lemma 2.7. Step 1: Structure of T;. Let us consider T} = —H ' A Q, which is admissible of
degree (1, 1) from Lemma 2.3. For y > 1, explicit computation using the expansion (2-3) into (2-15)

yields
Ti(y) = ylogy +eoy + 0('1°gy'2), ATy =ylogy +(1+eo)y+ 0<'l°gyy'2> (2-40)
for some universal constant eg. Hence we get the essential cancellation
AT, —T, =y+0<@>. (2-41)

We now prove that ®; is of order (i, i) by induction on i.

Step 2: i = 1. By definition,

y y
Xp, = F(y)f Chy X B4 (A Q)*x dx — AQ()’)/ Chy XBo/alU' AQx dx +dp, (1 — xp))AQ(y), (2-42)
0 0
and thus, by the definition of ¢, dp, in (2-38),

cp, Ty fory < Bo/4,
) =

(2-43)
4T for y > 3By.

In particular, ¥, admits a representation (2-26) near the origin with J =1, i1 (b1) =cp,, and f] ) =T1(y),
and thus an expansion (2-27) of order p; = 1 from the first step. A direct computation on the formula
(2-38) yields the bounds

2 [1+0< : )} | < —— (2-44)
Cp, = ) il S 7 1 1 10 -
' |logh| |log b1 "™ billog by
and l 1
o 1 o'd I
Dl e forall 1 = 1, (2-45)
obl |~ Billogbi 2" | 9B} |~ B logby|

which imply (2-28).
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For y > 3By, from (2-13), (2-43), we estimate

S () =y + 0(10%) (2-46)

and, for 2 < y < 3By,

y logy Y 2 Y
Ebl(y)=c‘b1<z+0( y ))[/0 XBo/4(AQ)de:|_Cb1AQ()’)/; O(1)x dx

y A 2 1
ZYM+O( Ty ) (2-47)
J xBo/a(AQ) [log b
We thus conclude from (2-41), (2-47) that, for y < 3By,
Jo xBoja(AQ)? 1+y llog y|?
O1(y) =y—y 2=y o — )+ 0 =0 1+ [logyv/B1)D) ).
[ xBoja(AQ)? [log by | I+y |1 b1
which, together with the bounds (2-40), (2-46) for y > 3 By, yields the bound, for y > 2,
llog y|?
[©1()] Sygz(bl,y)-i-O( y . (2-48)

Now, from (2-21), (2-37), we compute

1 y
A%y, = VAO /o AQ[—cp, xByjaAQ +dp, H[(1 — x5,) AQ]lx dx,

and from (2-44) we estimate, for y < 3By,

Ch,
yAQ yAQ
and, for y > 3By,

d
ATy = — f (AQ)?x dx + O(Bb1 130<y<330> = -2+ 0(g1(b1,y)) (2-49)

0

4 1
ASy = —————240(=). 2-50
n="3ag - T (y2> (250)

Moreover, a simple rescaling argument yields the formula

AZ
A(Au) =Au+ AAu — —u
y

and thus, using (2-40), (2-5),

AZ logy
AAT, —T)) = AAT, — —T1 =AATI+ O 5 -
y y

Now, from (2-21), (2-3), we estimate

1 /y 5 ] <10gy)
AT = —| —— (AQ)xdx|=—-2logy+ O ,
: [yAQ 0 s y?

1
AAT; = —2+0< °g2y),
y

and, similarly,
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from which

1
AAT —T) =-2+ 0< og,zy)
y

We thus conclude from (2-48), (2-49), (2-50), (2-51) that

lo
|A®n<gme0+o( fy)

We now turn to the control of H®;. First, from a simple rescaling argument, we compute

AV
H(Au)=2Hu+ AHu — —-u,
y
which implies
1 1
it 1= -0+ o{1%82) = o 122).
y y

Hence, according to (2-24), we get the desired cancellation

|HO| < |H(AT, —T)| + |HSp, | < ! +0<1°gy>
e o S T og by =% )

1735

(2-51)

(2-52)

The control of higher order suitable derivatives in y now follows by iteration using (2-3), (2-6). Hence

®; satisfies the bound (2-29) with p, =1,1=0.
‘We now take derivatives in by, in which case from (2-42), for [ > 1,
ST S !

al_bl__ abl =F(y) 0 abl {Cb1XBo/4}(AQ) xdx
1

al
Q(y)/ {CleBo/4}FAQde Y —{dp, (1 = xB)}AQ (),
1

and from (2-43),

8l®1 812171 ( ) O f . 3B
= or
b T =250

From (1-14), we estimate by brute force

9" X8,
ab'

< Igy<y<2By
~Y
1
bl

and thus, from the Leibniz rule and (2-45), for y < 3By, we obtain

I
y 1
S (1+lo )+[ —] e e
b11|10gb1|2 | gy| ébll_kblﬂlogb”z y 30/25)53310

3'0
b}

15,/2<y<38,

1
| s oen)
g bk log by |

< y(%+|10gyl) < lygl '
b} |log b |? b |log by|

y
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The control of higher suitable derivatives (3' 4@/ (E)bl1 ))1.k>1 follows similarly using the explicit formula
(2-37). This concludes the proof of the estimate (2-30) with p, = 1, and thus ®; is b;-admissible of
degree (1, 1).

Step 3: i — i + 1. We assume the claim for ®; and prove it for ®;,;. From (2-23), (2-39), (2-52),

HO;1 = H(AT 1) — Qi+ DHT 1 — (-1 H 'S,

. . AV
=AHTiy1— Qi —DHTip1 + ()T HH'S, — —-Tiy
y
) ) AV
=—[(ATi = Qi = DTi = (=)' HH'8y | — —-Tip
y

AV
=—0; — —Ti41.

y

The induction hypothesis ensures that ®; is b;-admissible of order (i, i). Moreover, near the origin, 7; 1
is from Lemma 2.3 of degree i + 1 and hence the development (2-6) ensures that (AV/ yz)TH_l is of
degree i + 1 near the origin. For y > 1, (2-6) ensures the improved bound

)4
VAV L
dyp \ y2 J|~yptaT T

and since 7;4 is of degree i 4 1, we obtain from the Leibniz rule the rough bound, for all £ > 0,

AV koo
kl — _— yAiAD=p-l i 2i—k-3 i
‘&ﬁ [ y? i+]”§2ykp+4y (D=7 log y| <y log y .
p=0

Hence (AV/ yz)TiH, which is independent of by, satisfies (2-29) and is b;-admissible of degree (i, i).
We conclude from Lemma 2.6 that ®;; is admissible of order (i + 1,7 + 1). O

Sobolev bounds on by-admissible functions. The property of b;-admissibility leads to simple Sobolev
bounds with sharp logarithmic gains. We let By be given by (1-14).

Lemma 2.8 (estimate of bj-admissible function). Leti > 1 and f be a bi-admissible function of degree
(i,1). Then

d(i—k—1)
/ |H"f|2§% for0<k=<i-—1, (2-53)
y<2B, b1" " |log by |?
/ H*f? <1 fork > i, (2-54)
y<2B;
and
1 1 2 1 1 2
/ ngllH"flan/ LRI b f P < lloghi P fork=i—1.  (255)
y<2B, 14y y<2, 14y
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Remark 2.9. The boundedness of the Sobolev norm (2-54) in the borderline case k =i is a consequence
of the definition (2-24). Indeed,

1+ [log b1y |?
———————| ~|logb],
y<3B,| (1 +y)[logby|
but
1 2
/ |« (2-56)
y<3B,| (1 + y)|log b1

Proof of Lemma 2.8. Let k > 0. Near the origin, the cancellation A(y) = y> + O(y) and the Taylor
expansion (2-27) ensure that H k f is bounded uniformly in y < 1, |b1| < % For y > 1, from (2-29) we
estimate

k2 2 2i—2k—3 2
/ |H" f| :f|f2k| 5/ | Fi 2k,0(b1)y™ 1,235
y<2B 3By<y=<2B

2i—2k—1
+ ly
1<y<2B,

—2k—3 ci |2

92— (by) +y* [log y|

For k > i, F; 2x.,0 = 0 and from (2-24) we estimate (2-56)

f HE R <14 / y
y=<2B 1<y<2B

For k <i —1, the growth can be controlled in a sharp way. Indeed, using F; 2x o = 0 for k =i — 1 precisely

o1 - ?
2(i—k)—1 1y=3Bg + y21—2k—3|10gy|ci ,S, 1.
|log b |

to avoid an additional logarithmic error, we estimate

4i—4k—4 1 ‘ k)t

/ |ka|2 S 21 : + > /. y4(l—k)—2(1 4 |10g /b1y|2)+Bl(l— )— |]Ogb1|2t,‘p2+1
y<2B billog by | [log b1l* Jy<3s,

Bg(i—k) |log by |4(i—k—1) _ |log by |4(i—k—1)
logb1>  p7Plloghy 2 ™ b7 llog by |2

<

~

Finally, for k > i — 1, using the rough bound (2-32), we estimate

1+ [log y|? 1+ |log y|?
[ EEE e [ S an g
y<2B, 1+ y<2B, 1+

1+ |log y|? ik 1+ [log y|? - B
S / —4|(1 4 y)21 2k 1|2 4 5 |(1 4 y)2l 2(k+1) 1|2
y=<2B l+y y<2B 1+y

< llog by . O

Slowly modulated blow-up profiles. In this section we construct the approximate modulated blow-up
profile. Let us start by introducing the notion of homogeneous admissible functions.
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Definition 2.10 (homogeneous functions). Given parameters b = (bx)1<k<z and (p1, p2, p3) e NXZ xN,
we say a function S(b, y) is homogeneous of degree (p;, p2, p3) if it is of the form

L

S(b,y) = > [cf (1‘[ b,i")sf(bl, y)],
J=(j1,-jr)s I l2=p3 k=1

where

L
J=(tooojr) €Zx N T =) ki,
k=1

and for some b;-admissible profiles 3‘1 of degree (pi, p2) in the sense of Definition 2.4. We note that

deg(S) = (p1, p2. P3)-

Remark 2.11. We allow for negative powers of by only in the above definition. This ensures from
Lemma 2.6 that the space of homogeneous functions of a given degree is stable by application of the
operator b19/(3by). It is also stable by multiplication by cp, from (2-44), (2-45).

We may now proceed to the construction of the slowly modulated blow-up profiles.

Proposition 2.12 (construction of the approximate profile). Let M > 0 be a large enough universal
constant. Then there exists a small enough universal constant b*(M) > 0 such that the following holds
true. Let there be a €' map

b= (b0)1<k=t : [s0. 511> (=b" (M), b*(M))"
with a priori bounds on [sg, s1]
0 <by <b*"(M), |bk|§b]1‘ for2 <k <L. (2-57)
Let By be given by (1-14) and (T;)1<i<1. be given by (2-23). Then there exist homogeneous profiles
{Si(b, y), 2<i<L+2,

S1=0
with
deg(S;) = (i, i, 1),
0S; 2-58
A0 for2<i<j<L (259
ob;
such that
L L+2
Qbis)(¥) = Q) + a3, () =D biTi(y)+ Y Si(y) (2-59)
i=1 i=2

generates an approximate solution to the renormalized flow

05Qp —AQp+D1AQp + f(szb) = W}, + Mod(t) (2-60)
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with
L L+2
Mod(1) =Z (bi)s + Qi = 1+ ¢y )bibi — l+1][T £y 2 ] (2-61)
i=1 j= l+1
Here we used the convention
and \Vy, satisfies
(i) the global weighted bounds
foralll <k<L, / |H W, 12 < b3 |log b€, (2-62)
y=<2B,
1+ |log y/|? 1+ |log y/|? 2L+
f Lgf'm“m%/ Loyl sy p < 2 (2-63)
y<2B, L+ y<2B, L+ llog by |
b2L+4
[ twp s (2-64)
V<2B |llog b1
and
(ii) forall 0<k<L+1, / |H W, |2 < MCpIETo (2-65)
y<2M
for some universal constant C = C (L) > 0 (improved local control).
Proof of Proposition 2.12. Step 1: Computation of the error. From (2-59), (2-60) we compute
0,00 — AQy+b1AQ) + f(be) — A+ A
with
L+2
A _blAQ—i-Z[(b )sT; + b HT; + bib AT+ Y [35Si + HS; + b1 AS;],
i=1 i=2
1
Ay = ?[f(Q +ap) = f(Q) — f(Q)ap].
Let us rearrange the first sum using the definition (2-23):
L L+1 L+1
Ay =b1AQ+0;SL12+b1AS 2+ Z[(bi)sTi —biTi—1 +b1bi AT; ]+ Z[asSi +b1ASi ]+ Z HSip
i=1 i=2 i=1
L

=[0sS142 +D1AS 2l +[HSp 42+ 05Sp41 +b1ASL 1]+ Z[(bi)s + (2i — 1+cp)b1b; — bi 11T,
i=1

+Z[HSZ+1+8S+b1b(AT (2i —1+¢p)T;) + b1 AS;],
i=1

where c¢p, is given by (2-38). We now treat the time dependence using the anticipated approximate
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modulation equation

L
9S; 9.S;
ass,-=_2]<b Do . Z((b s Q=1 en)bib;—bjin o~ Z<(21—1+cb1>b1b maT;,
j
and thus, using (2-58),
L 3842
. L+
Al:{blASL+2_lXI:((2l_1+Cb1)blbi_bi+l) 3, }
0SL+1
HSL+2+b1ASL+1—Z((21—1+cb1)b1b —bir) =
i=1 !
i—1 BS
+Z[HS,+1+b1b (AT, — 2i —14¢,)T)+b1ASi— Y ((2j —1+cp,)b1bj — bjst)5 - ]
i=1 j=1
L L+2 35S,
+Z (b )s+(21_1+cb1)b1b bt+1]|:T + Z ab; :|
i=1 j=i+1
We now expand A; using a Taylor expansion:
fP0)
A2=_2{Z n J+R2
vl g
with
L+3
L+2 (L+3) -
Ry, = (L+2)'/ (1=0)"f (Q+tap)dr. (2-66)
Using the notation (1-16) for the 2L 4 1 uplet J = (iy, ..., iL, jo, ..., jL+2) € N2L+1 we sort the Taylor
polynomial®
L+2 L+2
|J|1—Zlk+ZJk, |J|2—Zklk+2kjk,
k=1
and thus
L+2 (i L+2 L+2 L+2
f920) (”(Q) it e it
> %= Z . > c,]_[kak]_[S _ZP + Ry,
Jj=2 j=2 Th=j k=1
where
L+2 . L L+2
f(])(Q) . .
P = i > c,]_[b;jT,;k]_[s,gk, (2-67)
j=2 [Th=j.lJ=i k=1 k=2
L+2 o L+2
fP0) it i i
Ri=) i > c,]_[kaA]_[S (2-68)
Jj=2 [Th=jJ2>L+3 k=1

8Remember that b; is order b’i from (2-57).
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We finally use the definitions (2-23), (2-39), (2-61) to rewrite
AT = i = 14ep)T; = 0 + (=D HTH S, — 0, T; = ©; + (=D H N (Zy, — ey, T,
which, together with (2-60), yields the following expression for the error:

L
Wy = (=) byb H (S, — e, Th)
i=1

L
+ {b1A5L+2 — Y (@i = 1+cp)bib; —bigy)
i=1

08142
ab;

1
+ —[R1 + Rz]}

08141
ob;

PL+2

Z((zz — 1+cp)bib; —biy1)

+ {HSL+2+b1ASL+1 +

L 3S;
L+1 .

+ ;[HSH—] +b1D;O; + b1 AS; + VT ]ZI(QJ —1+4cp)br1bj — j+1)ab :| (2-69)

We now construct iteratively the sequence of profiles (S;)1<;<r+2 through the scheme
S1 =0,
! . _ (2-70)
Si=—H '®;, 2<i<L+2,

where, for 1 <i < L,

P, 3S;
ir1 = bibi©; +bIAS; +’—“—Z(<2J—1+cbl)b1b bjsD) o (2-71)
oo db;
PL+2 aSL—H
®ry2=biAS 41+ Z((zz = L ep)baby = bir) = (2-72)
Step 2: Control of ®;, S;. We claim by induction on i that ®; is homogeneous with
deg(®;))=(G—1,i—1,i) for2<i<L+2 (2-73)
and
0D; ..
—— =0 for2<i<j<L+2. (2-74)
db;

This implies from Lemma 2.6 that S; given by (2-70) is homogeneous and satisfies (2-58) for 2 <i < L +2.

Case 1: i = 1. We compute explicitly
4
B f 2(Q) 72

Py =biO; + Z,

which satisfies (2-74). Recall from (1-3) that f = gg’ is odd and 7 periodic so that the expansions (2-2),
(2-3) yield, at the origin,

Q) _ P y* 4 0(2PF3)  forjeven,
oo Yoo y*¥4+0u**t?)  forjodd

(2-75)
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and, at infinity,
FO) X p vy oY) forjeven,

= (2-76)
y? Yy *+0(py %) forjodd.

From Lemmas 2.3 and 2.7, T} and ®; are respectively admissible and b;-admissible of order (1, 1). In
particular, we have the Taylor expansion near the origin

f7(Q) -
22 TE=)Y ay* M+ 007", p=1,
k

=1

and the bound at infinity

()

1 ke
S =) gy P Sy * P logy P, k>0.
y

Hence (f"(Q) /2)72)T12 is b1-admissible of degree (1, 1). We conclude that &, is homogeneous with
deg(d,) = (1,1, 2).

Case 2: i — i + 1. We estimate all terms in (2-71). Equation (2-74) holds by direct inspection. From
Lemma 2.7, b1b;®; is homogeneous of degree (i, i, i + 1). From Lemma 2.6, b; A S; is homogeneous of
degree (i, i, i + 1) by induction. For j > 2, by definition and induction we have that

9S;

((2j —1+cp)bib; —bj+1)£j

is homogeneous of degree (i, i,i + 1). For j = 1, we rewrite the term

3S; by 35S;
1 b2 —b))— =@ b ——= )b, —=
(1 +cp,)by 2)8b] (( +¢p,) b1 b1>( 18b1>

and, recalling Remark 2.11, conclude that this term is also homogeneous of degree (i, i, i 4+ 1). It thus
remains to estimate the nonlinear term P;/ y2 in (2-71), which, from (2-67), is a linear combination of
monomials of the form’
FID) T i T i . . .
M) =" [Toé Tse Wh=j =i+l 2<j<i+l
k=1 k=2

Using (2-75), (2-76), we conclude that M is admissible with the following development at the origin:
for j =2,

Mj(y) — y71y2k2| ik(2k+l)+jk(2k+l)(c() +C2y2 4. +cpy2p +0(y2p+l))
=y o+ eay® o epy 0
=V o+ ery® + -+ ey +o(P ),

90bserve that terms involving k > i + 1 are indeed forbidden in the last product from the constraint |J|; > 2, [J|, =i + 1.
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and, for j =21 +1,

M (y) =y 2yRia WEFDRRCED (¢ 4 0y 4 4 ¢,y +0(y*7H))
=yt ey + eyt +. o+ cpy? + oy )
=y2(i+l)+1(60+62y2+‘“+pr2p+0(y2p+l)).

Now j > 2 ensures / > 1, and hence M; admits a Taylor expansion (2-27) at the origin with p; =i + 1.
For y > 1, the rough bound (2-32) and (2-18) imply

151 S b1y 1Ty S v log v,
which, together with (2-76), yields the control

Y2 h=i=3 = y2=D=1 " for j =21 >2,

M;(y) < llog y|© . . <y 3 log y|€, 2-77
J(y)Nl gyl {y2|1|2_1_2:y2(1_l)_] f0r1=21+123~y | gY| ( )

which is compatible with the degree i control at infinity (2-29). The control of further derivatives in
(y, by) follows from (2-32) and the Leibniz rule. This concludes the proof of (2-73).

Step 3: Estimate on the error. From (2-69), we compute

W, =w,” 4w, (2-78)
L

WO =3 (=D b HE,  with 85, = 85, — T, (2-79)

= L 3S 1

. 2
IIJISU =b1AS[ 15— Z((Zz — 1 +4cp)b1bi —biy1) BZJF + ?[Rl + R3]. (2-80)
i=1 !
Estimates for \Illgo). First observe from (2-43), (2-79) that
~ Bo

Supp Xp, C 1y = 2 (2-81)

We extract from (2-42) the rough bound for k > 0 and By/4 <y <2B

|H—k§b1| S 1 +y2k+1‘
Thus
/ |H*Sy, 1> b7 2 loghy|€, 0<k<L.
y<2B

On the other hand, from (2-37) and the cancellation H A Q = 0, we have

~ 1 1
|HZp, | < (—)1y>30/4, (2-82)
llogbi|\14+y/) "~
~ 1 1
|Hk Ebll 5 Bz(k_1)|10gb1| (1 + y)130§y§330 for k Z 2. (2-83)
0
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This leads to the bound

~ 1 - b2k—2
/ |HZp, * < , /IHkEbllz,S 5 fork>2.
y<2B llog by | [log b |

Thus from (2-57), for 0 < k < L, we estimate

L
/ |Hk\1’£0)|2 S |10g b1|C Zb%+2ib12(k—l+l)—2 S b]2k+2|10g bl |C
=28 i=1

and the sharp logarithmic gain

b2L+4

HL+1\I,(0) 2 < b2+21 HLt+2- zz )
/i P <Y 2 < ST

i=1

Y i liD-2 <
|logb1|22 d

Similarly, using (2-82), (2-83),

L
1+ |lo 1 + |log y|? o~
/ + | g4)’| |HL\D(O)2<ZI72+2’/ =+ | g4)7| |HL_1+12b1|2
v<2g, L4y P v<2,  1+Yy
L
i=1

p2L—it1=1)
1 < p2L+4

+21/ 1+|10gy|2 b
y=Ba LHYH lloghiP(14y2) YL

and

1+]1 1+ |1 2 L~
/ =+ | ogyl |AHL\I’(O)|2 < Zb2+21 / =+ | ng)’| |AHL_I+12b1|2
y<2Bj 1+y i—1 y<2B 1+y

L
< 3 RN / 14 llogy[?
~ Tl y=By/4 Y1+ y?)

Estimates for \Ill()l). By construction, S+, is homogeneous of degree (L 42, L +2, L 4 2) and thus so is
ASr+>. We therefore estimate from (2-53), (2-57), forall 0 <k <L +1,
b2b2L+4|10g bl |4(L+2—k—1) b2k+2

by H*A S 5> < =1 llog by [HEHI=R)
/y<231 b2 Plog by |2 llog by |?

and, using the rough bound (2-32),

/ (1+|10gy|2)|:|b1HLASL+2|2+ |b1AHLASL+2|2]
y<2B, 1+ y4 1+ y?

2
< b%b%LH/ 1+ |log y| (14 y2)2LF2-1-2L < b%L+4

|log b1|C.
Y
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‘We now turn to the control of Ry, which, from (2-68), is a linear combination of terms of the form

-~ () L ) ) L+42 )
ity = LT e [ S8 Whi=ih=L+3,22j<L+2.
k=2

2
Y k=1

At the origin, the homogeneity of S; and the admissibility of 7; ensure the bound, for y <1,

2ATh+j—1 _ 2(Ja+D)—1 ;
Vlatj=1 = 207+ forj =21,  _. 143 2146

~ < L+3 y
|M; (D) S Dy { = y2WtD=1 for j=2141""! ’

2| J|2+j—-2
yl l2+)

and similarly for (2-77), for 1 <y <2By,
2 —j=3 _ 2(1J12=D)=3 s
l=j=3 = 27~ for j =21 <bm2y2|]|275|10gbllc,

v /12 cly
|MJ(y)|§b1 llog by | { :y2(|1|2_1)_3 fOI‘]:21+1N 1

yZIJ l2—j—=2
where we used j > 2, and similarly for higher derivatives. This ensures the control at the origin
|H*M;(»)| SbE3 forO<k<L+1, y<1

and, for y > 1,
|H M ()] S b Py2 V=5 o<k <L +1.

Thus, forall0 <k <L +1,

/ |HkMJ|2 5 b%L-ﬁ-ﬁ +b%|f|2|10g b1|C / y4(\J|2—k)—10 5 b%L+6 +b%”‘zBi"ﬂﬂz—k)—Sllogbl|C
y=<2B; y=<2B;

S b12L+6 +b%k+4|10g b1|C 5 b%k+3.

Similarly,

/ (1+|10gy|2)[|HL1V11|2+|AHLMJ|2]
y<2B, T4y I+

141 2
Sb%L+6+ |10gb1|C/ + | og4y| |blll\zy2(|1|z—L)—5|2
1<y<2p, 1+

5 b%L+6 —|—b%ulzBi‘(“‘z_L)_lzllogbl|C S b%L+6|10gb] |C‘

It remains to estimate the R, term given by (2-66). Near the origin y < 1, by construction, we have
lap| < byy?, and thus, forO0 <k <L 41,y <1,

R
k 2 3 .
‘H (_2)‘ §b1L+ 3L+ =22k §b1L+3-
y
For y > 1, we use the rough bound by construction, for 1 <y <2Bj,
s | < bryllog v,
which yields the bound, for 0 <k <L +1,1 <y <2By,

‘Hk (R_zz) ‘ 5 blL+3|10gb1 |CyL+3*272k’
y
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from which, forO <k <L +1,

R> _
/ |Hk (_2) |2 S b%L+6 4 b%L+6|10g b] |C / y2L+2 4k
y<2B M 1<y<2B

bIFTe for 2L 42— 4k < —1,
biETO BHE M log b€ = bt |log by |©

<bF P |log by €.

1 1 Ry
fy%( oz )| 15531 LU ) [ B

The collection of above estimates yields (2-62), (2-64).
Finally, the local control (2-65) is a simple consequence of the support localization (2-81) and the fact

Similarly,

that \1121) given by (2-80) satisfies by construction a bound on compact sets:
|H WD ()| < MCbEHS forally <2M « Bypandall 0 <k <L +1.
This concludes the proof of Proposition 2.12. O

Localization of the profile. We now proceed to a simple localization procedure of the profile O, to avoid
some irrelevant growth in the region y > 2B;.

Proposition 2.13 (localization). Under the assumptions of Proposition 2.12, assume the a priori bound

|(b1)s] S 7. (2-84)
Consider the localized profile
L+2
Obis)(¥) = Q) + & (»),  @p(y) = Zb T+ S, (2-85)
with i=1 i=2
Ti=xs T, Si=xnS: (2-86)
Then
(0p)
905 — AQp+b1AQp + f
y? L L+2
~ ' ~ 85,
=W+ > [(bi)s + Qi = 1+ co)bib —bi1]| T+ x5, Y W | 8D
_ i=1 j=i+l
where \Vy, satisfies
(1) the weighted bounds
foralll <k <L, /|H"i1?b|2 < b2 log by |©, (2-88)
1 1 2 2 2L+3
f +|og4y| IHL\I/b|2+/ +|ogy| AHLT,2 < . (2-89)
y<2B, 1+ I+y ~ lo gb1|
2L+4
HL+1 2 < 2-90
[ S Toghi 50
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and
(ii) forall0<k<L+1, / |H* Ty 1> < MCEpHTS (2-91)
y<2M

for some universal constant C = C (L) > 0 (improved local control).

Proof of Proposition 2.13. From localization we compute

905 — AQp+b1AQp+ f(Qb)

= X8, {3 Op—AQp+b1AQp+ f(be)

} + (35 xB, )y — 20y x B, Oyatp — tp A X, +brap A xp,
1 ~
+b1(1 = xp)AQ + F{f(Qb) — f(Q) — x5, (f(Qp) — f(O))}
so that
Ty, = x5, ¥y + 0"

with

~ 1 ~
T = U@~ £~ x5, (£~ F(O))
+ (35w =20y X3,y — ey Aty + b1y Axs, +b1 (1= xp)AQ. (2:92)

Note that all terms on the right hand side above are localized in By <y < 2B; except the last one, for
which Supp((1 — x5,)A Q) C {y > B;}. Hence (2-65) implies (2-91). The bounds (2-88), (2-89), (2-90)
for xp, ¥, follow verbatim as in the proof of (2-62), (2-63), (2-64).

To estimate the second error induced by localization in (2-92), first observe from (2-84) the bound

m] < 1O

IyXBl| S b1131§y§231-

Moreover, from the admissibility of 7; and the b-admissibility of S;, 7; terms dominate for y ~ B in o,
and we estimate from (2-18), forall k > 0 and By <y <2By,

[log by |

b’ P At loghi ) S —51 B

(2-93)

'_ab

This yields, forall 1 <k <L,

2
/‘Hk ((angl)ab — 20y xB, 0yatp —ap Axp, + blabAXBl)

< /
~Y
B1<y<2B

< b7 log by |© (2-94)

billoghy| | |loghi| |*
2k+1 2k+1+42 4k
Bt B B

|log bi|€
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and

2
/‘HLH ((3SX31 o, — 20y x B, 0yap — ap Axp, + blabAXBl)

< / billogh| | llogh| [*_ bi"**
B1<y<2B

We next estimate by brute force
k 1
2 - <1

from which, forall 1 <k <L +1,

2k+2
1 bt

/|H"(b1(l —x8)AQ) Sbf/

B1<y<2B; y4k+2 ~ |10g bl |4k .
It remains to estimate the nonlinear term, for which, using (2-93) and | f’| < 1, we estimate
’ s

0 llog by |
ayk

1 -
{F[f(Qb) — f(Q) — x5, (f(Qp) — f(Q))]” < BT

The corresponding terms are estimated as in (2-94), (2-95).

BIZ(L+1)+1 B12(L+1)+1+2 ~|10gb1|2'

(2-95)

O

Study of the dynamical system for b = (b1, ..., br). The essence of the construction of the Q,, profile

is to generate according to (2-61) the finite dimensional dynamical system (1-25) for b = (b, ...

2
(br)s + (2k—1+1_)blbk_bk+l =0, 1<k<L,br+1=0.
ogs

,br):

(2-96)

We show in this section that (2-96) admits exceptional solutions, and that the linearized operator close to

these solutions is explicit.

Lemma 2.14 (approximate solution for the b system). Let L > 2 and let so > 1 be a large enough

universal constant. We write the sequences

L
Cl =7,

2L —1

=——— ¢, l1<k<L-1,
T
y_ 2L
| (2L—1£2’
oyt = — ==K g AL D) l<k<L—1
HET % T a2 =R EE T

Then the explicit choice

dy

m, 1Sk§L,bi+IEO

Ck
be = —
k(s) Sk +

(2-97)

(2-98)

(2-99)
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generates an approximate solution to (2-96) in the sense that
(bz)s+<2k—1+i)b?bi—bi+] =0<;>, 1<k<L. (2-100)
log s sk+1(log )2
The proof of Lemma 2.14 is an explicit computation which is left to the reader. We now claim that this
solution corresponds to a codimension (L — 1) exceptional manifold.

Lemma 2.15 (linearization). 1. Computation of the linearized system. Let

Uy (s)

bi(s) = bi(s) + W’

1<k<L,bpy1=Ur1=0, (2-101)
and note U = (Uy, ...,UL). Then

2
(bk)s + (2k —1+ —>b]bk — bk-‘rl

log s

1 Ul+|U|?
[S(Uk)s_(ALU)k+O( +| +] l)} (2-102)

- skt (log s)3/4 log s log s
where
an=-1/2L-1),
ajiv1=1, I<i<L-1,
Ap=(aij)i<ij< with Ja1; =—2i— 1), 2<i<L, (2-103)
ai;i=(L—-1)/2L—-1), 2<i=<L,
aj,j=0 otherwise.

2. Diagonalization of the linearized matrix. Ay is diagonalizable:
2 3 L }

, : (2-104)
2L—1'20L—1 2L—1

ALZPL_lDLPL, DL=diag!—1

Proof of Lemma 2.15. Step 1: Linearization. A simple computation from (2-99) ensures

2
(br)s + (2k -1+ —)blbk — biy1
logs

1 |U| 1
-=— U, — kU o — ol ———
1 (log )7/ [S( Oy KU <logs)i|+ <sk+1<logs)2)

U+ U
— | 2k =D U 2k — DUy —U, o| ——— )|,
+sk+1(logs)5/4[( yarUn + ( Y Uk — Ugq1 + < og.s
and then the relation
2k—1)L . L—k

U — 1)e| —k = -
( e 2L—1 2L —1

ensures

2
(br)s + (2k -1+ —>b1bk — b1
logs

L—k 1 Ul+|UJ?
|:S(Uk)s+(2k—l)CkU1— Uk—Uk+1+0< +| | | |>:|’

2L —1 Jlogs log s

~ $F(logs)3/
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which is equivalent to (2-102), (2-103).

Step 2 Diagonalization. The proof follows by computing the characteristic polynomial. The cases
L =2, 3 are done by direct inspection. Let us assume L > 4. We compute

Pr(X)=det(AL — X Id)
by developing on the last row. This yields
PL(x) = (=D (=1 QL ~ Dey

1 2
+<—X>{(—1>L(—1>(2L—3)cL_1+(2L — —X) [(—DL—‘(—1)(2L—5>cL_2+(2L — —X) = ] }

We use the recurrence relation (2-97) to compute explicitly

(=DE (=D)L - ey
+ (—X){<—1>L<—1><2L —3)er-1+ (

T —X)[(—l)L—1<—1><2L —S)cL_z]}

/ 1
- (—I)L{(ZL —3)cL_1(X— 57 _3> +@L _S)CL—Z(X_ 2L - I)X}'

We now compute from (2-97), for 1 <k <L —2,

QL — Qk+ D))epy (X ) +QL—Qk+ 3))CL‘("+‘)X(X - 2L1— 1)

2L —(2k+1)
B 1 2L — (2k+1) k+1 1
_(2L_(2k+3))CL‘("+”[X(X_ 2L — 1) 2L —(2k+3)2L—1 (X_ 2L—(2k+1))]

=L 2k+3 X kt1 X ! 2-105
= Q2L - (2k+ ))CL(k+l)< _ﬁ>< _M) (2-105)

We therefore obtain inductively

PL(X):(_1)L{(2L_3)CL—1<X—2L1_3>+(2L_5)CL—2<X_2L1_1>X}
+(—X)( ! —X)( 2 —X)[(—I)L2(—1)(2L—7)cL_3—|—( 3 —X)---]
2L —1 2L —1 2L —1
:(—1)L(X— 2 ){(ZL—S)CL_2<X— ! )+(2L—7)cL_3X(X— ! )}
2L —1 2L —5 2L —1
+(—X)( : —X)( 2 —X)( & —X)[(—l)“(—l)(zL—9)cL_4---]
2L —1 2L —1 2L —1
(xgm) ()
=(=Dix- o x=
2L —1 2L —1
x{3cz(X—1)+X(X— ! ><c1+X— L_1>}.
3 2L —1 2L —1
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We use (2-105) with k = L — 2 to compute the last polynomial:
1 1 L—-1
sar(X- )+ x(x- g ) (v x -5 =)
={3C2<X—l>+C1X<X— ! )}+X(X— 1 )(X— L_l)
3 2L -1 2L -1 2L -1
L—1 1 L—1
:C1<X_2L—1>(X_1)+X(X_2L—1><X_2L—1>
L—1 L 1
:<X_2L—1)|:2L—1(X_1)+X(X_2L—1)}
(=2 (e ()
=(X- X — X+1}.
2L -1 2L -1
We have therefore computed

P = (—D)H(x - 2 ) (X— L-2 (X— L_l) x—_rt )(X+1
L= ( 2L-1)" 2L—1) 2L—1( 2L -1 )

and (2-104) is proved. O

3. The trapped regime

In this section, we introduce the main dynamical tools at the heart of the proof of Theorem 1.1. We start
with describing the bootstrap regime in which the blow-up solutions of Theorem 1.1 will be trapped. We
then exhibit the Lyapounov type control of H* norms, which is the heart of our analysis.

Modulation. We describe in this section the set of initial data leading to the blow-up scenario of
Theorem 1.1. Let there be a smooth 1-corotational initial data

g(up(r)) cos 6
g(up(r))sind  with |Vug—VQ| 2 < 1, (3-1)
z(uo(r))

and let v(¢, x) be the corresponding smooth solution to (1-1) with life time 0 < T < 4+o00. From (A-1),

v(0,x) =

we may decompose on a small time interval

g(u(t,r))cosf
v(t,x)=|g(u(t,r))sind (3-2)
z(u(t, 1)),
where
e, ry=u(t,r)— Q(r) satisfies (A-4). (3-3)

Moreover, from a standard argument,

T < +oo implies ||Av(t)||;2 = +oo ast— T. (3-4)
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We now modulate the solution and introduce from a standard argument'® using the initial smallness (3-1)
the unique decomposition of the flow defined on a small time ¢ € [0, #]:

u(t’ r)z(éb(t)_i_g(t’r)))»(l‘)’ )‘(t)>0’ bz(bl""’bL)’ (3'5)

where ¢() satisfies the L 4 1 orthogonality conditions

(e, H*®)) =0, 0<k<L (3-6)

and the smallness
e(t)
IVe@ 2+ | —| +I160)| K 1.
Y L2
Here, given M > 0 large enough, we define
L
Oy =Y cpuH (XuAQ), (3-7)
p=0

where -
> p=0CpM (X HP (xmAQ), Ti)

com=1 ceu= (=D : L,
" " OmAQ, AQ)
is manufactured to ensure the nondegeneracy
(Py, AQ)=(xmAQ,AQ)=4logM(1+0(1)) as M — +oo (3-8)
and the cancellation, forall 1 <k <L,
k—1
@ur. T = Y ot (H? (xur A Q). To) + e (—D* (xu AQ, AQ) =0 (3-9)
p=0
In particular,
(H'Tj, ®y) = (=1)) (xuAQ, AQ)Si j, 0<i,j<L. (3-10)
Observe also by induction that
forall 1 <p<L, |cpmlSM?P, (3-11)
from which
L
/ [IVIESS f xmAQP + Zci,Mf |H? (xu AQ)* Slog M. (3-12)

p=1
The existence of the decomposition (3-5) is a standard consequence of the implicit function theorem and
the explicit relations

- (AQ’ T17 A TL)7
2=1,b=0

0~ 0~ 0~
(ﬁ(Qb))n a—bl(Qb))u E(Qb)x)

10See, for example, [Martel and Merle 2000; Merle and Raphaél 2005a; Raphaél and Rodnianski 2012] for a further
introduction to modulation.
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which, using (3-9), imply the nondegeneracy of the Jacobian

=(xmAQ, AQ)-T £0.
r=1,b=0

(Op)1, Hi(bM)

' 3
(3(?»,19;)

The decomposition (3-5) exists as long as t < T and (, r) remains small in the energy topology. Observe

1<j<L,0<i<L

also from (3-3), (3-5), and the explicit structure of Qb that ¢ satisfies (A-4), and in particular Lemma B.5
applies. In other words, we may measure the regularity of the map through the following coercive norms
of ¢: the energy norm

S P 3-13
llellge = | 10yel” + 7, (3-13)

and higher order Sobolev norms adapted to the linearized operator
%2k=f|Hks|2, l<k<L+1. (3-14)

Setting up the bootstrap. We now choose our set of initial data in a more restricted way. More precisely,
we pick a large enough time s¢ >> 1 and rewrite the decomposition (3-5) as

u(t,r) = (Ops) +€)(s, ), (3-15)
where we introduce the renormalized variables
)’=L» S(t)=So+/td—T (3-16)
A(t) 0 A%(7)
and measure time in s, which will be proved to be a global time. We introduce a decomposition (2-101):
bk:b,‘é+kL, 1<k<L, bpy1 =Ury1 =0. (3-17)
sk(log s)3/4
We consider the variable
V="prU, (3-18)

where Py, refers to the diagonalization (2-104) of A;. We assume that initially
VO =1, (V200),...,VL(0)) € Br-1(2). (3-19)

We also assume the explicit initial smallness of the data:

/|Ve<0>|2+/‘?

€2 (0)] < [b1(O)]'FH, 1T<k<L+1. (3-21)

2
< b7 (0), (3-20)

Note also that, up to a fixed rescaling, we may always assume
A0)=1. (3-22)
Proposition 3.1 (bootstrap). There exists

(V2(0), ..., VL(0)) € BL-1(2)
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such that the following bounds hold for all s > sq:

o Control of the radiation:

2
f Ve(s) + f ‘% < 105100}, (3-23)
€ (s)] < bV () logbi ()X, 1<k <L, (3-24)
b%L-i-Z(S)
é <K———. 3-25
[2142(5)] < Koo (3-25)
 Control of the unstable modes:

Vi) <2, (Va(s), ..., Vi(s) € Br_1(2). (3-26)

Remark 3.2. Note that the bounds (3-24) easily imply'! the control of the H* norm of the full map (3-2)
/ |AV(s)|? < C(s) < +00, s <s,
and therefore the blow-up criterion (3-4) ensures that the map is well defined on [s, s*).
Equivalently, given (e(0), V (0)) as above, we introduce the time
s* = 5%(£(0), V(0)) = sup{s > s¢ such that (3-23), (3-24), (3-25), (3-26) hold on [sy, s]}.

Observe that the continuity of the flow and the initial smallness (3-20), (3-21) ensure that s* > 0. We
then assume by contradiction that

for all (V2(0),...,VL(0) e Br_1(2), s*<+o0, (3-27)

and look for a contradiction. Our main claim is that the a priori control of the unstable modes (3-26)
is enough to improve the bounds (3-23), (3-24), (3-25), and then the claim follows from the (L — 1)
codimensional instability (2-104) of the system (2-96) near the exceptional solution b¢ through a standard
topological argument a la Brouwer.

The rest of this section is devoted to the derivation of the key lemmas for the proof of Proposition 3.1.
We will make a systematic implicit use of the interpolation bounds of Lemma C.1, which are a consequence
of the coercivity of the €,;4> energy given by Lemma B.5.

Equation for the radiation. Recall the decomposition of the flow

u(t, r) = (Opey +€)(5, ¥) = (Q +@pr))acs) + w(t, r).

We use the rescaling formulas
r 1 As
ut,ry=uv(s,y), y= oL du=——0dv——Av
A

Hgee [Raphaél and Schweyer 2013] for the full computation.
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to derive the equation for ¢ in renormalized variables,
As —
ase—TAs—l—Hs: F —Mod = %. (3-28)

Here H is the linearized operator given by (2-8), 1\71\0/d(t) is given by

L L+2
. a ~ . ~ 3S;
Mod(t) = ‘(T +b1)AQb + ;ub»s +(2i — 1 4 cp))bib; —bm][n + xB j;l E] 529
and
F=—U,+L(e)—N(e), (3-30)

where L is the linear operator corresponding to the error in the linearized operator from Q to éb

Q) — £(0p)
5 &

L(e) = ) (3-31)
and the remainder term is the purely nonlinear term
~ P I
N(e) = f(Qp+e) f(sz) ef (Qb). (3-32)
y
We also need to write the flow (3-28) in original variables. For this we use the rescaled operators
Zz 1+Z
A}»:_ar'i'_}h, A;k\:ar-i_ )L’
r r
V ~ %
Hy=AfAy = A+, H=MA=—A+-2, (3-33)
r r
and the renormalized function
w(t, r) =¢(s,y).
Then (3-28) becomes
1
hw+ Hyw = E%A. (3-34)
Observe from (2-99) that, for s < s*,
bl SBY, 0<b <1, (3-35)

and hence the a priori bound (2-57) holds.

Modulation equations. Let us now compute the modulation equations for (b, 1) as a consequence of the
choice of orthogonality conditions (3-6).
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Lemma 3.3 (modulation equations). We have the bound on the modulation parameters

L-1
3
+ ) 1(be)s + 2k — 1+ co)bibe — bipa] S blL+2, (3-36)

k=1
L+1
(m+ ) e

[log by |

s
= +b
X 1

‘(bL)s +QL—=1+¢p)bib| S

Remark 3.4. Note that this implies in the bootstrap the rough bound
|(b1)s] < 2b7, (3-38)
and, in particular, (2-84) holds.

Proof of Lemma 3.3. Step 1: Law for by. Let

+ Z |(bi)s + (2k — 1+ cp)brbe — brs . (3-39)

D(t) = ‘--{-bl
k=1

We take the inner product of (3-28) with HX®, and, using the orthogonality (3-6), obtain
— ~ Ag
(Mod(t), H @) = — (U, H* @) — (H e, Hdy) — (-fz\s —L(e)+N(e), HLd>M>. (3-40)

First, from the construction of the profile, (3-29), the localization Supp(®y,) C [0, 2M] from (3-7), and
the identities (3-8), (3-9), (3-10), we compute

(H" (Mod(1)), D)

L+2
0S;
<b1+ )(H AQb,<1>M)+Z (bi)s+(2i — 1+cp,)b1b; bm](”“l 2 ab;’ Hoe )

i=1 Jj=i+1
= (=D (AQ, ®u)((br)s+ Q2L —1+cp,)b1br)+ O (M by | D(1))).

The linear term in (3-40) is estimated'? from (3-24), (3-12):

((H e, HOp)| S I1H el 12y/log M = /log M54,

The remaining nonlinear term is estimated using the Hardy bounds of Appendix A:

‘(_%AS +L(e)+N(e), HL¢M)‘ S M1 (/a2 +1D0))).

120pserve that we do not use the interpolated bounds of Lemma C.1, but directly the definition (3-14) of €, 2, and hence
the dependence of the constant in M is explicit. This will be crucial for the analysis.
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We inject these estimates into (3-40) and conclude from (3-8) and the local estimate (2-91) that

J1og M€ 3
(bL)s + QL — 1+ cp)biby | = Y2222 4 pCh 1 D()] + MCb 2
log M
1 pit! c
< Crio+ )+M bi|D(1)|. 3-41
m( 22 o 11D (3-41)

Step 2: Degeneracy of the law for A and (by)1<k<r.—1. We now take the inner product of (3-28) with
H*®);,0 <k <L — 1 and obtain

~ k 3. Hk k+1 <)‘S k )
Mod(t), H*®y) = — (W, H®y) — (H e, HO ) — —TA&‘—L(S)—FN(S),H Dy ). (3-42)

Note first that the choice of orthogonality conditions (3-6) gets rid of the linear term in &:
forall 0 <k <L—1, (H"Me @y)=0.

Next, from (3-29), the localization Supp(®,,) C [0, 2M] from (3-7), and the identities (3-8), (3-9), (3-10),
we compute

(H*(Mod(1)), @)

L L+2
As kA& : T IS; ok
= —(b+ ; )(H AQyp, q)M)+i§_l[(bi)s+(21 —1+4cp,)b1b; _bi+1](Ti +XxB, j—EH_l 3, H q>M)

—(As/A+Dy) for k =0,
(—DF((bk)s+ 2k —1+cp )biby —byyy) forl <k <L-—1

Nonlinear terms are easily estimated using the Hardy bounds

=(AQ, Dy) { +O0(MCbi|D@))).

L+3
SMb (i +ID0]) S b, b MEID@)].

(—)%Ae + L(g)+ N(e), chbM)

Injecting this bound into (3-42) together with the local bound (2-91) yields the first bound,
D) <, (3-43)
and (3-36) is proved. Injecting this bound into (3-41) yields (3-37). O
Improved modulation equation for by. Observe that (3-37), (3-25) yield the pointwise bound
. b1L+1 ) B blL+1 |
llogbi] /) ™ log b

1
[(bL)s + 2L — 1+ cp)bibL]| S ozt (\/%2L+2
og

which is worse than (3-36) and critical to close (3-26). We claim that a |log ] is easily gained up to an

oscillation in time.

Lemma 3.5 (improved control of by ). Let By = Bg and

(_I)L(HLS’ XBaAQ)

by =b
L=bL+ 48|log b1 |

(3-44)
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Then
~ 1
by —by| Sby ' (3-45)

and by, satisfies the pointwise differential equation

B 5 bL+1
|(br)s + QL —1+c¢p,)bibr| S i) [\/ €042+ } (3-46)

1
J/log by | llog by |

Proof of Lemma 3.5. We commute (3-28) with H% and take the scalar product with xz, AQ for some
small enough universal constant 0 < § < 1. This yields

d
g{w%, xpAQ)} — (H e, AQdy(xp5))
Ay —
=—(H' e, xps AQ) + T‘(HLA;:, xB; AQ) + (F —Mod, H" x5, A Q).

The linear term is estimated by Cauchy—Schwarz:
(H e, xps AQ)| S C(M)y/llog bi|y/ €212
Using (3-36), we similarly estimate

L ﬁ L
|(H" e, AQd;(xps))| + A(H Ae, xg,AQ)

[(b)s| 1
by be?

b
SC(M) Goiat b—gaaM)J%zm < Vllogbi[\/€ 1.

1

The estimate on the error terms easily follows from the Hardy bounds

b
(L), H xps AQ)|+ (N(e), H' xps AO)I S 125 CONVEar 12 £ Vilogbi Voo
1

From (2-91) we further estimate
L+3

~ b
|(H e, B)| S ~ o5 CM)V a2 S Vllogbily Ear o
1

From (3-36), (3-29), we now compute

—(Mod, H! x5, A Q)

L+3/2 L+2
_o(_— +[(bL)s + QL — 1+ cp)bib || HET HE |y 350 A
= 3 L)s Cp)b1bL] Lt Y X1 | Xy Q

1 j=L+1 L

L+3/2
= (=D () + L —1 +cb1)b1bL][(AQ, x8,AQ) + O(b}—CS):| + 0< 1bca )
1

= (=D [(bL)s + QL — 1 +c,)b1b. 148[log by |+ O (v/llog by |y/€ar 42 + b1 ).
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The collection of above bounds yields the preliminary estimate

d
g{(HLe, X A+ (—DE[((bL)s + QL — 1 +¢p,))b1b,. |48 ]log by |

L+1

b
< C(M)y/|log bll[\/%zurz +

(3-47)
llog 1|:|

By brute force, from (3-44) we estimate
~ _ L_;’_l
b —br| S llogby|“bi*1 = S by

and we therefore rewrite (3-47) using (3-38) as

C(M),/Ilogbl [m—i- blL+l ]
+

) _ d{ 1
br)s+@2L—1 bibr| S|(H e, x5,AQ)||—
[(br)s+( +ep)bib| S 1(H e, x5, Q)|‘ds{ } llog b1 llog by |

45logbh,

C(M bL+1
by %2L+2+¥|:\/%2L+2+ L ]

|logbi | |log b |
and (3-46) is proved. O

The Lyapounov monotonicity. We now turn to the core of the argument which is the derivation of a
suitable Lyapounov functional for the €, 1, energy.

Proposition 3.6 (Lyapounov monotonicity). We have
ar | | e OB e ) | = ot | gt T ilogi T Toghl

for some universal constant C > 0 independent of M and of the bootstrap constant K in (3-23), (3-24).

] (3-48)

Proof of Proposition 3.6. Step 1: Suitable derivatives. We define the derivatives of w associated with the

linearized Hamiltonian H, by

A% for k odd,
=AW, Wiy = AW O 0 1 <k<2L+1
A,wy, fork even,

and we define its renormalized version by

A* for k odd
g1 = Ag, &y = ek Tork 0dd, 1<k<?2L4+1.
Agr  for k even,

From (3-34), we compute
1
drwor + Hywar = [0y, HAL]w-i-H,\L(ﬁ@A) (3-49)
- A Ly
dwar41 + Hhwar 41 = —sz + A ([0, H Tw) + Ay H 27 (3-50)

We recall the action of time derivatives on rescaling:

1 As
0V = E<BSU—TAU)/\. (3-51)
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Step 2: Modified energy identity. We compute the energy identity on (3-50) using (3-51):

1d % 1d /ﬁi
—— ==-— w w
yg =5 LWL 1 W2L+1
- 3, V.

=/ka2L+latw2L+l+/£T;w§L+1

_ [ 2 AV, ks AV

——/(wazul) + b1 o2z WaLel (7 by 22 2L

~ 0,7 i s
+ [ Hawarq Tw2L+AA([atsHA]w)+AAHA 27 ) | (3-52)

From (3-49), (3-50) we further compute

d /bl(AZ),\ / d (bi1(AZ),
— | ——Lwypwar = | —| ——= Jwarpw
a7 S2, LWL a7 22, 2L+1W2L

bi1(AZ), ~ 0: 7y, L of 1.
+ | ——war| —Hywyr 11 + ——wor + Ay ([0, Hy Jw) + Ay Hy" | —Fy
AZr r A2
b1(AZ) 1
+ f T*wml —Awaren + [0, Hylw+ Hy 5% ) |-

We now integrate by parts using (2-4) to compute

bi1(AZ), AF _ by AZ A
TwZL-‘r] Aw2L+1—W 782L+1 &2 +1

b /2(1—|—Z)AZ—A2Z 5

= aLt4 252 €20+1
b [AV AV,
- AAL+4 2)72 &r+1 =01 20252 Wor+1-

Injecting this into the energy identity (3-52) yields the modified energy identity

1d bi1(AZ),
EE{%2L+2+2fTw2L+1w2L}

- A (AV);, d (bi(AZ);
_ 2 5 2
= — /(HAU)ZL-H) - (7 +b1> meL—H +f E(T WL +1W2L
~ A . A
+ [ Hywar41 Tw2L+AA([8t7 H,"lw)+ A, H, ﬁ‘“

b1(AZ);
+/ A2r

bi1(AZ),
+/ A2r

~ 0 Z» L L Lg
war | —Hywap41 + TWZL + Ay ([0, H, Jw) +A)»HA ﬁ‘f)»

1
waL 41 [[at, Hflw + Hy (ﬁﬂ)} (3-53)
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We now aim at estimating all terms in the right hand side of (3-53). Throughout the proof, we shall make
implicit use of the coercivity estimates of Lemma B.2 and Lemma C.1.

Step 3: Lower order quadratic terms. We treat the lower order quadratic terms in (3-53) using dissipation.
Indeed, from (2-5), (2-6), (3-38), we have the bounds

by b y2
latzklﬂatw’SA_(MZ'HAVD*S§1+y4' (3-54)
We moreover claim the bound
(8, HEJw)? 2
)é(l—j%+f|Ak([at’ Hf]w)|2§C(M))\4L+4%2L+2’ (3-55)

which is proved in Appendix E. From Cauchy—Schwartz, the rough bound (3-38), and Lemma C.1, we
conclude

0: Z, L ~ b(AZ);
Hwar 41 Tw2L+ Ay ([0, Hy lw) ||+ | [Hawar41]

A2r

2 e2,
L[5 2 b
§§/|HAU)2L+1| +A4L+4[/ T 6+C(M)%2L+2i|

1 ~ 2 b
< §/|wa2L+1| +A4L+4C(M)bl%2L+2

WwaL

All other quadratic terms are lower order by a factor b, again using (3-38), (3-55), (3-36), and Lemma C.1:
(A¥) b(AZ),  [8,2
/‘ 2y 2}” w§L+1 +/ Em szL tr szL + A, ([9, H,\L]w)

bi(AZ) d (bi(AZ)
/' 1 Awﬂ‘""][al’H){l]w’—i_‘/E<¥)w2L+lw2L

A
= +b

A2r

< h 12 + et T8 TCune < D comme
We similarly estimate the boundary term in time using (C-10):
b1(AZ); b 3141 &, by C2L+2

‘/ T2y WaL+itar N w2 | | 14,2 + 1+ N A4L+2|10gb1| by
We inject these estimates into (3-53) to derive the preliminary bound
1 d 1 4 b2L+2
—— 11— ¢ O\ b;
2dr{A4L+2[ 22t ( g bI?

1
< __/(ka2L+1) +/wa2L+1AAH < J"x)

1 b1(AZ), b1(AZ),
+/ H (AZ A) [TwZL-i-l +AK<TU)2L )\4L+4 —rV/bibiE? (3-56)

with constants independent of M for |b| < b*(M) small enough.
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We now estimate all terms in the right hand side of (3-56).

Step 4: Further use of dissipation. Let us introduce the decomposition from (3-28), (3-30),

F=Fo+F|, Fo=—U,—Mod(t), Fi=L()—N(). (3-57)

The first term in the right hand side of (3-56) is estimated after an integration by parts:

1
I/ka2L+1AAH <A2 )‘

C 1 ~ C
< Aol I H  Foll 2 + 4 f [Hywar |+ f |AH"F,?

C 1 ~
=< armlH Tl oV Eors + IAH F1l L] + 4 / | Hywar 12 (3-58)

for some universal constant C > 0 independent of M.
The last two terms in (3-56) can be estimated by brute force from Cauchy—Schwarz:

1 1

1 \bi(AZ), by 1+ llogyl? ;5\ 3141 2
HE —, | 22 < H*% _
'/ k(ﬂ *) Nr w“*‘”k‘w(/ [yt Y / V(11 llog yP)

1
b 1+ |log y|? 2
5ﬁ@(/iIHL@I2 . (3-59)

1+ y4

where constants are independent of M thanks to the estimate (B-2) for &5741. Similarly,
1 bi(AZ),
oG (5
b 1+ [log y|? 2 2 2
< b (/ + |log y| |AHLFI><f &3, )
oAt 14 y2 (14+yH (1 + [log y[?)

1
1+ [log y|? 2
A4L+4C(M),/<<~<;2L+2</T§2|AHL%|2+/|A1L1L971|2 . (3-60)

We now claim the bounds

/1+|logy| HLGP < bi"? G G61)
1+ y4 lloghi|>  logM’
1+ |log y|? bitt?
[ ant <o) o+ | (3-62)
L+1 2 2 b%L—i_z %2L+2
JEEE T k2| (3-63)
|log by | log M

Lo L YA
/|AH FilI° < by + (3-64)
[logh|?  logM
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with all < constants independent of M for |b| < a™(M) small enough, and where
S(a™) =0 asa*(M)— 0.

Injecting these bounds together with (3-58), (3-59), (3-60) into (3-56) concludes the proof of (3-48). We
now turn to the proof of (3-61), (3-62), (3-63), (3-64).

Step 5: \FI}I, terms. The contribution of {Ivfb terms to (3-61), (3-62), (3-63) is estimated from (2-89), (2-90),
which are at the heart of the construction of éb and yield the desired bounds.

Step 6: Mod() terms. Recall (3-29),

. - &8s
Mod(7) = —<TS +b1>AQb + Z[(bi)s + Qi —1+cp)b1b; — bi+]]|:Ti + XB, Z _ab{ ],
i=l j=i+1 !

and the notation (3-39).

Proof of (3-63) for Mod. We recall that
|be| S b,

and, from Lemma 2.8, we estimate

L+2

/IHL+1AQ |2<Z/|HL+leT| +Z/|HL+1AS|
L L+1 2L+4
2
sy
i=1 Y

1+|lo Cy,,2i—1 . b

(1+[log y|™)y +Zblzl+ 21 2§bf.

billog b|

We then use the cancellation HXHT; =0 for 1 <i < L to estimate

1+ y2L+2

=28, i=2

21 12
) KUEETED o) SN st )
1<}<2Bl
Then, using Lemma 2.8 again,13 forl <i<L,
L+2 2 L+l 20 ) bz(L+2 i)
gL+ b’ j—i < p2.
f‘ [X'ab} 2 + Rioghip

j= t+1 j=i+1

We thus obtain from Lemma 3.3 the expected bound:

~ % b2L+2
f |[HE  "Mod|? <b3ID(1))* < b2 2Ltz 4 7l .
llog M| = |logb;|?

I3This is where we used the logarithmic gain (2-54) induced by (2-24).
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Proof of (3-61) for Mod. We use Lemma 2.8 to derive the rough bound

/ 1+ 0g}’|2|HLAQ 2
1+y4

L+2

1+|logyl® | 1+|logyl” |
SZ/TW b; AT,| +Z/—|H AS;?
=

<ib2i/ 1+ [log y|©
~ i—1 ! y<2Bj 1+y4

2 L+l

+ Z b¥|log by |* 4 H3HT /
i=2

y<2B 1 +y4

2i—1
M

1+y2L

2| 14204212
1+y2L

2

2i—1
M <1

1+]1 141 ¢
Z + [log y|? |HL SZ/ +|0gi’| ’
o1 1+y s y<2B 1+y

14 y2L
and finally, again using Lemma 2.8, for 1 <i <L,
98,717
XBi 3p,;
L+1

I _; 1+ [log y|?
< Z 520D log by [ + ¢ z)+4/ | g4y|
j=itl y=m 1Y

Iif/‘l%—llogyl2
14 y4

Jj=i+1

1+y2(L+2)*1 2
1+y2L

We thus obtain from Lemma 3.3 the expected bound:

b2L+2

1+ [log y|?
f FIO I Ntoa? < D) £ 2y O O
I+ llog M|~ [log b2

Proof of (3-62) for Mod. We use Lemma 2.8 to estimate

141 2
/ +logy| \AHEAD,2
1—|—y

L+2

I+[logyl* | /1+| ogy|* L
< E 2 \HLb AT, E 2 |AHEAS,
NiZI/ 112 | 1>+ | 2

2 L+1

+Zb llogb, |3+bfL+4/

B1<y=<2B 1+y2

2i—1

1+ 2L

2 1+y2(L+2)—1 2
1+y2L+l

) H—Ilogyl2
2
S’Zbll/ 1+y?

i=1 y=<2B,

Next, using the cancellation AHLT; =0,1<i <L,

2i—1

1+ |log y|? 1+ ]logy|€
Z +[log y| IAHLTI2<Z/ +[log y| < byllog b1,

o 1y Bi<y<2p, 1+)?

14 y2L
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and finally using Lemma 2.8 again, for 1 <i < L, we have

2 [ 1+ llogyl y|2 35;7|?
) v L ECr e
Jj=i+l y !
L+1 2 2(L+2)—12
i _ I+y
S Y0 b loghy|© + by / Shi.
j;1 ] ] yeam 1 +y2 | T4yt
We thus obtain from Lemma 3.3 the desired bound:
1+ |log /2 L , b2L+2
——————|AH"*Mod|” < D(t)|” < 8(a®)| € — O
/ L AR < i DOP S 8060 Earn o |
Step T: Nonlinear term N (g). Control near the origin y < 1. From (3-32) and a Taylor Lagrange formula,
we rewrite
£\2 1 (! o~
Ve =N, 2=y(5) M@ =1 [a-0f @t G6s)
0
First observe from (C-2) and the Taylor expansion at the origin of 7; given by (2-39) that
1 L+1 2 L '
T E[Zciml_i +rg] =D Gyt 7, (3-60)
i=1 i=0
where, from (C-3), (C-4),
Icil S C(M)€a1+2,
087 | S v K log y|C(M) €140, 0 <k <2L+1. (3-67)

We now let 7 € [0, 1] and
ve = Op +7é,

and obtain from Proposition 2.12 and (C-2) the Taylor expansion at the origin

L
ve= &yt + 7 (3-68)
i=0
with
G ST (Rl Sy gy, 0<k<2L+1. (3-69)

Recall that f € €* with f2(0) =0, k > 0. We therefore obtain a Taylor expansion

1 L0
, f(21 +1) (0) i 2L+2
=0 i (2L+1)‘/ -

i=1

)2L+1 f(2L+4) (O, U‘[) dU,
which, together with (3-68), ensures an expansion

L
No(®) = iy +re, Gl ST, 19571 Sy* *logyl, 0<k<2L+1.
i=0
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Combining this with (3-66) ensures the expansion

L
N(e)=zNo(e) =Y &y* ' +7 (3-70)
i=0
with

6l S CMEarya, (057 Sy Hllog yIC(M)€ar 42, 0 <k <2L+1.

Observe that from a direct check this implies the bound

Kk giF k 2L+1—i

log y| ]
S O ey S S o ICO B2 0k 2L L
=0 i=0

We now compute using a simple induction based on the expansions (2-5), (2-6) and the cancellation
A(y) = O(y?) that, for y < 1,

L L
&q2k+1(z 5iy2i+1> = Y oy £ 0 (PO,

iio i=1£+l (3_71)
&Q2k+2 (Z 5iy2i+1) — Z Ci,2k+2y2(i_k)_1 4 O(yZ(L—k)-H)'
i=0 i=k+1
From (3-70), we conclude
15N (@) [l ey<ty S C(M)Ea4a, 0<k <2L+]1, (3-72)

and thus, in particular, we get the control near the origin

1+1 2
f %m N+ f AHEN@) P S CM)(Eapi2)® < B2,
y=<1 y* y=1

Control for y > 1. We give a detailed proof of (3-64). The proof of (3-61) follows the exact same lines
(with more room in fact) and is left to the reader. Let

1
¢ = % Ni(e) =/ (1—1)f"(Qp +7te)dr so that N(g) = {>Nj. (3-73)
0

We first estimate from (C-14): for (i, j) e Nx N with 1 <i+j <2L+1,
1 forl <i+4+j<2L-—1,
< [logby|€ { P! fori+j=2L, (3-74)

‘ b(i+j)2L/(2L—1)
L*(y=1) b%L-‘rZ for i +] — 2L+ 1.

Similarly, from (C-12), for (i, j) e N x N* with2 <+ j <2L 42,

1+|1ogy|c|al |2<Z 1 +|log y|“ LA llogyl™ oo
y=1 2] 2 e 11+y2]+2(l —k) 'y

bgzﬂ 1)2L/(2L—1)

2 i 2

S
=Gzl i

k
aye
yiti—k

di¢
yi1

for2<i+j<2L,
< lloghy|© { p2EH! fori +j=2L+1, (3-75)
ptt2 for i 4 j = 2L +2.
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Moreover, from the energy bound (3-23),
[ ezt (3-76)
y=1
We now claim the pointwise bound, for y > 1,
forall 1 <k <2L+1, [9*Ni(e)| < lloghi] [ — +b“k/2] (3-77)
y
with
k2L/2QL—1) forl<k<2L-1
ar=142L+1 for k =2L, (3-78)
2L +2 fork=2L+1,
which is proved below. For k = 0, we simply need the obvious bound
IN1(&)llLey=1) S 1. (3-79)
Then, by brute force, from (3-73), (3-77), (3-79), we estimate
2L+1 | k (8)| 2L+1 1 k
L y i 2201 nk—i
|JAH'N(e)] < ) SALTTE S WZIB},C 105 Ny (o))
k=0 k=0 i=0
2L+1 |ak§ | 2L+1 1 k—1 ( 2
C Ak—i
~ Z VALHIK Z y2L+1 kzla ¢*|[logbi| [ =1 T :|
k=1 i=0
2L+1 | k;- | | t 2| 2L+1 k—1 ( )2 |8’§ |
C C Afe—i
~ Z YL irix T lloghil 2L+2 “iga—; T loghil Z Zb y2LF1=k
i—0 k=1 i=0
2L+1 | ké- | 2L+1 k—1 ( )2 |at§ |
C A—i
S llog b [Z VLATK Z Zb YL+ k:|’
k=0 k=1 i=0
and hence
/ |AHE N (¢))?
}Zl 2L+1 k |azé.| |8k [é.lz 2L+1 k—1 i |8J§| |al ]§|2
C C Af—j
Stoghl© Y3 [ i woeni© Yo Yyt [ P
k=0 i=0 k=1 i=0 j=0
We now claim the bounds
2L+1 k i k—i #12
ERqREiad
Z Z/ T ALk |10gb1|cbf(L)b%L+3’ (3-80)
k=0 i=0 Y=l
2L+1 k—1 i |8J§| |81 ]§|2 5Ly oL
Qi
AT 35 9D DICRY B N e
k=1 i=0 j=0

for some §(L) > 0, and this concludes the proof of (3-64) for N (¢).
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Proof of (3-77). We first extract from Proposition 2.12 the rough bound

1 2L42 |10g b1|c
105 Qbl < |logb1|c[yk+1 + Y by T, Bl] S (3-82)
i=1
Then let t € [0, 1] and v, = @b + te. From (3-82), (C-14), (3-78), we conclude
1
|05 v | < [log b1 [k—H +b“’f/z], 1<k<2L+1,y>1. (3-83)
y

We therefore estimate N; through the formula (3-73) using the rough bound |3! f| < 1 and the Faa di
Bruno formula: for 1 <k <2L +1,

k
05N @) S f S qmE ) [ 1ol de

m1+2my~+---+kmy=k i=1

< llogby|€ > Il_[[ - “’/2} |

my+2my+-+kmp=k i=1

1
< |logb1|c[w+b“k/2}

To estimate o from the definition (3-78), we observe that for k <2L — 1,1 <2L — 1, and thus

k .
2iL 2kL
OlkZZ ! m; = = qay.

e I —1 L—1
i=0
For k = 2L, we have to treat the boundary term i =k, (my, ..., mg_1,mg) =(0,...,0,1) = 1, which
yields
. [2LQ2L)
oo, > min 2L+ 13 =2L+1.
2L —1
For k = 2L + 1, we have the two boundary terms (m, mo, ..., mg_p, my_1,my) = (1,0,...,0,1,0),
(my,...,,mp—1,my)=(0,...,0,1), which yield
> mi 2LQL+ D) 2L+ 1+ 2L +2 2L 42
miny ——=; : = ,
L+l = 2L -1 2L—1
and (3-77) is proved. O

Proof of (3-80). Let 0 <k <2L+1,0<i <k. Let Iy =k —1i, I =i. Then we can pick J, € N* such that

max{1l;2—i} < J, <min{2L +3 —k; 2L +2 —i}
and define
J1=2L+3—k—J,.
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Then, from direct inspection,

1<h+/h<2L+1, 2=<DbL+J,<2L+2,

I, Ji, I, J») € N? x N*¥,
(11, J1. B, J2) {11+12+11+J2=2L+3.

Thus

A__/ |a;2;|2|a§"c|2_/ alig 2ok |2 <‘
;= R A
1 y

p— — — ~Y
y4L+2 2k >1 y211 242J,-2

1
8}71C
yfl—l

: 192¢ 12
y dik
/ —— S llog by |b7,
Looyzl) Jy>1 YU

where we now compute the exponent d; ; using (3-74), (3-75):

efor1 +J1<2L—1,+J, <2L,

2L 2LQL +2)
(11+J1+12+J2—1)=ﬁ>2L+3;

dip =
Y

e for 1 +J1=2L, 1L+ J, =3,

ik 2L—1( )>
o fOI'Il+J1—2L+1,12+J2—2,
i, 1> —|— y

e for b+ J,=2L+1, 1+ J =2,

2CL) +2L+1>2L+3
- > .
T ’
e for b+ J,=2L+2, 1 +J =1,
dig=2L+2 2L + 3;
ik +2+ 2 —1 > +
and (3-80) is proved. O

Proofof (3-81). Let ] <k <2L+4+1,0<j<i<k—1.Fork=2L+1and0<i=j <2L, we use the
energy bound (3-76) to estimate
o[ 1Pl e , . g
bfllk / y 4L+2)_2k — b‘ll2L+l |8;§ |2|; |2 5 blll2L+l ”é. ”%00()121) Ia;; |2 g bl 2L+1
y=1 Y y=1 y=1

with
2L

——— 4+ 2L +2 fori =

2L —1 + ori =0,

dirp+1 = —2L2111+2L+2+—2L21:1 fori =1,
2L 2L . 2L . .
L _ _Ln — <i<
St 1= Db e QLA 1 =) for2<i 2L

> 2L +3.
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This exceptional case being treated, we let I} = j, I, =i — j, and pick J, € N* with
max{l;2— (@ —j);2— (k=)= =mn{2L+3—-k;2L+2—(k—j); 2L +2— (i — j)}.
Let
J1=2L+3—k— /.
Then we can directly check that

I1<h+h<2L+1, 2L+, <2L+2,

(I, J1, I, J») € N? x N*, { )
L+L+J1+J=2L+3—(k—1i).

Hence
j i—j I 1219012 I 2 L2
b““f 19521719y fg|2_bak,.f 19, 67102817 o '8 f 19,2¢
1 — -7 — -2 ~ 71 — _
y4L+2 2k y>1 y2J2 242712 y/] 1 Lo(y=1) Jy=1 y212 2

< llog by €y,
where we now compute the exponent d; ; using (3-74), (3-75), (3-78):
efor 1 +J1<2L—-1,L+J, <2L,k—i<2L—1,

QL4312 _2LOL+D)
2L —1 ! 2L—1  2L-1

efor 1 +J1<2L—-1,L+J,<2L,k—i=2L,

dj,j = (k—1i) > 2L +3;

dijx=2L+1+QL+3-2L—-1) > 2L +3;

2L —1
efor1+J1=2L, L+J,=3—(k—i)>2andthusk—i=1,5L+J, =2,

2L
2L4+1+ —>2L+3;
L1 +2L+1+ oL, > 2L+

eforhb+J,,=2L+1,1+Ji=2—(k—i)>1landthusk—i=1. 1 +J, =1,

i,j.k =

+2L+1+ > 2L 4 3.

2L —1 2L —1
This concludes the proof of (3-81). O

dij k=

Step 8: small linear term L(e). Let us rewrite from a Taylor expansion

FO+a@) - f(0)
y? B

L(e) =—eNa(ap), Na(ap) =

= ol
‘;i’; /0 (0 +tay) de. (3-84)

Control for y <1. We use a Taylor expansion with the cancellation f 2k0)=0, k>0, and Proposition 2.12
to ensure, for y < 1, a decomposition

L
Nz<&b):b1[2ay2"+r}, &Gl S, 1oyl Sy o<k <2L+1.
i=0
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We combine this with (C-2) and obtain the representation, for y <1,

L+1 L

L(S)_[ZczTL—H 1+7’g]b1|:2c,y +r] [Z 2i-1 ]

with bounds

Icil S C(M)y/€2142,

057 Sy T log y|C(M) /o140, 0<k<2L+1, y<1.

We now apply (&dk)ofkfuﬂ to (3-85) and conclude using (3-71) that

I AX L&) |1 y<1) S b1C(M)y/ €21 42,

from which

1+ y4

1+ llog yP?
f LR+ / AHEL(E) < COMIB s 12 < CODB BT,
}<

y=<I1

1771

(3-85)

(3-86)
(3-87)

(3-88)

Control for y > 1. We give a detailed proof of (3-64). The proof of (3-61) follows the exact same lines

and is left to the reader. We claim the pointwise bound, for y > 1,

by |log by |©
forall0<k <2L+1, (0N < 2182
y +
which is proved below. From the Leibniz rule, this yields
billog b1|€|3}¢]
L@ S Z e
and thus
2L+1 |k 2L+1 k Clai
|0y L(e)| 1 by|log by |~ |0}e]
L y y
AHPL@) S ) 2Lk N y2LH—k PR
k=0 k=0 i=0
Shilloghi|© y | =75
i=0
Therefore, from (C-11) with k = L, we conclude
/ |AH"L(2)* < billoghy|© > / m < [log by |C BT,
y=1 i—0 y>1Y !

and (3-64) is proved.
Proof of (3-89). Let

1
N3=/ f”(Q—F'L'alb)d‘L’.
0

(3-89)

(3-90)
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Letting v; = Q + tap, 0 < T < 1, from Proposition 2.12 we estimate

|log b|©

05| < g 1sk=2ltlyzl,

and hence, using the Faa di Bruno formula,

1 k
EVEICIRS f > oyt £ @) [ [ 103 5. 1™ dr

Oy +2my-rtkmi=k i=1

c |10gb1|c
< llog by Z 1_[[ z+1] S

mi+2my~+---+kmp=k i=1

This yields in particular the rough bound

log by|€
0Ny @ < PEMD s o<k<an
y
and hence, from the Leibniz rule,
N3(ap) llog b1|€
k 3\&p
8y< 32 )‘,S ez y>1,0<k<2L+1. (3-91)
From Proposition 2.12, we extract the rough bound
log b1 |€b
|8f&h|§—| gklll L 0<k<2L+1
=
and, from the Leibniz rule, we conclude
k
by billogby|©
k c
9y Na| S Z |log 4| yitZyk=i-1 N YT
i=0
which proves (3-89). [
This concludes the proofs of (3-61), (3-62), (3-63), (3-64), and thus of Proposition 3.6. O

4. Closing the bootstrap and proof of Theorem 1.1

We are now in position to close the bootstrap bounds of Proposition 3.1. The proof of Theorem 1.1 will
easily follow.
Proof of Proposition 3.1.

Proof. Our aim is first to show that for s < s*, the a priori bounds (3-23), (3-24), (3-25) can be improved,
and then the unstable modes (Uy)2<x<; Will be controlled through a standard topological argument.

Step 1: improved H' bound. First observe from (3-17) and the a priori bound on Uy for s < s* that

bk ()] < 16 (0)]. (4-1)
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The energy bound (3-23) is now a straightforward consequence of the dissipation of energy and the
bounds (4-1), (3-26). Indeed, let

t=¢+a.
Then

2 3 1
Eo=/|ay<Q+5)|2+f%ﬁ(gwﬂé,m/ S QD=2 (Q)F - (@), (4

We first use the bound on the profile which is easily extracted from Proposition 2.12

f|ay|+/ S i loghn € < /b (©)

using (4-1). Using Lemma B.1 ensures the coercivity

2 1 2
(HE, 8)>c(M)[/|8} | +/| L]— (@, q>M)2>c(M)[/|ay el +/ 'y' }—\/bl(O).

y c(M)

The nonlinear term is estimated from a Taylor expansion:
3 2
I | ( / 10,&> + f el )

L2

1
‘/ S0 +5) ~2f(Q)F — /()71 £

where we used the Sobolev bound
- - g
€170 S N0yE ] 12 5

We inject these bounds into the dissipation of energy (4-2) together with the initial bound (3-20) to
estimate

2
/|8y | +/' d /|8y 2t +b1|logb1|c<c(M)¢b1<0><<b1<0>)4 4-3)

for |b1(0)| < b}(M) small enough.

Step 2: integration of the scaling law. Let us compute explicitly the scaling parameter for s < s*. From
(3-36), (3-26), (2-101), (2-99), we have the rough bound

)“s C1 |d1| 1
A 0 +0(——),
A s logs s(log s)3/4

which we rewrite as

(4-4)

d CIx(s) ‘ 1
%{ (log s)l] } ™ s(logs)¥/

We integrate this using the initial value A(0) = 1 and conclude

SEIA(S) _ SSI N 0( 1 4.5
(log )11~ (log s9)l! (1ogso)1/4)‘ (-
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Together with the law for b; given by (3-26), (2-101), (2-99), this implies

by' (s)[log by |/
A(s)

Step 3: improved control of €;1,15. We now improve the control of the high order €, 4, energy (3-25)

b1(0)“" |log by (0|1 < < b1(0) [log by (0)]1. (4-6)

by reintegrating the Lyapounov monotonicity (3-48) in the regime governed by (4-5), (2-101). Indeed,
we inject the bootstrap bound (3-25) into the monotonicity formula (3-48) and integrate in time s:
for all s € [sg, s¥),

)\.(S) 4L+2 |: 4 2L+2 (0) ] b%L—FZ (S)
— é 0 Cb 0
A(O)) 212(0) + Chi )| eb1OF | Toghi )2

Err42(5) < 2(

2L+2
cl14+—— A2L+4 / DT e @
+ |:+lg +¢_] (s) MM“ T 4-7)

for some universal constant C > 0 independent of M. We now observe from (4-6) that the integral in the
right hand side of (4-7) is divergent, since

2L+2 2L+3
)L4L+2 |10g bl |2 b§4L+2)L1 |10g bl |C (log S)CS2L+3—(4L+2)L/(2L—1) (logS)CS(ZL—3)/(2L—1)

and therefore, from (4-6) and 1/s < by < 1/s,
2L+2 P+ (5)

)»4L+2 / 1 )
(S) S0 A2 |10gb1|2 7~ |10gb1(s)|2

We now estimate the contribution of the initial data using (4-6) and the initial bounds (3-21), (3-22):

4142 4 p2L+2
(@> [%2L+2(0)+Cb TR ]

2(0) llog b1 (0|2
iLia 2L+2( 0)
SATT(s )b (0)—
llog b1(0)|2
2L+2( )
< (bl(S))(4L+2)L/(2L l)llogbl(s)| (bl(o));+2L+2 (4L+2)L/2L— l)|10gb (O)|C < 1 M7
llog by (s)[?
where we used the algebra, for L > 2,
LML +2)
O<————Q2L+2)= —.
< roy BT Y=gr <5
Injecting these bounds into (4-7) yields
b2L+2(s) K b2L+2(s)
4 < L K|l<——1 4-8
2L42(8) 5 llog by ()2 [ log M ]— 2 [log by (s)|2 (4-8)

for K large enough independent of M.
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Step 4: Improved control of €12, 0 <k < L — 1. We now claim the improved bound on the intermediate

energies
2k+1)2L/(2L—1
Gty < BIHTDHICLD 160 p | CHVE (4-9)

This follows from the monotonicity formula, for 0 <k < L — 1,

d 1 )
dt { 2 4k+2 [%2k+2 +0 (b b(4’<+2)2L/(2L 1))i| }

og b11€ [ op4s o 1+6+Qk+12L/L—1) 2%+4
SW bt + b, +/ b7 g2 | (4-10)

for some universal constants C, § > 0 independent of the bootstrap constant K. The proof is similar to
that of (4-8) and in fact simpler since we allow for logarithmic losses; details are given in Appendix F.
Using (4-5), we now estimate

B+
e | " gy [C < Qo)+ dogo)®
A4k+2 logh[" S e | g amis 9

0

From (2-97), we compute

2L —k—1)
and hence Zk 3
+ |di|+C
4k+2 ¢ o (logs) (4k+2)c C
A () 4k+2 log by Nwibl 'log by|".
Similarly, from (4-6),
1+5+(2k+1)2L/(2L 1) ldi+C  ps c
4k42 c (logs) (logo) (@k+2)c c
AH2(5) / v o€ do < C5E [ TSI do < g €,
and, using (4-11), (3-24),
|lo b1|
2 () / A§k+2 by 1 do
S0
_ (logs)l+¢ (log o) +VK
~ g@k+2)c 5 ¢52k+4_(2k+1)2L/(2L—1)
N
C+VE p,(4k+2)e do C+VE J,(dk+2)e
S llog by by l /SO o I H(L—k—1)/(2L—1) < |log b1 | b, h

Using the initial smallness (3-21) and (4-6), the time integration of (4-10) from s = s¢ to s therefore yields
Eorsa(s) S AHH2(s)b1(0)' O+ [log b ()| “HE BT (s) S llog by ()| TV EBHI ),

and (4-9) is proved.

Remark 4.1. For 0 <k < L — 2, the above argument shows the bound

4k+2
Eoppr SAHTE
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which equivalently corresponds to a uniform high order Sobolev control w. The logarithmic loss for
k = L — 1 could be gained as well with a little more work; see [Raphaél and Schweyer 2013 ] for the case
L = 1. This shows that the limiting excess of energy u* in (1-12) enjoys some suitable high order Sobolev

regularity.

Step 5 contradiction through a topological argument. Let us consider

by =b, for1 <k <L, by given by (3-44)

and the associated variables

Ek:biﬂmcgﬁ’ l<k<L, byi=U1=0, V=PU.
From (3-45),
|V—\7|§SL|10gs|CblL+%§éT/4. (4-12)
Let the associated control of the unstable models be
Vi) <2, (Va(s), ..., Vi(s) € Bri(3), (4-13)
and the slightly modified exit time
§* = sup{s > s such that (3-23), (3-24), (3-25), (4-13) hold on [sg, s1}.
Then (4-12) and the assumption (3-27) imply
for all (V2(0), ..., VL(0)) € Br_1(}), §* <+oo. (4-14)

We claim that this contradicts Brouwer’s fixed point theorem.
Indeed, first, from (2-102), we estimate

- 2 -~ - ~ ~
(bi)s + (Zk -1+ @)blbk — b1 = [S(Uk)s —(ALU)i + 0<

el

sk'H(IOg s)5/4

and thus, from (3-37), (3-46), (4-8), and (2-44),

> 77 k+1 =l P 2 \ii 7
Is(U)s — (ALU)i| S +s5"7 (logs)*|(bi)s + | 2k — 1+ —— |b1by — by
ogs log s
1 s[oo42 1 bt
< k+1 1 ilb 2 1
~ /710gs +s (Ogs) |: 1 +sk+1(10gs)2 + |10gb1|3/2
1

<
™ (logs)!/*

Hence, using the diagonalization (2-104),

- ~ 1
s(V)s =DLVS+O<W> (4-15)
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This first implies the control of the stable mode ‘71 from (2-104),

sVl S W
and thus, from (3-19), ;
Vi) S % ! (logd# 1o- (4-16)
Now, from (4-3), (4-8), (4-9), (4-16), and a standard continuity argument,
L
Y Vs = (4-17)

i=2

We then compute from (4-15) the fundamental strict outgoing condition at the exit time §* defined by
(4-17):

27,

i=2

Lo | L ; 1
u:;mm:g— > 51769+ 0 ogzeya )

> i o ()| 0
2L —1 4 (log 5%)1/4

This implies from a standard argument the continuity of the map

N —
&~

(Vasizr € Broi(3) = S 1(V2si=r],
and hence the continuous map
Bi1(3) > B (3).
(Vasizr = Vil (V)azi=0)])

is the identity on the boundary sphere Sy _ (%), a contradiction to Brouwer’s fixed point theorem. This
concludes the proof of Proposition 3.1. O

Proof of Theorem 1.1.

Proof. We pick initial data satisfying the conclusions of Proposition 3.1. In particular, (4-4) implies the
existence of c(ugp) > 0 such that

( gs)\dll 1
0=t S0 1+0 (g ) |

and then, from (3-36), (2-101),

= oY =iy of )] 2 cwor L (!
T sL) s logs )| |logAlldil/er (logs)'/* ) |

Hence we get the pointwise differential equation

A LD L 06 A /CL=D 3 — c(ug) (1 + o(1)).
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We easily conclude that A touches zero at some finite time 7' = T (o) < +o0o with near blow-up time

(T —n)*

A(t) = c(up)(14+0(1)) llog(T — 1)|2L/2L=1)

(1+0(1)).

The strong convergence (1-12) now follows as in [Raphaél and Schweyer 2013]. This concludes the proof

of Theorem 1.1.

Appendix A: Regularity in corotational symmetry

We detail in this appendix the regularity of smooth maps with 1-corotational symmetry.

Lemma A.1 (regularity in corotational symmetry). Let v be a smooth 1-corotational map

gu(y))cost
gu(y))sinf
z(u(y))

v(y,0) =

with

v(0) =e,, ylirfoo v(x) —> —e;.

Assume that v is smooth in the Sobolev sense:

N
Z/ (=A%) < 400
i=1

for some N > L. Then:

(i) u is a smooth function of y with a Taylor expansion at the origin for p < 10L:

p
u(y) =Yy ay* 0.
k=0

(i) Assume that u(y) = Q(y) + e(y) with

v Hf 1.
Vel + 2], <

and consider the sequence of suitable derivatives ¢ = dke. Then, forall 1 <k <L,

a1/
&
/| 2k+2| +/ 2(1+y2)

|‘92p 1] |82p| ]
+ + < 400.
pZ:O / [y"(l + [log y[2) (1 + y**=r) * y4(1 4 [log y[?) (1 + y**=r))

Proof of Lemma A. 1. Let us consider the rotation matrix

1
R =

oS = O

-10
0 0],
00

O

(A-1)

(A-2)

(A-3)

(A-4)

(A-5)

(A-6)
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and rewrite (A-1) as

wy = g(u)
v(r,0) = fRw  with w(r)=10
wsz = z(u).

Step 1. Control at the origin. We compute the energy density

2
2 2wl
[Vu|* = |9yw] +7,

which is bounded from the smoothness of v, from which

‘ﬂ + 19y | < 1.
Similarly,
w —Hw;
Av = R (Aw + R2—2> =R 0
Y Aws,
where
w1 x
Hw; = —Aw; + F = A*"Aw;
with

A=—d, 1 Ar=p,+2.
y y

The regularity of v implies

[Hw;| S'1

near the origin, which, together with (A-9), yields

1 r
Awi (y) = —zf (Hw))7*dt = O(y).

y=Jo

We now observe that
Huw; =:——3yyUM +—§%¥uu
and conclude
|85, wi| S 1.

We now iterate this argument once on (A-10). Indeed, at the origin,

|Hw |2
2

|3y Huwy |* 4 SIVAP ST, H | S 1A% S,

and hence
Hwi| Sy, IAHw | Sy, [Hwi| <L

This yields the 63-regularity of w at the origin and, from (A-11), the improved bound

1 y
Awi () = P/ (Hwr2dr = 0(?).
0

1779

(A-7)

(A-8)

(A-9)

(A-10)

(A-11)
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A simple induction now yields for all k > 1 the ¢*-regularity of wy, and that the sequence

A*(w])k for k Odd,

k>1
A(wq) for k even,

(wo=wi, (W1 = {

satisfies the bound
for k even,

y
<
(Wl 3 {y2 for k odd.

We therefore let a Taylor expansion at the origin
p .
wi(y) =Y ¢y + 0"
i=1
apply successively the operator A, A* and conclude from the relations
At = =k =Dy AN = (k+ 2"

and (A-12) that
e =0 forallk>1.

(A-12)

We now recall from (A-7) that w; = g(u) and the Taylor expansion (A-3) now follows from the odd

parity of g at the origin.

We now claim that this implies the bound (A-5) at the origin. Indeed, ¢ admits a Taylor expansion (A-3)
from (2-2) to which we apply successively the operators A, A*. We observe from (2-5) the cancellation

A =cy*+ 007,
which ensures the bound near the origin
el Sy, el SV2

and hence the finiteness of the norms (A-5) at the origin.

Step 2: control for r > 1. We first claim

L+2

Z /(a;fs)z < 400.
k=1

[+
e

&
lelli < IVl + |5

Indeed, from (A-4),

< 1.
LZ
From (A-8),

f|Ag(u>|2§/|Av|2<+oo.

Now
Ag(u) = g' W) Au+ (dyu)*g (u)g" ()

(A-13)

(A-14)

(A-15)
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and, using Sobolev and the L*° control (A-15), we estimate

/ ((3ye)g' (w)g" u)* < / |Ag|? / IVel? « / |Ag?.

Moreover, from the smallness (A-15) and the structure of Q,

g’ )| =1 asr— +oo,

1+f|Av|22/|A8|2.

The control of higher order Sobolev norms (A-14) now follows similarly by induction using the Faa di
Bruno formula for the computation of 8;‘ g(u). This is left to the reader. Now (A-14) easily implies

from which

L+2

> [ lal < oo,

i=1YY >1
and the bound (A-5) is proved far out. ]
Appendix B: Coercivity bounds

Given M > 1, we let @, be given by (3-7). Let us recall the coercivity of the operator H, which is a
standard consequence of the knowledge of the kernel of H and the nondegeneracy (3-8).

Lemma B.1 (coercivity of H). Let M > 1 be large enough. Then there exists C(M) > O such that, for all
radially symmetric u with
2 |’/t|2
|8yl/l| —+ 7 < 400

(u, ®p) =0,

satisfying
we have
2 |u|2
(Hu,u) > C(M) |0yul” +— |-
y

We now recall the coercivity of H, whichis a simple consequence of (2-11) and is proved in [Raphaél
and Rodnianski 2012].

Lemma B.2 (coercivity of H ). Let u be such that

2
/|ayu|2+ % < 4o0. (B-1)
y
Then
2
(Fu, u) = |A*ul%, > co [ / Byul? + / %] (B-2)
y=(1+ [log y|*)

for some universal constant co > 0.

We now claim the following weighted coercivity bound on H.
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Lemma B.3 (coercivity of €,). There exists C(M) > 0 such that, for all radially symmetric u with

|u|? |Aul?
/y4(1+|10gy|2)+/y2(1+y2) <t (B9
and
(u, ®y) =0,
we have 5 )
/lHulZEC(M)[/ - lul +/ |Aul } (B-4)
y*(1+ [log y|?) y2(1+ [log y[?)

Proof of Lemma B.3. This lemma is proved in [Raphaél and Rodnianski 2012] in the case of the sphere
target. Let us briefly recall the argument for the sake of completeness.

Step I: conclusion using a subcoercivity lower bound. For any u satisfying (B-10), we claim the subco-

ercivity lower bound

|Hul®

- |02ul? (dyu)? |u|? B (3yu)> |u|? ]
R ~t [ = =+ = = —C -+ <. B9
(1+ [log y[9) y*(1+ [log y[%) y*(1+[log y|*) 1+ I+y

Let us assume (B-5) and conclude the proof of (B-4). By contradiction, let M > 0 be fixed and consider a

normalized sequence u,,,

/ - +/ Ml (B-6)
y*(1+[log y[7) y=(1 + [log y[7)
satisfying the orthogonality condition

(un, ®y) =0 (B-7)
and the smallness

[ (B-8)

Note that the normalization condition implies

|un|2 |8yun|2
4 2 + 2 2 Nl’
y*(1+[log y|*) y=(1+[log y|*)

and thus, from (B-5), the sequence u,, is bounded in Hl%)C. Hence there exists 1y, € HI%C

subsequence and for any smooth cut-off function ¢ vanishing in a neighborhood of y = 0, the sequence

such that, up to a

Cu,, is uniformly bounded in HI%C and converges to {uso in Hl}m. Moreover, (B-8) implies
Hus =0,

and by lower semicontinuity of the norm and (B-6),

/ |”oo|2 < 400
y*(1+ [log y[?) '
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which implies from (2-12) that
u=aAQ forsome e R.

We may moreover pass to the limit in (B-7) from (B-6) and the local compactness of Sobolev embeddings,
and thus
(Moo, AQ) =0, from which o =0,

where we used the nondegeneracy (3-8). Hence u,, = 0. Now the subcoercivity lower bound (B-5)
together with (B-6), (B-8), and the Hl%m uniform bound imply the existence of ¢, ¢ > 0 such that

Ayt oo Uoo|?
/ |:|yool+|oo|5i|2c>0’
e<y<l/e 1+y 1+y

which contradicts the established identity u, = 0. Thus (B-4) is proved.

Step 2: proof of (B-5). Let us first apply Lemma B.2 to Au, which satisfies (B-1) by assumption, and

estimate

~ A 2
f(Hu)Z:(HAu,Au)Z/lay(Au)|2+/yz|(1—j_|yz). (B-9)

Near the origin, we now recall the logarithmic Hardy inequality

v]? f 2 f 2
- 3 lv]” + [dyv],
/ygl y2(1+ [log y|?) 1<y<2 y<1 ’
and thus, using (2-10),

()
2o y? "\ao/| ~ i«

which, together with (B-9), yields

@) ul?
/' ! ”/yfl[y2<1+|logy|2)+ Vit logyp | € [ (sl 1.

To control the second derivative, we rewrite near the origin

! V-1 Au  (V=D+(1-2
Hu=—8§u+—<—8yu+z)+ u:—a§u+_”+( +d-2)
y y

u
— | Adyul* + |u?),
y2(1+ [log y|?) /ygl g

AQ

y? y y?
and (B-5) follows near the origin.
Away from the origin, let {(y) be a smooth cut-off function with support in y > % and equal to 1 for
y > 1. We use the logarithmic Hardy inequality

/ 2|M—|22§/ |M|2+f|3yu|2
y=1 Y (1 +1[logy|*) =~ Ji<y<2
to conclude from (B-9) that

/(Hu)2 fg |Aup cf (ul? + 13yu?).
2(1+|10gJ’|2) 1<y<2
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Now, from (2-5), we estimate

| Aul? | = dyu — §I? Jul?
¢ = > _cfli———
y2(1+[log y|?) y2(1+[log y|?) yo(1+[log y|?)

2 2 9 2
z/—z ¢ 2[|ayu|2+%]_c/[@+|y';|],
y=(1+[log y|*) y y y

where we integrated by parts in the last step. The control of the second derivative follows from the explicit

expression of H. This concludes the proof of (B-5). O

We now aim at generalizing the coercivity of the €, energy of Lemma B.3 to higher order energies.
This first requires a generalization of the weighted estimate (B-4).

Lemma B.4 (weighted coercivity bound). Let L > 1,0 <k < L, and M > M (L) be large enough. Then
there exists C(M) > 0 such that, for all radially symmetric u with

/ jul® +/ |Aul” n (B-10)
< o0 -
Y41+ [log y|?) (1 + y#k+4) yO(1+ [log y[>) (1 4 y*+4)

and
(u, Py) =0,

we have

/ |Hul?

y4(1 +[log y|?) (1 + y*)
> C(M){/ juf® +/ | Aul } (B-11)
N y4H(1 =+ [log y[2) (1 4 y#+4) yo(1 +[log y[2) (14 y*) |

Proof of Lemma B.4. Step 1: subcoercivity lower bound. For any u satisfying (B-10), we claim the

subcoercivity lower bound

/ |Hu|?
YA+ [log y)2(1 + y*)

2,12
>/ |03ul +/ (dyu)?
~J oyt A+ llog y (1 +yH) y2(1+[log yD*(1 + y*+4)

+/ juf? cf [ @e? +/ lul” (B-12)
y4(1+|10gy|2)(1+y4k+4) 1+y4k+8 1+y4k+10 :

Control near the origin. Recall from the finiteness of the norm (B-10) and the formula (2-21) that

1 Y
Au(y) = m/o TAQ(T)HM(T) dr.
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Then from Cauchy—Schwarz and Fubini we estimate

A 2 5
/ %dm/ / ST e e dyde
y<1 y> (1 + [log y[*) 0<y<1 Jo<r<y ¥ (1 +[log y|)

1785

d H 2
g/ |Hu(z)|? |:f T T TN Y 5 ] dt §/ S o | Hu(®) 5o dt
0<t<l1 r<y<1 Y*(1+1[log y|*) <1 (1 +[log T]%)

and thus

| Aul? |Hul*
°(1+4 [log y[?) ~ (14 logy|?)
y<1Y gy y<1Y gy
We now invert A and get from (2-10) the existence of c¢(u) such that

Au(t)
AQ(7)

y
u(y)=cw)AQ(y) —AQ() /0

We estimate from Cauchy—Schwarz and (B-13), for 1 <y <1,

/y Au(t)
dr
o AQ(T)

from which

? Y JAuf? |Hu|?
Sy U +llogyP) | s r5y3/ TR —
o T0(1+[logT|?) v=1 Y1 +[logy[?)

H 2
|c(u>|2,§/ |u|2+/ S —
y<1 y<1 Y*(1 +[log y|*)

2 2
/ . |ul . 5/ . |Hul . +/ .
y<1 y*(1+[log y|) y<1 Y*(1 +[log y|*) 1<y<2

The control of the first derivative follows from (B-13), (B-14), and the definition of A:

and

|9yul* | Au? Ju|?
2(1+|log y|?) ™~ 2(1 4+ |log y|?) 4(1 4+ |log y|?)
y<1Y gy y<1Y gy y<1Y gy

Hul?
S/ %-i—/ lul?.
y<t Y +logyl?)  Ji<y<2

To control the second derivative, we rewrite near the origin

1 V-1 A V-1 1-7
HM=—3§M+—(—8yu+z>+ 3 M=—8y2M+—u+( )t( )u,
y y y y y

which using (B-13), (B-14) and (2-5), (2-6) implies

212
f |05 ul </ |Hu|? +/ .
y<1 YA +1logy?) ~ Jy<r ¥4I +logyl?)  Ji<y<2

This concludes the proof of (B-12) near the origin.

(B-13)

(B-14)
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Control away from the origin. Let {(y) be a smooth cut-off function with support in y > % and equal to 1
for y > 1. We compute

|Hul
/ ¢TI 1 Jlog y])?
| = 3, (ydyu) + Lul?
—f; VT6(1 1 log y])?

:/; 13y (yyu)|? _2/§ dy(ydyu) - Vu +/§ V2 ul?
yHH0(1 + [log y|)? yHHT (1 + [log y|)? yHHE(1 + [log y|)?

_/g 10, (ydyu) 2 +2/§ V (8yu)? +/§ V2ul®
~J 7 yHEE(1 4 [log y|)? y#+6(1 + [log y|)> yH+8(1 4 [log y|)2

— 2 é‘V -
/'”' A(y‘"<+6<1+|1ogy|>2>' (B-15)

We now use the two dimensional logarithmic Hardy inequality with best constant:'# for all y > 0,

2 2 P 2
Tty <O o s 9
4 y=1DY Y(1+1logyl) 1<y<2 y>1 y¥(1+[log y|)
with y =4k 4+ 6. We estimate
f§ By aywl® (4k+6>2/ |yu? —ck/ 9 up?
yHHe(1 +llogyn? = 4 y=1 Y¥¥0(1 + |log y|)? l=y<2

(4k+6)4/ | |? / ’ )
> -C [|0vu|” + |ul“].
16 y=1 Y¥+8(1 4 |log y|)? ¢ 1<y<2 19yl lu]

We now observe that, for k >0 and y > 1,

AV =M +0G).

2
A( 1 )=(4k+6)‘
y

4k+6 y4k+8

We compute

Injecting these bounds into (B-15) yields the lower bound

/g |Hul|?
y*+4(1 + |log y))?

(4k + 6)* 2/ Ju ? / |8yul? jul?
o [EREOT_ 4kvs —c -
‘[ T B A T G B S E

Note that we can always keep the control of the first two derivatives in these estimates, and the control

(B-12) follows away from the origin.

14 which can be obtained by a simple integration by parts; see [Merle et al. 2011].
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Step 2: proof of (B-11). By contradiction, let M > 0 be fixed and consider a normalized sequence u,,,

|’/tn|2 |Aun|2
1 2 g T 6 2 o = b (B-17)
y*(1+[log y|?) (1 4 y*+%) yo(I+[log y|*)(1+ y*)

satisfying the orthogonality condition

(un, ®p) =0 (B-18)
and the smallness
/ |Hu,|? 1 (B-19)
A +NogyH(1+y%) ~n

Note that the normalization condition implies

|”n|2 Iayun|2
n <1, (B-20)
yH(1L+ [log y|?) (1 + y*+4) y2(1+[log y|?) (1 4 y#+4)

and thus, from (B-12), the sequence u,, is bounded in Héc. Hence, there exists uqs, € Hlic such that, up to
a subsequence and for any smooth cut-off function ¢ vanishing in a neighborhood of y = 0, the sequence
Cu,, is uniformly bounded in HI%)C and converges to U in Hl})c. Moreover, (B-19) implies

Hus =0,

and, by lower semicontinuity of the norm and (B-17),

T —
Y41+ log y ) (1 + y*#+4) ’
which implies from (2-12) that

u=aAQ forsomea«acR.

We may moreover pass to the limit in (B-18) from (B-17) and the local compactness embedding, and thus
(oo, AQ) =0, from which o =0,

where we used the nondegeneracy (3-8). Hence uo, = 0.
Now from (B-13), (B-14), (B-19), and (B-17),

/ |Mn|2 +/ |8y”n|2 > 1
y=1 Y1+ log y[2) (1 + y*+4) = [ o1 yo(1 4+ [log y|2) (14 y*) ~

and hence, from (B-12), (B-19),
|ayl4n|2 |Mn|2 1
1+ y%+8 T ] 4 y#ht10 ~ 7

which, from the local compactness of Sobolev embeddings and the a priori bound (B-20), ensures

18,050/ sl
1+ y4k+8 + 1+ y4k+10 ~

This contradicts the established identity uo, = 0. ]
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We are now in a position to prove the coercivity of the higher order (€r+2)o<k<z energies under
suitable orthogonality conditions. Given a radially symmetric function &, we recall the definition of
suitable derivatives:

A*e;  for k odd,

0<k<2L+1.
Ag,  for k even,

&1 =0, Ep=¢, Ek+1 = {

Lemma B.5 (coercivity of €yr42). Let L>1,0<k < L,and M > M(L) be large enough. Then there
exists C(M) > 0 such that, for all & with

leakt11?
£ +
/ | 2k+2| / 2(1+y2)

le2p-11 |2 ]
* + <+o0o (B2l
;/[y"’(H|10gy|2)(1+y4<’<—”)) Y41+ [log y|2) (1 + y*k=p)) (B-21)

satisfying
(e, HP®y) =0, 0=<p <k, (B-22)

we have

_ k+1 2 %
Cot2(e) = /(H &)z C(M){/ y2(1 4 [log y|?)

|l€2p—1] |£2,? “
+ + . (B-23
;}/ T BT AT R |

Proof of Lemma B.1. We argue by induction on k. The case k =0 is Lemma B.3. We assume the claim for
k and prove it for 1 <k +1 < L. Indeed, let v = He. Then v, = ¢,47, and thus v satisfies (B-21) and?

forall0< p <k, (v, H ®y)=(c, H' 'dy)=0

We may thus apply the induction claim for & to v and estimate

/(Hk+28)2

=/(Hk+lv)2
leak43]? £ l€2p+11 l&2p42l
>CM) | ——7—-+ P + P
y2(1+[logyl?) = yo(I+[log y[2) (14 y**=p)) = y4(14|log y|?) (14 y**=P)

. C(M){f e2k43l”
- y2(1+|log y[?)

k+1 2 2
le2p—1l le2p

. (B-24

+Z/|: 6(1—i—llogylz)(l—i—y“("“_l’))+y4(1—|—|10gy|2)(1+y4(k+1_1’)) ( )

ISfrom k <L+1
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The orthogonality condition (g, @) = 0 and (B-21) allow us to use Lemma B.4 and to deduce from the
weighted bound (B-11) the control

/ |&2]? o / le|?
YHA A+ log y ) (1 +y*) ~ ] y4(1 + [log y|2) (1 + y#+4)
which together with (B-24) concludes the proof of Lemma B.1. O

Appendix C: Interpolation bounds

We derive in this section interpolation bounds on ¢ in the setting of the bootstrap proposition 3.1, and
which are a consequence of the coercivity property of Lemma B.5.

Lemma C.1 (interpolation bounds). (i). Weighted Sobolev bounds for ¢;. For0 <k <L,

2k+1 2

|&i f 5

j <C(M)¢ . C-1
Z/ 2(1+y4k—21+2)(1+|10gy|2)+ leak+2]” < C(M)E2k42 (C-1

(i1). Development near the origin. & admits a Taylor-Lagrange-like expansion

L+1
e=) ciTiri-i+re (C-2)
=1
with bounds l
lei] < C(M)/ €42, (C-3)
087 | S v K log y|C(M)/€ap 40, 0<k<2L+1, y<1. (C-4)

(iii). Bounds near the origin for &;. For |y| <1,

leaw| SC(M)yllogyly a2, O0=<k=<L, (C-5)
le2e—1] S C(M)y*llog vV éarsa, 1<k <L, (C-6)
lear 11 S C(M)/ €212 (C-7)
(iv). Bounds near the origin for 8;‘8. For |y| < 1
07 el S C(M)yllog y|y/€ar 42, 0<k <L, (C-8)
07 el SCM)log y|V a2, 1<k<L+1. (C-9)
(v). Lossy bound.
Al g logyl€ . . (4k+2)L/(2L D 0<k<L—1.
Z 14 o= T vak—aiia 1”5 [log byl b2L+2 fork=1L (C-10)
2k+1 (4k+2)L/(2L D 0<k<L-—1

L+ llogy i » <ksL-1,
Z/1+ sl el S lloghil© b2L+2 fork—L. (C-11)
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(vi). Generalized lossy bound. Let (i, j) e N X N* with2 <i+ j <2L+2. Then

bgiﬂ_l)n/(u_l) for2 <i+j<2L,

1+ |logy|¢ .
/%w;eﬁguogbuc byt fori+j=2L+1, (C-12)
Y p2L+2 fori+j=2L+2.
Moreover,
|0iel? < loghy[€ plTDICL=D g < < 2L 41, C.13)
2 ~ 10g b1 2042 .
1+ |log y| b fori=2L+42,
(vii). Pointwise bound far away. Let (i, j) e Nx Nwith1 <i+ j <2L+ 1. Then
y
5ie 2 pUHIPLICL=D ol <4 j <20 —1,
Lj < llogby[©  p3EH fori+j=2L, (C-14)
Y le=ozn b+ fori+j=2L+1.

Proof. Step 1: proof of (i). The estimate (C-1) follows from (B-23) with 0 <k < L.

Step 2: adapted Taylor expansion. Initialization. Recall the boundary condition origin at the origin
(A-13), which implies |er7+1(y)| < C y2 as y — 0. Together with (2-10) and the behavior AQ ~ y
near the origin, this implies

E2L+1

1 y
ri=er1(y) = —/ e 12AQx dx, (C-15)
yAQ Jo

and this yields the pointwise bound, for y <1,

1
1 2 Y 2
|r1<y)|sﬁ< / |ezL+z|2xdx) ( /0 xzxdx) < COMrr 1o, (C16)
y=<1

We now remark that there exists % < a < 2 such that

lears1(@)* < f lear+11* S C(M)Ear12
lyl<l

from (C-1). We then define
Yo
=—A —d
r 0 fa NG x

and obtain from (C-16) the pointwise bound, for y <1,
Ir2l S yllog yIC (M) /€21 12. (C-17)
Now observe that, by construction, using (2-10),
Arn=ri=¢eypq1, Hrn=A%ei1=¢y42=Hey. (C-18)

Now, from (B-24),

lear |?
— = ydy < 400,
/y§1 y4(1+ [log y|?)



DYNAMICS FOR THE COROTATIONAL ENERGY-CRITICAL HARMONIC HEAT FLOW 1791

and hence |e31(y,)| < 400 on some sequence y, — 0, and from (C-17), (C-18), the explicit knowledge
of the kernel of H, and the singular behavior (2-13), we conclude that there exists ¢, € R such that

g =2 AQ + 1. (C-19)

Moreover, there exists % < a < 2 such that

lear (@) |* < / lear > S C(M)Ear 12
ly|<1

from (C-1), and thus, from (C-17), (C-19),

leal S C(M)y/Ear 42, learl S yllogy|C(M)/€ap+a- (C-20)
Induction. We now build by induction the sequence

k41
AQ

We claim by induction that, for all 1 <k < L + 1, &3742-2¢ admits a Taylor expansion at the origin

1 y y
72k+l:—/ erAQxdx, 72k+2=—AQf dx, 1<k<L.
YAQ Jo 0

k
E2[42-2k = Z CikTk—i+ru, 1<k<L+1, (C-21)

i=1

with the bounds, for |y| <1,

lcik] S C(M)y/€ar+2, (C-22)
|4 | < llog y[y* 17 C(M) /& ya, 0<i<2k—1. (C-23)

This follows from (C-19), (C-20), (C-17), (C-18) for k = 1. We now let 1 < k < L, assume the claim for
k, and prove it for k + 1.
By construction, using (2-10),

Aryyr =ropt1,  Hroggo =rog, (C-24)

and thus 'ry; = ro;—;. In particular, for i > 2, ﬂi_2r2k+2 = ryk—;, and therefore the bounds (C-23) for
k+1and 2 <i <2k + 1 follow from the induction claim. We now estimate by definition and induction,
for [y| <1,

y

1
|Aroyo| = [rus1 ()| = ‘— ru A Qx dx
yAQ Jo

C(M) %2L+2 y3+2k_1

S 7
y

Y rok41
[r2k42] = ‘AQ/ Ag dx‘ S yy*C (M),
0

and (C-23) is proved for k = 1 and i =0, 1. From the regularity at the origin (A-13), (C-24), the relation

k
Heypo o1y = €2042-2k = Z CigTh—i + 1o,

i=1
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and the bound (C-23), there exists co¢42 such that

k

E2L42-2(k41) = Z CikTit1-i +cou12A Q0 + ropi2.
i=1

We now observe that there exists % < a < 2 such that

lear—ax(@)]* < / lear—ok|* S C(M)€ar12

[y|=1

from (C-1), and thus, using (C-23),

lcok42] S C(M)/ €.

This completes the induction claim.

Step 3: proof of (ii), (iii), and (iv). We obtain from (C-21), (C-3) with k = L + 1 the Taylor expansion

L+1

e=Y cisTiei+re. re=ruga. el S CMVE 0,

i=1
where, from (C-23),

1A re| < Jlog yly 1= C(M) & a, 0<i<2L41.

A brute force computation using the expansions (2-5), (2-6) near the origin ensure that, for any function f,

k

. 1

ONf =Y P f, |Pisl S = (C-25)
i=0

and we therefore estimate, for 0 <k <2L +1,

2L+1—i

llog yly _
94rel S COM) Ve s Z g— <y K log y|C (M) o 1a.

This concludes the proof of (ii). The estimates of (iii), (iv) now directly follow from (ii) using the Taylor
expansion of 7; at the origin given by Lemma 2.3, and (C-16) for (C-7).

Step 4: proof of (v). We first claim that, for0 <k < L,

2k+-2 |8i8|2
Z/(1+I10gy|2)(l+y‘”‘ 2ty ™~

Observe that this implies (C-13) by taking i = 2k + 2.
Indeed, from (C-8), (C-9), we estimate

2k+1

S C(M) (€axt2 + €2042). (C-26)

1+ [logy|€ .
/)<1 mw;ﬂz SCM)érryr. (C-27)
i=0 “r=
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For y > 1, we recall from the brute force computation (C-25) that

k

k
el S
=0

l— (C-28)
y
and thus, using (C-1), for 0 <k < L,

2k+2

|al8|2 2k+2 i |8 |
J
/y;l (1+ |10gy|2)(1 _|_y4k—2i+4) ~ Z Z/y>l 1+ |10gy|2)(1 _|_y4k—2i+4+2i—21)

i=0 =0

2k+2 |8'|2
< J M€
Zf(1+|10gy|2)(1+y4k+4 2]) ( ) 2k+2>

and (C-26) is proved. In particular, together with the energy bound (3-23), this yields the rough Sobolev

bound
/ IrSI2
y?

Therefore, again using (C-26), we estimate

2L+2

/ 1+I10gyl2

2"2“ [+]logyl® o 2<2"Z+‘ Lt logy(© o Lt log o1 1
1+y4k 21+4 y<BloOL 1-|-y4k 2i+4 y= Bl y
1
< Nog b1 “6aya + —o1 B0 (C-29)

and (C-11) follows. The estimate (C-10) now follows from (C-5), (C-6), (C-7) for y < 1 with also (1-31),
and (C-11) for y > 1.

Step 5: proof of (vi). Leti >0, j > 1with2 <i+4j<2L+42.

Case 1: i + j even. We have
i+j=2k+1), 0<k=L.

Fork <L —1, from (C-11)and 0 <i =2k +2 — j <2k + 1, we estimate

1+ |log y|© 1+ [log y|© 4+2)L/ QL1 i+j—1)2L/QL—1
fT' l | _/mlal |25b§ +2)L/( )|10gbl|C§b§l+J )2L/( )|10gb1|c

For k = L, from (C-11), we have

1+ [log y|© 14 |log y|© 2« 12042
[ e = [ e < b o
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Case 2: i+ jodd. Wehavei+j=2k+1,1 <k <L. Assume k < L — 1. If j = 2, then
i <2k+1—j<2(k—1)+1, and thus, from (C-11),

1+Ilogy| 976 = 1+ [log y|© 376
1+ y 1+y4k+2—2i y

1 1
141 ¢ . p 141 ¢ . 2
< ([ Lxlloexl” i 2 tllogyl” a2
~ 1+y4k+4—21 y 1+y4(k—1)+4—21 y

L/2Q2L—-1))(4k+2+4(k—1)+2 i+j—1)2L/(2L—1
§|10gb1|cb1/(( ))( ( ) ):bgl J=D2L/( )|10gbl|c

For the extremal case j = 1,i =2k, 1 <k <L — 1, we estimate, from (C-10), (C-26),
/ 1+|10gy|C|32k o< </ 1+|1ogy|0|82k8|2)5(/ |92 2 )i
1+ y2 I+y* 7 1+ |log y|?
< |log bllcblL/(z(zL—1))(4k+2+4(k—1)+2) _ b§t+j—1)2L/(2L—1)|10g b1|c.

If k=L, then for j >2,wehavei <2k+1—j <2(k—1)+1, and thus, from (C-11),

1+|logylc " 1+ |log y|©
1+ | | - 1+y4k+2—2i| y |

1 1
< 1+|10gY|C |3i8|2 2 1+|10g)7|c |8i8|2 :
S\ Ty 1% 1 ytt-Dra—2i %

2LA2+(@4(k-1)+2)L/2L~1))

< |10gb1|cb2( = b log by,

and for j =1,i =2L, from (C-10), (C-13),

l 1
f1+|1ogylc|82L P < /1+|logy|C|82L 2 / a3Fel? N2
1+ y? 14+ 7 1+ |log y|?

L(2L42+(4(L-)+DL/L-1))

< |log by [Cb; = b log b (€.

Step 6: proof of (vii). From Cauchy—Schwarz we estimate

2 1 1 2 2 9, 2
H 5/ |saye|dy§/( gyl +/ 06l
yilree=0 " Jy5 y 1+ |log y|

Leti, j>0withl <i+j<2L+1.Then2 <i+ j+1<2L, and we conclude from (C-12), (C-13) that

de 2 </ <1+|logy|2)|a;e|2+/ 9762
Yl ™ = y+2 y=1 Y (1 + [log y|?)
pUTDHICE=D ford < j41<2L,
< [loghy|€ { P! fori+j+1=2L+1, O
btt2 fori4j+1=2L+2.
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Appendix D: Leibniz rule for H*

Given a smooth function ®, we prove the following Leibniz rule.

Lemma D.1 (Leibniz rule for H k). Let k > 1. Then

k-1
A1 (de) = ZCDZle 1821-!-2@21 1,2k—162i—1,
i=0 |
] k’ (D-1)
A (De) = Z Do 2ke2i + Z Do _1,0k82i -1,
i=0 i=1

where ®; . is computed through the recurrence relation

1+27
q)(),l =—8y<I>, q)l,l =(I)q)0’2=—ayyq>_

0,®, ®1,=20,d, Byo=d,  (D-2)

Dor42,2k+2 = Pok+1,2k+1>

Dotz = Poi—1,2k41 + 0y P22kt + (1 +22)/y) Pk 1 <i <k, (D-3)
Do, 2k+2 = 0y Do, 2k+1 + (1 +22) )y Do 241,

Do —1,2%42 = —DPoi 2.2k +1 + Iy P21 2641, I1<i<k+]1,

Dogt1,2k+1 = ok 2k,

Do 12k41 = P22k + (1 +22Z)/y)Poi—12k — 0y Poi—12k, 1 <0 <k, (D-4)
Do; op 1 = —0yPoi 2k — Poi—1,2, 1 <ic<k,

Do, ok +1 = —0yPo 2.

Proof. We compute
A(Pe) = Pey — (3, D)e,

. 1+2Z
H(®s) = A"Ae = Per +0,De; — | —A+ (3, Pe)
y

1427

= $gy +20,Pey + |:—8yy<I> — 3y<l>:|s.
and

1+27
—ZA[d)zl 2%€2i] +Z( A"+ )q>2i—1,2k82i—1

1427

= Z{q’zi,zksziﬂ — 0y Do ok2i} + Z{_q)Zil,ZkSZi + |: Do 1,01 — ayq>2i1,2k]82il}

i=0 i=1
1+27

k k
= —0yPg ke + Z(_achZi,Zk — O 1,26)82i + Z{q)zi—z,zk +

Do 10k — 8yq)2i—l,2k}82i—l ,
i=1 i=1

+ Dok 24E2%+15
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which is (D-4). We then compute

A2+ (D)

kt1
1+22
= Z[ j|{q>2i,2k+182i}+z A* (P21, 2k+182i-1)

1=i

k+1

1427
:Z — D2 2k 18241+ 0y Do 2k g1+ ) Do; 241 |€2i +Z{q>2i—1,2k+182i+3yq>2i—1,2k+182i—1}
' i=1

1427

= |:3y<190,2k+1+ <I>0,2k+1]8+¢2k+1,2k+182k+2

k+1

q>2i,2k+1]82i+ E [—D2i—2. 2641+ 0y Poi—1,264+1] €2i-1,
i=1

1427

+Z|:q)2i—l,2k+l +0y Do 2k t1+
i=1

which is (D-3). [l

Appendix E: Proof of (3-55)
A simple induction argument ensures the formula

L—-1
[0, H lw =) HiTd, HilH, ™ w
k=0

We therefore renormalize and explicitly compute

-1
)» AV
[0, H )\2L+2 E < HL (k+1)8>. (E-1)
=0

We now apply the Leibniz rule Lemma D.1 with ® = AV/y?. In view of the expansion (2-6) and the
recurrence formula (D-3), we have an expansion at the origin to all orders, for even k > 2,

N
Dok (y) = Zci,k,py2p +0(y*N*?), 0<ic<k,
p=0
N
o1k () =Y ik pyPTH OGN, 1<i<k—1.
p=0

and, for odd k > 1,

N
Do k1 () =D ik pyP + OGN, I<i<k+1,
p=0

Doigkp1 () = Y ciapy? T OGP, 1<i<k—1
p=0
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We also have a bound, for y > 1,

1 :
[Pl < Ty 0<i<2.

Therefore, from (D-1), we estimate

k |&i ]
for all k > 0, ‘H (—s)‘ chk1+y4+(2k 5 (E-2)
Similarly,
2k 2k+1
AV 1 | 1| |8i|
AHk( ) <zc,-k—[| L e e . | m—
2 ~ ’ 4+(2k v&i ~ L 4+(2k—i)
' y - 1ty — T y(d+y V)

We now inject (E-2) into (E-1) and obtain using (3-36) the pointwise bound on the commutator

2L-2 2L-2
6, HEw| < 210 b1 ZZ &2 —k-n+il 1Dl le2r—2-ml _ 1b1l [&m]
o WS 2513 KTy ~ 32L+2 1+ y+m — a2L+2 1 y2r2L=m"
k=0 i=0 m=0 m=0

Hence, after a change of variables in the integral, and using (C-1), we have

2L-2
03, Hfw? _ |61 2

Em C(M)b?
Z 2142,
A1+ y2) ~ 24L+4 (1+ y2)(1 4 y4+4L 2y~ HAL+4

and, similarly,

2 2L-1 2
L |b1| (M)bl
/'A*[af’H )L4L+4 Z / y (1_|_y4+4L Zm) AAL+4 o142,

which is (3-55).

Appendix F: Proof of (4-10)

We claim the following Lyapounov monotonicity functional for the €y, energy.

Proposition F.1 (Lyapounov monotonicity for €o¢42). Let 0 <k < L — 1. Then we have

d 1
dt { 24k+2 [%Zkﬂ +0 (b b(4k+2)2L/(2L 1))} }

<|10gb1|C p2kt3 | pIHSHQKHD2L/QL-1) [y okrag F.1
S e | h + b, +4+/0] %2 | (F-1)

for some universal constants C, § > 0 independent of M and of the bootstrap constant K in (3-23), (3-24).
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Proof of Proposition F.1. Step 1: modified energy identity. We follow verbatim the algebra of (3-48) with
L — k and obtain the modified energy identity

1d bi1(AZ);,
EE{%zku—l—z/Tw%szk}

~ A (AV) d (b1(AZ)
—f(waszrl)z— (f+bl>/ﬁw%k+l+/a<vk Wok41W2k

~ 8, Z;, k .
+ | Hywapy1 Tw2k+Ak([at7HA]w)+Aka ﬁ‘ﬁ

bi(AZ) ~ 0,72 1
+/ lkzr f\wzk[—H,xwzkH+ZTAw2k+AA([8,,Hf]w)—i—A,\Hf(ﬁ%,\)} (F-2)

b1(AZ) 1
+f Tszm[[a,, HMw + H{‘(ﬁ%ﬂ.

We now estimate all terms in the right hand side of (F-2).

Step 3: Lower order quadratic terms. We treat the lower order quadratic terms in (F-2) using dissipation.
The bound

2

3, H lw)? b?
u /|Ak([3,,HA]w)|2<C(M))L4k+4%2k+2 (F-3)

221+

follows from (3-55) with L — k. From (3-54), the rough bound (3-38), and Lemma C.1, we estimate

0:Z), ~
/ka2k+1|:7w2k+/ <[3t,Hf]w>]’+/lHAw2k+1l

b? 2
<1 | Hy w1 > 4 — 2k 4 C(M)€ 12
-2 2 Ak+4 1+ y°

1 ~ 2 bl
< §f|ka2k+1| + g € (M)br6aia.

b(AZ);

W2k

All other quadratic terms are lower order by a factor b1, again using (3-38), (3-55), (3-36), and Lemma C.1:

(AV) bi(AZ) 0, Z
bl /‘ 2)\2 ;w%kJrl +f )\21’ Aka[ trku)2k+Ak([at’H){(]w>iH
bi1(AZ), bi1(AZ),
+/ Tu&kﬂ[at,Hx fdt VP W2k+1W2k

bt E3et1 b
S Sakta [/ T4y +f 1+y6 +C(M)%2k+2j| A4k+4C(M)b1%2k+2

We similarly estimate the boundary term in time using (C-10):

bi1(AZ), by 8§k+1 &34 b CpWk+22L/CL=1)
I E)A <
‘/ 2, Wok+1 W2k )ﬁ”‘“ / T+,2 +/ Tyt |~ A4k+2|1 gbi|" b,
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We inject these estimates into (3-53) to derive the preliminary bound
LA +O(b%b(4k+2)2L/(2L’”) <Y [ G+ [ Howmerr A1 5

2dt
b1(AZ) [ D1(AZ) by
+/Hk<kqu) [% 2k+1+Ak(#w2k>:| +A4k+4b 16242 (F-4)

with constants independent of M for |b| < b*(M) small enough. We now estimate all terms in the right
hand side of (F-4).

Step 4: further use of dissipation. Recall the decomposition (3-57). The first term in the right hand side

of (F-4) is estimated after an integration by parts

~ 1 C 1 ¢
‘ / HAkaHAAHf(A au)‘ < A el I Foll o+ 5 / | Hwaicen P+ g / |AH T ?

C 1 ~
= a1 Follov/ G HIAH FrlI L |+ 5 / |Hywyi|* (F-5)

for some universal constant C > 0 independent of M. The last two terms in (F-4) can be estimated by
brute force from Cauchy—Schwarz

bi(AZ)
‘fHk()Lz A) lkz S W

1 2 1
< b /1+|10gy|2|Hk@|2 ’ / Eokt1 .
Ak T4y y2(L+[log y|*)

1
b 1+ [log y|? 2
SWL¢%2k+z(f s MR (F-6)

1+ y4

where constants are independent of M thanks to the estimate (B-2) for eyx4. Similarly,
1 bi1(AZ),
k
[t ) (557

1

by 1—|—|logy|2 &2 7
< ([ b antsr e REAITTE
A l+y (I +yH (1 + [log y|*)

by 1+ |log y|? 2
SWQM)\/%M( / Tffwlk%% / AHF,2) . (F-D)

‘We now claim the bounds

2
1+|10g)’| |Hkg|2<b2k+2llo b |C (F_8)
1+y4 =Y go1| ,
L+llogyl? o 5 oo c
Ty |AH*Fo|* < b 2|logby|€, (F-9)
/ |H* 1502 < b log by |, (F-10)

/ |AHk%1|2 < b%k+3|10gbllc +b}+5+(2k+1)2L/(2L—1) (F-ll)
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for some universal constants §, C > 0 independent of M and of the bootstrap constant K in (3-23), (3-24).
Injecting these bounds together with (F-5), (F-6), (F-7) into (F-4) concludes the proof of (F-1). We now
turn to the proofs of (F-8), (F-9), (F-10), (F-11).

Step 5: Efb terms. From (2-88) we estimate

1+ [logy* ~ ~
[ TR < [ <0 g b

1+ [log y|? ~ 7 ¥ 7
+ [log y| AT, 2 < [ |AEMT, 2 = | BT, H'T, < 5%+3|log b [C,
1+y2 - R

T 2(k+1)+2
/ |Hk+1\l’b|2 Sjb]( +D+ |10gb1|C’

and (F-8), (F-9), (F-10) are proved for (Ivfb.
Step 6: Mod() terms. Recall (3-29),

— A L L2 g6
Mod(r) = —<TS +b1)AQb + Z[(bi)s +(2i — 14 cp,)b1b; — bi+l]|:Ti + X3, Z —8];],
i=1 j=i+1 !

and the notation (3-39). We will need only the rough bound for b;-admissible functions (2-32).
Proof of (F-10) for Mod. We estimate from (2-32), for y < 2B,

~ . . , bi|log by |€
|Hk+1Si| + |Hk+1ASi| + |Hk+1biA7vi| S,bl](l +y)21717(2k+2) ,Sblbll_l(l +y)2172k*3 < 1| Og 1|

N oyt
and thus, using HAQ =0,
~ blloghi € _ , c
G [ TR < billoghlC.
/ v<am, 1+ yAk+2 1
We also have the rough bound, for 1 <i <L,i+1<j <L,, y <2By,
L+2 oo o
T+ |xs, D 55| S lloght| [y~ +y¥71b] " llog b1 ] < llog b1 |y, (F-12)
j=i+1 !

and similarly for suitable derivatives, and hence the bound

L L+2 95,
Hk+1 T 'l
;/‘ [ AT

J=itl

2

C 2L—1—(2k+2) 2
Shioghi(© [ ytier)
y=<2B,

sL—ky—4a _ ogbi|©
< llog by | BV Sm-
1

‘We therefore obtain from Lemma 3.3 the control

f |[H*"Mod(n)? § C(K)llog by b2 [b% + } S CUOBTHlog by [ S [log by b7+

b%(L—k)—Z
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for by < b (M) small enough.
Proof of (F-8), (F-9). We estimate

k k kp AT < B si-1-2k o logbil
|H"Si |+ |H AS; |+ |H b AT;i| S b (1+) 5

N1+y2k+l’
and thus
1+ [logy* /1+I ogy* | 4 2 / c
———|H"A —AH A < |logh —— < |log b|".
/ LRGP+ [ SEETLARAG S loghil© [ s < logh
Then, from (F-12), we estimate
L+2 L+2 2
1+|10gyl k| 5 / k| 5 95
H"|T; AH T; —

c
< llogh 12y < Nloghil®
~ | Og 1| |y | ~ Z(L_k)_za
y<2B b

and hence, using Lemma 3.3, we have

L+ [log yI* o j~ +llogy* =1 oL !
< +2 2k+2
/ Tty | H*Mod| —i—f Tty |A H*Mod| |logb1| C(K)b; 1—|—b2(L D2 NIZ]
Step T: nonlinear term N (¢). Control near the origin y < 1. The control near the origin follows directly
from (3-72).
Control for y > 1. We detail the proof of the most delicate bound (F-11). The proofs of (F-8) and (F-9)
follow similar lines and are left to the reader.

Recall the notations (3-73) and the bounds (3-74), (3-75), (3-76) on ¢. We then have the bounds (3-77),
(3-78), (3-79) on N;(¢e), which yield

2k+1 2k+1

O N (e )|
k
AH'N@IS ) Ty Z T Zlayf 18]~ N1 o)l
p=0
%41 k; | - o
2 c ap-i
S et L ym_pzla;z ogn | 2+
p:] i=0
2k+1 p2 lé-| 2k+1 p—1 /2|l§|
y C C ap—j
~ Z y2ht +|logb1| y2t 2= ; +[logbi] Zzb " y2k+1=p
i= 0 p=1 i=0
%+1 | .p 2%k+1 p—1
c 197 ¢ a2 10587
S llog bl |:Z %l—p Zsz yRFT=p |
p=0 p=1 i=0

and hence

/ |AH*N (e)|? .
y>1 2k+1 p |8l§'| |8p l§|2 2k+1p—1 i |3]§-|2|81*]§-|2

Shoeni© Y3 [ B oen Y Yy [ R

p=0 i=0 p=1i=0 j=0
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‘We now claim the bounds

2k+1 p Ial§| |817 l§|2
5, Qk+1)2L/QL—1)
Y2 [ P s )
p=0 i=0
Ry g 193¢ 121957 ¢ 2 2%U+1)2L/2L—1
Aap—i 4 ) L L—
loghi|€ ) > "> by / i < byplpFHDE/CEED (F-14)
p=1 i=0 j=0

for some § > 0, and this concludes the proof of (F-11) for N (e).

Proof of 3-80). Let 0 <k <L —1,0<p<2k+1,0<i <p. Letli =p—i, I =i. Then we can pick
J>» € N* such that
max{1l;2—i} < J, <min{2k+3 — p; 2k +2 — i}
and define
J1 =2k+3—p—]2.

Then, from direct inspection,

1<h+J1<2k+1<2L—-1, 2<bh+J,<2k+2<2L,
L+DL+Ji+J,=2k+3.

2 I 2
/ 922z |
L0z Jy>1 y212_2

< |10gb |C(K)b(11+11+12+J2 D2L/2L-1) |10gb |C(K)b(2k+2)2L/(2L 1)

(I, J1, I, o) € N? x N*, {

Hence, from (3-74), (3-75),

/ |%mﬂx44P<Hayc
>1

yHk+2-2p

yll—l

< blb?b§2k+l)2L/(2L o) O

Proofof 3-81). Let0 <k <L—-1,1<p<2k+1,0<j<i<p—1.Forp=2k+1land0<i=j <2k,
we use the energy bound (3-76) to estimate

o [ 100CP10 2 el ¢
by’ / =T e ey | 1832
y>1 y yzl

< b%L/(ZL—l)((2k+1—i)+1+i)|10g by [CK) < blbllsb§2k+l)2L/(2L—l)‘

This exceptional case being treated, we let I} = j, I, =i — j and pick J, € N* with

max{l;2— (G —j):2—=(p—D} = =minf2k +3—p:2k+2—(p—j); 2k +2— (i — j)}.
Let
J1=2k+3—p—J>.
Then we can directly check that

l<h+/i<2k+1, 2=<bL+J)=<2k+2,

(I, Ji, I, o) € N x N*, { .
L+bL+Ji+J=2k+3—(p—1),
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2 |812§-|2
Lo(y=1) />1 y2—2

i+11+J1+h+J—1)2L/2L—1 2k42)2L/(2L—1
< |10gb1|C(K)b§p i+h+Ji+h+h—1)2L/( ) |10gb1|C(K)bi )2L/( )

and thus
i
s [ 3¢ 121y <bi‘”""
y>1

I
9y'¢

—1
y/i

4k+2-2 ~
yHz=2p

< blbtlsb§2k+])2L/(2L—]). 0

Step 8: small linear term L(e). We recall the decomposition (3-84).

Control for y < 1. The control near the origin directly follows from (3-88).
Control for y > 1. We give a detailed proof of (F-11) and leave (F-8) to the reader. We recall the bound
(3-90):
billog b1|€|d}¢]
9L (e)] S Z T

This implies

UH1 | ap 2%+ 1 p Cai WAl ai
0y L(e)| _ bi|log bi|~|9ye] |9yel
k y C Yy
|AHTL(e)] S Z JFT=p Z y2HHT=p Z ypiHl S billog by Z Y242
i=0 i=0

‘We therefore conclude from (C-11) that

2k+1 |8i8|2
fy>1 |AH*L(e)* < b}llog by |© Z/ m

5 |10gb1|C(K)b]2+(2k+l)2L/(2L_l) < bi+6+(2k+1)2L/(2L—1)’

and (3-64) is proved.
This concludes the proof of (F-8), (F-9), (F-10), (F-11), and thus of Proposition 3.6. ]
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