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DECAY OF VISCOUS SURFACE WAVES WITHOUT SURFACE TENSION IN
HORIZONTALLY INFINITE DOMAINS

YAN GUO AND IAN TICE

We consider a viscous fluid of finite depth below the air, occupying a three-dimensional domain bounded
below by a fixed solid boundary and above by a free moving boundary. The fluid dynamics are governed by
the gravity-driven incompressible Navier—Stokes equations, and the effect of surface tension is neglected
on the free surface. The long-time behavior of solutions near equilibrium has been an intriguing question
since the work of Beale (1981).

This is the second in a series of three papers by the authors that answers the question. Here we
consider the case in which the free interface is horizontally infinite; we prove that the problem is globally
well-posed and that solutions decay to equilibrium at an algebraic rate. In particular, the free interface
decays to a flat surface.

Our framework utilizes several techniques, which include

(1) apriori estimates that utilize a “geometric” reformulation of the equations;

(2) atwo-tier energy method that couples the boundedness of high-order energy to the decay of low-order
energy, the latter of which is necessary to balance out the growth of the highest derivatives of the free
interface;

(3) control of both negative and positive Sobolev norms, which enhances interpolation estimates and
allows for the decay of infinite surface waves.

Our decay estimates lead to the construction of global-in-time solutions to the surface wave problem.

1. Introduction

Formulation of the equations in Eulerian coordinates. We consider a viscous, incompressible fluid
evolving in a moving domain

Q) ={yeZxR|—-b<y3s<n(y,y,D} (1I-D

Here we assume that ¥ = R?. The lower boundary of 2(¢) is assumed to be rigid and given, but the upper
boundary is a free surface that is the graph of the unknown function 7 : £ x R — R. We assume that
b > 0 is a fixed constant, so that the lower boundary is flat. For each ¢, the fluid is described by its velocity
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and pressure functions (u, p) : Q(t) — R?> x R. We require that (u, p, n) satisfy the gravity-driven
incompressible Navier—Stokes equations in €2 (¢) for ¢ > 0:

ou+u-Vu+Vp=puAu in Q(z),

divu =0 in Q(1),

0/m =u3—udyn—udy,n on{y;=n(yy y2 1)}, (1-2)
(pl — pD(u))v = gnv on {y3 =n(y1, y2, 1)},

u=~0 on {y3; = —b}

for v the outward-pointing unit normal on {y3 = n}, I the 3 x 3 identity matrix, (Du);; = d;u; + 0;u; the
symmetric gradient of u, g > 0 the strength of gravity, and p > 0 the viscosity. The tensor (pI — uD(u))
is known as the viscous stress tensor. The third equation in (1-2) implies that the free surface is advected
with the fluid. Note that in (1-2) we have shifted the gravitational forcing to the boundary and eliminated
the constant atmospheric pressure, pam, in the usual way, by adjusting the actual pressure p according to
p=Dp+gY3— Pam-

The problem is augmented with initial data (uq, no) satisfying certain compatibility conditions, which
for brevity we will not write now. We will assume that ng > —b on X.

Without loss of generality, we may assume that u© = g = 1. Indeed, a standard scaling argument allows
us to scale so that © = g = 1, at the price of multiplying b by a positive constant. This means that, up to
renaming b, we arrive at the above problem with u =g = 1.

The problem (1-2) possesses a natural physical energy. For sufficiently regular solutions, we have an
energy evolution equation that expresses how the change in physical energy is related to the dissipation:

1 1 1 1 1
[owore s [nor+d [ peopas=3 [ woped e a)
Q@) P 0 JQ(s) Q(0) )

The first two integrals constitute the kinetic and potential energies, while the third constitutes the dissipation.
The structure of this energy evolution equation is the basis of the energy method we will use to analyze
(1-2).

Geometric form of the equations. In order to work in a fixed domain, we want to flatten the free surface
via a coordinate transformation. We will not use a Lagrangian coordinate transformation, but rather a
flattening transformation introduced by Beale [1984]. To this end, we consider the fixed domain

Q={xeXxR|—-b<x3 <0}, (1-4)
for which we will write the coordinates as x € 2. We think of ¥ as the upper boundary of €2, and write
¥p, := {x3 = —b} for the lower boundary. We continue to view 7 as a function on £ x R*. We define

n := Pn = harmonic extension of  into the lower half space, (1-5)

where %7 is defined by (A-17). The harmonic extension 7 allows us to flatten the coordinate domain via
the mapping

Q3x > (x1, x2, x3+10(x, )(1 +x3/b)) = P(x, 1) = (y1, y2, y3) € (7). (1-6)
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Note that ®(Z, 1) = {y3 =n(y1, y2, 1)} and ®(-, t)|5, = Idyx,, that is,  maps X to the free surface and
keeps the lower surface fixed. We have

100 1 0 —AK
vo=[01 0 and A:=vVe HT'=|01 —BK (1-7)
A B J 0 K
for
A = d,7jb, B = &b,
J=1+i/b+dnb, K=J", (1-8)
b= (1+x3/b).

Here J = det V® is the Jacobian of the coordinate transformation.

If n is sufficiently small (in an appropriate Sobolev space), the mapping P is a diffeomorphism. This
allows us to transform the problem to one on the fixed spatial domain €2 for # > 0. In the new coordinates,
the PDE (1-2) becomes

du— dbKdsu+u-Vyu —Aqu+Vyp=0 inQ,

divgu=20 in £,

S (p, )N =nN on X, (1-9)
on=u-N on X,

u=>0 on X,

u(x, 0) = up(x), n(x’, 0) = no(x").

Here we have written the differential operators Vg, divy, and A4 with their actions given by (Vg f); 1=
A;ijdj f, divg X 1= o4;;0;X;, and Ay f = divy Vy f for appropriate f and X; for u - Vyu we mean
(u - Vgu); :=u;joru;. We have also written N' := —01ne; — dnep + e3 for the nonunit normal to
{y3=n(y1, y2, 1)}, and we write Sq(p, u) = (pI —Dyu) for the stress tensor, where [ is the 3 x 3 identity
matrix and (Dyu);; = A 0xuj + A jidxu; is the symmetric si-gradient. Note that if we extend divy to
act on symmetric tensors in the natural way, divy Sy (p, u) = Vyp — Aqu for vector fields satisfying
diV&q u=0.

Recall that o is determined by 5 through the relation (1-7). This means that all of the differential
operators in (1-9) are connected to 1, and hence to the geometry of the free surface. This geometric
structure is essential to our analysis, as it allows us to control high-order derivatives that would otherwise
be out of reach.

Beale’s nondecay theorem. Many authors have considered problems similar to (1-2), both with and
without viscosity and surface tension [Bae 2011; Beale 1981; 1984; Beale and Nishida 1985; Germain
et al. 2009; Hataya 2009; Lannes 2005; Nishida et al. 2004; Solonnikov 1977; Sylvester 1990; Tani and
Tanaka 1995; Wu 1997; 1999; 2009; 2011]. We refer the reader to the introduction of [Guo and Tice
2013b] for a more thorough discussion of how these results relate to ours.
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Beale [1981] developed a local existence theory for the problem (1-2) in Lagrangian coordinates, where
the unknowns are replaced with v =u o ¢, g = p o ¢ for ¢ the Lagrangian flow map, which satisfies
9;¢ = v. The result showed that (roughly speaking), given vg € H~! for r € (3, 7/2), there exists a unique
solution v on a time interval (0, T'), with T depending on v, such that v € L>H" N H'/?L?*. A second
local existence theorem was then proved for small data near equilibrium. It showed that for any fixed
0 < T < o0, there exists a collection of data small enough that a unique solution exists on (0, 7).

The second result suggests that solutions should exist globally in time for small data. If global solutions
do exist, it is natural to expect the free surface to decay to 0 as t — oo. However, the third result
[Beale 1981] was a nondecay theorem that showed that a “reasonable” extension to small-data global
well-posedness with decay of the free surface fails. Among other things, the theorem’s hypotheses
require that

vV E Ll([O, 00); H'()) forr e (3,7/2),
&)y € L*([0, 00); LA()),

v(x,0)=0, ¢(x,0)=x+e0O(x), (1-10)

lim &3]z =0,
t—00

where 2 is given by (1-4), ¢ (x, 0) is the flow map that gives the geometry of the initial fluid domain, ®
is a specially chosen function satisfying certain conditions, and ¢ > 0 is a small parameter. Note that the
third line in (1-10) implies that the system is initially close to equilibrium, and the fourth line implies that
the free surface decays to 0 as t — oo.

The proof of the nondecay theorem, which is a reductio ad absurdum, hinges on the special conditions
imposed on the map © and the fact that v € L' H". In the discussion of this result, Beale pointed out that
it does not imply the nonexistence of global-in-time solutions, but rather that establishing global-in-time
results requires stronger or different hypotheses than those imposed in the nondecay theorem.

The nondecay theorem raises two intriguing questions. First, is viscosity alone capable of producing
global well-posedness? Second, if global solutions exist, do they decay as ¢t — co0? Our main result
answers both questions in the affirmative. In order to avoid the applicability of the nondecay theorem, we
must show why its hypotheses are not satisfied. We would like to highlight three crucial ways in which
we do this. The first and most obvious is that we work in a different coordinate system and within a
different functional framework. In particular this requires higher regularity of the initial data and imposes
more compatibility conditions than are satisfied by the data in the nondecay theorem.

Second, we will find (see (1-21)) that u decays according to ||u(t)||% <C/(14+1)** for A € (0, 1). This
is not sufficiently rapid to guarantee that u belongs to the space L([0, 00); H?()), which is in violation
of the first line of (1-10), a key assumption in the nondecay result. Technically, our u is in Eulerian
coordinates, but if we formally identify u# with v, we see the difficulty clearly: we cannot integrate the
equation d,¢ = v to obtain ¢ as t — 0o, which means that we cannot make sense of the fourth equation in
(1-10). One of the advantages of the Eulerian and geometric formulations is that the free surface function
n may be analyzed without regard to what is happening to the entire flow map ¢ in €.
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Third, we find that 1 decays in time according to ||n(t)||% < C/(141t)* for A € (0, 1). This is not fast
enough to guarantee that 5 is in L2([0, 00); L2(X)). If we identify n with 3|y, we see that we cannot
guarantee that the second condition in (1-10) holds.

The above decay rates should be compared to those in the problem with surface tension (see the
discussion on page 1442), which in general allows for faster decay to equilibrium. In this context, [Beale
and Nishida 1985] showed that the decay estimates [[u(¢)[|3 < C/(1+1)* and ||n(t))||3 < C/(1 +1) are
sharp. As such, we should not expect u € L' H? or n € L>L? in our problem.

Local well-posedness. The a priori estimates we develop in this paper are done in different coordinates
and in a different functional framework from those used in [Beale 1981]. As such, we need a local
well-posedness theory for (1-9) in our framework. We proved this in Theorem 1.1 of our companion
paper [Guo and Tice 2013b]. Since we will need the result here, we record it now.

In order to state our result, we must explain our notation for Sobolev spaces and norms. We take
H*(Q) and H*(X) for k > 0 to be the usual Sobolev spaces. When we write norms we suppress the H
and Q or ¥. When we write ||8,j u|lx and ||8[j Pl we always mean that the space is H*(2), and when we
write ||81j n|lx we always mean that the space is H k().

In the following we write o H'(Q) := {u € H'(Q) | u|s, = 0} and

%r = {u € L*([0, T1; o H' () | divey u(t) = 0 for ae. 1}. (1-11)

The compatibility conditions for the initial data are the natural ones that would be satisfied for solutions
in our functional framework. They are cumbersome to write, so we do not record them here. We refer the
reader to [Guo and Tice 2013b] for their precise definition.

Theorem 1.1. Let N > 3 be an integer. Assume that uy and ng satisfy the bound ||ug IIﬁN—i— I 770||42”\,+1/2 <00

as well as the appropriate compatibility conditions. There exist &g, Ty € (0, 1) such that if

O<T§T0min{1,+}, (1-12)
||770||4N+1/2

and ||u0||ﬁN + ||r]0||iN < 8¢, there exists a unique solution (u, p, n) to (1-9) on the interval [0, T'] that
achieves the initial data. The solution obeys the estimates

2N 2N 2N—-1
ijpmMmN%+§jprmmN%+§:swn@mwz,l
00<t<T <t<T X 0<t<T
2N ) 2N—-1 ]
—kjf (j{jna!uniN_2f+l+-j{j|M¥zﬂﬁN_2j)-+nafN+‘unéﬁy
0 \j=o j=0
T AN+
+f QmﬁNHﬂ+uam&WNf+§:uwnﬁwﬂﬁyg
0

j=2

< C(lluollzy + Inollzy + Tlinolzys12)  (1-13)
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and

Sup InlZn 412 < Clluolizy + A+ T) ol 3y 11,2) (1-14)
<t<T

for a universal constant C > 0. The solution is unique among functions that achieve the initial data and
for which the sum of the first three sums in (1-13) is finite. Moreover, 1 is such that the mapping ® (-, t),
defined by (1-6), is a C*N=2 diffeomorphism for each t € [0, T].

Remark 1.2. All of the computations involved in the a priori estimates that we develop in this paper
are justified by Theorem 1.1 and a specialization of it, Theorem 10.7, that we prove later. In this sense,
Theorem 1.1 is a necessary ingredient in the global analysis of (1-9).

Main result. Sylvester [1990] and Tani and Tanaka [1995] studied the existence of small-data global-in-
time solutions via the parabolic regularity method pioneered by Beale [1981] and Solonnikov [1977].
The papers make no claims about the decay of the solutions. It has been pointed out in the literature that
the proofs in [Sylvester 1990; Tani and Tanaka 1995] are incomplete, so, to our knowledge, the existence
of global solutions is still an open question. An interesting feature of our analysis, as described in detail
later, is that our construction of global-in-time solutions is predicated on the decay of the solutions, that
is, the decay is a necessary ingredient in global existence.

To state our global well-posedness result, we must first define various energies and dissipations. The
exact form of some of the energies is too complicated to write out here, so we will neglect doing so,
referring to the proper definitions later in the paper (pages 1450-1452). We assume that A € (0, 1) is a fixed
constant and we define %, u according to (A-7) and %, n according to (A-8). The high-order energy is

10 9 10
€ro:= 19ullg+ > 18] w30 o, + > 18] plifoo; + 192015+ Y 18/ 01302, (1-15)
j=0 j=0 =0

and the high-order dissipation rate is

10 9
Do = 192ullf + Y 18/ ull3y_o; + IV PIITe + D 18 pll3e_o;
/=0 =1 11
H1DN30_30 + 18013010+ Y 19 0l30_2j15/0- (1-16)
=2
We write the high-order spatial derivatives of 1 as !
F0 = ||77||%o+1/2- (1-17)

We define the low-order energies €7, and €7 > according to (2-52) and (2-53) with n = 7. Here the index
m in €75, is a “minimal derivative” count that is included in order to improve decay rates in our estimates.
Finally, we define the total energy

t 2 o
F
Gio(t) = sup %10(7’)—1-/ Dio(r) dr + Z sup (14 7r)""*€; ,,(r) 4+ sup ()
0

0<r<t ey 0=r<t 0<r<t (I+r)

(1-18)

Notice that the low-order terms €7 ,, are weighted, so bounds on % yield decay estimates for €7 ,,.
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Theorem 1.3. Suppose the initial data (uo, no) satisfy the compatibility conditions of Theorem 1.1. There
exists a k > 0 such that if €10(0) + F19(0) < k, there exists a unique solution (u, p, n) to (1-9) on the
interval [0, 00) that achieves the initial data. The solution obeys the estimate

G10(00) < C1(€10(0) +F19(0)) < Cik, (1-19)
where C| > 0 is a universal constant. For any 0 < p < A, we have

sug[a + DX u®)Z2gy] < C(0)(E10(0) + F10(0) < C(p)k, (1-20)

for C(p) > 0 a constant depending on p. Also,

1
sup [(1 + 0" w13+ A+ 0" O~ + Y (1 +0 D7 n(r)Mé} < C(€10(0) + F10(0))

t>0 j=0

< Ck (1-21)
for a universal constant C > 0.

Remark 1.4. In our companion paper [Guo and Tice 2013a], where we analyze (1-9) in horizontally
periodic domains, we require ng to satisfy the “zero average condition”

f o= 0. (1-22)
D)

For the horizontally periodic problem, this condition propagates in time (see Lemma 2.7, a variant of
which holds in the periodic case), from which one sees that (1-22) is a necessary condition for decay in
L? or L®. Tt also serves as an obstacle to applying Beale’s nondecay theorem since the conditions that
the map ©® in (1-10) must satisfy are incompatible with (1-22). For a complete discussion, we refer to
[Guo and Tice 2013a].

In the present case, the bound €4(0) < « requires, in particular, that the initial data satisfy ||$5 1o ||% < 0.
This condition can be viewed as a sort of weak version of the zero average condition in the infinite case.
To see this, note that if 7 is sufficiently nice, say L! (X), then

0=/ no <= 10(0) =0, (1-23)
)

for © the Fourier transform. This means that the zero average condition is equivalent to requiring that
flo vanishes at the origin. We enforce a weak version of this by requiring that 9,9 € L>(X) = H(%),
which requires that |£]|72*|7jo(£)|? is integrable near £ = 0. Since A < 1, this does not require 7 (0) = 0,
but it does prevent |fjo| from being “too big” at the origin. Note that the condition $;19 € L? is more
general than (1-22).

Remark 1.5. The decay estimates (1-20) and (1-21) do not follow directly from the decay of €7 1(¢) and
‘€7.2(t) implied by (1-19). Rather, they are deduced via auxiliary arguments, employing (1-19).

Remark 1.6. The decay of |u(z) ||% given in (1-21) is not fast enough to guarantee that u belongs to
L'([0, 00); H*(R)). Even if we could take A = 1, we would still get logarithmic blow-up of the L'H?
norm.
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Remark 1.7. The function 7 is sufficiently small to guarantee that the mapping ®( -, ¢), defined in (1-6),
is a diffeomorphism for each r > 0. As such, we may change coordinates to y € Q(¢) to produce a
global-in-time, decaying solution to (1-2).

Remark 1.8. Later in the paper, we let N > 3 be an integer and perform our analysis in terms of estimates
at the 2N and N + 2 levels; we take N =5 in the present case to get the 10 and 7 appearing above. This is
not optimal. With somewhat more work, we can improve our results to N = 4 with the restriction that A €
(3/5, 1). Itis likely that this can be further improved by adjusting the scheme from 2N and N +2 to some-
thing slightly different. We have sacrificed optimality in order to simplify the presentation and make our
“two-tier energy method” clearer. The first tier is at the level 2N and the second at the level N +2, which is
meant to be roughly half of the first tier. The extra +2 is added to aid in applying some Sobolev embeddings.

Remark 1.9. It was established in [Castro et al. 2011; 2012] that solutions to inviscid free boundary
problems, starting from smooth initial data, can develop finite-time splash singularities. Given this, it is
reasonable to expect that a generic large-data version of Theorem 1.3 does not hold.

The proof of Theorem 1.3 is completed in Section 11. We now present a summary of the principal
difficulties we encounter in our analysis as well as a sketch of the key ideas used in our proof.

Principal difficulties. In the study of the unforced incompressible Navier—Stokes equations in a fixed
bounded domain with no-slip boundary conditions, it is natural to use the energy method to prove that
solutions decay in time. Indeed, for sufficiently smooth solutions one may prove an analogue of (1-3)
that relates the natural energy and dissipation:

2
a%+9m=a/'””'+1/mmmﬁ=o (1-24)

Korn’s inequality allows us to control Cé€(¢) <% (¢) for a constant C > 0 independent of time, which shows
that the dissipation is stronger than the energy. From this and Gronwall’s lemma we may immediately
deduce that the energy € decays exponentially in time and that we have the estimate € () <€ (0) exp(—C?).
If one seeks to similarly use the energy method to obtain decay estimates for solutions to (1-2), one
encounters a fundamental obstacle that may already be observed in the differential form of (1-3)

(o) / In(t)|2> 1/ .
5, + + 1 [ e =o. 125
(fw g R ) ey [ o) (1-25)

The difficulty is that the dissipation provides no direct control of the n-term in the energy. As such, we

must resort to using the equations (1-2) to try to control ||5(¢)||p in terms of ||[Du(t)]|g. From (1-2) we see
that there are only two available routes: solving for 1 in the fourth equation, or using the third equation,
which is the kinetic transport equation. If we pursue the first route, we must be able to control

1P 305 + DUV vl S IDU@ 130000y (1-26)

which is not possible. If instead we pursue the second route, we must estimate 7 as a solution to the
kinematic transport equation. Such an estimate (see Lemma A.9) only allows us to estimate ||5(¢)|lo in
terms of fot IDu(s)l|lo ds. That is, transport estimates do not provide control of the n-part of the energy in
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terms of the “instantaneous” dissipation, but rather in terms of the “cumulative” integrated dissipation.
From this we see that in our problem the dissipation is actually weaker than the energy, so we cannot
argue as above to deduce exponential decay.

We might hope that we could avoid this problem by working with a high-regularity energy method,
but we will always encounter the same type of problem as above. Regardless of the level of regularity in
the energy, the instantaneous dissipation is always weaker than the instantaneous energy, which prevents
us from deducing exponential decay of the energy. Instead we pursue a strategy similar to one employed
in [Strain and Guo 2006] for another problem where the dissipation is weaker than the energy. We first
show that high-order energies are bounded by using an integrated version of (1-25) for derivatives of the
solution. Then we consider a low-order energy and show that an equation of the form (1-25) holds, that
is, 3:€jow + CD1ow < 0. Now, instead of trying to estimate (1-26) for low-order derivatives, we instead

interpolate between low-order derivatives and high-order derivatives, which are bounded. Instead of an

%14-9

estimate C€ow < PDiow, We must prove one of the form Cé,
1+6

use this to derive the differential inequality 9;€ow + C€,.; < 0, which can be integrated to see that
Clow (1) < €ow(0)/(1+ 1)1/ We would then find that the low-order energy decays algebraically in time
rather than exponentially.

< Yjow for some 0 > 0. We can then

To complete this program, we must overcome a pair of intertwined difficulties. First, to close the
high-order energy estimates with, say ||u ||ﬁ n41 for aninteger N > 0 in the dissipation, we have to control
n in H*N*1/2_ The only option for this is to again appeal to estimates for solutions to the transport
equation, which say (roughly speaking) that

T

T
suannniNH/QSCexp(C /O ||Du(t)||Hz<z>dt>[||no||£N+1/z+T /0 ||u<r>||3w+1dz]. (1-27)

O<r<

Without knowing a priori that u# decays, the right side of this estimate has the potential to grow at the
rate of (1 + T)ecﬁ . Even if u decays rapidly, the right side can still grow like (1 4+ 7"). This growth
is potentially disastrous in closing the high-order, global-in-time estimates. To manage the growth, we
must identify a special decaying term that always appears in products with the highest derivatives of n.
If the special term decays quickly enough, we can hope to balance the growth and close the high-order
estimates. Due to the growth in (1-27), we believe that it is not possible to construct global-in-time
solutions without also deriving a decay result.

This leads us to the second difficulty in this program. The decay rate of the special term is dictated
by the decay rate of the low-order energy, so we must make sure that the low-order energy decays
sufficiently quickly. This amounts to making the constant 8 > 0 appearing in the interpolation estimates
above sufficiently small. We must then carefully choose the terms that will appear in the low-order and
high-order energies in order to keep 6 small enough. It turns out that this requires us to enforce a minimal
derivative count in the low-order energy, that is, only terms with m derivatives or more are allowed. It
also requires us to extend the high-order energy to include estimates of negative horizontal derivatives up
to order A € (0, 1). Then & = 6(m, 1), and only by taking m =2, A > 0 can we make 6 small enough to
achieve the desired decay rate.
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The resolution of these intertwined difficulties requires a delicate and involved analysis. We now sketch
some of the techniques we will employ.

Horizontal energy evolution estimates. In order to use the natural energy structure of the problem
(given in Eulerian coordinates by (1-3)) to study high-order derivatives, we can only apply derivatives
that do not break the structure of the boundary condition # = 0 on X;. Since X is flat, any differential

operator 9% = 3,9}

1957 is allowed. We apply these operators for various choices of o and sum the
resulting energy evolution equations. After estimating the nonlinear terms that appear from differentiating
(1-9), we are eventually led to evolution equations for these “horizontal” energies and dissipations, €,
P10, %7,,", and @7,,,, form =1, 2 (see (2-45) and (2-47)—(2-49) for precise definitions). Here we write

bars to indicate “horizontal” derivatives. Roughly speaking, at high-order we have the estimate

%10(1‘)4-/ B10(r) dr§%10(0)+/ (€10(r) D 1o(r) dr+/ VB10OHE) Fro(r)dr,  (1-28)
0 0 0

where J{ is of the form

W= Vulg + | Dull3, (1-29)

(%)’

and 6 > 0; and at low-order we have
3 E7m+ D7 S E D7 (1-30)

where %7, is the low-order dissipation. Notice that the product 5% in (1-28) multiplies low-order
norms of u against the highest-order norm of 5. Technically, the estimate (1-28) also involves %, u and
$,n in addition to horizontal derivatives. For the moment let us ignore these terms and continue with the
discussion of our energy method. We will discuss $; in detail below.

The actual derivation of bounds like (1-28)—(1-30) is delicate and depends crucially on the geometric
structure of the equations given in (1-9). Indeed, if we attempted to rewrite (1-9) as a perturbation of the
usual constant-coefficient Navier—Stokes equations, we would fail to achieve the estimate (1-28) because
we would be unable to control the interaction between 9 p and div 3!°u, the latter of which does not
vanish in the geometric form of the equations.

Comparison estimates. The next step in the analysis is to replace the horizontal energies and dissipations
with the full energies and dissipations. We prove that there is a universal 0 < § < 1 such that if €9 <,
then

€105 %0, D10 S Do+ HF 0, Gm SEme Drm S Dy (1-31)

This estimate is extremely delicate and can only be obtained by carefully using the structure of the
equations (1-9). We make use of every bit of information from the boundary conditions and the vorticity
equations to establish it. There are two structural components of the estimates that are of such importance
that we mention them now. First, the equation divyg u = 0 allows us to write d3u3 = —(d1u| + drur) + G?
for some quadratic nonlinearity G2. This allows us to “trade” a vertical derivative of u3 for horizontal
derivatives of u; and u», an indispensable trick in our analysis. Second, the interaction between the
parabolic scaling of u (d;u ~ Au) and the transport scaling of 1 (3;n ~ u3|x) allows us to gain regularity
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for the temporal derivatives of 7 in the dissipation, and it also gives us control of a) ', which is one more
time derivative than appears in the energy.

Two-tier energy method. Suppose we know that

)

for some 0 < 8 < 1 and y > 0. Since 7 satisfies a transport equation, we may use Lemma A.9 to derive
an estimate of the form

t t
sup F1o(r) gexp<C/ \/ﬁ{(r)dr) [@10(0)—14/ D1o(r) dr:|. (1-33)
0<r<t 0 0
Although the right side of this equation could potentially blow up exponentially in time, the decay of K
in (1-32) implies that
t
sup Fio(r) S F10(0) + Zf Dio(r) dr. (1-34)
O<r<t 0
Note that y > 0 in (1-32) is essential; we would not be able to tame the exponential term in (1-33) without
it, and then (1-34) would not hold. This estimate allows for &o(¢) to grow linearly in time, but in the
product J(r)%Fo(r) that appears in (1-28), we can use the decay of ¥ to balance this growth. Then if
SUpg<, <, €10(r) < & with § small enough, we can combine (1-28), (1-31), (1-32), and (1-34) to get the
estimate

t
sup €10(r) +/ Dio(r) dr < €10(0) + F10(0). (1-35)
O<r<t 0

This highlights the first step of our two-tier energy method: the decay of low-order terms (that is, ) can
balance the growth of %, yielding boundedness of the high-order terms. In order to close this argument,
we must use a second step: the boundedness of the high-order terms implies the decay of low-order terms,
and in particular the decay of X.

To obtain this decay, we combine (1-30) and (1-31) to see that

3Em+1D7m <0 (1-36)

if €19 < 6 for 6 small enough. If we could show that %7,,,, < D7, this estimate would yield exponential
decay of %7,,,1 and €7,,,. An inspection of %7,," and 97, (see (2-45) and (2-51)) shows that %7, can
control every term in %7,,,, except || nll% (and || a,nll(z) when m = 2). In a sense, this means that exponential
decay fails precisely because the dissipation fails to control 7 at the lowest order. In lieu of €7, < %7 .

we interpolate between €;o (which can control all the lowest-order terms of 1) and 97 ,,:

%7,m ,S %}(/)(m-‘r)\-i-l)gbgr?m-‘rk)/(m-i-)»-‘rl)' (1_37)

Combining (1-36) with (1-37) and the boundedness of € in terms of the data, (1-35), then allows us to

deduce that
C

2., I+1/(m+2) ]
" (€10(0)+F10(0))1/0n+2) (€7.m) <0. (138)

81%7,m
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Integrating this differential inequality and employing some auxiliary estimates then leads us to the bound

€10(0) + F10(0)
(1 pym+»

We thus use the boundedness of high-order terms to deduce the decay of low-order terms, completing the

Erm(t) SEmt) S (1-39)

second step of the two-tier energy estimates.

Negative Sobolev estimates via $,. Notice that the decay rate in (1-39) is enhanced by A € (0, 1). As
we will see below, the parameter y > 0 in the decay of ¥, given in (1-32), is determined by the rate m + A.
If we were to set A =0, we would not get y > 0 and we would be unable to balance the growth of Fy.
Estimates (1-34) and (1-35) would fail, and we would be unable to close our estimates. We thus see the
necessity of introducing the “negative Sobolev” estimates via the horizontal Riesz potential $;.

The difficulty then is that we must apply the nonlocal operator #, to a nonlinear PDE and then study
the evolution of $,u and $, 7. The flatness of the lower boundary X, is essential here, since it allows us
to have $,u = 0 on X;. This means that the operator $, does not break the boundary conditions, and
we can use the natural energy structure to include || $;u ||(2) and ||.$ m||(2) in the energy and || $,u ||% in the
dissipation. To close the estimates for these terms, we must be able to estimate $; acting on various
nonlinearities in terms of %61)0@10 for some 6 > 0. These estimates turn out to be rather delicate, and we
must again employ almost all of the structure of the equations and boundary conditions in order to derive
them. They are also responsible for the constraint A < 1. For A > 1, the nonlinear estimates would not
work as we need them to. In general, for quadratic nonlinearities in dimension n, we expect to restrict
A <n/2.

We should point out that, a priori, we do not know that $,u(¢) or $,n(t) even make sense for ¢t > 0,
since this is not provided by Theorem 1.1. To show that these terms are well-defined, which then justifies
applying %, to the equations, we must actually prove a specialization of the local well-posedness theorem
that includes the boundedness of %, u, $, p, and $,n. We do this in Theorem 10.7.

Interpolation estimates and minimal derivative counts. The negative Sobolev estimates alone do not
close the overall estimates in our two-tier energy method. To do that, we must verify that K decays as in
(1-32) for some y > 0. An inspection of €7, shows that we cannot directly control 3 < €7, for either
m =1 or m =2, so we must resort to an interpolation argument. We show that through interpolation it is
actually possible to control % < €7 1, but the €71 only decays like (1 +¢)~'~*, which is not fast enough
for (1-32). The energy €7, decays at a faster rate, but we cannot show that 3 < €7 ,. Instead, we show
that if €7, (¢) < e(1+1)~27*, then

% < %;é’%;r2/\)/(8+4k) < g (B20)/+4) 0 _H;2+/\/2’ (1-40)
so that, after renaming § = Ce®+2%/G+4) and y = 1 /2 > 0, we find that (1-32) does hold.

The parameters m and A interact in an important way. The decay rate increases with m and with A. As
mentioned above, we are technically constrained to A < 1, so we must increase m to 2 in order to hit
the target decay rate in (1-32). It is tempting, then, to consider abandoning the $; operators and simply
use a third energy with m > 3, which should decay like (1 4-¢)™". However, if one were to do this for
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0 (m)
T.m °

where 6 (m) decreases with m in such a way that m6(m) < 2, so that (1-32) would fail. We thus see that

any m > 3, one would find that there is a corresponding decrease in the interpolation power: 3 < €

the negative estimates are not just a convenience, but rather a necessity.

The derivation of (1-40) is delicate, requiring a two-step bootstrap process to iteratively improve
the interpolation powers. We again crucially make use of the structure of the equations and boundary
conditions. We extensively interpolate between our negative Sobolev estimates and our positive Sobolev
estimates. The utility of the negative estimates is quite clear here: the interpolation powers improve when
we interpolate with negative derivatives (as opposed to say, no derivatives).

To complete the proof of (1-40), we crucially use an estimate for $;9,7n. This corresponds to A =1,
so we are not able to apply $;9; to the equations to obtain the estimate. Rather, the estimate comes for
free from the transport equation for 5, which allows us to write 3,7 = —3,U; — d,U, for U; € H'. In
our analysis of the horizontally periodic problem [Guo and Tice 2013a], where we can take ¥ = T2, this
identity and (1-22) give rise to a Poincaré inequality ||n(¢) ||% < |IDn(t) ||S for ¢t > 0, which is crucial in our
analysis there. From this we see that the estimate for $ 9,7 is of analytic importance for the problem (1-2).

The interpolation of negative and positive Sobolev estimates provides a completely new tool in the
study of time decay in dissipative PDE problems in the whole (or semi-infinite) space. For the viscous
surface wave problem, a particular advantage of the negative-positive method is that, unlike the usual
L? — L9 machinery, our norms are preserved along the time evolution. We anticipate that this method
will prove useful in the analysis of other dissipative equations.

Remark 1.10. After the completion of this paper we became aware of [Hataya and Kawashima 2009],
which is an announcement of a decay result for the viscous surface wave problem in horizontally infinite
domains. The paper provides a terse sketch of their proposed proof that employs a modification of the
Beale—Solonnikov parabolic framework, which is a framework completely different from ours. Full
details of the proof are promised in forthcoming work, but to our knowledge no such work has appeared
in the literature to date. From the information provided in the sketch, it is unclear to us how the decay
rates involved, none of which are faster than 1/(1 + £)? for any norm-squared of the velocity field, are
sufficiently rapid to balance the growth of the highest derivatives of 5. In particular, it is not clear to us
how their method can provide control of J{ as in (1-32), which we need to close the transport estimate
(1-33) and to control the growth of &g in (1-28) and (1-31).

Comparison to the periodic problem. We proved in [Guo and Tice 2013a] the analogue of Theorem 1.3
for horizontally periodic domains. In this context we take N > 3 to be an integer and consider energies
and dissipations €é,x, Doy, Fan, and Gy ; these are modifications of what we use here (with N = 5) that
include temporal derivatives up to order 2. See that paper for the precise definitions. By increasing N,
we can achieve arbitrarily fast algebraic rates for the solutions, which we identify as “almost exponential
decay.”

In order to compare with Theorem 1.3, we record a version of the periodic result now.

Theorem 1.11. Suppose the initial data (ug, no) satisfy the compatibility conditions of Theorem 1.1 and
no satisfies the zero average condition (1-22). Let N > 3 be an integer. There exists a 0 < k = k(N) such
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that if €35 (0) + Fon (0) < &, there exists a unique solution (u, p, n) to (1-9) on the interval [0, co) that
achieves the initial data. The solution obeys the estimates

Gan (00) < C1(€an (0) + Fan (0)) < Cik, (1-41)
sup(1 + "™ 3 u®) 3y 1q + 11O 314l < C1(Ean(0) + Fan (0)) < Cik, (1-42)

t>0
where C1 > 0 is a universal constant.

Remark 1.12. A key difference between the periodic result, Theorem 1.11, and the nonperiodic result,
Theorem 1.3, is that in the periodic case, increasing N also increases the decay rate. No such gain is
possible in the nonperiodic case, which is why we specialize to the case N =5 there. In the periodic
case, we do not use the same type of interpolation arguments that we use in the infinite case. This allows
us to relax to N > 3.

Remark 1.13. Hataya [2009] studied the periodic problem with a flat bottom. Using the Beale—Solonnikov
parabolic theory [Beale 1981; 1984; Solonnikov 1977], it was shown that

o0
f (02w 2, di +sup(L + D202 < 00 (1-43)
0 t>0

for r € (5, 11/2). Our result on the periodic problem is an improvement of this in two important ways.
First, we establish faster decay rates by working in a higher regularity context. Second, we allow for a
more general non-flat bottom geometry (see [Guo and Tice 2013a] for details).

Comparison to the case with surface tension. If the effect of surface tension is included at the air-fluid
free interface, the formulation of the PDE must be changed. Surface tension is modeled by modifying the
fourth equation in (1-2) to be

(pl — uDum))v =gnv—ocHv, (1-44)

where H = 9;(9;n/+/1+ |Dn|?) is the mean curvature of the surface {y; = n(¢)} and o > 0 is the surface
tension.

Beale [1984] proved small-data global well-posedness for the problem with surface tension in horizon-
tally infinite domains. The flattened coordinate system we employ was introduced in [Beale 1984] and
used in place of Lagrangian coordinates. However, Beale employed a change of unknown velocities that
is more complicated than just a coordinate change. Well-posedness was demonstrated with u € L>H" and
ne L>H" /2 given that ug € H ~'/2, ng € H" are sufficiently small for r € (3, 7/2). In this context it
is understood that surface tension leads to the decay of certain modes, thereby aiding global existence.

Beale and Nishida [1985] studied the asymptotic properties of the solutions constructed in [Beale

1984]. They showed that if ng € L (%), then
2

sup(1 +0)*[|u() |5 +sup Y (140" [ DIn()|§ < oo, (1-45)
t>0 t>0 j=1
and that this decay rate is optimal. Taking A ~ 1 in our Theorem 1.3, the estimates (1-21) yield almost

the same decay rates.
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Nishida, Teramoto, and Yoshihara [Nishida et al. 2004] showed that in horizontally periodic domains
with surface tension and a flat bottom, if no has zero average, there exists a y > 0 such that

sup e?'[[lu()[13 + 1131 < co. (1-46)
t>0
In this case, (1-44) gives a third way of estimating 7 in terms of the dissipation; using this, it is possible to
show that the dissipation is stronger than the energy. Thus, if surface tension is added in the periodic case,
fully exponential decay is possible, whereas without surface tension we only recover algebraic decay of
arbitrary order in Theorem 1.11.

The comparison of these two results with ours establishes a nice contrast between the surface tension
and non-surface tension cases. Without surface tension we can recover “almost” the same decay rate as in
the case with surface tension. This shows that viscosity is the basic decay mechanism and that the effect
of surface tension serves to enhance the decay rate.

Definitions and terminology. We now mention some of the definitions, bits of notation, and conventions
that we will use throughout the paper.

Einstein summation and constants. We employ the Einstein convention of summing over repeated
indices for vector and tensor operations. Throughout the paper C > 0 will denote a generic constant that
can depend on the parameters of the problem, N, and €2, but does not depend on the data, etc. We refer
to such constants as “universal.” They are allowed to change from one inequality to the next. When a
constant depends on a quantity z we write C = C(z) to indicate this. We employ the notation a < b to
mean that a < Cb for a universal constant C > 0.

Norms. We write H¥(Q) with k > 0 and H*(X) with s € R for the usual Sobolev spaces. We typically
write HY = L?; the exception to this is when we use L>([0, T]; H k) notation to indicate the space of
square-integrable functions with values in H*.

To avoid notational clutter, we avoid writing H*(2) or H*(X) in our norms and typically write only
Il - [lx. Since we do this for functions defined on both 2 and X, this presents some ambiguity. We avoid
this by adopting two conventions. First, we assume that functions have natural spaces on which they
“live.” For example, the functions u, p, and 7 live on €2, while 7 itself lives on X. As we proceed in our
analysis, we will introduce various auxiliary functions; the spaces they live on will always be clear from
the context. Second, whenever the norm of a function is computed on a space different from the one in
which it lives, we will explicitly write the space. This typically arises when computing norms of traces
onto X of functions that live on 2.

Derivatives. We write N = {0, 1, 2, ...} for the collection of nonnegative integers. When using space-
time differential multi-indices, we write N'*” = {o = (ag, a1, . .., )} to emphasize that the 0-index
term is related to temporal derivatives. For just spatial derivatives we write N”*. For a € N!*" we
write 9% = 9;°9]" - - - 9. We define the parabolic counting of such multi-indices by writing |a| =
2004 a1+ - - + &,y We write Df for the horizontal gradient of f, thatis, Df = 9 fe; 4 92 fes, while
V f denotes the usual full gradient.
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For a given norm || - || and integers k, m > 0, we introduce the following notation for sums of spatial
derivatives:
k 2. 2 k 2. 2
1D £ = Y 10°fI* and |VEFIZ:= Y 0 fI* (1-47)
aeN? aeN?
m<la|<k m<|a|<k

The convention we adopt in this notation is that D refers to only “horizontal” spatial derivatives, while V
refers to full spatial derivatives. For space-time derivatives we add bars to our notation:

1Dy f17 = D *fI* and (V5 f17:= D 1% fI% (1-48)
aeN!+2 N3
m<lo| <k m<|o|<k

When k =m > 0, we write
IDFIIZ = IDEFIZ IVEFIP=IVELIR, DY FIP = IDEFIS IVEFIP = IVEFI2. (1-49)

We allow for composition of derivatives in this counting scheme in a natural way; for example, we write

IDDfIP =D DfI>= Y 10°DfI>P= Y 10°fIP=IDy, £I% (1-50)
aeN? aeN?
m<|a|<k m+1<|a|<k+1

Plan of paper. Throughout the paper we assume that N > 5 and X € (0, 1) are both fixed. Notice that
Theorem 1.3 is phrased with the choice N = 5.

In Section 2 we prove some preliminary lemmas and we define the energies and dissipations. In
Section 3 we perform our bootstrap interpolation argument to control various quantities in terms of
En+2.m and Dy 42 . In Section 4 we present estimates of the nonlinear forcing terms G’ (as defined in
(2-24)—(2-31)) and some other nonlinearities. In Section 5 we use the geometric form of the equations
to estimate the evolution of the highest-order temporal derivatives. We also analyze the natural (no
derivatives) energy in this context. Section 6 concerns similar energy evolution estimates for the other
horizontal derivatives. For these we employ the linear perturbed framework with the G’ forcing terms. In
Section 7 we assemble the estimates of Sections 5 and 6 into unified estimates. Section 8 concerns the
comparison estimates, where we show how to estimate the full energies and dissipations in terms of their
horizontal counterparts. Section 9 combines all of the analysis of Sections 3-8 into our a priori estimates
for solutions to (1-9). Section 10 concerns a specialized version of the local well-posedness theorem that
includes the boundedness of $, terms. Finally, in Section 11 we record our global well-posedness and
decay result, proving Theorem 1.3.

Below, in (2-58), we will define the total energy %,y that we use in the global well-posedness analysis.
For the purposes of deriving our a priori estimates, we assume throughout Sections 3-9 that solutions
to (1-9) are given on the interval [0, T'] and that G,y (T) < § for 0 < § < 1 as small as in Lemma 2.6,
so that its conclusions hold. This also means that €,y () < 1 for ¢t € [0, T]. We should remark that
Theorem 1.1 does not produce solutions that necessarily satisfy 9,5 (T) < oco. All of the terms in
%,n(T) are controlled by Theorem 1.1 except those involving the Riesz operator: ||$,u ||(2), %51 ||%, and
fOT | $nu(t) ||% dt. To guarantee that these terms are well-defined, we must prove a specialized version
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of the local well-posedness result, Theorem 10.7. In principle, we should record this before the a priori
estimates, but the technique we use to control the $, terms is based on one we develop for the a priori
estimates, so we present the theorem in Section 10 after the a priori estimates. Note that the bounds
of Theorem 10.7 control more than just 9, (7") (in particular, 8,2N +lu, 8,2N p, and 9, p), and the extra
control it provides guarantees that all of the calculations used in the a priori estimates are justified.

2. Preliminaries for the a priori estimates

In this section we present some preliminary results that we use in our a priori estimates. We first record
some useful properties of the matrix &f. Then we present two forms of equations similar to (1-9) and
describe the corresponding energy evolution structure. Afterward we record some useful lemmas.

Properties of . The following lemma records some of the properties of the matrix s{ that will be used
throughout the paper.

Lemma 2.1. Let A be defined by (1-7).
(1) Foreach j =1,2,3 we have 0 (J s i) =0.
(2) dij =6;j +38j3Z; for 8;;, the Kronecker delta, and Z = —AKe; — BKey + (K — 1)es.
(3) On X we have Jsdes = N, while on Xj, we have that J des = e3.

Proof. The first and second items may be verified by a simple computation. The first part of the third
item holds since b = 1 on Y., which means that Jsles = —Ae; — Bey + e3 = —0djne; — opney + e3 =
—0d1ne; —drney+e3 =N on X. The second part of the third item follows similarly, since b=0on Y. O

Geometric form. We now give a linear formulation of the PDE (1-9) in its geometric form. Suppose that
n, u are known and that 4, N, J, etc. are given in terms of n as usual ((1-7), etc). We then consider the
linear equation for (v, g, {) given by

dv — 8, 1bK 930 +u - Vv +divy Su(g, v) = F'  in Q,

divy v = F? in €,

Sa(q, VN =N+ F3 on X, (2-1)
8¢ —N-v=F* on X,

v=0 on Xp.

Now we record the natural energy evolution equation associated to solutions (v, g, ¢) of the geometric
form equations (2-1).

Lemma 2.2. Suppose that u and n are solutions to (1-9). Suppose (v, q, ¢) solve (2-1). Then

at<1/ J|u|2+1/|§|2>+1/ JI[D&qvlzzf J(v-F1+qF2)+/ —v-FP4eFt (22
2 Q 2 5 2 Q Q z

Proof. We multiply the i-th component of the first equation of (2-1) by Jv;, sum over i, and integrate

over €2 to find that
[+1I=1II (2-3)
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for
I=f atviJv,-—8,ﬁl;83viv,-+uj&djk8kviJv,-, 2-4)
Q
II:/ sl 85: (g, v) Jvi, III:/ F' v, 2-5)
Q Q

In order to integrate by parts in I, II we will utilize the geometric identity dx(J ;) = 0 for each i, which
is proved in Lemma 2.1.
Then

2 v128. J . 2 2
1=a,/ '”'—J+/ —"—’—amb%ﬁﬂjak(mjkﬂ) =1, +1. 2-6)
0 2 )T 2 2

Since b = 1+ x3/b, an integration by parts and an application of the boundary condition v = 0 on X,
reveals that

23, - 2
12:/—“)' b U (J&qjkﬂ)
o 2 2

2

v|29,J 279 2
:/_HTt+|1)2| < ;77 +batagn> /aku,J&djk|2| +2/ 81n|v| +u; J&ﬁ jkes: eklvl 2-7)
Q

It is straightforward to verify that 9, J = d,1/b +l;8, 031 in €2 and that Js{ jre3-ex = Nj on X. Then since
u, n satisfy oru jsd jp =0 and 9,n = u - N, we have I, = 0. Hence

2
1=a,/ s (2-8)
o2

A similar integration by parts shows that

II:/ —sﬁij,-j(q,v)Jakvi+/ Jsdj38ij(q, v)v;
Q z

2 (2'9)
|Dsgv]
= [ —qdAiohviJ +J + | Sij(q,v)N;v;,
Q =
so that (2-1) implies
2
II:f qJF2+J Dav | f;N v+ F. (2-10)
Q
But (2-1) also implies that
s |c|2 s
/CN'UZ/C(&{—F)Z& / —CF7, (2-11)
by by
which means
2 ||D&!l |2 |§‘|2 4 3
= | —qgJF +J > + o, —CF +v-F. (2-12)
Q b

Now (2-2) follows from (2-3), (2-8), and (2-12). [l
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Remark 2.3. In our analysis we will apply Lemma 2.2 with v = d%u, ¢ = d%p, and ¢ = 9% for 9% = 9,
with ap < 2N. In the case ap = 2N we do not know that 8,2N p is well-defined. However, as is verified in
Theorem 4.3 of [Guo and Tice 2013b], the result of Lemma 2.2 holds in this case when integrated in
time, with the understanding that the ¢ = 3>" p term is integrated by parts in time.

In order to utilize (2-1), we apply the differential operator 3% = 9, to (1-9). The resulting equations
are (2-1) for v = 0%, g = 3% p, and ¢ = 90%n, where

Fl :Fl,l+F1,2+F1,3+F1,4+F1,5+F1,6 (2_13)
for
FM''= 3" CopdP@ibK)0* Posui+ Y Capd*P0,70" (bK)d3u;, (2-14)
0<B<a 0<B<a
1,2 _ Bey.od . )39 B3] 4. Bo., 9% B
Fl? == 3 Cop(9 o 00° P i + 0P sty 3Py p), (2-15)
0<B<a
F'P = 3" CopdP st jed Py (shimdynttj + 5l jus i) (2-16)
0<B<«a
Fl.l’4: Z Ca,ﬁ&djkak(aﬂd,-gaa_ﬁazuj+8ﬁ&ij48a_ﬂ3eui), (2-17)
0<B<a
1,5 on =7 1,6 o o
F'° =0%0,7bKdsu;, and  F"® = sl ;04 (0%sdig 0o j + 0% jdpuy). (2-18)

In these equations, the terms Cy g are constants that depend on « and B. The term F? = F>! + F%2 for

F‘z’l = — Z Ca’ﬁaﬁ&&ijaafﬁaju,- and F2’2=—aaﬁijajui- (2'19)
0<B<a

We write F3 = F3! + F32 for

F3l— _ Z Ca,,saﬂDn(aa_ﬂﬂ _ 3a_ﬂp), (2-20)
0<B<«x
FP2= 3" Cap@P N shin )0 Pttt + 0P (N sl )0 P ). (2-21)
0<B<«a
Finally,
F4=_ Z CopdP D3 Pu. (2-22)
0<B<a

Perturbed linear form. Writing the equations in the form (1-9) is more faithful to the geometry of the
free boundary problem, but it is inconvenient for many of our a priori estimates. This stems from the
fact that if we want to think of the coefficients of the equations for u, p as being frozen for a fixed free
boundary given by 1, the underlying linear operator has nonconstant coefficients. This makes it unsuitable
for applying differential operators.

To get around this problem, in many parts of the paper we will analyze the PDE in a different
formulation, which looks like a perturbation of the linearized problem. The utility of this form of the
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equations lies in the fact that the linear operators have constant coefficients. The equations in this form

are
Qu+Vp—Au=G! in Q,
divu = G? in Q,
(pl —=Du —nle3 =G> on X, (2-23)
an—u3=G* on %,
u=~0 on Xp.

Here we have written
G =G 1G22y Gl3LGglAygls

for

Gl = 6y — Aip)o;p, (229
G? = u ol j dpus, (2-25)
G;” = [K*(1+ A%+ B?) — d33u; — 2AK d13u; — 2BK dsu;, (2-26)
G =[—K3(1 4+ A%+ B?)d3J + AK*(31J + 93A) + BK*(32J + 93B) — K (91 A + 32 B)103u;, (2-27)
Gl = 3,7i(1 +x3/b) K 8315 (2-28)

G? is the function
G? = AKdu; + BKdsus + (1 — K)dsus, (2-29)
and G? is the vector
p—n—201u; —AKdzuy)

G = o | —ou; —o1ur + BKozuy + AKdzun
—01u3 — Kosu; + AKozus

—0hu; —01ur + BKOosu; + AKozus (K —1)03u; — AK03u3
+ 3277 p—n— 2(82142 — BK33M2) + (K - 1)331/!2 - BK83M3 . (2—30)
—0u3 — Kosur + BK d3us 2(K — 1)03u3
Finally,
G*=—Dn-u. (2-31)

Remark 2.4. The appearance of the term (p — n) in the first two rows of the first two vectors in the
definition of G? can cause some technical problems later when we attempt to estimate G>. Notice though,
that according to (2-23), we may write
(p—n) =203u3+ G - e3
= 01n(—01u3 — Kosu; + AKdzu3) + don(—dausz — Kadsur + BK d3u3) + 2K d3u3 (2-32)

on X. We may then replace the appearances of (p — 1) in (2-30) with the right side of (2-32).

At several points in our analysis we will need to localize (2-23) by multiplying by a cutoff function.
This leads us to consider the energy evolution for a minor modification of (2-23).
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Lemma 2.5. Suppose (v, q, ) solve

dv+Vg—Av=o! in Q,

divv = ®? in Q,

(gl —Dv)es =ates+ P> on %, (2-33)
8¢ — vy = o* on %,

v=>0 on Xp,

where eithera =0 ora = 1. Then

8,(1/|v|2+l/ a|;|2>+1/|uj>u|2=/ u-(q>1—vq>2)+qq>2+/ —v- O34 acd*. (2-34)
2 Q 2 z 2 Q Q z

Proof. We may rewrite the first equation in (2-33) as d;,v +div(g! — Dv) = ®! — V2. We then take the
inner-product of this equation with v and integrate over 2 to find

2
a,/ ﬁ—/(ql—mv) : w+/ (qI—IDv)eg-v:/ v (P! — V). (2-35)
Q 2 Q b Q
We then use the second equation in (2-33) to compute
2 2
/ —(ql—le):Vv:/ —qdivv—i—M:/ —q@z—l—M. (2-36)
Q Q 2 Q 2
The boundary conditions in (2-33) provide the equality
2
/ (gl —Dv)es - v =/ atvy+v-® = at/ aﬁ+/ —ard*+v- @3 (2-37)
b by z 2 by
Combining (2-35)—(2-37) then yields (2-34). O

Some initial lemmas. The following result is useful for removing the appearance of J factors.

Lemma 2.6. There exists a universal 0 < § < 1 such that if ||n||§ n = 3, then

1T =120 + A2« + IBl3 <2 and K|+ llstl S 1. (2-38)

~

Proof. According to the definitions of A, B, J given in (1-8) and Lemma A.5, we may bound
1 = 17 + 1 AllZ= + 1Bl 7w S 11713 S 10l132- (2-39)

Then if § is sufficiently small, we find that the first inequality in (2-38) holds. As a consequence,
K170 + 4]« < 1, which is the second inequality in (2-38). O

We now compute 9,7 in terms of a pair of auxiliary functions, U; and U,, defined on X. In our analysis
later in the paper u and n will always be sufficiently smooth to justify the calculations in the next lemma,
and U; € H'(X) always holds.

Lemma 2.7. Fori =1, 2, define U; : ¥ — R by

0
Ui(x") = / J(x', x3)ui (x', x3) dxs. (2-40)
—b

Then d;n = —0,U; — 0,U; on X for solutions to (1-9).
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Proof. Let ¢ € ¥(X), the Schwartz class. On ¥ we know from Lemma 2.1 that u - N = u - (JAe3) =
JATu -e3 = JsA u - v, where v = e3 is the unit normal to ¥. We may use the equation for 3,1 in (1-9)
and the divergence theorem to compute

/3m(,0=/(—Mlaln_M282U+M3)¢:/ <Pf&qijuivj=f 0j(pJAjju;)
x > b Q
=/ aj(pJ&ﬁijui+g03j(J&1ij)ui+<pJ&ﬁij3jui=f djpd Ajjui, (2-41)
Q Q

where the last equality follows from the geometric identity 9;(Js;;) = 0 (see Lemma 2.1) and the
equation s;;0;u; = 0, which is the second equation in (1-9). According to Lemma 2.1, we may write
Aij = 8;j +38;3Z; for §;;, the Kronecker delta, and Z = —AKe; — BKes + (K — 1)e3. Then

fajfpfﬂijui:f 3j<PJui(5ij+5j3Zi)=/ 3i<PJMi+/ 33<PJMiZi=/ dipJu;, (2-42)
Q Q Q Q Q

since d3¢ = 0, a consequence of the fact that ¢ = ¢ (x1, x) is independent of x3. Again because ¢ depends
only on (x1, x) = x" € 3, we may write

0
/ dipJu; = / dip(x") / J (', x3)ui (x, x3) dxzdx’ = / dip(x"U;(x") dx'. (2-43)
Q z —b =
Now we chain together (2-41), (2-42), and (2-43) and integrate by parts to deduce that
f Ay = / —d;U;. (2-44)
b z
Since this holds for any ¢ € ¥(X), we then have that d,n = —0,U;. U

Energies and dissipations. Below we define the energies and dissipations we will use in our analysis.
We state them in general in terms of two integers n, m € N with n > m. In our actual analysis we will
take n =2N and n = N 4+ 2 for N > 5 and m = 1, 2. Recall that we employ the derivative conventions
described on page 1443. We define the horizontal instantaneous energy with minimal derivative count m
(or just horizontal energy, for short) by

Cum = 1D |2+ DD w3+ 1V T8 ul3 + I DX 3. (2-45)

m

Here the first three terms are split in this manner for the technical convenience of adding the +/J term to
only the highest temporal derivative.

Remark 2.8. In light of Lemma 2.6, we see that %mm satisfies
FUD G+ 1Dy lIE) < Enm < 3U D ullG + 1D 11lR)- (2-46)
We define the horizontal dissipation rate with minimal derivative count m (horizontal dissipation) by

Dy := | D" Du||3. (2-47)
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Let ¥, be defined by (A-7)—(A-8). The horizontal energy without a minimal derivative restriction is
€y = 119§+ DF"ull§ + 1950115 + 1 DG 0115, (2-48)
and the horizontal dissipation without a minimal derivative restriction is
By := |DF5ullg + | DY Dullj. (2-49)

In addition to the horizontal energy and dissipation, we must also define full energies and dissipations,
which involve full derivatives. We write the full energy as

n n—1 n
G o= 19ullg+ Y 107 ull3,; + Y187 pllu_nj—i + 19205+ D 18/ 0113, 1), (2-50)
=0 Jj=0 j=0
and we define the full dissipation rate by
n ) n—1 )
Dy = N auall + D10/ wllFy o H IV P15,y + Y 18] Pl5aa; +1D015, 30+ 1913, 2
j=0 j=1 ntl
+ D 10/ 0l5,0j150-  2-51)
j=2

Remark 2.9. The energy €, controls ||n||§n = || n||(2) + || Dn ||%n_1, while the dissipation %, controls only
I Dn ||%n_3 /2 The failure of %, to control ||17||% and this half derivative deficit in D7 are key difficulties
that we must overcome in our analysis. However, %,, controls more temporal derivatives of n than €,
does. A similar discrepancy exists in the fact that €,, controls || p||%n_l while %, controls only ||V p||%n_1.

We define a similar energy with a minimal derivative count of one by

n n—1
G o=t VU3, o+ ) 10/ ul3, o, +IVPI3, o+ Y19 pl3, o1 + D013,
Jj=1 j=1 n
+ ) 19/ nl5,0;0  (252)
j=1
and with a minimal derivative count of two by
n ) n—1 )
Cuoi=Cua+ 1V2ull5, 5+ Y 1/ ull5, o +1V2pl3,s+ Y _ 13! P13, o)1 + 10?0113,
j=1 j=1

+ ) 137 nl3,0).  (2-53)
j=1

Similarly, the dissipation with a minimal derivative count of one is
n—1

n
D1 = D1+ VU3, 0+ D10/ ul3, 001 + IV P13, 0+ Y19 plI3, o+ 100113, 52

j=1 j=l n+1

F10m 3,10+ Y N8/ 0130 0jss00  (2-54)
j=2
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while the dissipation with a minimal derivative count of two is

n
Dug =Dz + V3, 5+ Y 107/ ull3, )01 IV P15, 5+ 18,V P35, 5

j=1
n+1

+ D 18 pl3ya; + 1D 013, 10 + 1DONN3, 30+ Y N1/ 03, 2j150-  (2-55)
, =
Note that, by definition, €, ,, > %n,m and D, , > Q_D,,,m. In all of these definitions, the index n counts
the highest number of time derivatives used. Notice that €, , and 9, ,, are subject to the same sorts of
discrepancies described in Remark 2.9.
Certain norms of 1 and u will play a special role in our analysis; we write

Fon 1= ”77”4N+1/2’ (2-56)

W= |Vl + 1 V2ull 7 + Z 1D |32 - (2-57)
i=1

Note that the regularity of u will always be sufficiently high for the L° norms in ¥ to be considered as
C%() norms, where € is the closure of Q. Finally, we define the total energy we will use in our analysis:

Gon(t) := sup Gan(r) —I—f Don(r) dr + Z sup (14+7r)"En12.m(r) + sup Fan () (2-58)
O<r<t S o<r<t o<r<t (147)"
Some initial estimates. We have the following lemma that constrains N.
Lemma 2.10. If N > 4, then, form = 1,2, we have En1r.m < €on and Dyio.m S €on.
Proof. The proof follows by simply comparing the definitions of these terms. U

Now we present an estimate of $19,7.
Lemma 2.11. We have the estimate ||918,n||0 < ||u||0 < én.
Proof. According to Lemma 2.7, we have 0,7 = —0;U;, where U;, i = 1, 2, is defined in the lemma. It is
easy to see that U; € H (D). Taking the Fourier transform and writing U = (U}, U,), we find that

||§1a,n||é=/z|s|2|8777<§>|2d55/2|s|2|s-ﬁ<s>|2ds,§fz|l7(s>|2dé=||U||%,o(2). (2-59)

However, Holder’s inequality and Lemma 2.6 imply that |U || gos) S I/ [z llullo S llullo, so the desired
estimate follows. [l

3. Interpolation estimates at the N + 2 level

Initial interpolation estimates for y, 1, u and V p. The fact that €y5,, and Dy12,,, m = 1, 2, have
a minimal count of derivatives creates numerous problems when we try to estimate terms with fewer
derivatives in terms of €y42,, and Dy42,,. Our way around this is to interpolate between €y2 n



DECAY OF VISCOUS SURFACE WAVES WITHOUT SURFACE TENSION 1453

(or Dy42.m) and €,n. In the next few pages (through page 1467) we will prove various interpolation
inequalities of the form

IX1? < @Engam)’ @)™ and  [|X)2 < @niom)’ @), (3-1)

where 6 € (0, 1], X is some quantity, and || - || is some norm (usually either H O or L®).

In the interest of brevity, we record these estimates in tables that only list the value of 6 in the estimate.
Before each table we will tell which norms are being considered and give a rough summary of the terms
X that appear in the table. For example, we might write “the following table encodes the power in the
H'(X) and H%(Q) interpolation estimates for 1 and 77 and their derivatives,” before the following table.

X ENt21 DN421 ~Eny22 DNt
n,n 01 0> 03
Dn, Vi 04 05 B

We understand this to mean that

113 < @nsa D G0 113 < @ni2)®2 @)%, 013 < @vi)? @)% (3-2)
and
17115 S @n+220% @)%, IVilllF0q) S Ens2,0)™ )%,

IViTll30) S @ni2)® (@)%, (3-3)

etc. When we write @ y42 1 ~ €n42,2 in a table, it means that 6 is the same when interpolating between
Dn42,1 and € and between €422 and €. When we write multiple entries for X, we mean that the
same interpolation estimates hold for each item listed. Often, we will have a 6 appearing in a table of the
form 6 = 1/(1 4+ r). When we write this, we mean that the desired interpolation inequality holds with
this 0 for any fixed r € (0, 1), and the constant in the inequality then depends on r.

We must record estimates for too many choices of X to allow us to write the full details of each
estimate. However, most of the estimates are straightforward, so in our proofs we will frequently present
only a sketch of how to obtain them, providing details only for the most delicate estimates. The terms we
estimate are often linear combinations of several terms, each of which would get a different interpolation
power. When this occurs, we will record the lowest power achieved by a term in the sum. According to
Lemma 2.10, this is justified by the estimate

1—0c0f 1—Kkcok __wl—0c0 1—kcox—0 0
En Ensam Ty Enom =Con Entom TN EniamENtom

=000 Ik cok O 100
SEn Eniam TEN EN Eniom S Eon Entam (3-4)

for 0 <0 <k < 1. A similar estimate holds with €y ,, replaced by @42 ,,. It may happen that in
estimating a product of two or more terms, we end up with estimates of the form

IX 12 < Engom)? @) (Enram)™(@an)' (3-5)
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with 8; + 6, > 1. In this case, Lemma 2.10 again allows us to bound

IX1% < Engam) @nsam) T2 €)% <€y m@on < Eniam, (3-6)

where we have used the bound €,y < 1. It might also happen that (3-5) occurs with #; < 1 and
6, =1/(1+r), in which case we always understand that r is chosen so that 6, +6, = 1.
Now that our notation is explained, we turn to the estimates themselves We begin with estimates of .

Lemma 3.1. The following table encodes the power in the L>°(X) and L*°(K2) interpolation estimates
for n and 1 and their derivatives.

X EN+2.1 D421~ Eng22 DN+2,2

n, 1 A+D/A+14r) A+ /(A+2) A+1)/(A+3)
Dn, Vi 1 A+2)/(A4247)  (A+2)/(A+3)
D?*n, V?j 1 1 A+3)/(A+347)
D3n, V3j 1 1 1

1, ;1 1 1 2/(2+r)
D, Vi 1 1 1

The following table encodes the power in the H*(X) and H°(Q2) interpolation estimates for n and 7
and their derivatives.

X Envi21 Dyi21 ~Enyan DN+2,2
n,1n AJ(A+T1) A/ (A+2) A/ (A+3)
Dn, Vij 1 A+D/+2)  +1D/(A+3)
D?*n, V?j 1 1 (A+2)/(A+3)
D3n, V3j 1 1 1

3, ;1 1 1 1/2
Dd,n, Vi 1 1 1

Proof. The estimates follow directly from the Sobolev embeddings and Lemmas A.6 and A.7, using the
bounds ||9,m||(2) < é,n and ||§18,n||(2) < €an, the latter of which is a consequence of Lemma 2.11. [

Now we record some estimates involving u.

Lemma 3.2. Table 3.1(a) encodes the power in the L*°(2) and L*°(X) interpolation estimates for u and
its derivatives.

Table 3.1(b) encodes the power in the H(R2) interpolation estimates for u and its derivatives.

Table 3.1(c) encodes the power in some improved L°° (X)) interpolation estimates for u and its tangential
derivatives on X.. Here we restricttor € (0, 1/2).

Proof. The estimates of the first two tables follow directly from Sobolev embeddings and Lemmas A.8
and A.13. For the L°°(X) estimates of the last table, we use r € [0, 1/2) in (A-34) of Lemma A.7 along
with trace estimates and Lemma A.13 to bound
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X EN+2.1  DN421~Eny22 DNi22
u 1/(1+r) 1/2 1/3
Du 1 2/(2+r) 2/3
Vu 1/(1+r) 1/2 1/3
() D*u 1 1 1/(14r)
DVu 1 2/(2+7) 2/3
VZu 1 1/(14r) 1/2
Viu 1 1 1/(147r)
Viu 1 1 1
du 1 1 1
X Ent21 D2 ENt22 DNy2,2
u AJO+D A/A+D) A/(A+2) A/ (+2)
b) Du 1 1 G+1D/A+2) (A +1D/(A+2)
D%u 1 1 1 1
VDu 1 1 1 1
du 1 1 1 1
X EN+21 D21 Eng22 D22
© u | 11+ 1/A4r)  1)2 1/2
Du 1 2/Q24r) 2/Q2+r) 2/Q2+r)

2 2 -1
letl1 e 5y S el o5 O =P/ (1 D?

Table 3.2. Tables for Lemma 3.2.

ullgr(s))

1/(s+r) ,S (”M”%)(H»rfl)/(sqtr)(”Dsu”%)l/(ﬁ»r)

1455

SlullhHSH =D DV |5V (3-7)

For €y42.1 and @421 we choose s =1 and r € (0, 1/2), while for €x422 and D42, we choose s =2

and r = 0. In both cases, |lu||? < €,y and ||DSVu||(2) < éN+2.m- A similar argument works for the Du

estimates in L°(X).

Now we estimate Vp in L™.

O

Lemma 3.3. The following table encodes the power in the L°°(R2) interpolation estimates for derivatives

of p.
X Envi21 D21 ~Ent22 DNy2o
Vp 1 1/(1+7r) 1/2
VZp 1 1 1/(1+4r)
orp 1 1 1/(14r)
V3p 1 1 1
»Vp 1 1 1
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Proof. The estimates follow directly from the Sobolev embeddings and Lemma A.8. ]

Interpolation estimates for G*, i =1, 2,3, 4. Now that we have some preliminary estimates for u, 1, 7,
and V p (plus some of their derivatives), we can estimate the G’ forcing terms defined in (2-24)—(2-31).

Lemma 3.4. The following table encodes the power in the L>°(R2) interpolation estimates for G/,

i=1,...,5and G and their spatial derivatives.

X Eni21 D421~ Ent22 DN+2,2

G 1 1 (3A45)/(21+6)

vGh! 1 1 1

G'? 1 1 2/3

DG'? 1 1 1

vG!? 1 1 2/3

G'3 1 1 (BA+5)/(214+6)

vG'3 1 1 1

G4 1 1 1

vGh4 1 1 1

G'» 1 1 1

VGl 1 1

G' 1 1 2/3

DG' 1 1 1

vG! 1 1 2/3

The following table encodes the power in the H O(Q) interpolation estimates for GVii=1,...,5and
G and their spatial derivatives.

X Ent2,1 DN+2,1 Ent2,2 DN+2,2
G!! 1 1 1 (BA+3)/(21+6)
vGhl! 1 1 1 BA+5)/(21+6)
G'? 1 Gr+1)/2r+2) (BA+2)/2A+4) (4r42)/(31+6)
DG'? 1 1 1 (51+4)/(31+6)
G'3 1 1 1 (BA+3)/(2146)
vGh3 1 1 1 BA+5)/(21+6)
G4 1 1 1 (4r+6)/(31+9)
DG4 1 1 1 1
G'» 1 1 1 5/6
vVG!» 1 1 1 1
G! 1 GA+1)/2242) (GA+2)/2r+4) (4r+2)/(3r+6)
DG! 1 1 1 (51+4)/(31+6)

Proof. The definitions of G!¥ show that these terms are linear combinations of products of two or more
terms that can be estimated in either L> or H° by using Sobolev embeddings and Lemmas 3.1, 3.2,
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and 3.3. For the L table we estimate products using the usual algebra of L*°: | XY |z < || X|z=|Y ] L.
For the H table, we estimate products with both

IXYIIZ<IXIZNY 7~ and [[XY[3 < IV I3IX]I7w, (3-8)

and then take the larger value of 6 produced by these two bounds.

The interpolation powers recorded in the above tables have been determined using the full structure of
the G/, i =1,...,5, as defined in (2-24)—(2-31). However, for each G/, i =1, ..., 5, it is possible to
identify a “principal term” that has the same essential structure as the term in G'+/ that determines the
interpolation powers appearing in the tables. For the sake of clarity we record these principal terms now:

G ~q7Vp, GY~u-Vu, G2 ~qjdiu, G~ &iosu, G~ bdidsu. O
Now we estimate G2.

Lemma 3.5. The following table encodes the power in the L>°(2) and L*°(X) interpolation estimates
for G? and its spatial derivatives.

X ENt21 DNi2,1 ~Eng22 DN+2,2

G? 1 1 (41+6)/(3149)
DG? 1 1 1

VG? 1 1 (3145)/(21+6)
V2G? 1 1 1

The following table encodes the power in the H*(Q2) interpolation estimates for G* and its spatial

derivatives.
X Eni21 Dn+21 ~Ent22 DN+2.2
G? 1 (BA+2)/2r+4)  (4r+3)/(31+9)
DG? 1 1 (41+6)/(3149)
VG? 1 1 (3143)/(21+6)
V2G? 1 1 (3145)/(21+6)

Proof. The estimates may be derived as in Lemma 3.4, so we only record the principal term in G2. For
these estimates, G2 ~ no3us. U

Now we record G estimates.

Lemma 3.6. The following table encodes the power in the L (X) interpolation estimates for G* and its
spatial derivatives.

X Ent21 Dni21 ~ Enyo2 DN+2,2

G3 1 1 (4r+6)/(3149)
DG3 1 1 1

D2G3 1 1 1
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The following table encodes the power in the H°(X) interpolation estimates for G and its spatial

derivatives.
X Ent21 Dni21 ~ Enyo2 DN+2,2
G? 1 BA4+2)/2r+4)  (4r+3)/(3A+9)
DG? 1 1 (41+6)/(31+9)
D*G3 1 1 1

Proof. Recall that by Remark 2.4, we may remove the appearance of (p — 1) in G>. This allows us to
perform the estimates of G terms as in Lemmas 3.4 and 3.5. The principal term may be identified as

G3 ~ ndsu.

Now we record G* estimates.

O

Lemma 3.7. The following table encodes the power in the L (X) interpolation estimates for G* and its

spatial derivatives.

X ENt2.1 DNt21~ENt22 D422
G* 1 1
DG* 1 1
D*G* 1 1 1

The following table encodes the power in the H°(X) interpolation estimates for G* and its spatial

derivatives.
X Ent21 DNi2,1 ~Eni22 DN12,2
G* 1 1 (BA45)/(214+6)
DG* 1 1 1
D*G* 1 1 1

Proof. The estimates again work as in Lemmas 3.4-3.6. In this case there is no need to identify the

principal term, since G* = —Dn - u is already in a simple form. (I

Improved estimates for u, Vp. Now we will use the structure of the equations (2-23) to improve our

estimates for u, V p, etc. Our first estimate is for Dp. It constitutes an improvement of our existing L >

estimate, Lemma 3.3, as well as a first HY estimate.

Lemma 3.8. The following table encodes the power in an L*°(R2) interpolation estimate.

Enia1

D21~ Eng22

DN+2,2

Dp

1

1/(1+r)

A+2)/(A+3)

The following table encodes the power in an H°(S2) interpolation estimate.

En+2,1

DNy2,1 ™~ Eng22

DN+2,2

Dp

1 (+1)/(A+2)

A+1)/(A+3)
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Proof. In order to record the proof of both the H® and L estimates at the same time, we will generically
write | - || to refer to either the H°(2) or L>(2) norm. Similarly, we will write | - ||z to refer to the
H%(X) or L*(X) norm. The starting point is an application of Lemma A.10 to bound

IDpI* S I1Dpl5 + 118 Dpl1. (3-9)

We will estimate both terms on the right-hand side in order to prove the lemma.
In order to estimate Dp on X we utilize the boundary conditions in (2-23) to write

dip = 3in+28dus3 + 8;(G> - e3) (3-10)
for i =1, 2. From this we easily see that
IDplI3: S IIDnl% + DG I3 + | Ddsus % (3-11)

The first two terms may be estimated with Lemmas 3.1 and 3.6, but we must further exploit the structure
of the equations in order to control the last term. For the H° estimate we use trace theory and the second
equation in (2-23),

dsus = G2 — dyuy — douy, (3-12)
to see that
ID3u3 )05y S 1 DO3usll} S IDG(F + | D?ull3. (3-13)

Since D*u =0 on X, we may use Lemma A.13 to bound
ID?ullt < 1V D%ull5, (3-14)
so that, upon replacing in the previous inequality, we find
1Ddsu3130.5) S DG+ I DVG[§ + | D> V5. (3-15)
For the corresponding L*>° estimate we again use (3-12) to bound
1D83u3 117 () S IDG 17 e(z) + I1Dul 7 3. (3-16)

By Lemma A.13 we know that ||D2u||%oo(2) < ||v1)2u||%w(m. On the other hand, DG? € C°(Q) (this
2

may be verified using the Sobolev embeddings and Theorem 4.2), so that || DG?> 7o0csy = |l DG2||%OO(Q).
We may then replace these to arrive at the bound

1D5u317(x) S IDG () + IV Dl - (3-17)
Then, from (3-15) and (3-17), we know that

IDdusll% SIIDG?|? + | DVG?|? + || D*Vu ). (3-18)
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Combining (3-11) with (3-18) yields
IDpl% S IDnl% + I1DG? 1% + IDG?|> + | DVG?||* + || D*Vu . (3-19)

We may then employ Lemmas 3.1, 3.2, 3.3, 3.5, and 3.6 to derive the interpolation power for || Dp||%; we
record this power in the following table. Both the L™ and H® powers are determined by Dn, but the L™
estimate only improves the result of Lemma 3.3 for 9y 5.

Ent2,1 DN42,1 ~ Ent22 DN+2,2
IDpl7 o) 1 1/(14r) (A+2)/(A+3)
1DP1 305, 1 A+D/G42)  OA+D/(+3)

Now we will estimate the term ||33 Dp||. For this we use (2-23) to write
3;03p = ;[ (87 + 87 — 3 )us + d3uz + G - e3] (3-20)
for i =1, 2. Again using (3-12), we may write
3;03us = 8;05(G* — du; — dyuz). (3-21)
Combining these two equations then shows that
D33 pII* S ID°ull? + 1 D*Vul> + | D,ul* + | DG |* + | DVG?||2. (3-22)

We may then employ Lemmas 3.2, 3.3, 3.4, and 3.5 to derive the interpolation power for || Dd;p||%; we
record this power in the following table. The H” powers are determined by DG!, but note that the L™
estimate does not improve the result of Lemma 3.3.

Enia1 Dni21 ~Eni22 DN12,2
D33 pl|3 1 1 1/(1+r)
||D83p||(2) 1 1 Or+4)/(BA+6)

Now we return to (3-9) and employ our estimates of ||Dp||§: and || Do3 p||2 to deduce the desired
interpolation powers for ||Dp||2. Notice that we may also combine (3-9) with (3-19) and (3-22) for the
estimate

I Dp|?
SIDnl% + 1D ul + | D*ul|* + | D*Vull* + | DG'|* + || DG*||* + | DVG?|* + |DG?||%.  (3-23)

This concludes the proof. U
With this lemma in hand, we can now derive improved estimates for u.

Proposition 3.9. The following table encodes the improved power in the L°°(Q2) interpolation estimate

for u and its derivatives.
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Envi21 Dni21~Eni22 Dni22
u 1 1/(1+7) 2/3
dui,i=1,2 1 1/(147) 2/3
313 1 2/(24r) 2/3
Vu 1 1/(147) 2/3
VZu 1 1/(1+r) 2/3

The following table encodes the power in the H°(2) interpolation estimate for u and its derivatives.

ENt2.1 DN42,1 ENt2.2 DN+2.2
u 1 G+1D/A42)  GED/O42) Ot/ (0+3)
ozuj, i =1,2 1 A+1)/(A+2) A+1/(A4+2) A+1)/(A+3)
i3 1 GA+2)/2A44) GA+2)/2A+4) (4A+3)/(BA+9)
Du 1 1 QA+3)/ (2044 (h+2)/(+3)
Vu | G+1)/042) G+D/O+2) Ot/ +3)
DVu 1 1 (20+3)/Qr+4)  (+2)/(+3)
Ddsus 1 1 1 (41 +6)/(3A+9)
Vasus 1 | (21+3)/(2r+4)  (31+3)/(2A+6)
V2u 1 A+1)/042)  O+D/42) A1)/ 43)

The following table encodes the improved power in the L°°(R2) interpolation estimate for V p.

ENt2.1

DN+2,1~ Ent22 DNi22

Vp

1

2/24+r) 2/3

The following table encodes the power in the H°(2) interpolation estimate for derivatives of p.

En+2,1 DN+2,1 En+2,2 DN+2,2
ap 1 Gr+1)/2A+2) (Br+2)/2A+4) (4r+2)/(BA+6)
Vp 1 A+D/(A+2) A+1)/(A+2) A+D/(A+3)
Proof. As in Lemma 3.8 we will write | - || and || - |5 to refer to both the H° and L norms on 2 and

2, respectively. We divide the proof into several steps, beginning with estimates of Vu. With these
established, we can extend to estimates of u, DVu, Du, Ddsus, and Vdszus by employing Poincaré’s
inequality and interpolation. This in turn leads to estimates for 83 p and V2u.

Step 1: Estimates of Vu. To begin the Vu estimates, we split the components of Vu into those involving

X1, X derivatives and those involving x3 derivatives. Indeed, we have

2

IVa > S 1 Dul® + 1833 1* + > [0 |1 (3-24)

i=1



1462 YAN GUO AND IAN TICE

Lemma 3.2 provides an estimate of Du, but not of d3u, so we must use the structure of the equations
(2-23) to estimate the latter two terms.
To estimate dsus we use the second equation in (2-23) to bound

183u3 1> S G2 )1? + || Dull?. (3-25)

Then Lemmas 3.2 and 3.5 provide interpolation estimates of G> and Du and hence the estimates of d3u3
listed in the tables. The Du term determines the power for L, while the power is determined by G? for
H°.

To estimate dsu; for i =1, 2, we first apply Lemma A.10 to get

1930 1> S 1830113 + 11930 1. (3-26)
For the first term on the right, we use the third equation in (2-23) to bound
I95ui113 < 1 Dusliy + 1G5 (3-27)
Since Du = 0 on Xj, we can use trace theory, Lemma A.13, and the equation divu = G? for
1Dus3 S 11V Dusl® < 1 D%ul® + I DG, (3-28)
For the second term on the right side of (3-26), we use (2-23) to bound
193u; 1> < 19:ull® + I D?ull* + | Dp|* + G117 (3-29)
We may then combine estimates (3-26)—(3-29) to deduce that
l83ui 1 < 18,2)” + 1D%ull® + | DpII* + G I° + 1 DG + G5 (3-30)

Now we use Lemmas 3.2, 3.4-3.6, and 3.8 to find the interpolation powers for d3u;, i = 1, 2, listed in the
tables. For L the power is determined by Dp for €x12.1, €n+2,2, and Dy 7 | and by G! for DN4+2.2,
while for H? the power is determined by Dp.

With estimates for Du, d3u3, and d3u; for i = 1, 2 in hand, we return to (3-24) to derive the estimates
for Vu listed in the tables. For both the L™ and H estimates the power is determined by d3u;, i = 1, 2.

Step 2: Extensions to estimates of u, DVu, Ddsu3, and Vzuz. Now we apply Lemma A.13 to control u
in terms of Vu:

lul? < I Vull*. (3-31)

Our estimates for Vu then provide the estimates for u listed in the tables.

We now turn to DVu. Clearly ||DVu ||% is controlled by both €y 1 and D y4> 1, which yields the
powers of 1 in the tables. An application of (A-38) from the Appendix with A =0,¢ =1, and s =1
shows that

IDVuld < (IVullg)/*(I1D*Vu )2 (3-32)
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We employ this in conjunction with our estimate for Vu and the estimate of D?Vu from Lemma 3.2 to
get the interpolation powers for DVu listed in the tables for €12, and @y . The estimates for Du
listed in the tables follow immediately from the estimates for DVu via Poincaré:

1Dul* S 1 DVul. (3-33)
In order to estimate Dd3u3 and Vdsu3 in H? we use that divu = G2 for

IVasus I3 < IVGAIZ+ | DVul3, (3-34)
I Dd3us Iy S IIDG?3 + | D*ull3. (3-35)

Then our estimate for DVu and Lemmas 3.2 and 3.5 yield the estimates listed in the tables. For Vosus
the power is determined by DVu for €n42,1, Dn+2.1, €n+2,2 and by VG? for Dn42.2. For Ddzusz the
power is determined by DG?.

Step 3: Estimates of d3p and V p. Lemma 3.8 provides estimates for Dp, so to complete an estimate for
V p we only need to consider 93 p. For this we again use (2-23) to bound

183p1% < 193usll* + 1 D*ull® + [13,ull* + |G |1 (3-36)
This and (3-34) then imply that
135 p01* S IIDVull> + | D*ull® + l|3,ull* + |G 1> + I VG?|1%, (3-37)

and we may use Lemmas 3.2, 3.4, and 3.5 along with our new DVu estimate to determine the powers in
the tables for 93 p. In the L™ estimate the power is determined by DVu, and in the H® estimate the power
is determined by G'. Then the estimates for V p follow by comparing the Dp estimates of Lemma 3.8 to
the 93 p estimates.

Step 4: Estimates of V*u. Finally we consider V2u, which we decompose according to xi, x2, and x3

derivatives: )

IV2ul> SUD*ull” + |1 DVul® + [85us >+ D 195>, (3-38)
i=1

According to our bounds (3-29) and (3-34), we may replace this with
IV2ull® S 1dull® + | D*ull* + | DVull* + | DplI* + 1G> + I VG2 (3-39)

Then Lemmas 3.2, 3.4, 3.5, and 3.8 with our new estimate of DVu provide the estimates in the table
for V2u. For L™ the power is determined by Dp for €421, €n+2.2, and D421 and by G! for DN+2.25
while for HY it is determined by Dp. O

Bootstrapping: first iteration. We now use the improved estimates of Lemma 3.8 and Proposition 3.9
to improve the estimates of G',i=1,...,4, recorded in Lemmas 3.4-3.7. We will only record the
improvements for the H 0(Q) estimates.
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Lemma 3.10. The following table encodes the power in the H*(Q) interpolation estimates for G/,

i=1,...,5, and G" and their spatial derivatives.

X Envial DNy Enyan DN+2,2
G!! 1 1 1 (51+6)/(31+9)
vGh! 1 1 1 1

G2 1 1 1 1

VG2 1 1 1 1

G'3 1 1 1 (5046)/(3149)
vG'3 1 1 1 1

G4 1 1 1 1

vGl4 1 1 1 1

G’ 1 1 1 1

vG!» 1 1 1 1

G! 1 1 1 (51+6)/(3149)
VG! 1 1 1 1

Proof. We perform the estimates as in Lemma 3.4, except that now we use the improved interpolation
estimates of Lemma 3.8 and Proposition 3.9. (Il

We now record the G2 estimates.

Lemma 3.11. The following table encodes the power in the H°(2) interpolation estimates for G* and its
spatial derivatives.

X ENt21 DNi21 Eny22 DN+2,2

G? 1 1 1 (TA+6)/(31+9)
DG? 1 1 1 1

VG? 1 1 1 (51+5)/(21+6)
V2G? 1 1 1 1

Proof. We perform the estimates as in Lemma 3.5, except that now we use the improved interpolation
estimates of Proposition 3.9, in particular the distinct estimates for dsus and dszu;, i = 1, 2. These are
crucial since in G? the term d3u; is multiplied by a derivative of 7 but d3u3 is multiplied by 7 itself.
This means that for the present interpolation estimates we may identify the principal term in G? as
G? ~ 7103u3 + 31 1d3u1 + 927031u5. O

We now record the G estimates. We omit the proof since it follows that of Lemma 3.6, using the
improved estimates of Lemma 3.8 and Proposition 3.9.

Lemma 3.12. The following table encodes the power in the H’(X) interpolation estimates for G* and its
spatial derivatives.
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X Eni21 D21 Ent22 DN+2,2

G? 1 1 1 (5146)/(3A+9)
DG? 1 1 1 (5.46)/(3A+9)
DG 1 1 1 1

We now record the G* estimates. We again omit the proof.

Lemma 3.13. The following table encodes the power in the H*(X) interpolation estimates for G* and its

spatial derivatives.

X ENt21 DNi21 Eny22 Dyy2o
G* 1 1 1 1
DG* 1 1 1 1
D*G* 1 1 1 1
The improved estimates for G,i=1,...,4,allow us to improve the H 0 estimates of Proposition 3.9.

Theorem 3.14. The following table encodes the power in the H°(S2) interpolation estimate for u and its

derivatives.
Ena1 DN 42,1 Eniao DN12,2
u 1 +D/O42)  A+D/G+2)  +1D/(+3)
Bt 1 1 QA43)/(2A+4) (1+2)/(A+3)
Du | 1 QA43)/(2A+4) (L +2)/(A+3)
Vu 1 G+D/G+2)  G+D/O+2) +1D/(A+3)
DVu 1 1 QA+3)/ (2044 (ot2)/(A+3)
Vo33 | | QA43)/(2h+4) (1+2)/(A+3)
V2 1 +D/0+2)  G+D/O+2)  A+1D/0+3)

The following table encodes the power in the H°(Q2) interpolation estimate for derivatives of p.

Enia,1 DN+2,1 Ent2.2 DN+2.2
33 p 1 1 QA43)/QA+4) (L+2)/(L+3)
Vp 1 A+1)/(A+2) A+1D/(A+2) (A+1)/(A4+3)

Proof. The powers are the same as those listed in Proposition 3.9 except for dsus, Vosusz, and 93 p.

To arrive at the 03 p estimates, we again employ the estimate (3-37) of Proposition 3.9, except that now

we use Lemmas 3.10 and 3.11 for estimates of G! and VG? and Proposition 3.9 for the estimate of DVu.

The terms d,u and D?u are still estimated with Lemma 3.2. The power in the 93 p estimate is determined

by DVu.

For the d3u3 terms, we employ the equation divu = G? to bound

133u3)1* < IIG*|* + || Dull*  and

IVasusll* S IVGHI* + | DVul®. (3-40)
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The estimates of d3u3 and Vosu3 in the table follow from these bounds and Lemmas 3.9 and 3.11, with
the power of the former determined by Du and that of the latter determined by DVu. (I

Bootstrapping: second iteration. We now use the improved estimates of Theorem 3.14 to improve the
estimates of G', i = 1, 2, recorded in Lemmas 3.10-3.11. We once again omit the proof.

Theorem 3.15. The following table encodes the power in the H*(Q) interpolation estimates for G/,

i=1,...,5, and G and their spatial derivatives.

X Envi21 D21 Eni22 DN42,2
G! 1 1 1 Q2r+2)/(A+3)
vGh! v2Ggh! 1 1 1 1

G2, vG'2?, v2G!? 1 1 1 1

G'3 1 1 1 QA+2)/(A+3)
VG3, viG3 1 1 1 1

G4, vGh4, vighe 1 1 1 1

G, vGh3, vighs 1 1 1 1

G! 1 1 1 2A+2)/(A+3)
VG!, V2G! 1 1 1 1

The following table encodes the power in the H*(Q) interpolation estimates for G* and its spatial

derivatives.

X EN+21 D421 En+22 D422
G2, VG?, V?G? 1 1 1 1

Now we make final improvements to our estimates.

Proposition 3.16. The following table encodes the power in the H°(S2) interpolation estimates for Dd3u;
fori=1,2.

X Eni21 Dni21 Eny22 DN+2,2
Ddsu;,i=1,2 1 1 1 (042)/0.43)

The following table encodes the power in an H*>(X) estimates for Du; fori =1, 2.

X Envia1 DNy Enyan DN12,2
Du;,i=1,2 1 1 1 (A+2)/(A+3)

The following table encodes the power in the improved H(X) interpolation estimates for 9.

X Envt21 D21 Ent22 DN+2,2
31 1 1 1 0+2)/0+3)
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Proof. We may argue as in the derivation of (3-23) of Lemma 3.8 to bound

ID?p?
SID P+ D*du )|+ D*ull*+ || D> Vul|*+ || D*G'||*+ || D*G*||*+ | D*°VG?* |*+|| D*G?||%.  (3-41)

We may also argue as in the derivation of (3-30) of Proposition 3.9 to bound
IDdsui 1> S 1 D3ull® + 1D ull® + 1D p|I* + I DG'|? + IDG*IP + IDG|l3. (3-42)

for i =1, 2. Combining (3-41) and (3-42) and employing Theorems 3.14 and 3.15 and Lemmas 3.12 and
3.13, we then find the H°(Q2) estimates for Ddsu;, i = 1, 2, listed in the table. The power is determined
by D?n.

We now turn to the || Duy; estimate for i = 1, 2. We employ trace theory and the Poincaré

2
” H2(2)
inequality to bound

IDuill3005) S 1Dsui[I5 - and 1D uilly0., S 11D 0305, (3-43)

and then we utilize our new estimate for Ddsu; to deduce the H>(X) estimates listed in the table. The
power is determined by Ddsu; since D33;u; has four derivatives and hence has a power of 1.
Finally, for the 9,71 estimate we use (2-23), trace theory, and Lemma A.13 to bound

19:7 1 05y S 313005y + 1G 105y S IV 116+ 1GH 305 (3-44)

Then Theorem 3.14 and Lemma 3.13 provide the 9,1 estimate for @y, » listed in the table, with the
power determined by Vus; the estimates for €x42.1, €n42.2, Dn+2,1 come from Lemma 3.1. O

Now we record an interpolation estimate for ¥, as defined by (2-57).

Lemma 3.17. We have ¥ < %gi%)/ (8+42).

Proof. By definition, # = | Vu[?e + [|V2u)3e + Yo, ||Du,-||§12(2). We may now use the H*(X)
interpolation estimate of Proposition 3.16 and the L*° interpolation estimate of Proposition 3.9 with
r=2A/(4+x) tobound ¥ < %fv/ffzr) The choice of r implies that 2/(2+r) = (8 +2X1)/(8 +4)), and

the result follows. O

Estimates at the high end. Our analysis so far in Section 3 has dealt with the problems associated with
estimating terms involving fewer derivatives than appear in €x42.m, Dn+2.m- We now turn to the problem
of estimating terms involving more derivatives than are controlled by @y5 ,,. We accomplish such
an estimate by interpolating between @ y2 ,, and €2y, which controls more derivatives since N > 5.

D2N+4

Fortunately, the only term we must concern ourselves with is n, and to simplify things we will

only estimate it in terms of @y, ». This suffices since Dy 22 S Dy42.1-

Lemma 3.18. We have the estimate

||[)2N—i-4n”%/2 + ||V2N+5ﬁ||(2) 5 (%ZN)Z/(4N—7) (@N+2,2)(4N_9)/(4N_7)- (3_45)
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Proof. According to Lemma A.5, with g = 2N 45, we may bound

IV 705 S Il anion s, S 1D 01T, (3-46)

so it suffices to prove (3-45) with only the D*¥ 43 term on the left side. To prove this, we will use a
standard Sobolev interpolation inequality:

LAl S AN I (3-47)

fors,g > 0and 0 <r <s. Applying this to f = D3>y with s =2N +3/2,r =1, and g =2N —9/2, we
find that

4N—9)/(4N~T 2/(4N—17
1D 12 < 1D nllan 32 S 1D gy s 1Dl ", (3-48)
The desired inequality then follows by squaring and using the definitions of €,y and Dy 2. O

Our next result utilizes Lemma 3.18 to estimate products such as u D*N 4.

Lemma 3.19. Let P = P(K, n, Dn) be a polynomial in K, n, Dn. Then there exists a 0 > 0 such that

DM mull g + 1D ) PVl 05 S EnDN2,2- (3-49)

Let Q = Q(K, l;, n, Vi) be a polynomial in K, 5, n, V1. Then there exists a 6 > 0 such that
(VAT QVul§ < EnDrs2.2. (3-50)

Proof. According to the bound (A-2) of Lemma A.1, we may bound

”(D2N+4 D2N+4

M PVull s,
SUID 1 1l gy + 1D 40105 | PV U G gy (B-51)

mull e, + I

Trace theory and Lemma A.13 (both u and D*u vanish on ;) imply that
2z + 1Vl g2y S Mullfyorsy + 1D ull o, + 1Vl o5y + 1 D*Vatll o s,
SIVulg+ 1D Vulg+ IV2ullg+ V> Dull3, (3-52)
but then an application of Theorem 3.14 to all the terms on the right side shows that

el 3o )+ 1VUl G ) S @2, 2)THH/EHY, (3-53)

It is easy to see, based on the terms controlled by €,y and the Sobolev embeddings, that || P||2 P (2) <

14+%¢,5 < 1. We may then combine this with (3-53) and the easy bound ||fg||H2(2) < ||f|| HA(E) ||g||C2(E)
to deduce that

sy + 1PVl sy S Nellypags) + 1Vl gy S @Dng20) /O (3-54)
Then this bound, (3-51), and Lemma 3.18 imply that

DM mullFpn gy + 1D N PVUl05) S ENDy 420 (3-55)
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for some 6 > 0 and for

C4AN-9 A+l _4N-9 1 16N—34 ]
K=aN—T T3 ZaNT T3 N2 2" (3-56)

since N > 4. Since Dy 122 < €on < 1, we may bound D122 < D422 in (3-55), which then yields
(3-49).
To derive (3-50), we first bound

IV VUl < IV RIG1 Vil zo QN7 - (3-57)
The first term on the right is controlled with Lemma 3.18. The second term satisfies
IVl < @n422)"° (3-58)

by virtue of the L*° estimates of Proposition 3.9. The third term satisfies || Q||iOO S1+4+%py <1by

Sobolev embeddings and the definition of €,5. The estimate (3-50) follows by combining these bounds
as above. O

4. Nonlinear estimates

Estimates of G at the N + 2 level. We now provide estimates of G', defined by (2-24)—(2-31), in terms
of €nta.m and Dy 42 . Recall that, for sums of space-time derivatives, we use the notation 5; and V‘m,
as described on page 1443.

Theorem 4.1. Let m € {1, 2}. Then there exists a 0 > 0 such that
VAN D 2GH G+ IV, PGP + 1D P PG o + 1D TGy S €y Eneam (4D
and
||§’%1(N+2)—1G1 ”(2) + ”§S(N+2)—1G2”% + ”551(N+2)—1G3”%/2
+ 1Dy PTIGHR, + ID* N2, GHE , S €y Dvram. (4-2)

Proof. The estimates of these nonlinearities are fairly routine to derive: we note that all terms are quadratic
or of higher order; then we apply the differential operator and expand using the Leibniz rule; each term in
the resulting sum is also at least quadratic, and we estimate one term in H* (k =0, 1/2, or 1 depending
on G') and the other term in L> or H™ for m depending on k, using Sobolev embeddings, trace theory,
and Lemmas A.1 and A.5-A.8. The derivative count in the differential operators is chosen in order to
allow estimation by €42, in (4-1) and by @n42 , in (4-2). There is only one difficulty that arises.
Because €42, and 9 y42 ,, involve minimal derivative counts, there may be terms in the sum 9*G' that
cannot be directly estimated. To handle these terms, we invoke the interpolation results of Theorems 3.14
and 3.16 and Proposition 3.9, as well as the specialized interpolation results of Lemma 3.19. A detailed
proof of the estimates is quite lengthy, so for the sake of brevity we present only a sketch.

Let o € N3 with m < |o| < 2(N +2) — 2 and consider 3*G'. Since G! involves Vp and 8%u, 3#7
with |B] < 2, we find that 3*G' involves at most (with parabolic counting) 2(N + 2) — 1 derivatives
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of p, and at most 2(N + 2) derivatives of u and 7. We have that G! is a linear combination of at least
quadratic terms, and as such, so is 3*G'. Let us consider a generic term in the sum 3°G', which we
write as XY with X of the form 8fu or 3#7 with || < 2(N +2) or else 3# p with |8] < 2(N +2) —1,
and Y a polynomial in lower-order derivatives. If | 8] is sufficiently large with respect to m, the minimal
derivative count is exceeded and we may estimate || X ||% < €n+a.m- It is easy to verify, using Sobolev
embeddings and Lemmas A.1 and A.5-A.8, that we always have || Y ||%oo < %‘;  for some 6 > 0. Then

IXY 5 < IXIBNY 100 S EniamEy- (4-3)

On the other hand, if |8] is not large, we must resort to interpolation, using Theorems 3.14 and 3.16
and Proposition 3.9. In this case, it can be verified that we always get estimates of the form || X ||(2) <
()7 (Engom)? and |Y |12 S (€an)®2(En42,m)? with 6) € (0, 1], 65,63 > 0, and 6 + 63 > 1, so

that
IXYNI5 < IXISNY 1700 < EniomEoy (4-4)

for some @ > 0. This analysis works for every XY appearing in 3*G, so

for some 6 > 0. It can then be verified, through a straightforward but lengthy analysis like that used
above, that all of the estimates in (4-1) hold. We note, though, that in order to estimate the G? terms, we
must use Remark 2.4 to remove the appearance of (p — 7) in G>.

Now we sketch the proof of the estimates in (4-2). We may argue as above to estimate all terms
that arise in 3*G’ with two exceptions: terms involving V2¥+35 on € or D*¥*4; on X. These always
have the form of the terms estimated in Lemma 3.19, so we may use that lemma for estimates in terms
of %g ~Dn+2,2, which suffice for (4-2) since Dy422 S Dy42,1. Then (4-2) follows by combining the
estimates of the exceptional terms with the estimates of the terms as above. ([

Estimates of G' at the 2N level. Now we derive estimates for the nonlinear G’ terms, defined by (2-24)-
(2-31), at the 2N level. Recall that, for sums of space-time derivatives, we use the notation ijz and ﬁﬁq,
as described on page 1443.

Theorem 4.2. Let m € {1, 2}. Then there exists a 6 > 0 such that
IV GG+ IV G IT + 1D 2GRl o + 1D 2GHIT , S €37, (4-6)
IV 2G5+ IV G2 IT + 1D G I o + 1D 2GHIT 0 + IV 0,615
+IVH0,G 1T+ 1D 0, GO , + 1D 20,613 )y S €y Dan. (4-T)
and
IV IV TGP IT + DN TGP  + 1DV T GHIT fp S Doy + H Ty, (4-8)

Proof. As explained in the proof of Theorem 4.1, the estimates are routine and lengthy, so we present only
a sketch. The estimates in (4-6) are straightforward since €,y has no minimal derivative restrictions. They
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may be derived using Sobolev embeddings, trace theory, and Lemmas A.1, A.5, and the L™ estimates of
Lemma A.6.

The only terms with minimal derivatives in %,y are Dn and V p. The latter presents no problem, since,
owing to Remark 2.4, p itself never appears in any of the G’ terms. The former may be dealt with by
using Lemmas A.6 and A.7 to produce interpolation estimates of 7 and 7 in terms of Dn. Whenever
interpolation is needed to estimate these terms, there are always other terms multiplying them that allow
for the recovery of a power of 1 on %,y. Using these estimates with Sobolev embeddings, trace theory,
and Lemmas A.1, A.5, and A.6 then yields (4-7).

We now turn to the derivation of (4-8). Consider 3*G' with |o| = 4N — 1 and o = 0, that is, purely
spatial derivatives, and expand 3% G’ using the Leibniz rule. With two exceptions, we may argue as in
the derivation of (4-7) to estimate the desired norms of all of the resulting terms by %g NDay for 6 > 0.
The exceptional terms are ones involving either V4V*17 in @ or D*Vy on X. We will now show how
to estimate the exceptional terms with H{Z,y, as defined by (2-57) and (2-56). Identifying the product
structure X%, is one of the key difficulties in our analysis.

In VAN~1G! there are terms of the form 97 Q9” u, with

O0=0(A,B,J,K,VA, VB, V), 4-9)

a polynomial, and 8, y € N® with || =4N +1 and |y| = 1. To estimate such a term, we use Lemma A.5
to bound
IV < 1D 201 < Fon (4-10)

<14¢%, <1 for some 6 > 0, so

Sobolev embeddings imply that || Q|7 « < I S

1827087 ully S IV R IVUZ | QlF w0 S IDN 20131 Vi) < Fon. (4-11)

This estimate then yields the G! estimate in (4-8).
In V#*¥~1G? there are terms of the form 3708 u with Q = Q(A, B, K), a polynomial, and 8, y € N3
with |8| =4N, |y| = 1. Again, Sobolev embeddings imply that || QHZCI(Q) <1 +‘6§N <1,s0
197700 ully S I1QIIg1 g 197707 ull} S 10P707 ullg + 1077V 97 ull§ + 11VoP 70" ullg
SIVVAIGIVullgs g + IV A5 Va
S Inliy—1 2 Vulls +%Foy S €onGon +HFow, (4-12)

where again we have used Lemma A.5 and Sobolev embeddings. This estimate yields the G estimate in
(4-8).
In D*N=1G? there are terms of the form 8#17 Q97 u, where g € N? with |8| =4N, y € N? with |y| =1,

and Q is a term for which we can estimate ||Q ||2Cl ) <1+ %g v S 1. Then Lemma A.2 implies that

1971087 ull3 05y SUIP0IIT 21 Q7 ullg S MMz 12l QUE Vel ) S FanH, (4-13)

where in the last inequality we have used ||Vu ||é] ) < I, which follows since Vu and V2u are continuous

on the closure of 2. This estimate yields the G? estimate in (4-8).
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In D*N=1G* the exceptional terms are of the form 3P nu;, where B € N? with || =4N and i = 1, 2.
Then Lemma A.1 implies that

198 nmui gy S N8P 0IT olluti 130 5y S Fon'. (4-14)
This estimate yields the G* estimate in (4-8). O

Estimates of other nonlinearities. The next result provides estimates for $; G’ and its derivatives.

Proposition 4.3. We have

19:G I3 + 11928, G 15 + 195G 115 + 11958, G* 1} < €on min{Eay, Don}, (4-15)
19,G? (17 + 19, G*1IT < €an min{€ay, Dan}, (4-16)
19.G* 15 < D3y (4-17)

Proof. For eachi = 1,2 and for « € N'+3 such that || <2, we can write 9*Gl = Pé fx, where PO’; is
polynomial in the terms 8’35, PK, aﬁﬁ, and 98 u for B e N3 with |B] <4, and Qg is linear in the terms
38Vu, 3#V2u, and 3V p for | 8| < 2. Then we may employ the bound (A-9) of Lemma A.3 to see that

189, G115 S 1 Pallg Ul Qe ID* (ID Q5 1D (4-18)
It is then easily verified, using the Sobolev embedding, Lemmas A.1 and A.5-A.6, and the fact that

€ony <1, that
IPIIE <%y and  [|QL 113 < min{€an, Doy, (4-19)

which, together with (4-18), implies (4-15).

For i =3, 4 and @ € N? such that |o| < 1, we may similarly decompose 3*G' = P.Q!,. When i =3
we must also employ Remark 2.4 to replace the p — n term. We then argue as above, employing the
bound (A-10) of Lemma A.3 as well as trace estimates, to deduce (4-16). The bound (4-17) also follows
from Lemma A.3 and trace estimates, since

195,615 S Nt G0, DRI UID* D)™ < Dan By Gyt = B3 m
Now we provide some further estimates of product terms that will be useful later when we analyze the
energy evolution for $,u and $,7.

Lemma 4.4. Let A, B, K be as defined in (1-8). We have

2
19, [(AK) 311 + (BK)d3ua]llg + Y _ 19, [ud: K115 < D3 (4-20)
i=1
and

19301 = K)ulllg < (Gan) /T (@) HHH/AHH (4-21)
Also, if G? is as defined in (2-29), then

19101 — K)G?113 < €anD3y - (4-22)
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Proof. We apply Lemma A.3, treating the AK, BK, 9; K terms as f and the u, Vu terms as g, to bound

2
19, [(AK)d3u1 + (BK)d3ua]llg + D 19:[ud:i K115 S (IAK G+ | BKIIG+ I DK [§)[lul3.  (4-23)
i=1

From Lemma 2.6, the fact that 3; K = — K29, J, and Lemma A.5, we know that
IAKI§+ IBKIG+ IDKIG S IVl S 1Dnll; < Daw- (4-24)

Then, since ||u ||§ < %Dy, we know that (4-20) holds.
Now, since 1 — K = K(J — 1), we can again use Lemmas A.3 and 2.6 to see that

19101 = K)ulllg S NK A= DIFNul3 < il llal3. (4-25)
To control  we use Lemmas A.5 and A.7 to bound

1712 < Inllg + 100113 < QS Y IR QD3 T+ 4 (1D 3) VD ()| Dy 3y 4+
< (&) VIR (@) A, (4-26)

Then (4-21) follows from these two estimates and the fact that ||u ||% < Dyn.
For the estimate of the (1 — K)G? term, we once more use Lemma A.3 to see that

19,11 — K)GN S IG5 = K |15 (4-27)

By differentiating the equation J K = 1, we may compute the derivatives of K in terms of the derivatives
of J; this allows us to bound, by virtue of Lemmas 2.6 and A.5,

11— K15 S 175 S Inls e S Inllg+ 1Dl (4-28)
Then we may argue as in (4-26) to estimate the right side of this inequality, and we deduce that
1= K3 S (Em) P @) D, (4-29)
On the other hand, from the definition of G? in (2-29), we see that
IG5 S IVullg(I7l7~ + 1 VillZ)- (4-30)

We estimate the L™ norms by using (A-25) of Lemma A.6 first with ¢ =0, s = 1, r = A% + A and then
withg =1, s = 1, r = A% 4 2 to see that

17170 + IVill7 e S (S0 1D TV ADIH YD + (19015 ATV (| D))/ A
< (Ean)M D (@) VD, (4-31)

Then, since ||Vu||% < %>y, we have
IG5 S (Ean) A (@) I/ OHD, (4-32)

which yields (4-22) when combined with (4-27) and (4-29). [l
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Now we provide an estimate of 8,‘/ A when j =2N + 1 and when j = N + 3.
Lemma 4.5. Let A be given by (1-7). We have

192V s 13 < Doy, (4-33)

while form =1, 2,
1N A2 < Dygam. (4-34)

Proof. We will only prove (4-33); the bound (4-34) follows from similar analysis. Since ||82N )2 2=
%, and temporal derivatives commute with the Poisson integral, we may employ Lemma A.5 to bound

182+ 30T = 17M 711G + IV arN T alg S 17V nllT, < Daw. (4-35)
From this we easily deduce that
107105+ 107V K115 S Do (4-36)

This, the previous bound, and the Sobolev embeddings then imply (4-33) since the components of «{ are
either unity, K, —0; ﬁI;K, or —azﬁl;K. O

5. Energy evolution using the geometric form

Estimates of the perturbations when 9% = 3, is applied to (1-9). We now present estimates of the
perturbations F’, defined by (2-13)—(2-22) when 8% = 92V.

Theorem 5.1. Let 3% = 3>V and let F', F?, F3, F* be defined by (2-13)~(2-22). Then
IFUE+ 18 (JEHIG+IF 15+ I FA 5 < €anDan. (5-1)

Proof. We first consider the F! estimate. Each term in the sums that define F! is at least quadratic. It
is straightforward to see that each such term can be written in the form XY, where X involves fewer
temporal derivatives than Y, and we may use the usual Sobolev embeddings and Lemmas A.1 and A.5
along with the definitions of €,y and %,y (given in (2-50) and (2-51), respectively) to estimate

IX|I2 S€n and  [|Y]|3 < Doy (5-2)

Then ||XY||(2) < ||X|| . ||Y||(2) < € NDay, and the F! estimate in (5-1) follows by summing. A similar
argument, also employing trace estimates, yields the F3 and F* estimates in (5-1). Note though, that to
estimate the 8 = « term in F>! we use Remark 2.4 to replace (p — 7).

The same analysis also works for 3;,(JF>') and shows that ||9,(J F> 1)||(2) < €onDoy. To handle
9;(J F>?) we must also be able to estimate ||82N+1&ﬂ||% < %, y, but this is possible due to Lemma 4.5.
Then a similar splitting into L> and H estimates shows that |9, (J F> 2)||0 < €anvDan, and then the
9,(J F?) estimate in (5-1) follows since F? = F>! 4+ F%2, O

We now present estimates for these perturbations when 9 = 9,¥ +2,
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Theorem 5.2. Let 3% = 312 and let F', F2, F3, F* be defined by (2-13)—(2-22). Then, form =1, 2,
we have

IFUG+ 19, (JFAIG+IF 15+ 1 FHIG < €anDnram. (5-3)
Also, if N > 3, there exists a 0 > 0 such that
IF?15 S €5nEnsam (5-4)
form=1,2.

Proof. The proof of (5-3) is essentially the same as that of Theorem 5.1. For the F!, F3, and F* estimates
we note that each term in their definition is of the form XY where X involves fewer temporal derivatives
than Y, which involves at least two temporal derivatives. We estimate || X ||%w <S¢y and ||Y ||(2) SDNt2.m
and then sum to get (5-3). Note that since Y involves at least two temporal derivatives, there is no problem
estimating it in terms of D42 ;. The 0;(J F 2) estimate works similarly, except we must also use the
bound (4-34) from Lemma 4.5. Note also that in estimating the 8 = « term in F!, we must employ
Remark 2.4 to remove (p — n).

We now turn to the proof of (5-4). Recall that F 2= F>! 4 F%2 as defined in (2-19). Since the sum
in F2! runs over 1 < B < N + 1, we may bound

2,12 2 N+2— 2 N+2— 2
IFZR S Y0 0l sl Pui < Y @nlld) P uld i aiviap)
1<B<N+1 1<B<N+l1

S ENEnt2.m- (5-5)
For F22, a calculation reveals that
F22=—aN* 2500 u; = —0N T2 sl305u; =N T2 (817D K ) 3u1 +0N T2 (92716 K ) 0312 — 3N T2 K d3u3. (5-6)

We may use the L interpolation estimate of Proposition 3.9 to bound | d3u; ||%OO SEnqom fori=1,2
and m = 1, 2, which then implies that

10N 20175 K )d3uy + 3N T (0anb K)3uz 1y < €annam (5-7)

if we estimate d3u; in L® and the B,N *1 terms in H. On the other hand, the relation JK = 1 (recall the
definition in (1-8)), the Leibniz rule, and Lemma A.5 imply that

INPKIGS D 1S D I als D 19 mli,

I<y<N+2 I<y<N+2 I<y<N+2
Y 2 N+2_ 12 N+2_ 2
= > 100+ 13Y 2003, S Envam H 13N P0lT o (5-8)
I<y<N+l

To handle the last term we must use the standard Sobolev interpolation (3-47) with s =r = 1/2 and
qg=2N—9/2:

1920117 2 S AN 20l A8 2 nl3y )" ™ S (Engam)* (Ean)' ™ (5-9)
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fork = (4N —9)/(4N — 8). Then
10N 2K d3u3 115 < 10N 2K 1311833117 00 S Enaamlld3u3l 7o + (Engam)  (Ean) " Nd3u3)7. (5-10)

For the first term on the right we bound || 93u3 ||%Oo < ¢y, and for the second we use the L> interpolation

bound of Proposition 3.9 with r = 1/2, so that 2/(2+r) =4/5> 1 —« and | 8313]|3 o €3/ e SENTo -

Then these estimates and (5-10) imply that
18,2 K d3u35 S Enam(Ean)' (5-11)
We then combine (5-6), (5-7), and (5-11) to see that
12215 S Envzam (E2n)' 7% (5-12)
Then the estimate (5-4) follows from (5-5) and (5-12). O

Energy evolution with the highest and lowest count of temporal derivatives. We now show the time-
integrated evolution estimate for 2N temporal derivatives.

Proposition 5.3. There exists a 6 > 0 such that
t t
187N u@ 15+ 197N n ()15 + f 1DV u 3 < €on(0) + (G (1) + / €5\ Da. (5-13)
0 0

Proof. We apply 9% = BEN to (1-9). Then v = 8,2Nu, q= 8t2Np, and ¢ = 8,2Nn solve (2-1) with F',
i=1,2,3,4, given by (2-13)—(2-22). Applying Lemma 2.2 (and Remark 2.3) to these functions and then
integrating in time from O to ¢ gives

1 1 1
5/J|83Nu<r)|2+§/|83Nn(r)|2+5/ leDwafNulz
Q b 0 JQ
t t
=1/J|33Nu(0)|2+1f|83Nn(0)|2+/ /J(afNu.F1+a,2NpF2)+f /—a,ZNu.F3+a,2NnF4. (5-14)
2 Q 2 D) 0 JQ 0J%

Here, because of Remark 2.3, we understand that this formula actually holds with

t t
//aSNpJFZ :=—/ / afN—lpa,(JFz)Jr/(afN—lpJF2)(t)—/(afN—lpJFz)(O). (5-15)
0JQ 0JQ Q Q

We will estimate all of the terms involving F' on the right side of this equation.
We begin with the F! term. According to Theorem 5.1 and Lemma 2.6, we may bound

t t t t
/ / JoPNu-F' < / 102N ulloll I Nl e 1 F o S f VDonvEnDay = / VénToy.  (5-16)
0JQ 0 0 0

Similarly, we use Theorem 5.1 and trace theory to handle the F* and F* terms:

t t
/ f —Nu- FP 4o} gF* < / 132V ull grogsy | F> 1o + 1182V nlloll F41lo
0JX 0

t t
< / U8 ully + 113N nllo)v/€anDan < f VénTan.  (5-17)
0 0
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According to Theorem 5.1 we may estimate

t t t t
- / / 92N i (JFY) < / 1925 pllolla (T F) o < / B Eon G = / STy (5-18)
0JQ 0 0 0

On the other hand, it is easy to verify using the Sobolev embeddings that

f @2V pI P (1) — f G2V T F2)(0) < Ean (0) + (Ean ()2, (5-19)
Q Q
Hence
/ f N pJ F2 < €an(0) + (€an (1))*/* + f VeénDan. (5-20)
0JQ 0

Now we combine (5-16), (5-17), and (5-20) to deduce that

1 1 1 [’
5/ J|afNu(t)|2+§f|83Nn(r)|2+§/ / J Dy ul?
Q ) 0JQ t
< Ean(0) + (Ban (1) + f JEnDoy. (521)
0

We now seek to replace J|Dyd*Vu|? with [Da*Nu|? and J]8>Nu(t)|> with |02V u(t)|? in (5-21). To
this end, we write

JIDud*Nul*> = DN u)? + (J — 1)|D*N u|* + J (DN u + D3N u) : (Dyd*Nu — D8N u)  (5-22)
and estimate the last three terms on the right side. For the last term we note that
(Dsd?Nu £D8 N u);; = (six 800 N uj + (s jx £, u;, (5-23)
so that Sobolev embeddings and Lemma A.5 provide the bounds
D02 N u — D0V u| < Véon |V ul and Dy u+D0Nu| < (1+En) Vo Nul.  (5-24)

We then get
t
/ f 1J (D8N u 4+ DN u) : (D40>Nu — D3N u)|
0JQ

t t
< / (Von + o) / VPN U < f JEonTan.  (5-25)
0 Q 0

Similarly,
t t
/ f 1 — D02V uf? < / sy and / T 112N < Ean @) (5:26)
0JQ 0 Q
We may then use (5-22) and (5-25)—(5-26) to replace in (5-21) and derive the bound (5-13). [l

atN-i-Z

Now we prove a similar result for when is applied. This time, however, we do not want an

inequality that is integrated in time, so we are forced to introduce an error term involving 3,¥ tp.
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Proposition 5.4. Let F2 be given by (2-19) with 3% = 8N 2. Then
3 <||ﬁa,N+2uné + 13} 2§ — 2 / Ja,N“sz) + DN F2ull§ < VEnDa12,m- (5-27)
Q

Proof. We apply 8% = 82 to (1-9). Then v = 8N "2u, g = 9N 2 p, and ¢ = 92y solve (2-1) with F',
i=1,2,3,4, given by (2-13)—(2-22). Applying Lemma 2.2 to these functions gives

o (5 [[ e+ 3 [1aveene )+ [ gy
Q ) Q

:/ J(afV+2u-F1+a,N+2pF2)+/ —N T2y PP 9N T2 Ft. (5-28)
Q z

We will estimate all of the terms involving F' on the right side of this equation as in Proposition 5.3.
We begin with the F! term. According to Theorem 5.2 and Lemma 2.6, we may bound

/ TN 2u-FU < 197 ullol =1 F o S VON-+2mv/ €N DN12m = VEN D42 (5-29)
Q
Similarly, we use Theorem 5.2 and trace theory to handle the F3 and F* terms:

/ —N 2 3 N2 Y < 10N 2u) ooy 3 o + 10N P nlloll 4o
)

SN 2ully + 18N 0ll0)vVEnDNr2m S VENDN12m  (5-30)

For the term BIN +2 pF?, there is one more time derivative on p than can be controlled by @y 2.,,. We
are then forced to pull out a time derivative:

/8,N+szF2=3z/ azN“PJFz_/ 0, pd,(J F?). (5-31)
Q Q Q

Then, according to Theorem 5.2, we may estimate

- / N pa (JF? < 10N pliolld: (J F) o S VIN12.mVENDN12.m =V ENDN42.m.  (5-32)
Q

Hence
t
//33NPJF253t/ NPT F2 + /€N Dyso.m. (5-33)
0JQ Q

Now we combine (5-28)—(5-30) and (5-33) to deduce that

1 1 1
ol 5 | SN 2ulP+5 [ 19820 = | 8 pI P )45 | JIDad) Pul? S VeanDyiam. (5-34)
2 Ja 2 Js Q 2 Ja
We may argue as in (5-22)—(5-26) of Proposition 5.3 to show that

1 1
3 [ 103 S 5 [ D8Nl Tz (5-35)

Then (5-27) follows from (5-34) and (5-35). [l
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Finally, we record the basic energy estimate when no derivatives are applied.

atG/ J|u|2+%/|n|2)+%/ JIDgu)? = 0. (5-36)
Q ) Q

t t
nmn%+umm%+£|mm%5%wmyﬁ£v%m@m. (5-37)

Proposition 5.5. We have

In particular,

Proof. Setting v=u,q=p, ¢ =n,and F' =0 fori=1,2,3,4in Lemma 2.2 yields (5-36). We may
argue as in (5-22)—(5-26) of Proposition 5.3 to estimate

1 / Dul* < l/ JIDgul? +/E€n Do - (5-38)
2 Jg 2 Jg
Similarly, Lemma 2.6 allows us to estimate
1 2 _ 1 2
e sd [ (539)
IS
Now we may integrate (5-36) in time from O to ¢ and use these two estimates to derive (5-37). O

6. Energy evolution in the perturbed linear form

Energy evolution for horizontal derivatives. We now estimate how the evolution of the horizontal energy
is coupled to the horizontal dissipation and the full energy and dissipation. Recall that %,y is as defined
in (2-56) and ¥ is as defined in (2-57).

Lemma 6.1. Let o € N? be such that || = 4N, that is, let 0 be 4N spatial derivatives in the x|, x»
directions. Let G* be as defined by (2-31). Then

/ 303" G*| < vV EnDan + v DonHF o . (6-1)
>

Proof. Throughout the proof B will always denote an element of N2, and we will write

Df-9Pu=20,foPu,+ 8, f0%u,
for a function f defined on X. Then by the Leibniz rule, we have

—0°G* =0"(Dn-u) =D n-u+ Y CapDd* Pn-0fu+t > CupDd* Fn-8Pu  (6-2)
0<B<«a 0<B<a
[Bl=1 |B1=2

for constants C,, g depending on o and B. We will analyze each of the three terms on the right separately.
For the first term, we integrate by parts to see that

/aanDaan-uzlf D|8“n|2-u=—lf 9“n0“n(01u1 + duz). (6-3)
b 2 )5 2 s
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This then allows us to use (A-3) of Lemma A.1 to bound

/30[7703“77% S 100121090 (@1ur + d2u2) | g-1/2(x)
>

S nllanvs1210%nll <1 2110101 + dauall g2y
S nllanvs121lDnllan 32110141 + d2usz || 25y < v FonDonK. (6-4)

Similarly, for the second term we estimate

/a“n > CupDd* Py 0Pu
z 0<B<a

1Bl=1

2
SID™nlh2 D nll 12 Y N Duill s,
i=1

2
Slnllans121Dnllan—32 Y I1Duill pagsy < v/ FanDon¥.  (6-5)

i=1

For the third term we first note that |0°n||—1/2 S | Dnllan—3/2 < +/PD2n, Which allows us to bound

< 18%nl—121D3* Py 3P ull yr2esy S VBan 1D Py - 3P ullie(zy.  (6-6)

/ 3*nDI* Py -0fu
D)

We estimate the last term on the right using Lemma A.1 and trace theory, but in different ways depending

on |B|:

1D8* Pl 2l8Full o) for 2 < |BI < 2N,

Daa—ﬂ . aﬁu <
1D -0 ullpes) S {”Daaﬁnnznaﬁuummz) for 2N +1< |81 <4N

< {||D77||4N3/2||M||2N+3 for2 <|B| <2N, 67)
“UIDnlansillullaytr - for 2N +1 <|B| < 4N,
so that || D3* P - 9Pu| g5y S VEnDay forall 0 < B < a with |8] > 2. Hence
/ 0%n Y CapDd* Py 0Pu| S VBony/EnDon =V EnDon. (6-8)
z 0<B<a
1B1=2
The estimate (6-1) then follows from (6-4), (6-5), and (6-8). U
Now we prove an estimate for horizontal derivatives up to order 2N, excluding 0% = 8,2N and no

derivatives. Recall that we use the conventions for sums of derivatives described on page 1443.

Proposition 6.2. Suppose that o € N2 is such that ag < 2N — 1 and 1 < |a| < 4N. Then there exists a
0 > 0 such that

af@ /|aau|z+% / |a“n|2>+% / D3%uP < €y Doy + VDo HFon. (6-9)
Q h) Q
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and, in particular,
~N4N-—1 2 n4N—1 2 n4N-1 2 n4AN—1 2
1D u@®lg+ IIDD u@®llg+ 1107 n®Illg+ I1DD no

t t
+/ ||D‘1‘N—‘Du||3+||DD4N—1DM||35%2N(O)+/ €N Doy + VDN HFay.  (6-10)
0 0

Proof. Let o € N'*2 satisfy g <2N — 1 and 1 < |a| <4N. Note that the constraint on &g implies that we
do not exceed the number of temporal derivatives of p that we can control. An application of Lemma 2.5
tov=0%, g =0%p, ¢ = 3% with ®' =3*G!, > =3*G?, > =09°G?, d* =9*G*, and a = | reveals
that

l a2 l a2 l a,, 2
a,(2/9|a ul +2f2|a 0l )+2f9|u3>a ul
:f Bo‘u-(a"‘Gl—V8“G2)+8°’p8°‘G2+/ —0% - 3%G> +9%na*G*.  (6-11)
Q X

Assume initially that 1 <|w| <4N — 1. Then according to the estimates (4-7) and (4-8) of Theorem 4.2
and the definition of %,y, we have

<19%ulloC13* G llo+ 113G 1) +113% pllolla* Gl

/8“u-(8“G1—V8“G2)+8“p8“G2
Q

<DV E Doy +H Ty Sy Doy ++/DonH Ty,  (6-12)

where in the last equality we have written k = 0/2 for 6 > 0 the number provided by Theorem 4.2.
Similarly, we may use Theorem 4.2 along with the trace estimate [|3%u/| go(s) S 10%ulli < ~/Dan to get

< 18%ull gocsy 19 G llo + 197 llo 19 G* 1o

< VDNV E Doy + HFoy < Ey Doy + /Do H Ty

Now assume that o] = 4N. Since ag < 2N — 1, we may write « = 8 + (o — ) for some B € N? with

f —0% - 3%G> + 9%no* G*
D)

(6-13)

|B] = 1, that is, % involves at least one spatial derivative. Since |« — 8| = 4N — 1, we can then integrate
by parts and use (4-7) and (4-8) of Theorem 4.2 to see that

/ 0%u - (3G — Va*G?)
Q

/ 0By . (3 PG —va*PGH

Q

< 13* Pullo(13* PG o + 19* 2 G2111) < 19%ulli (IV*N LG o + IV G2 h)

< VDNVE Ty + HTFoy < EyDay + Doy HToy.  (6-14)

For the pressure term we do not need to integrate by parts; Theorem 4.2 provides the estimate

/ 9% pa* G*
Q

<[18%pllolla* P8P G?[lo < 13* plloI V¥ ' G2y

VDoV E Doy +HFon < EsyDan + v DanHFay. (6-15)
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Next, we integrate by parts, employ Theorem 4.2, and use the trace estimate H'!(Q2) — H'/?(Z) to get

/ %u - 9°G3
>

<18 Pull 11200y 18P G112

/ 80(4—}3“ X aa—ﬂG3
>
S10%ull ey IDN LGP 1o S 18%ul 1D 'GPl o

< VDNV E N Doy + HFoy S Ey Doy + VDo H Ty

For the term 0%nd* G* we must split into two cases: ap > 1 and og = 0. In the former case, there is at

(6-16)

least one temporal derivative in 9%, so [[09n||1/2 < +/%2y, and hence Theorem 4.2 allows us to bound

f 3%na*G*
)

<113 nll12110° PG 2 S 18Nl 2l DN LGl 2

/ aa-i-ﬂnaot—ﬂ G4
z

< VDVE Doy + HFon < EENDon + VIonH Ty, (6-17)

In the latter case, ag = 0, so that 9% involves only spatial derivatives; in this case we use Lemma 6.1 to

bound
/8“778"‘G4 SVnDon ++DonHFon. (6-18)
p))

Now, in light of (6-11)-(6-18), we know that (6-9) holds. The bound (6-10) follows by applying (6-9)
toall 1 < || <4N with ¢g <2N — 1, summing, and integrating in time from 0 to ¢. O

Our next result provides some preliminary interpolation estimates for G> and G* in terms of Dy 2 1,
as defined in (2-54) and (2-55), but with a power greater than 1.

Lemma 6.3. Let G* be as defined in (2-31). We have the estimate
ID*NGHE ) S @) AN, (6-19)
Also, there exists a 6 > 0 such that
IDGH5 S €op @42 TV and | D*GH§ S €y (D) /O (6-20)
Finally,
IDG*17, S €y @ni2.) D and | D*G?||7, S €y (Dysa2) O, (6-21)

Proof. Let a € N? be such that |a| = 2(N +2) — 1. The Leibniz rule, Lemma A.1, and trace theory imply

10°G* 2 S Y. IDPnlallo* Pullgesy + D> 1D nl210* Pull s,
B=a B=<a
IBI<N+2 N+3<|B|<2N+3

SUDNl 44l DR ully + 1D nllav+2)-s/2 lull vz sy (6-22)
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Trace theory, Poincaré’s inequality, the H%(S2) interpolation result for Vu of Theorem 3.14, and the
fact that | DV 2u||? < min{®;n, D25} imply that
Ml vea gy S lellzpocg) + 1DV 2ull 3o gy S IVUIG+ 1DV 2ull}

A1) /(A+3 A+ /(A+3
SDYENT 4 (@)Y 0D @) VO < g (DI (623)

Let us now choose ¢ so that
A+1 q 2

3 g1 tav—7 (6-24)
Since N > 5 and X € (0, 1), we may find such a ¢ = g(1) with dg(1)/dAx <0 for A € (0, 1):
8N 42-8 [8N—6 8N—8] - _
1= AN(14+1)—91—13 8N —22" 4N —13 C[1,2N —9/2]. (6-25)

Using this ¢, r = 1, and s = 2(N 4+ 2) — 5/2 in the standard Sobolev interpolation inequality (3-47), we

find that

3,112 3,112 1+ 3112 1/(1+
D ’7||2(N+2)—5/2§ (1D 77||2(N+2)_7/2)Q/( q)(”D 7I||2(N+2)_5/2+q) /(+a)

(6-26)
Now (6-23), (6-26), and the choice of ¢ imply that
ID* 050w 12)—sp el i gy S @nga ) F2/END (6-27)

The fact that || D3n ||%\,Jr2 <min{éy, Dn+2.2} and the HO(D) interpolation result for D7 of Lemma 3.1
imply that

1D0 %14 S 1DIG+ 1D 011542
A+1)/(A+3
5 @( )/( ) + (||D3n||12v+2)2/()»+3)(”D3n||%]+2)()»+1)/()»+3)

N+2,2
A+1)/(A+3 A+1)/(A+3
< @§V+2?2/( ) + (%ZN)Z/(K—H’a) (@N+2,2)(A+1)/(A+3) 5 @5\]+2?2/( ) (6_28)

On the other hand, using the same ¢ as above, we have

2N-+3 2 2N-+3 2 1 2N+3 251 1
1D ullf = (DY ulH?/ @D (| DY u /et

S @Dy 42,2) D () IHD < (D 402)/HD, (6-29)
Then (6-28) and (6-29) imply that

2 3 _
1D 34 a I DX ull} S D) TN, (6-30)

We then combine (6-22), (6-27), and (6-30) to deduce (6-19).

We now turn to the proof of the bounds (6-20) and (6-21). The bounds (6-20) may be deduced by
applying an operator 3% with o € N'*2 satisfying either || = 1 or |a| =2 to G*, and then estimating the
resulting products with one norm taken in H° and the others in L>°, employing the H° and L™ interpolation
estimates for n, # and their derivatives recorded in Lemma 3.1, Proposition 3.9, and Theorem 3.14. The
bounds (6-21) may be deduced similarly except that at least two terms in the resulting products must
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be estimated in H” to deduce the resulting L' bounds. This presents no problem since G2 is a linear
combination of products of two or more terms. (I

With this lemma in place, we may record the estimates for the evolution of the energy at the N + 2
level.

Proposition 6.4. Suppose thatm € {1, 2} and o € N'*2 is such that ey < N + 1 and m < || < 2(N +2).
Then there exists a 0 > 0 such that

B (18%ully + 130113 + 1D u 13 < €5y DN+2.m- (6-31)
In particular,

DN u |3+ DD N Bu| 2+ D2V 13+ DD*N Py |3+ D2 Du |3+ D DN P Du |3
<ENINrom. (6-32)

Proof. For m € {1,2} and « € N'*2 such that g < N + 1 and m < |a| < 2(N +2), we argue as in
Proposition 6.2 to deduce that (6-11) holds. Let X, denote the right side of (6-11) for our range of «. To
bound X,, we break to three cases.

fm+1<|o|<2(N+2)—1or|a|=2(N+2)with1 <oy <N + 1, we know from trace theory and
the definitions of %y 42, that

19%ullg + 110% plIg + 1%l 312y + 10017 /2 S DN+ 2.m- (6-33)
This allows us to argue as in Proposition 6.2, employing Theorem 4.1 in place of Theorem 4.2, to bound
| Xal S €nDN+2.m (6-34)

for some 6 > 0.

Now consider || = 2(N +2) with oy = 0. In this case we know from the definitions (2-54) and (2-55)
that there is a deficit of half a derivative that prevents us from bounding |0%n ||% 2 S D 42.m, but we may
still estimate

19%u )+ 119 pUIG + 10%ul 51 5y S DN-42,m- (6-35)
We may then argue as in Proposition 6.2, integrating by parts and using these bounds as well as those
from Theorem 4.1 to show that the first, second, and third integrals in the definition of X, are bounded

by %gNQZj N+2.m- For the fourth integral, we control ||8"‘17||% 2 through the interpolation estimate of
Lemma 3.18:

1817, < ID*N 0113 5 S (€)™ N (@ ygp0) N IEVT), (6-36)

Then we may integrate by parts with « = 84 (o — B), || = 1 and employ this estimate along with (6-19)
of Lemma 6.3 to see that
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< [18%nll_12110° PG 112 S 18112l DN 3G 2

/ 8a+ﬂn3a—,3 G4
=

/ 0% G*
D)

< Ean) 2D @y ) AN AN=T) [y )1 +2/4N=T)
= (€0 "N DBy < (@) N DDy . (6-37)
Hence, when || = 2(N + 2) with ag = 0, there is a 6 > 0 such that
| Xal S EnDN+2.m- (6-38)
Finally, we consider the case of |o| = m for m = 1, 2. In this case we only know that
19%u T+ 19%u 137125y S DN-+2,m5 (6-39)

so only the first and third integrals of X, may be handled directly as above to be bounded by %g NDN2,m-
For the fourth term in X, we first use the H°(X) interpolation results of Lemma 3.1 and Proposition 3.16
to bound

IDN)3 < @42 )PV AFDand  |ID*nlI + 190115 S (Do) PHD/OH), (6-40)

Then by (6-20) of Lemma 6.3, we know that

‘/ 3*nd*G*| < 13%nllolld*G*[lo
)
- {J(@M,1)<A+1>/<*+2>~/%§N<@N+z,1>1+1/<*+2> form =1,
Y WV @n122)F P EIVE (Dya20) TV form =2
<& Byiom. (6-41)

For the second term in X, we first use the L™ interpolation estimates of Lemma 3.3 with r = 1 /2 when
m =1 and with r = A/3 when m = 2 to bound

IDPl3 e S @ni2)¥?T? and  |ID*pllic + 18Pl S (Dng2,2)Y ). (6-42)

Then, by (6-21) of Lemma 6.3, we know that

/a‘uva‘w2 < 10%pllz< 8% G 1
Q
< {J(@NH,])2/<*+2>~/%§N<@N+z,1)1“/@*2) form =1,
~ WV (@n2,)CFIVE (D 42,) O form =2
= %§§@N+2,m~ (6-43)

Hence, when || = m for m = 1, 2, we also have

1 Xo| SENDN+2,m- (6-44)
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Now, by (6-34), (6-38), and (6-44), we know that (6-31) holds. The bound (6-32) follows by summing
(6-31) over the specified range of «. (I

Energy evolution for $,u and $,7. Before we can analyze the energy evolution for $,u and %, 7, we
must first prove a lemma that provides control of .%; p.

Lemma 6.5. We have
192115 < 6o (6-45)
192 Dpllg S (Ean)™ T (@op) /. (6-46)
Proof. Let o € N? be such that |«| € {0, 1}. We may apply Lemma A.10 to see that
19992 p 115 S 10% F2 Pl 30,5, + 1950 92 P15 (6-47)

In order to estimate each term on the right, we will use the structure of (2-23). Indeed, using the boundary
condition, we find that

1995 P30z S 109 Fanllg + 11092 03u3 ] 05y + 10 92.G 5. (6-48)
Trace theory and the divergence equation in (2-23) allow us to bound
199993031 305y S 199 93.03u3 117 S 11999, G2 (1T + 19° 95 Dully S 192 Dull3 + 19,G?15,  (6-49)

regardless of whether |o| = 0 or 1. To estimate this $, Du term we apply Lemmas A.4 and A.13 to get

2
19, Dul3 $ Y19 DVFulg < D AV ADVF )™ < full3- (6-50)

2
k=1 k=1

By chaining together the bounds (6-48)—(6-50) and employing the G’ estimates of Proposition 4.3, we

deduce that 5 ) ) '
10% 2Pl 5005y S 10%FanllG + llull3 + €2y min{éay, Doy} (6-51)

Now we estimate 930%%, p by using the first equation in (2-23) to bound
1% 95,93 p11§ S 110 95031l + 19 F5. D2ull§ + 109505 usll§ + 10 9,.G ' [15. (6-52)
When || =1, we can use Lemma A.4 to see that
10 950,31 S 19, D3uslig S (19,usll)* (1Dus )~ < 19:ull7. (6-53)

When |«| = 0, we cannot use Lemma A.4 directly, so we first use Lemma A.11 and the divergence
equation in (2-23), and then use Lemma A .4:

19283115 S 11939593115 = 1192003315 S 11920, G115 + 195, Doull§ S 11928, G [1§ + 19;ullT. (6-54)
Then (6-53) and (6-54) imply that, regardless of whether |o| = 0 or 1, we may bound

195 8,u3l1g < 1928, G215 + Nl ,ull7. (6-55)
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The term 9% %, D?u may be estimated as in (6-50):
1092 D?ullg < llull3- (6-56)

To estimate the term 0% $; 832u3, we again use the divergence equation to bound

9% 9,.05usll3 < 110°91,93G2||3 + 109,83 Du||f < 118 95,05 G 115 + llull3, (6-57)

where in the second inequality we have again argued as in (6-50). Then (6-52) and (6-55)—(6-57), together
with Proposition 4.3, imply that

189,33 plIg S Nluell3 + 18, l|T + € min{€an, Doy} (6-58)
The estimates (6-51) and (6-58) may be combined with (6-47) to show that
1895 plIg < 118%F5nlIg + llull3 + 18:ull] +€2n min{€an, Doy}. (6-59)

When |a| = 0 we bound the first three terms on the right side of (6-59) by €,y and use the fact that
%%N <%éy <1 to deduce (6-45). When |«| = 1, we first use Lemma A.7 withg =1—X and s = A to

bound
18°%3n113 < 1Dnld SNID 0113 < ASn ) V(| Dy )3y /A

< (Gan)M IR (@) VA (6-60)

where, in the second inequality, D'~* denotes the usual fractional derivative of order 1 — A. Then we use
the fact that €, < 1 to bound

€y min{&oy, Doy} < (min{&an, Doy ™ T (min{Eon, Doy '/
< () (@) VI, (6-61)
Similarly, since [|u]l3 + [|9;u[|? < min{€,y, Doy}, we have
laall3 + 19ullT < (o)™ TP (@) /. (6-62)
We then combine (6-59) with (6-60)—(6-62) to deduce (6-46). U

Our next lemma provides a bound for the integral of the product $; p.$; G>. The estimate is essential
to analyzing the energy evolution of $,u and $, 7.

Lemma 6.6. Let G? be given by (2-29). We have

/ 95 pﬁAGZ‘ <VenDay. (6-63)
Q
Proof. We begin by writing
f $,p9:G* =T+1I (6-64)
Q

for
I:=/ I pIr[(AK)O3u; + (BK)dsup] and 11 :=/ I pIil(1 — K)3us). (6-65)
Q Q
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The term I is straightforward to estimate because of the bounds (4-20) of Lemma 4.4 and (6-45) of

Lemma 6.5:
Il < 1922 lollF:.[(AK)O3u1 + (BK)d3uzlllo S v éan Don. (6-66)

To estimate the term II, we must first use the divergence equation in (2-23) to rewrite
(1= K)dsus = (1 — K)[G* — d1u1 — dhur], (6-67)
so that
M= /Q $,p9 (1 — K)G*] — /Q Fap 3 [(1 = K)(01uy + douz)] =: 1Ij + 1. (6-68)
For the term II; we use the estimates (6-45) of Lemma 6.5 and (4-22) of Lemma 4.4 to bound
L | < 19 plloll92[(1 = K)Gllo S VEanv CanDry =EanDan. (6-69)

In order to control the term II, we first integrate by parts:
I; = / 3201 pIu[(1 — K)ur ]+ 9,0 p9:.[(1 — K)uz] — F5 pP3[u101 K +u20:K]. (6-70)
Q

Then we use Lemmas 6.5 and 4.4 to estimate

2

L S 119, Dpllol 9300 — K)ulllo+ 19 pllo > 19:[ud; K113
i=1

SV (@ )M 00 (@) A+ /(& p ) VA0 (@5 ) 1H20/ A0 /€y D3

SV énDoy. (6-71)
Since €é,5 < 1, we can combine (6-69) and (6-71) to find that |II| < /€2yD2n, which yields (6-63) when
combined with (6-66). U

With these two lemmas in hand, we can now estimate how the energies of $,u and $,7n evolve.

Proposition 6.7. We have

1 1 1
(5 1o+ 5 [1902) 45 [ 10908 < VEwany. (©72)
Q x Q

In particular,

1 1 1 '
3 [1swwr+] [1smor+) [ [l st [ Vanow.  ©73)
Q z 0JQ 0

Proof. We apply $, to the equations (2-23) and then use Lemma 2.5 to see that

1 241 2) 1 2
(3 L1+ g [1902) +3 [ D9

:f%u-mGl—WAG2)+9Ap9kG2+/ —$u-9,G>+9,n9,G*. (6-74)
Q )]
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We will estimate each term on the right side of the equation. First we use trace theory and (4-15) and
(4-16) of Proposition 4.3 to bound the first and third terms:

[ ﬁku . 5’1G3
z

S 19ullo(192.G o + 119G 1) + 19261 19.G3 o S VDanv/EonDan = vVénDan.  (6-75)

_.l_

/ $u-(9,G'—V9$,G?
Q

For the third term we use Lemma 6.6 for

‘ / 9, pﬁ,\Gz‘ < VEnDay. (6-76)
Q

Finally, for the fourth term we use (4-17) of Proposition 4.3:

/ I1n9:.G* < 19:ml0l192Glo S VEan D3y = VDo . (6-77)
z

The bound (6-72) follows by combining (6-74)—(6-77), and then (6-73) follows from (6-72) by integrating
in time from O to ¢. O

7. Energy evolution estimates

We now assemble the estimates of the previous two sections into an estimate for the evolution of €,y and
@2N .
Theorem 7.1. There exists a 6 > 0 such that
-_— [ -_—
Ean (1) + / Do (r) dr
0

< Ean(0) + (Ean (1))*/* + /0 (€an () Don (r) dr + /0 VB (@) Fon (r)dr.  (7-1)

Proof. The result follows by summing the estimates of Propositions 5.3, 5.5, 6.2, and 6.7 and recalling
the definitions of €,y and Doy given by (2-48) and (2-49), respectively. O

We can also assemble the estimates of the previous two sections into a similar estimate for the evolution
of %N+2,m and ng—}-Z,m-

Theorem 7.2. Let F? be given by (2-19) with % = BtN *2 There exists a 0 > 0 such that
o <%N+z,m -2 / JatN“sz) +Bns2m S ENDN+2.m- (7-2)
Q

Proof. The result follows by summing the estimates of Propositions 5.4 and 6.4 and recalling the definitions
of € N+2.m and ) N+2.m given by (2-45) and (2-47), respectively. O

8. Comparison results

We now prove a pair of estimates that compare the full dissipation and energy to the horizontal dissipation
and energy. We show that, up to some error terms, the instantaneous energy é,y, (2-50), is comparable
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to the horizontal energy €,y, (2-48), and that the dissipation rate %y, (2-51), is comparable to the
horizontal dissipation rate BN, (2-49). We also prove similar results for ¢ N+2.m and ) N+2.m defined by
(2-45) and (2-47), respectively. To prove results for both 2N and N + 2, we first prove general estimates
involving %,, and ¢,,, and then we specialize to the cases n = N 42 and n = 2N. The dissipation estimates
are more involved, so we begin with them.

Dissipation. We first consider the dissipation rate.

Theorem 8.1. Let m € {1, 2} and

Yo = IV GGV 'GP+ 1D ' G I o + 1D G o + I1DF 20, GHIT fp (8-1)

Ifm =1, then
n—1
1V3ull3, 2+Z||a’u||2,, 21 HIVPI3, 0+ D19, pl3, s,
j=1 j=1
n+1
1D 01305y + 18131 2+ D N8 00302452 S Dom + Yom- (8-2)
j=2
If m =2, then
n—1
1V *ull3, - 3+Z||a’u||2,, 21 F IV P13, s+ 18,V pl3, 5+ Y 18] pli3, o
j=1 j=2
n+1 )
1D 013,70+ 1D, 30+ D10 113021572 S Do + Y- (8-3)
j=2

Proof. In this proof we must use a separate counting for spatial and temporal derivatives, so unlike
elsewhere in the paper, we now only use « € N? to refer to spatial derivatives. In order to compactly write
our estimates, throughout the proof we write

% =Dy + Y. (8-4)

The proof is divided into several steps.
Step 1: application of Korn’s inequality. Since any horizontal or temporal derivative of u# vanishes on the
lower boundary ¥, we may apply Lemma A.12 to derive the bound

ID2u||3 S I D2'Dullg = Dy - (8-5)

This H'(£2) bound will be more useful in what follows than an H°(2) estimate of the symmetric gradient.

Step 2: initial estimates of the pressure and improvement of u estimates. Let 0 < j <n—1 and « € N? be
such that

m<2j+|o| <2n-—1. (8-6)
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Note that if 2j + |«| =2n — 1, the condition j <n — 1 implies that || > 1. This means that we are free
to use (8-5) to bound
10°0] " ull§ < I D2l S 2. (8-7)

To extract further information, we apply the operator B,j d“ to the first two equations in (2-23) to find that
9°9) " u — A0} u+ Vo] p =099/ G', (8-8)
div %9/ u = 9%9] G*. (8-9)

Because of the constraints on j, @ given by (8-6), we may control
10%9] GM I+ 1109/ G*IIF < 1Dy~ G 15+ 1Dy~ G2 I < 2. (8-10)

We utilize the structure of (8-8)—(8-9) in conjunction with (8-7) and (8-10) to improve our estimates.
We will begin by utilizing (8-9) to control one of the terms in the third component of (8-8). We have

8997 (B3u3) = 98] (—d1u) — dpuz + G2, 8-11)
so that (8-5) and (8-10) imply
1030% 8/ usl|2 < | D)3 + 1D G213 < 2. (8-12)

A further application of (8-5) to control (812 + 822)8“8tj u3 then provides the estimate
1A% 8] us||Z < 2. (8-13)

Applying the bounds (8-7), (8-10), and (8-13) to the third component of (8-8), we arrive at a partial bound
for the pressure:
19509/ plig < %. (8-14)

It remains to control the terms 9; 9% B,j p and 8328“8tj u; for i =1, 2. To accomplish this, we employ an
elliptic estimate of curl u =: w. Taking the curl of (8-8) eliminates the pressure gradient and yields

399/ w = AD*9] w + curl (%3] G). (8-15)

We only need the first two components w; = du3 — d3uo, wp = dzu; — d1u3, for which we use the X
boundary condition in (2-23)

O3+ d3u; = Dues-e; = —G>-¢; fori=1,2 (8-16)

to derive the boundary conditions

{a)1 =20u3+G> - ey on %, 8-17)

W) = —281143 — G3 -1 on 2.
No similar boundary condition is available on X, so we must resort to a localization using a cutoff
function x = x(x3) given by x € C°(R) with x (x3) =1 for x3 € Q; :=[-2b/3, 0] and x (x3) =0 for
x3 ¢ (=3b/4,1/2).
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The functions yw;, i =1, 2, satisfy
NGO (xor) = % (9°0] T i) +2(83 %) (830%9] wi) + (93) (978} ) — x curl(3*/ G')  (8-18)
in 2 as well as the boundary conditions

990} (xw1) =20,0%9] us +0°9/G*>-e;,  on %,
999] (xw2) = 20,998} us — 39/ G- ey on X, (8-19)
09/ (xw1) = 98/ (xw2) =0 on %,

In order to employ an elliptic estimate of 3"‘8,j (xwi), we must first prove two auxiliary estimates.
First we derive an estimate of the H ™' (Q) = (HOl (2))* norm of each term on the right side of (8-18).
Letop € H(} (2). When o # 0, we may write « = 8+ (o — 8) with || =1 and integrate by parts to bound

/sﬂxa"‘atj“wi‘ =
Q

since2(j+ 1)+ |l —Bl=2j+|a|+1e[m+1,2n]. We may use (8-5) for

f 3P ox0* o] w;| < ol llx D w;llo. (8-20)
Q

lx D2 w; 13 S IDXull? < %. (8-21)

Chaining these inequalities together when o # 0 and taking the supremum over all ¢ such that [|¢]; <1,
we get

~

1999 w12, S %. (8-22)

A similar argument without an integration by parts shows that (8-22) is also true when o = 0, since, in
this case, the condition j <n — 1 implies that m +2 <2(j 4+ 1) < 2n. Similarly, integrating by parts with
03 in the dual-pairing, we may estimate the second term on the right side of (8-18):

12G0350@30%9] @) 13+ S (s x I + 13 x W7D wi g S 1 Drullf S%. - (823)
The third term may be estimated without integration by parts in the dual-pairing:
13308 )+ S 15 x 1= 1D @il S 1D ulf < . (8-24)
The fourth term is estimated by integrating by parts with the curl operator and using (8-10):
lx curl@*/ GHII%,1 S (lx Iz + 10sx 7)1 D3~ G I S 2. (8-25)
Combining these four estimates of the right side of (8-18) yields
||A8“8,j(xw,-)||?1_, <% fori=1,2. (8-26)

Next, to complete the elliptic estimate of a“atf (xw;), we also need H'/?(%) estimates for the boundary
terms on the right side of the first two equations in (8-19). We may estimate the d;u3, i =1, 2, terms with
the embedding HY(Q) — H2(%):

10%07 01131 371/2 5 + 11097 Dauzl3pra sy S I Dprullf S %. (8-27)



DECAY OF VISCOUS SURFACE WAVES WITHOUT SURFACE TENSION 1493

On the other hand, estimates of G are already built into %:
1998/ G*I13 , < IDZ ' G113 )5 < Y < %. (8-28)
Since yw; =0 on Xj, fori =1, 2, we then deduce that
100 (x0i) 13125y S & fori =1,2. (8-29)

Now, according to (8-26), (8-29), standard elliptic estimates, and the fact that x =1 on Q2; =[—2b/3, 0],
we have

10%0] wil31 gy S 10%07 () |IF S% fori =1,2. (8-30)
We may then rewrite
02099] uy = 030%9] (wy + dyus) and 92099 uy = 0309 (Bous — wy) (8-31)

and deduce from (8-30) and (8-5) that, for i =1, 2, we have

2
19500; wi 30,0, S I DrusllT + Y 10%0] okl qo,) S %. (8-32)
k=1

We then apply this estimate along with (8-5) and (8-10) to the first two components of (8-8) to find that
||8,-8“8fp||%10(91) <% fori=1,2. (8-33)

Now we sum the estimates (8-5), (8-12), (8-14), (8-32), and (8-33) overall j <n—1and a € N? with
m <2j+|a| <2n—1 to deduce that

m

1D~ ullF ) + 1D~ Vol ,) S%- (8-34)

Step 3: bootstrapping, n estimates, and improved pressure estimates. Now we make use of Lemma 8.2 to
bootstrap from (8-5) and (8-34) to

n
2+4m, 12 m. 12 § J.on2 14+m 2
”v ””Hzn—m—l(gl) + ”D ””HZn—m-H(Ql) + ”at u ||H2n—2_/+l(Ql) + ”v p”HZn—m—l(Ql)

j=1
n—1

+ Y 0 VPl gy S%- (8-39)
j=1

With this estimate in hand, we may derive some estimates for n on X by employing the boundary
conditions of (2-23):
n=p—_2dus—Gj, (8-36)
an =uz+ G*. (8-37)
Then (8-35) allows us to differentiate (8-36) to find that
1D " 01332 S UIDH pllGpanmso gy + 1D 050330035y + 1D G115, s

S IV Pl gy + IVl 1 )+ 1D Gl 2 S 2 (8-38)
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Similarly, for j =2, ...,n+ 1, we may apply Btj_l to (8-37) and estimate

1 2 1 ~4,2
”at 77||2n —2j+45/2 ~ N ||8] u3||H2n72j+5/2(2) + ”atj G ||2n—2j+5/2
j—1 12 i—1 ~42
S ”at] M||H2n—2(j—l)+l(91) + ”at] G ||2n—2(j—1)+1/2 SJ EZ (8-39)

It remains only to consider 9;7; in this case we must consider m = 1 and m = 2 separately. For m =1,
we again use (8-37) to see that

||at77||2n 12 ||M3||H2n 12cpy T ||G4||2n 12 5 ||M%||H2n 12(x) +%, (8-40)
but now we use Lemma A.11, trace theory, and the second equation in (2-23) for the estimate

2 2 2 2 2
||u3||H2n—l/2(E) f, ||Lt3 ”HO(E) + “Du3”H2n—3/2(2) SJ ”83143”1_10(9) + ||DM3 ”Hz”*l(Ql)
2,2 2 2
SNG4+ I Dul+ 1Dl s 0, S % (8-41)

by (8-10) and (8-35). Chaining (8-40)—(8-41) together implies that
||8,n||2n 12 S <% whenm=1. (8-42)
For m = 2, we differentiate (8-37) for the bound
1D 113,372 S IDuslypn 35, + 1DGHE, 30 S I1Duslfpons 5y + %, (8-43)
but then the analogue of (8-41) is

<%, (8-44)

2 202 2. 112 2 12
||Du3||H2n—3/2(2) 5 ”DG ||()+ ”D M”O + ||D M||H2n—2(Ql) ~

Hence

||D3,77||2n 320 5% whenm =2. (8-45)

Summing estimates (8-38), (8-39), (8-42), and (8-45) over j =0, ...,n+ 1 yields

n+1

1D 0113, s/ + 1811301/ + Y N 0I5, 2152 S% form =1, (8-46)
j=2

n+1

1D 0113, 72 + 1D 0I5, 50+ D N 0l3, 2150 S% form=2. (8-47)
j=2

The n estimates (8-46)—(8-47) now allow us to improve our estimates of va{ p to estimates for 8,j p
for certain values of j. Indeed, for j =m, ..., n — 1 we may use Lemma A.10 and (8-36) to bound

13 P10,y S 107 UG+ 19507 sl s, + 18/ GPIG+110] V pliFjoi) S 197 U3l +% S%. (8-48)
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This, (8-35), and (8-46)—(8-47) allow us to improve (8-35); when m = 1, we find that

n
3112 2 § : 2 212
”V u”HZn—Z(Ql) + ||Du||H2”(§21) + ||at]u”H2n—2j+l(Ql) + ”V p”HZn—Z(Ql)

n—1 ) J=1 n+1 )
+ D 10 Pl gy + 1D 013052 + 105,10+ D 1070113, 0j 152 SF. (8-49)
j=1 j=2

and when m = 2, we get the estimate

n
4. 12 212 § : P2 312 2
”V u||H2n—3(Ql)+ ”D u”HZ”’l(Ql)_{— ”8t]u||H2n—2j+l(Ql)+ ||V p||H2n—3(Ql)+ ”8tvp”H2n—3(Ql)

j=1
n— n+1

+ 18] Pl + 1D 015,70 + 1D 13, 30+ Y 107 1113, 2j 452 SE. (8-50)
. j=2

Step 4: estimates in 2. We now extend our estimates to the lower part of the domain, that is, €2, :=
[—b, —b/3], by applying Lemma 8.3 to deduce that (8-97) holds when m = 1 and (8-98) holds when
m = 2. We will now show that &, ,,,, defined by (8-96), can be controlled by %. The key to this is
that, by construction, supp(V x2) C 21, which implies that the H' and H? defined in the lemma satisfy
supp(Hl) U supp(Hz) C 7. This allows us to use the estimates (8-49) in the case m = 1 and (8-50) in
the case m = 2 to bound

2n—1

> ID*H' 3, 4+ IDFHP3, S (8-51)

k=m+1

In order to estimate 8, H' - ¢; for i = 1, 2, we note that it does not involve the pressure:
O H' - e; = —(33x2)930,u; — (33 x2) . (8-52)

Then we may again use (8-49)—(8-50) to see that

Z 19, H" - €113, 5 S, (8-53)

so that &, ,, < %. Replacing in (8-97) and (8-98), we then find that

n—1
V20132 z(m+z 18] 220210y + 1V P22y + D MO PIGarryo,) S (8-54)
j=1 j=1

for m = 1, while, for m = 2,

n
4 12 2 : 2 2
”v u ||H2n—3(92) + ”atlu ||H2n—2j+l(92) + ||V3P||H2»173(Qz)
Jj=1 n—1

10,V Pl gy + DN Plaiq,) S%- (8-59)
j=2
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Step 5: synthesis and conclusion. To conclude, we note that 2 = ] U ,, which allows us to add the
localized estimates (8-49) and (8-54) to deduce (8-2), and to add (8-50) to (8-55) to deduce (8-3). [
We now present the key bootstrap estimate used in the proof of Theorem 8.1.

Lemma 8.2. Let ¥, ,, be defined by (8-1) and Q2 = [—2b/3, 0]. Suppose that

1D Ul gy + 1D 2 ull Gy + 100V Pl 2y S D+ Y (8-56)
for anintegerr € [1,...,n— (m+1)/2]. Then
”l_)gnn—ZrM”%Ier(Ql) + ”D;n—yvp“%]zr,l(ﬁl) + ||5%;1—2(r+1)+1u||§_12,+2(Ql)

+HIDZ 2V D2 60 S D + Y. (8-57)

Moreover, if (8-56) holds with r = 1, then, for m =1, 2, we have

n
2 2 2 § : o2
”V +mu ”Hlnfmfl(Q]) + ” Dmu ” Hz”*”’*l(Q]) + ”atju ||H2n—2j+l(Ql)

1
/ n—1

IV Pl panrgyy + D8 Va1 S Dam + Ynm. (8-58)
j=1

Proof. Throughout the proof we write & := @n, m + Yy.m. We divide the proof into steps.
Step 1: Proof of (8-57). Let £ € {1,2} and take 0 < j <n —r and « € N? such that

m<2j+lal <2n—2r+1—¢. (8-59)

We apply the differential operator 832r_2+€ 8"‘8} to the first equation in (2-23) and split into separate
equations for its third and first two components; after some rearrangement, these read

g p o - s 4 A s G (860
A832r—2+faotatjui — 832}’—24-[80[8[].4_11,“ + ai a%r—z-‘r(a(xatjp - 332r_2+£8a3,jGi1 (8'61)

for i =1, 2. Notice that the constraints on r, j, |o| imply that m < ||+ 2r —2+¢€)+2j <2n—1, so
we may use the definition of %, ,, in (8-1) to estimate

Since 2r —2 + £ > 0, we know that
— i+1 41
1832 0% 10 0, < 10°0) T Ul aii g, - (8-63)

If¢=2thenm < |a|+2(j+1) <2n—2r+1, so that

j+1 j+1 — o
19%07 "t 3parave gy = 10%0] 3o,y < Dm0 >t 3 ) S % (8-64)
On the other hand, if £ =1, then m < ||+ 2(j + 1) < 2n — 2r + 2, and hence
j+1 i+1 =n—
19907 ullGyorave gy = 180 T o s ) < 1D 2 Pull s ) S % (8-65)
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Then, in either case,

<%, (8-66)

2r—2+44¢ J+L o2
||83r aaat u”HO(Q]) ~

We have written the equations (8-60)—(8-61) in this form so as to be able to employ the estimates
(8-56), (8-62), and (8-66) to derive (8-57). We must consider the cases of £ = 1 and £ = 2 separately,
starting with £ = 1.

Let £ = 1. According to the equation divu = G? (the second of (2-23)), the constraint (8-59), and the
bounds (8-56) and (8-62), we may estimate

1857198/ u3 130, = 185798/ (G* = Brur — d2u) 0 g,
S 195771999 G I} + 10%8] (drur + run) 3 o, S %, (8-67)
and hence (again using the constraint (8-59))
IA@F 970 us) 10,y S 103700, sl 0.,y + 103 @F + 9900 usl g, S (8-68)
We may then use (8-62), (8-66), and (8-68) in (8-60) for the pressure estimate
10370%9; pli3y0q,, S%- (8-69)

Turning now to the i = 1, 2 components, we note that, by (8-56) and the constraint (8-59),

19:05" 1097 pll3j0.q,, + 107 + 031037 990 will 0.,
SIDL 2Pl a,, + 1002l g, S% - (8-70)
for i = 1, 2. Plugging this, (8-62), and (8-66) into (8-61) then shows that
1037190/ ui 130,y SE  fori=1,2. (8-71)

Upon summing (8-67), (8-69), and (8-71) over 0 < j <n —r and « satisfying m <2j + |a| <2n —2r,
we deduce that

193 Do = ull 30y 193 Dot = P,y S %- (8-72)

Then, in light of (8-56) and (8-72), we have

n2n—2 2 n2n—2 2 n2n—=2r+1, 2
”Dmn ru”Hz’“(QO + ||Dm” rvang,l(Q]) N ||Dm” a u”Hzr(Q])
n2n—2r+1 2 2r+1 n2n—2 2 2r n2n—2 2
+ ”Dmn ™ VPHHZr—Z(Ql) + ||83r+ Dmn ru”HO(Ql) + ||83rDmn rP”Ho(Ql) S Z. (8'73)

In the case £ = 2 we may argue as in the case £ = 1, utilizing both (8-56) and (8-73) to derive the
bound

1D~ ultpsa gy + 105 ™ VDl g,y S % (8-74)

Then we may add (8-73) to (8-74) to deduce (8-57).
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Step 2: The proof of (8-58), part 1. Now we turn to the proof of (8-58), assuming that (8-56) holds with
r = 1. By (8-57) we may iterate with » = 2, r = 3, etc., until

_fn— 1 ifm=1,
Cn—-2 ifm=2,

1 ifm=1
sothat 2n—2(r+2)+1=4 “"M=5H (8-75)
3 ifm=2.

Summing the resulting bounds and adding (8-5) (to pick up the 9;'u term) yields the estimates

n n—1
1D Ul gy + YN0 20200y + 1DV P22y + D N0 VDI, S% - (8-76)
j=1 j=1
in the case m =1, and
n
. |
(2 o 1 o N 17271 g
j=2
n—1 )
+1D3V Pl + 1060V Pl sy + DN VDI pcair gy S (8-77)
j=2

in the case m = 2.
Next, we improve the estimate (8-77). Let 0 < j and & € N? be such that 2j + |«| = 2, and apply the
operator 832” _33“8t] to the first equation of (2-23) and split into components as above to get
07" 299 p = —07" 2008/ T uz + A8 999] uz + 83" 3979/ G, (8-78)
A3 0] u; = 82300 T up + 8,02 30%0] p — 923920/ G (8-79)
for i =1, 2. We may then argue as above, utilizing (8-77), to deduce the bounds
. . - - B .
103"~ 0%0] u3l 0., + 193" 20%0] G0, + 1D203" 00 ulfpo g, S %, (8-80)
which, when combined with (8-78) and (8-79), imply that

195" 720%9; plljocq,, + 195" 0% 8 uill 30 .q,) S % (8-81)

for i =1, 2. We may then use (8-80) and (8-81) with (8-77) to deduce that

n n—1
1Dl 201 gy + 2O iz ) F 1DV Pllpncsigyy + D MO VPl a1 gy SE - (8-82)
j=I1 Jj=1

in the case m = 2.

Step 3: The proof of (8-58), part 2. Now we claim that if for m = 1, 2 we have the inequality

n n—1
1D 3 gy + D MO 1z @y H D"V P U ponncr oy + 2 07V Pl i ) S%. (8-83)
j=1 j=1

the inequality
IVl 31,y + IV U1 gy S F (8-84)
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also holds, which establishes the desired bound, (8-58), because of our inequalities (8-76) in the case
m =1 and (8-82) in the case m = 2. We begin the proof of the claim by noting that, since 2 > m, we may
use (8-83) to bound

195" D2t 3yn-1 gy + 195~ D D3N p2ur gy + 105 D Pl ) SF- (8-85)
Now we let |a| = 1 and apply 95'9* to the second equation of (2-23) to find that
195+ 9% 31320 gy S 105 DG paumar gy + 105 D2l gy S %- (8-86)

Then we apply 95" ~19% to the first equation of (2-23) to bound
1959 P o0 -n-1 (g,

S 05 0% us 201 gy + 105 0 D3usl w1 gy + 105 8YG G20 1) SE - (8-87)
and
195" 0% ui 1 201 g,

S 1959 D3ul s g,y + 195 94 Dpllpanni(qp, + 195 104G o) S% - (8-88)
for i =1, 2. Summing (8-86)—(8-88) over all || = 1 then yields the inequality

195"+ Dulypaunr g,y + 195 PPl ) S % (8-89)

Now we use (8-89) to improve to one more d3 and one fewer horizontal derivative. We apply 8;”“ to
the second equation of (2-23) to find that

195 2us 201,y S N05 T G2 o1 gy + 105 Dutllpan 1 gy S % (8-90)
Then we apply 95" to the first equation of (2-23) to bound
185 P21y S 183 2313201y + 105 D3U3 I 20mnor )+ 105 G a1 ) S %o (8-91)
19521132010y S N85 D3t on 12y + 105 PPN Gp2n 1) 105 G 1@ S% - (8-92)
for i =1, 2. Summing (8-90)—(8-92) then yields the inequality
[ Y L . 2 (8-93)
Finally, to complete the proof of the claim, we note that

2 2 1 2 2 2
”V +mu||H2n7m71(Q]) + ”V +mp||HZn7m71(Q]) 5 ”DmM”HannH»l(Ql) + ”Dmvp”HZrlfmfl(Q])
m—1

+ > 102D U s ) + 105 D Pl g, (8-94)
=0

This and the bounds (8-83), (8-89), and (8-93) prove the claim. O

The following result allows for control of the dissipation rate in the lower domain.
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Lemma 8.3. Let x> € C°(R) be such that x>(x3) =1 for x3 € Q, :=[—b, —b/3] and x>(x3) = 0 for
x3 & (—2b, —b/6). Let

H'=03x2(pes —203u) — (93 x2)u  and H* = 03 xou3. (8-95)
Define
2n—1 2
Lom= > IDH"3, oy +ID H*13, o+ D 10 H" - e;ll3, . (8-96)
k=m+1 i=1

and let %, ., be as defined in (8-1). If m = 1, then

n n—1
312 2 2 12 j 2

IVl aa g,y + N0 w202 0y + 1V P U2y + D0 P22y

j=1 j=1 _

,S gbn,m + oyn,m + %n,m- (8'97)

Ifm =2, then

n ) n—1 )
V42203 T2 N8 20201 0, I V2 P ) HIO Y P2+ N8 P12 g

j=1 j=2

S g_bn,m +o'yn,m +%n,m- (8'98)
Proof. When we localize with x,, we find that y,u and x;p solve

—A(xou) + V(x2p) = =0 (xou) + x2G' + H'  in Q,

div(xou) = x2G* + H? in , (8-99)
(Oep)I—D(x2u))e3 =0 on X,
xou =20 on Xp.
Let0< j<n—1anda € N? be such that
m+1<|a|+2j<2n-—1. (8-100)
Then we may apply Lemma A.14 and use the definition of ¥,, ,, given in (8-1) to see that
19997 () 30— —2j41 + 1098] 2P 13— o2
1 .
S10%0 ™ Gaw) 13, w2001 + 1090 GG + HYIE, _j01-2j1
| + 109/ G2G* + HH 3 a2,
<188/ O 13 120411 + Y + L. (8-101)

We first use estimate (8-101) and a finite induction to arrive at initial estimates for y,u and x, p; we then
use the structure of the equations (2-23) to improve these estimates.

Our finite induction will be performed on £ € [1, 2n —m — 1] with |«| 4+ 2j = 2n — ¢, starting with the
first two initial values, £ = 1 and £ = 2. We use the definition of Q_Dn,m given in (2-47) and Lemma A.12
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in conjunction with the bounds on j, || given in (8-100) to see that
aqjtl 2 aqj+l 12 =
10907 " O llg S 110%9; " ullg < Doy

Then (8-101) with |o| +2j =2n — 1 = 2n — £ implies that

100 ) 13 + 1100 G p) I3 < 10% 07 Gat) 12+ Y + %nm < Dom + Y + L

Applying this bound for all @ and j satisfying |«| +2j = 2n — 1 and summing, we find
1D~ G I3+ 10>~ G2 P S D + Y + L
When ¢ =2 and || +2j =2n — £ = 2n — 2, a similar application of Lemma A.12 implies
10“0/ " G 1T < Do

so that

100 ) 13 + 1190 G )13 < 10% 07 Gat) 17+ Y + Lnm < Dom + Y + L

This may be summed over 2j + |a| = 2n — 2 for the estimate
ID*" 2 (aw) 13+ 1D* 2 Gz < Dom ~+ Y + %

Then (8-104) and (8-107) imply that

ID* " w3+ 11 D* 2 G I3+ 1ID*  Gep) IF + 11D 2 Gep) 15 < Dam +Ynm + %

Now suppose that the inequality

Lo

D ID  Gaw)llzyy + 1D Cap) 7 S Dnam + Yo + Lnm
=1

1501

(8-102)

(8-103)

(8-104)

(8-105)

(8-106)

(8-107)

(8-108)

(8-109)

holds for 2 < £y < 2n —m — 1. We claim that (8-109) holds with £¢¢ replaced by £o 4+ 1. Suppose

| +2j =2n— (£o+ 1) and apply (8-101) to see that

19997 G112, o+ 1897 Gap) 12,11 S18%8) ™ O 12, + Yo m 4% < D+ Yo+ %y (8-110)

where in the last inequality we have invoked (8-109) with

ol +2(+ 1) =2n— Lo+ 1) +2=2n— (Lo — 1).

This proves the claim, so, by finite induction, the bound (8-109) holds for all ¢y =2,...,2n —m — 1.

Choosing £g = 2n —m — 1 yields the estimate

2n—m—1

> D" G li + 1D Cap)E S Dam +Yum + Lnm,
=1

(8-111)
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which implies, by virtue of the fact that x, = 1 on €2, that

2n—1
k. 112 ko112
> 1D i g, + 1D Pk
k=m 2n—m—1
— Z ”DanZu”%{HI(QZ) + ”Dznizp”%{Z(Qz) S @n’m + Oyn,m =+ %n’m. (8‘1 12)
=1

Now we will improve the estimate (8-112) by using the equations (2-23), considering the cases m =1, 2
separately. Let m = 1. Since m + 1 = 2, the bound (8-112) already covers all temporal derivatives of
order 1 to n — 1. Since ||0;'u ||% is already controlled in Q_Dn,m, we must only improve spatial derivatives.
First note that (8-112) implies that

195 D211 3202 g0y + I D2 Pl pn20ry) S D+ Y + %o (8-113)
Then we may apply the operator d3 D to the divergence equation in (2-23) to bound
195 Dusll 2,y S N93DG3 3 2q,) + 185D ulGpon s i) S Dom + Yo + Lo (8-114)
Then applying the operator D to the first equation in (2-23) implies that

195 DP 13202y, + 105 Dt 302
SIDG G2, + 1Dl sy + 1D D3ul G s ) + 185 Dusli s g,
S D +Ym + Lm (8-115)

for i =1, 2. We can then iterate this process, applying 832 to the divergence equation, then 93 to the first
equation in (2-23), and using all of the bounds derived from the previous step, to deduce that

193 P11y + 10300 52020,y S Do+ Ynm + L (8-116)
Combining (8-113)—(8-116) yields the estimate
IVl 2,y + 1V P2,y S Do+ Ynm + Lo, (8-117)

which together with (8-112) and the bound [|0]"ul|3,, (= 137u 12 < By, implies (8-97).
In the case m = 2, we can argue as in the case m = 1 to control the spatial derivatives. That is, we first
control 33 D3u, D3 p, then iteratively apply operators with an increasing number of 33 powers to arrive at

the bound
V4l 303 0, + IV Pl ) S D+ Y + L (8-118)

Since m + 1 = 3 it remains to control d;u and 9,V p. For the latter we apply d39; to the divergence
equation and use (8-1) and (8-112) to bound

195814313 203 0y S 18390 G2 11303, + 1330 Dt sy S Dn + Y + X (8-119)
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Then applying 9, to the third component of the first equation in (2-23) shows that

1939: Pl 7030,y S 18:G 13203, + 18 Dutll 25 ) + 193814311 203
S Dnm + Ynom + Enms (8-120)

which in turn implies that

IV Pl G5 g,y S 18300 P33, + 1D P30y S D + Y + %o (8-121)
We may control d;u3 by applying 9, to the divergence equation in (2-23) to find that

1938,43 11 32020, S N8 G220 20, 1D ul G202 0 S Do + Y + Lo (8-122)
but then, since d,u#3 = 0 on X, we can use Poincaré’s inequality (Lemma A.13) to bound

2 2 2 2
” 8tu3 ” H>»=1(Q,) 5 ”atu3 ” HO(Q») + Hvatu3 ||H2n72(92) ,S ”Vatu3 ” H>=2(Q,)

S 10300313202, + 1D 31202 g0 S D + Y + Lo (8-123)

Control of the terms 0,u;, i = 1, 2, is slightly more delicate; for it we appeal to the first of the localized
equations (8-99) rather than (2-23). The reason for this is that using (8-99) will allow us to control
8328,( x2u;) in all of €2, giving us control of d;(x»u;) in all of € via Poincaré and hence control of d;u; in
Q,. If instead we used (2-23), control of 8323,u i in 27 would not yield the desired control of d;u; in 2,
because we could not apply Poincaré’s inequality. We apply o, to the i = 1, 2 components of the first
localized equation in (8-99) and use (8-111) to see that

1930, Oauti) 13203
S H" - €l s + 1628 G 5213y + 18: D(x2P) 1303y + 18: D> (21) 305

< Bpm +Ypm + Lo (8-124)

Now, since 9; (xou;) and 039, ()x2u;) both vanish in an open set near X, we may apply Poincaré’s inequality
twice and use (8-124) to find that

19: 2 12010y S 1180 28 13201y S N850 r2ti) 3 ns ) S D + Yoo + L (8-125)
To conclude the analysis for m = 2, we sum (8-112), (8-118), (8-121), (8-123), (8-125), and the bound
197wl 31 g,y < 197 ull} S By m to derive (8-98). O

Instantaneous energy. Now we estimate the instantaneous energy. The proof is based on an argument
very similar to the one used in the proof of Lemma 8.3. Recall that €, ,, is defined by (2-45).

Theorem 8.4. Define

Wam = IV 2G5+ Ve Gl + 1Dy G113 o + 1D G .- (8-126)
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Ifm =1, then
n—1
IV2ull3, - 2+Z||a’u||2n 2 HIVPI3, 2+ Y 19, pl3, oy 1 + 10013, l+Z||a N30,
j=1 j=1 j=1
SEnm+Wom. (8-127)
Ifm =2, then
n—1
IV3ull3, - 3+Z||afu||2,, o HIV2PI3, 5+ Y 18] pl3, ;1 +ID* 0113, 2+Z||a N30,
j=1 j=1 Jj=

< %n W (8-128)

Proof. The proof is quite similar to that of Lemma 8.3, so we do not fill in all of the details. Throughout
the proof we employ the notation & := %n,m +Wam.
Let0<j <n—1and o € N? satisfy m < |a|+2;j < 2n — 2. To begin, we utilize the equations (2-23)
with the elliptic estimate Lemma A.14 to bound
j 1
”8aatju”%n—|a|—2j + 1189/ pl3,_ o =2j—1 > <1987 ull3, la|—2j—2 T+ 1999/ G"13,,— la| =2 —

+110%9; G130 jaj—2j-1 + I|aaalgn”2n7\a|72j73/2 +110%9] G3”2n7|a|72j73/2' (8-129)

The constraints on j, o allow us to bound

19997 G113, _j—2j—2 + 18%8] G312t + 139 G* 130 _ia1=2j—3/2 S Wnm, (8-130)
and similarly
||8aazj77||2n loe|=2j—3/2 ~ % (8-131)
so that (8-129)—(8-131) imply that
198/ 113, _ja1—2j + 18%87 PI3_joy—2j—1 S E+ 1070/ l13,_10—2jo- (8-132)

As in Lemma 8.3, we argue with a finite induction on £ € [2, 2n — m], beginning with £ =2, 3. When
¢=2and || +2j =2n —2 =2n — ¢, the definition of ¢, ,, implies that

18%8] " g S Bms (8-133)
which may be inserted into (8-132) for
0“0/ w3 + 16%0] pI} < 2. (8-134)
Summing over all « and j satisfying |«| +2j = 2n — 2 shows that

|ID*"~2u|5+ ID*"?p|7 < Z. (8-135)
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For ¢ = 3 we note that |¢| +2j = 2n — 3 implies that j <n — 2, so that |«| > 1. This allows us to write
o= (¢ —B)+ B for |B] =1 and to use (8-135) to see that

1997} < 100/ w3 < 1D Pull} S % (8-136)
Then we can plug this into (8-132) for each || +2j =2n — 3 and sum to arrive at the bound
ID*Sul3+ 1D* 3 pl5 S %. (8-137)

Now we may use finite induction as in (8-109)—(8-112) of Lemma 8.3 to ultimately deduce the estimate

2n—2 2n—m
S o D*ul3, 1D pl3, s = Y D™ ullf+ID*plf_, S (8-138)
k=m =2

Now we improve the estimate (8-138) by utilizing the structure of the equations (2-23), again arguing
as in Lemma 8.3. The energy bound (8-138) in the case m = 2 is structurally similar to the bound
(8-112) for the dissipation in the case m = 1, so we may argue as in (8-113)—(8-116), differentiating the
equations (2-23) (with obvious modifications to the Sobolev indices and number of derivatives applied)
and bootstrapping until we arrive at the bound

IV3ull3, 5+ 1V2pl5,_5 S . (8-139)

Then (8-138), (8-139), and the bound ||8t”u||% < %n,m imply the bound (8-128).
In the case m = 1 we apply 03 to the divergence equation in (2-23) to see that

183u3115,_» S 183G2113,_ + 185 Du 13, _» S %. (8-140)

We then use the first equation in (2-23) to bound

||8°>p||2n 2+Z||83” ||2n 2~ ||G ||2n 2+||D2M||2n 2+||83”3||2n 2+||DP||2n 2<££ (8-141)
i=1

Then (8-138), (8-140), and (8-141) imply that
IVl + IV PIIZ,— S, (8-142)
which, when added to (8-138) and the bound ||8t”u||% < %n,m, yields (8-127). Il

Specialization: estimates at the 2N and N + 2 levels. We now specialize the general results contained
in Theorems 8.1 and 8.4 to the specific case of n = 2N with no minimal derivative restriction, and to the
case n = N + 2 with minimal derivative count m =1, 2.

Theorem 8.5. There exists a 6 > 0 such that

Doy < Doy + €5y Doy +HFan. (8-143)
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Proof. We apply Theorem 8.1 with n =2N and m =1 to see that (8-2) holds. Theorem 4.2 provides an
estimate of Y,y 1, as defined in (8-1):

Yoy 1 S €N Tan + HFoy (8-144)

for some 6 > 0. We may then use this in (8-2) to find that

2N 2N—1
IV3uly o+ D 10/ ulliy a0 + IV PIEN 2+ Y 18] Plliy s
J=l 2N+1 j_zl
+ ||D277||421N—5/2+ ||3t77||42w—1/2+ Z ||8tj77||42LN—2j+5/2 S Doy +E5y Doy +HFoy.  (8-145)
j=2

We can improve the estimate for u in (8-145) by using the fact that 9,y does not have a minimal
derivative count. Indeed, by the definition (2-49) and Lemma A.12, we know that

19501} + Nl S Don- (8-146)
Now, since 2 satisfies the uniform cone property, we can apply Corollary 4.16 of [Adams 1975] to bound
leelayr S g + UV ulg < ull + 1Vl Gy s (8-147)

Then (8-145)—(8-147) imply that
1922017 + el 11 S Don + EqnDan +HFay. (8-148)

We can use this improved estimate of u to improve the estimate of p by employing the first equation
of (2-23) to bound
IVPlin_1 S 18uliy_y + 1 Auliy_y +1G I3y (8-149)

The bounds (8-145) and (8-148) imply that
l8culldy—1 + 1 Aulldy_y S Don + €y Daw +HFow, (8-150)
while (4-7)—(4-8) of Theorem 4.2 imply that
IG I3y-1 S €y Dan +HFoy. (8-151)
Hence (8-148)—(8-151) combine to show that
IVPlin-1 S Bon + €y Dan +HFoy. (8-152)
Finally, we improve the estimate for n. We use the boundary condition on X of (2-23) to bound

||D77”421N_3/2 = ||Dp”§.141v73/2(2) + ||D33u3”?_141v73/2(2) + ||DG3||421N—3/2 (8-153)
SIDpllay_1 + 1D33usllzy_ + 1DG 3y 3/ S Don + €5y Doy + HFay .

In the last inequality we have used (8-148), (8-152), and Theorem 4.2. Now (8-143) follows from (8-145),
(8-148), (8-152), and (8-153). U
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Now we perform a similar analysis for the energy at the 2N level.
Theorem 8.6. There exists a 0 > 0 such that
Gn SGn +6). (8-154)

Proof. We apply Theorem 8.4 with n =2N and m =1 to see that (8-127) holds. Theorem 4.2 provides
an estimate of Wy 1, as defined by (8-126):

Waon1 S€ (8-155)

for some 6 > 0. Replacing in (8-127) shows that

2N 2N-—1 2N
IVl y oty 10 ulliy o HIV Py ot Y 18] Py —aj i HI DGy 1/ nllZy_a;
j=1 j=1 j=1

S+t (8-156)
The definition of €,y implies that
19 52e1§+ lullg + 120115 + 115 < Ean. (8-157)

We may then sum the previous two bounds and employ Corollary 4.16 of [Adams 1975] as in the proof
of Theorem 8.5 to find that

2N 2N—1 2N
192G+ D 107 ulliy_oj + IV PIGN—2+ D, 187 pllin_aj—1 + 192015+ D 197 nlliy_s;
j=0 j=1 Jj=0

Sy +ert. (8-158)
It remains only to estimate || p||§ ~_1> since Lemma A.10 implies that

I3y -1 S1PIG+ VPN S 1P 150, + 1V Pliy -2 (8-159)

it suffices to estimate || p||§10 ()

estimate (4-6) of Theorem 4.2:

We do this by using the boundary condition in (2-23), trace theory, and

1213005 S 105+ G215 + 1831311305y S W0 lG+ ey + €557 (8-160)
Then the estimate (8-154) easily follows from (8-158)—(8-160). U
We now consider the dissipation at the N + 2 level.

Theorem 8.7. For m = 1, 2 there exists a 0 > O such that
Dns2m S DNram + €5y DN+2.m- (8-161)

Proof. We apply Theorem 8.1 with n = N + 2 to see that (8-2) holds for m = 1 and (8-3) holds for m = 2.
Theorem 4.1 provides an estimate for ¥y 42 ,,,, as defined by (8-1):

Ynsom S ENDN12.m (8-162)
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for some 6 > 0. The bound (8-161) follows from using this in (8-2)—(8-3). [l
We now consider the energy at the N + 2 level.
Theorem 8.8. For m =1, 2 there exists a 0 > 0 such that
Eniam S Eniom +ENEN12.m- (8-163)

Proof. We apply Theorem 8.4 with n = N + 2 to see that (8-127) holds when m = 1 and (8-128) holds
when m = 2. Theorem 4.1 provides an estimate for W4 ,,, as defined by (8-126):

W s2m S ENENt2m (8-164)
for some 6 > 0. The bound (8-163) follows from using this in (8-127)—(8-128). [l

9. A priori estimates

In this section we will combine the energy evolution estimates and the comparison estimates to derive a
priori estimates for the total energy, %y, defined by (2-58).

Estimates involving ¥,y and ¥. Recall that %,y is defined by (2-56) and ¥ is defined by (2-57). We
begin with an estimate for F,y.

Lemma 9.1. There exists a universal C > O such that

sup Fon (1)
0<r<t

t t t 2
< exp(C[ VH@T) dr) [9721\/ O) +1¢ / (1 +SonE)Don(r) dr + (/ NHE)Fon(r) dr) i| -1
0 0 0

Proof. Throughout this proof we write u = it + uzes, that is, we write u for the part of u parallel to X.
Then 7 solves the transport equation 9,1 + & - D1 = u3 on ¥. We may then use Lemma A.9 with s =1/2
to estimate

t t
sup [[n(r)l12 < eXP<C/ IDu(r)ll 32y dr) |:||770||1/2 +/ Iz ()1 172 s dr]- 9-2)
0 0

O<r<t

By the definition of ¥, (2-57), we may bound || Du(r)| g32x) < +/H(r), but we may also use trace
theory to bound ||ug(r)||§11 205) < on(r). This allows us to square both sides of (9-2) and utilize
Cauchy—Schwarz to deduce that

sup ||n<r>||%/25exp(2c /0 ¢K<r>dr)[||no||%/2+r /O @zw)dr]. (9-3)

o<r<t

To go to higher regularity, we let & € N? with |o| = 4N. Then we apply the operator 3% to the equation
0:n~+u - Dn = uj to see that 3%n solves the transport equation

3 (3%n) + i - D(3%n) = 3%usz — Z Co pdPii- D3 Py =: G* (9-4)

0<B<«x
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with the initial condition 9%79. We may then apply Lemma A.9 with s = 1/2 to find that
t t
sup [0%n(r)lli2 < exp(Cf | Du(r)ll g3 s d”) [||3“770||1/2+/ ||Ga(”)||1/2dr]- (9-5)
O<r=<t 0 0
We will now estimate |G ||y 2.
For 8 € N? satisfying 2N 4+ 1 < || < 4N we may apply (A-2) of Lemma A.1 with s; =r =1/2 and
s> = 2 to bound
197aDa* Pl 2 S 18Pl 12 1DB Pl (9-6)

This and trace theory then imply that

> NCapdfi- DI Pl SIDIN L ulli 1 DTV 0l S VBanEon. (9-7)

0<B<a
2N+1<|B|<4N

On the other hand, if g satisfies 1 < |B| < 2N, we again use Lemma A.1 to bound

182D Pnllij2 S 107l gags) 1 DA Pl 2, (9-8)
so that
> CupdPia- DO Pl SIDVullsI DIV Inlly2 + 1Dl sy 1DV il
0<B<a
1=Ipl=2N SVnDon + VAT . (9-9)

The only remaining term in G* is 9“u3, which we estimate with trace theory:
19%usll sy S 1D uslly S VDo (9-10)
We may then combine (9-7), (9-9), and (9-10) for
1G¥ 112 S L+ E€n)VDan +HFoy. (0-11)

Returning now to (9-5), we square both sides and employ (9-11) and our previous estimate of the term

in the exponential to find that

sup 19 (I3

o<r<
== t t t 2
< exp<2C /\/57{(r) dr) |:||8°‘n0||%/2 +1 /(1 +Ean () Doy (r) dr + (f\/%(r)@m(r) dr) :| (9-12)
0 0 0
Then the estimate (9-1) follows by summing (9-12) over all |o| = 4N, adding the resulting inequality to
(9-3), and using the fact that 9113y, , < 1017, + ID* 713 . O
Now we use this result and the J{ estimate of Lemma 3.17 to derive a stronger result.

Proposition 9.2. Let G, be defined by (2-58). There exists a universal constant 0 < & < 1 such that if
Gn(T) <$,thenforall0 <t <T,

t
sup 9’72N(}”)§9’72N(0)+l‘/ Don. (9-13)
0

O<r<t
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Proof. Suppose 4y (T) <8 <1, for § to be chosen later. Fix 0 <t < T. Then, according to Lemma 3.17,
we have 3 < %ﬁﬁkz)/ #+4%) " Which means that

t t t
(84+22)/(16+8%) (84+22)/(16+8%) 1
/0 VH(r)dr 5/0 (En+2,2(r)) dr <3 /0 )7 dr

o0
1 4
< 8(8+2)\)/(16+8)x) — _8(84-2)»)/(16-5—8)\). -14
: o T T o1

Since § < 1, this implies that for any constant C > 0,

exp(C/ VIH(r) dr) <. (9-15)
0

Similarly,
t 2 t 2
</ VHEE) Fan(r) dr) < ( sup @ZN(F)> </ VHT) dr)
0 0<r=<t 0
< ( sup %N(r)>3<8+2”/<8+“>. (9-16)
o<r<t

Then (9-14)—(9-16) and Lemma 9.1 imply that
t
sup Fon (r) < C(%N (0) +1 / @ZN) + CsBTN/EH (sup Fyy (1)), (9-17)
O<r<t 0 O<r<t

for some universal C > 0. Then if § is small enough that C§®+22)/B+41) < 1/2 we may absorb the
right-hand %,y term onto the left and deduce (9-13). [l

This bound on ¥, allows us to estimate the integral of 5%,y and /Doy HFopn.

Corollary 9.3. There exists a universal constant 0 < § < 1 such that if G5 (T) < &, then
t t
/ H(r)Fan (r) dr < SEFV/BF G () 4- §ET21/B+40) f Do (r) dr (9-18)
0 0

and

t t
/ VDon (NH () Fon (r) dr S Fon (0) 4 § BT/ 16181 / Don (r) dr (9-19)
0 0

forO0<t<T.

Proof. Let G5 (T) < § with § as small as in Proposition 9.2, so that estimate (9-13) holds. Lemma 3.17
implies that
1

(8421)/(8-+42) (8421)/(8-+41)
H(r) S (Enta2(r)) Sé (Lr)2+i2

(9-20)
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This and (9-13) then imply that

1 t o t dr t r /r
- - < 9% = - -
RGEme=m /0 H(r)Fan(r) dr < Fon(0) L )2+A/2 +/0 a2\, Doy (s)ds ) dr

o t o0 d
SJ*’zN(O)/ —(H— VA (/0 Doy (r) dr> (/0 —(H_r)rlﬂ/z)

< Ty (0) + / Gy () dr, ©-21)
0

which is estimate (9-18). The estimate (9-19) follows from (9-18), Cauchy—Schwarz, and the fact that
s<1:

t
/ B VH ) T () dr
0

t 1/2 t 1/2
< (f QDQN(I”) d}’) (f 3((1’)9’}1\/(?‘) dl’)
0 0

t 1/2 t
< <[ Gy () dr) (8(8+2x)/(8+4/x)9;21v(0))1/2+8(8+2A)/(16+8A)/ Doy (r) dr
0 0
t
S g'TZN(O)_i_ (8(8+2)»)/(16+8)») +6(8+2K)/(8+4A))f QDZN(”) dr
0

t
S Fan(0) +55 2104 [0 O
0

Boundedness at the 2N level. We now show bounds at the 2N level in terms of the initial data.

Theorem 9.4. Let G be defined by (2-58). There exists a universal constant 0 < 6 < 1 such that if
GNn(T) <6, then

! Fon(r)
sup éon(r) + 9521\/ + sup < €an (0) + Fan (0) (9-22)
O§r§t O<r<t (1 + )

forall0 <t <T.

Proof. Combining the energy evolution estimate of Theorem 7.1 with the comparison estimates of
Theorems 8.5 and 8.6, we find that

Eon (1) + /0 Doy (r) dr S Eon(0) + (Ban ()0 + i (Gan (M) Doy (r) dr
t

t
—i—/ \/QZBZN(r)fK(r)Q?ZN(r) dr+/ H@)Fan(r)dr (9-23)
0 0

for some 6 > 0. Let us assume initially that § < 1 is as small as in Lemma 2.6, Proposition 9.2, and
Corollary 9.3, so that their conclusions hold. We may estimate the last two integrals in (9-23) with
Corollary 9.3, using the fact that § < 1:

t t t
/ By VRO Ty () dr + f TV Fa (r) dr S Fay (0) + 5E+2D/16+8) / Do () dr.  (9-24)
0 0 0
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On the other hand, supy., -, €2y (r) < %N (T) <4, so

(Ean (1)1 + /0 t(%zN(r»%bm(r) dr < 8%y (1) +68° /0 t Don (r)dr. (9-25)
We may then combine (9-23)—(9-25) and write
Y =min{f, (8§ +21)/(16+81)} >0 (9-26)
to deduce the bound
() + /0 t Do (r)dr < C (€n(0) + Fon (0) + C8%Eon (1) + €8V /0 t Don (r) dr (9-27)

for a universal constant C > 0. Then if § is sufficiently small so that C8? < 1/2 and C8¥ < 1/2, we may
absorb the last two terms on the right side of (9-27) into the left, which then yields the estimate

t
sup €y (r) + / Doy (r)dr S Ean(0) + Fon (0). (9-28)
0

0<r<t

We then use this and Proposition 9.2 to estimate

F Fon (0 r
su v (r) < sup v () + sup r f Doy (s)ds
o<r<t (L+7) Tozrzy (L4T1) o<z (14+7) Jy
t
S Fon(0) + / Doy (r)dr S €an(0) + Fan (0). (9-29)
0
Then (9-22) follows by summing (9-28) and (9-29). ([l

Decay at the N + 2 level. Before showing the decay estimates, we first need an interpolation result.
Proposition 9.5. There exists a universal 0 < § < 1 such that if G5 (T) <6, then
gbN-‘,-Z,m(t) S; ng-‘rZ,m(t)» %N—O—Z,m(t) S%N-‘rl,m(t) (9'30)

and
Entam@®) S (En@) D@y o (1)) TR D (9-31)

form=1,2and0 <t <T.
Proof. The bound %5 (T) < § and Theorems 8.7 and 8.8 imply that
DNtam < CDNs2m+ CENDN+2.m < CDNy2.m + C8 Dy 12m (9-32)

and
%N—&-Z,m =< C%N+2,m + C%gN%N—}-Z,m =< C%N+2,m + C59%N+2,m (9'33)

for constants C > 0 and # > 0. Then if § is small enough so that C8° < 1/2, we may absorb the second
term on the right side of (9-32) and (9-33) into the left to deduce the bounds in (9-30).
We now turn to the proof of (9-31). According to Remark 2.8, we have

Ensam SIDNTu|s + | D2V )13, (9-34)
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and by Lemma A.12, we also know that
1D ully S 1D Dullg =Dy 2m- (9-35)

On the other hand, the definition of Dy 42 ,,, given by (2-54) when m =1 and (2-55) when m =2, together
with (9-30) implies that

IDZN*01G < Drtzm + 1DV 15 S Dysom + 1D N |3 (9-36)

We may then combine (9-34)—(9-36) to see that
Entam S Dvizm + 1D ll5 + 1DV 0. (9-37)

We first estimate the last term in (9-37). The standard Sobolev interpolation inequality (3-47) with
s=2N+3—m,r=1/2,and ¢ =2N —4 allows us to estimate
1D 40§ < 1D 03y 13-
g (” Dm+1 n ||%N+5/2_m)(4N—8)/(4N—7) ( ” Dm+1 n ||42|.N_m_1)1/(4N_7>

S Dy g, m) NN (g, ) I/EN=D) (9-38)

Since N >3, m e {1,2},and A € (0, 1), we have (4N —8)/(4N —7) > (m+A)/(m + 1+ 1). Then this

bound, the estimate (9-38), and the bound Dy 47 », S €2y from Lemma 2.10 imply that

~

DM 45 S (@ s, m) "R D () D, (9-39)

Now we turn to the D™ 5 term in (9-37). In the case m = 1 we use the H° interpolation estimates of
Lemma 3.1 to bound

D™ 13 = 1Dl < (€an) VO (@ g )T/ CH), (9-40)

In the case m =2 we use the H" interpolation estimates of D7 from Lemma 3.1 and the H estimate of
d;n from Proposition 3.16 to bound

ID" nllg = 1 D*nlig + 18,1l < (62n) /O Dy 12,2) FFH/ L. (9-41)
Together, (9-40) and (9-41) may be written as
ID"nllg S (Ean) /" HED @ g ) MDD, (9-42)
Now, according to Lemma 2.10, we can bound
DN+2,m < DNam S (@)D @y g ) D/ OTEAED, (9-43)

Then we use the estimates (9-39), (9-42), and (9-43) to bound the right side of (9-37); the bound (9-31)
follows from the resulting inequality and (9-30). (I

Now we show that the extra integral term appearing in Theorem 7.2 can essentially be absorbed into

%N+2,m .
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Lemma 9.6. Let F? be defined by (2-19) with 3% = 8,N *2. There exists a universal 0 < § < 1 such that if
Gn(T) <4, then

2En42.m(t) < Engom(t) —2 /Q TN pFA (1) < 3En12.m(t) (9-44)

forall0<t<T.

Proof. Suppose that § is as small as in Proposition 9.5. Then we combine estimate (5-4) of Theorem 5.2,
Lemma 2.6, and estimate (9-30) of Proposition 9.5 to see that

6/2 0/2:5 -
11218 plloll F2 o S VENnt2my EonEnram = EonEniom S Eneniom S8 Eniam (9-45)

for some 6 > 0. This estimate and Cauchy—Schwarz then imply that
Q

if § is small enough. The bound (9-44) then follows easily from (9-46). U

<20l 13N pllol F2llo < C8*Eniam < 2En12m (9-46)

Now we prove decay at the N + 2 level.

Theorem 9.7. Let Gy be defined by (2-58). There exists a universal constant 0 < § < 1 such that if
Gn(T) <4, then
sup (1+1)" €y 12m(r) S €on(0) +Fon (0) (9-47)

0<r<t
forall0 <t <T and form € {1, 2}.

Proof. Let § be as small as in Lemma 2.6, Theorem 9.4, Proposition 9.5, and Lemma 9.6. Theorem 7.2
and the estimate (9-30) of Proposition 9.5 imply that

3 (%N+z,m ~2 / Ja!V+1pF2) +Dntom < CENDNiom < C8'Dyiom < 3Byyom  (9-48)
Q

if § is small enough (here 6 > 0). On the other hand, Theorem 9.4, (9-31) of Proposition 9.5, and (9-44)
of Lemma 9.6 imply that

05%%MMmS%Nﬂm_z/:mprF%S%mHm
Q

= 1 A1) 5
< C(%ZN)I/(m-i-)»—Fl)(@N+2’m)(m+)\_)/(m+)»+l) < COQZO/(m+ + )(@N+2,m)(m+)»)/(m+)»+l) (9_49)

for all 0 <t < T, where we have written % := é,5(0) + F,5(0), and Cy is a universal constant which
we may assume satisfies Co > 1. Let us write

h(t) =Ensam(t) —2 f J)3N T p(t)F2(1) > 0, (9-50)
Q

as well as

1 1
s=—— and C;=

— 9-51
m+ A 20, % O-=>D
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In these three terms we should distinguish between the cases m = 1 and m = 2, but to avoid notational
clutter we will abuse notation and only write A(¢), s, and C;. We may then combine (9-48) with (9-49)
and use our new notation to derive the differential inequality

dh(t) + C1(h(1)'** <0 (9-52)
forO<r<T.
Since Ah(t) > 0, we may integrate (9-52) to find that, forany 0 <r < T,
h(0)

MO = e oy s ©-53)

Notice that Remark 2.8 implies that ¢ N+2.m < %%QN. Then (9-49) implies that 2(0) < %% N+2.m(0) <
2¢€,n(0) < 2%, which in turn implies that

s _ N h(0)\* N s_ S s—1 _
sC1(h(0)) _205“( o ) < 2c5+s2 = 001“2 <1 (9-54)

since 0 < s < 1 and Cy > 1. A simple computation shows that

1/s
sup (17 1

r~o (1M~ Ms ©-55)

when 0 < M <1 and s > 0. This, (9-53), and (9-54) then imply that

s (1—{-1’)1/S <2Cé+S)l/s ZZO B (2C5+S)1/S ]
(I +r)""h(r) Sh<0)[1+sC1(h(0))Sr]1/s <h(0) S no = %o. (9-56)

Now we use (9-30) of Proposition 9.5 together with (9-49) to bound
Enrom() SEniom) Sh(r) for 0<r <T. (9-57)
The estimate (9-47) then follows from (9-56), (9-57), and the fact that
s=1/(m+2) and Zo="E5(0)+ F2n(0). U

A priori estimates for 9. We now collect the results of Theorems 9.4 and 9.7 into a single bound on
%, as defined by (2-58). The estimate recorded specifically names the constant in the inequality with
C; > 0 so that it can be referenced later.

Theorem 9.8. There exists a universal 0 < § < 1 such that if 6,5 (T) < 6, then
Gon (1) < C1(€2n(0) +F2n(0)) (9-58)
forall0 <t <T,where C| > 0 is a universal constant.

Proof. Let § be as small as in Theorems 9.4 and 9.7. Then the conclusions of the theorems hold, and we
may sum them to deduce (9-58). ]
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10. Specialized local well-posedness

Propagation of $; bounds. To prove Theorem 1.3, we will combine our a priori estimates, Theorem 9.8,
with a local well-posedness result. Theorem 1.1 is not quite enough since it does not address the
boundedness of ||§Au(t)||g, ||§,\n(t)||%, and ||9,\p(t)||g for ¢ > 0. In order to prove these bounds, we first
study the cutoff operators $7", which we define now. Let m > 1 be an integer. For a function f defined
on 2, we define the cutoff Riesz potential $7" f by

I f (', x3) = f fE x3)lg| e 4, (10-1)
{IE1=1/m}
where * denotes the Fourier transform in the (x1, xp) variables. Similarly, for f defined on X, we set
srran=[  felrten e (10-2)
{lE1=1/m}

The operator $7" is clearly bounded on H 9(Q) and H°(X), which allows us to apply it to our solutions
and then study the evolution of $}'u and $7'n.

Before doing so, we record some estimates for terms involving $7" that are analogous to the $; estimates
in Propositions Proposition 4.3 and 6.7 and in Lemmas 4.4, 4.5, 6.5, 6.6, A.3 and A.4. We begin with the
analogues of the last two lemmas, which were the starting point for our $, estimates.

Lemma 10.1. If $;h € H(Q), then ||$7'h||5 < ||9:hll3. A similar estimate holds if $;h € H'(Z). As a
consequence, the results of Lemmas A.3 and A.4 hold with ) replaced by 9" and with the constants in
the inequalities independent of m.

Proof. Suppose that $,h € H°(2) for some h. Then, Writingcfor the horizontal Fourier transform, we
easily see that

0
195 Rl = f f (&, x3) P &7 d&dxs < || $5hl]5. (10-3)
—b J{|§1=1/m}
The corresponding estimate in case $3h € H°(X) follows similarly. Then the estimates of Lemmas A.3
and A.4 may be combined with these inequalities to replace $, with $7". (I

We do not want our estimates for $7" to be given in terms of €,y since this energy contains §; terms.
Instead, we desire estimates in terms of a modified energy, which we write as

Eon =S — [ Faulld — 15205 (10-4)

Lemma 10.1 allows us prove the following modification of Proposition 4.3. The proof is a simple
adaptation of the one for Proposition 4.3, and is thus omitted.

Proposition 10.2. Assume that ,y < 1. We have
I2G2 + 190 G5+ 1978, G+ 197G |13 + 197 GHIF < &y (10-5)

Here the constant in the inequality does not depend on m.
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We may similarly modify the proof of Lemma 4.4, removing the interpolation arguments and simply
estimating with &,y instead. This provides us with the following lemma, whose proof we omit.

Lemma 10.3. Assume that 5 < 1. We have
2
19 IAK)33u1 + (BK)dsu IR+ > 119 1ud: K113 < €. (10-6)
i=1
19510 = K)ulllg+ 119511 = K)G?1§ S €3 (10-7)
Here the constants in the inequalities do not depend on m.

Lemma 10.3 leads to a modification of Lemma 6.5.

Lemma 10.4. Assume that 5 < 1. We have
193 pIIG S 195015+ €an  and 1195 Dpll§ S €. (10-8)
Here the constants in the inequalities do not depend on m.

Proof. We may argue as in Lemma 6.5, employing Lemma 10.1 in place of Lemmas A.3 and A.4 as
well as Proposition 10.2 and Lemma 10.3 in place of Proposition 4.3 and Lemma 4.4, to deduce the
estimate [|0% 97 pI3 < 109 nllZ + |lull3 + 10,ull} + €3, for & € N? with || € {0, 1}. We may bound
lull3+119,ull? < En. When |o| =1 we use Lemma 10.1 to estimate [|[3*$5 715 < (InllH*(1Dnlld) ™ <
¢,n. The desired estimates then follow from these estimates and the fact that &,y < 1. Ol

In turn, Lemma 10.4 gives a variant of Lemma 6.6. The proof is an easy modification of that of
Lemma 6.6, using the above $7" results in place of ¥, results, and is thus omitted.

Lemma 10.5. Assume that 5 < 1. We have

/9’11199%2 S EnlIFnllo + Ean. (10-9)
Q

Here the constant in the inequality does not depend on m.

These results now allow us to study the boundedness of $,u, etc. We first apply the operator $7" to
the equations (2-23), which is possible since $}" is bounded on H 9(Q) and H°(X). Then the energy
evolution for $7'u and $7'n allows us to derive bounds for these quantities, which yield bounds for $,u
and $,n after passing to the limit m — oo.

Proposition 10.6. Suppose that (u, p, n) are solutions on the time interval [0, T| and that ||§Au0||% +
||§m0||(2) < 00 and supy<, <1 E2n (1) < 1. Then

T
sup (|%:u® 3+ 152 pOIF+ 150 0)1IF) + / 1$5u(2) |13 dr
0

0<t<T
Sel (19uollf + 1Fam0ll3) +e” sup En(r). (10-10)

0<t<T
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Proof. Since 7' is a bounded operator on H 9(Q) and H°(Z), we are free to apply it to the equations
(2-23). After doing so, we use Lemma 2.5 to see that

1
( fmm Pyl /|§An|)+§f|mﬁz’u|2
Q
:/56%-(93%;1 VITG?) + 90 pIT G + / —ITu - INGP I ING. (10-11)
Q x

We will estimate each term on the right side of this equation. First, we use Cauchy—Schwarz and
Proposition 10.2 to estimate the first and fourth terms:

+ V $mngnGH
z

< 195 ullo(195° G o + 197G 1) + 195 n1lo 97 G o

I - (NG - VITG?)
Q

< 197 ullg+ 215+ AT G o + 197G + 197 GG
< Higruld+ e+ cedy (10-12)

for C > 0 independent of m. For the second term we use Lemma 10.5 and Cauchy’s inequality for
‘ / 9" p I G*

where again C > 0 is independent of m. Finally, for the third term we use trace theory, Proposition 10.2,
and Lemma A.12 to bound

/ - 9" G
z

with C > 0 independent of m. Now we use (10-12)—(10-14) to estimate the right side of (10-11); after
rearranging the resulting bound, we find that

< ClI9'nllo€an + CEn < 31195015+ C(€ay + E3), (10-13)

< 195 ull gosy 195G llo < CILITull 195G lo
< CIDSTullo€y < LIDITull+CE3y,  (10-14)

3 (195 ullg+ 195 0I5 + SIDITullg < 195 ull§ + 195 nllg + C (Ean + ) (10-15)

for a constant C > 0 that does not depend on m.
The inequality (10-15) may be viewed as the differential inequality

0 €nm+3Drm < €rm+C(Eay + Ey), (10-16)

where we have written €;_,, = ||.9} u ||% + ||§Tn||% and 9, ,, = [|DI} u ||g. Applying Gronwall’s lemma to
(10-16) and using the fact that €, (¢) < 1 then shows that

t t
Em (1) + % / Dy.m(s)ds < €m(0)e' + C/ e &N (s)ds
0 0

< %A,m(O)e’ +Ce' —1) sup En(s), (10-17)

O<s<t
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where again C > 0 is independent of m. It is a simple matter to verify, using the definitions of $%' and .$;,
Parseval’s theorem for the Fourier transform in (x1, x7), and the monotone convergence theorem, that, as
m — 00,

Crm(s) = 197 u()I5+ 197015 = 1924115+ 192015 (10-18)
for both s =0 and s = ¢, and
t t
/ Di,m(s)ds — / IDSu(s)||3 ds. (10-19)
0 0

Now, according to these two convergence results, we may pass to the limit m — oo in (10-17); the
resulting estimate and Lemma A.12 then imply that

T
sup ([$2uOIIF+ 1$:00)15) + fo |1 $u ()|} dt

0§t§T
< (19au0ll3 + 1192m0l13)e” + (T —1) sup En(r). (10-20)
0<t<T
On the other hand, from Lemma 10.4, we know that
197 OIS IFT0ONG + Ean (). (10-21)

We may then argue as above, employing the monotone convergence theorem, to pass to the limit m — oo
in this estimate. We then find that

sup [, p0I3 S sup 5003+ sup (). (10-22)
0<t<T 0<t<T 0<t<T
The estimate (10-10) then follows by combining (10-20) and (10-22). Il

Local well-posedness. We now record the specialized version of the local well-posedness theorem. We
include estimates for $,u, $,7n, and $, p. We also separate estimates for €,y and %,y from estimates
for F,n and &,y, the latter of which is defined by (10-4).

Theorem 10.7. Suppose that initial data are given satisfying the compatibility conditions of Theorem 1.1
and |lu(O) I3y + 17O I3y ;2 + 19240) 15+ 19:1(0)[I§ < 00. Let & > 0. There exists a 8o = o(e) > 0
and a

Ty=Ceyminf1, ———1l >0, (10-23)

||77(0)”4N+1/2

where C(¢) > 0 is a constant depending on ¢, such that if 0 < T < Ty and IIM(O)IIiN + ||TI(0)||42;N < 6o,
there exists a unique solution (u, p, n) to (1-9) on the interval [0, T] that achieves the initial data. The
solution obeys the estimates

T
sup Gy (1) + sup |5, p0)|2+ f Don (@) dt + 197V ul|Fy,
0<t<T 0<r<T 0 2 )
< Ca(e+ [ 9uO)[I5+ [19:0(0)[I5),  (10-24)
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and

sup En()<e and sup Fon () < CoFon(0) + ¢ (10-25)
O<t=T 0<t<T

for Cy > 0 a universal constant. Here &,y is as defined by (10-4) and Xt is defined in (1-11).

Proof. The result follows directly from Proposition 10.6 and Theorem 1.1. O
Remark 10.8. The finiteness of the terms in (10-24) and (10-25) justifies all of the computations leading
to Theorem 9.8. In particular, it shows that BIZN *1y and 8,2N p are well-defined.

Remark 10.9. We could have recorded a version of Theorem 10.7 in which ¢ is replaced by various terms
depending on the initial data in (10-24)—(10-25). We have chosen to introduce the ¢ term for convenience
in our proof of Theorem 11.2.

11. Global well-posedness and decay: proof of Theorem 1.3

In order to combine the local existence result, Theorem 10.7, with the a priori estimates of Theorem 9.8,
we must be able to estimate 9, y, defined by (2-58), in terms of the estimates given in (10-24) and (10-25).
‘We record this estimate now.

Proposition 11.1. Let &,y be as defined by (10-4). There exists a universal constant C3 > 0 with the
Jfollowing properties.

(1) If 0 < T, we have the estimate

T
GN(T) < sup € (t)+ f Doy (t)dt + sup Fon(t) +C3(1+T)** sup En(r).  (11-1)
0

0<t<T 0<t<T 0<t<T

) If0< T, <T,and sup ||17(t)||§/2 <6, where § > 0 is as in Lemma 2.6, we have the estimate
Th=<t<T,

T
1
Gon(T2) < C3%GN(T1) + sup %2N(l)+f Don(t)dt + ———=~ sup Fan(1)
T\<t<T, T (1+11) Ti=t=T,

+C3 (T —T)*(1+ )™ sup En(n). (11-2)

T <t<T,

Proof. We begin with the proof of the estimate (11-2). The definition of 9,y (7>) in (2-58) allows us to
estimate
N (T2)

L Fon(t) <
<G (T1)+ sup Eon(D)+ / Gon@di+ sup S2DLS Sup (40 a0, (1153)
Ih=t<T T h=t=T (I+1) m=1 N1=t=D

Since N > 3, it is easy to verify that

N+2

i+l 2 ) i+l 02 112
Z ”atJ u||2(1v+2)_2j + ||8tju||2(1v+2)_2j + ||3z] ’7||2(N+2)—2j + ||81177||2(N+2)—2j S G (11-4)
j=0
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and N+1

ol .
Z 18/ P”%(N_;.z)_zj_] + ||8zJP||§(N+2)_2j_1 S G (11-5)
j=0

We will use (11-4), (11-5), and an integration argument to estimate the last term in (11-3).
For j=1,...,N+2and m = 1, 2 we may integrate o,[(1 + t)(’"“)/zat]u(t)] in time from 77 to
t € [Ty, T] and use the estimates in (11-4) to deduce the bound

I+ 028w llan a2y < 1A+ T 28] u(Ty) oy 142,

T . .
+f ((1 )20/ () o saaj + LR (1 45y 202 ) u(s)||2N+4—2j) ds
T

SVGn(T) + (T =T+ T2)' ™2 | sup En(r). (11-6)

Nh=<i<D
Squaring both sides of this, summing over j =1, ..., N + 2, taking the supremum, and then summing
over m = 1, 2 then yields the bound

2 N+2
> sup ((Hz)’"“Z ||a!u<r>||%(N+2)_2j>5%N<T1)+<T2—T1)2<1+T2>2“ sup &y (). (11-7)

T <t<T Th<t<T,

m=1 j=1

We may also integrate 9;[(1 + 1) M/259(1)] for o € N? with |o| = m + 1 and argue as above, again
employing the estimate (11-4), to deduce the bound (after summing over all such )

2
sup (140" IV U3y 12 -m—1) SGn (T + (T —T)* (14 T2)* sup En(1). (11-8)

m=1 N=t=h Ti<t<D

Similarly, we may integrate 3,[(1 + )" +"/29%y(1)] for « € N'*2 with m < |a| < 2N + 4, argue as
above with (11-4), and then employ the bound ||5,2nN iy ||(2) < € N+2.m from Remark 2.8 (which holds for
t € [Ty, T»] because of our assumption on the size of ||n ||§ /2), to deduce the bound (again after summing
over all such «)

2
sup ((1+ )" D2V T4u)13) < Gon (1) +(Ta — T*(1+ 1) sup En(r).  (11-9)

m=1 N=t=h Ti<t<h

Together, the estimates (11-7)—(11-9) account for all of the u terms appearing in € y.2 ,, as defined in
(2-52) for m =1 and (2-53) for m = 2.

Now we turn to the terms in € y42 , involving n and p. We may use the n estimates in (11-4) and the
p estimates in (11-5) in a trio of integration arguments like those used above in (11-7)—(11-9). These
yield the estimates

2 N+1 . N+2 .
Y sup (<1+z)m“[z ||a,’p(r>||§<N+2)2j1+Z||a£n<r>||%w+2)2,~D
m=1 NN=I=T2 j=1 j=1

SGn(T) + (T —T)*(L+T)* sup En(), (11-10)

T1<t<T,
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sup ((L+ 0" UV D3 42)-m—1 + 1D 0O 13 n12)—m D

m=1 T <t<T»

SGn(T) + (T —T)*(L+ ) sup En(), (11-11)
T <t<T»
and

2
sup (140" D2V 40 0)12) < Gon (T1) + (T — T)>(1+T)*™ sup En(r).  (11-12)

m=1 N=t=h T=t<D

Now we sum (11-7)~(11-12) and use the bound €42 < IID2¥H4u |2 4 | D2V 9|2 from Remark 2.8
to find that

2
sup (1 +0"Ensam®) SGn(T) + (Ta— T’ A+ T2 sup (). (11-13)

m=1 [1=<t=D h=t<T

Then (11-2) follows from (11-3), (11-13), and the trivial bound

Fan (1) 1
su < o Fon (1), .
TIEI‘ETz (1+1) — (14T TISIETz an (1) ( )

Now we turn to the proof of (11-1). It is easy to see that €y, (t) S Exn(7), which leads us to the

simple bound
2

sup ((1+ )" Ens0m(®) S (L+T)* sup Epn (). (11-15)

m=1 0<t<T 0<t<T

Then this, (11-14) with T; replaced by 0 and T, replaced by T, and the definition of %, in (2-58) imply
(11-1). O

We now turn to our main result.

Theorem 11.2. Suppose the initial data (ug, ng) satisfy the compatibility conditions of Theorem 1.1. Let
Gan, Fon, and G be defined by (2-50), (2-56), and (2-58), respectively. There exists a k > 0 such that if
Ean(0) + Fon (0) < k, there exists a unique solution (u, p, n) to (1-9) on the interval [0, 00) that achieves
the initial data. The solution obeys the estimate

Gan(00) = C1(€2n(0) + Fon (0) < Cix, (11-16)

where C| > 0 is given by Theorem 9.8.

Proof. Let 0 <8 < 1 and Cy > 0 be the constants from Theorem 9.8, C, > 0 the constant from Theorem 10.7,
and C3 > 0 the constant from Proposition 11.1. According to (11-1) of Proposition 11.1, if a solution
exists on the interval [0, T'] with T < 1 and obeys the estimates (10-24) and (10-25), then

Gn(T) < Cak + e[Ca + 1 + C327H. (11-17)

If ¢ is chosen so that the latter term in (11-17) equals §/2, we may choose « sufficiently small that
Cok < /2 and k < §p(e) (with §p(e) given by Theorem 10.7); then Theorem 10.7 provides a unique
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solution on [0, T'] obeying the estimates (10-24) and (10-25), and hence 9,5 (T) < §. According to
Remark 10.8, all of the computations leading to Theorem 9.8 are justified by the estimates (10-24) and
(10-25).

Let us now define
T, (k) = sup{T > 0| for every choice of initial data satisfying the compatibility

conditions and €,y (0) + Fon(0) < «, there exists a unique solution

on [0, T'] that achieves the data and satisfies %N (T) < 6}. (11-18)

By the above analysis, Ty («) is well-defined and satisfies T, (k) > 0 if « is small enough, that is, there is
a k1 > 0 such that T, : (0, 1] = (0, oo]. It is easily verified that T, is nonincreasing on (0, x1]. Let us

now set
5 . 1 1
e=3minf e o (11-19)
and then define «g € (0, k1] by
. b So(e)
= 11-2
Ko mm{3C1(C3+2C2)’ C ,Kl}, ( 0)

where dg(¢) is given by Theorem 10.7 with ¢ given by (11-19). We claim that T, (kg) = co. Once the
claim is established, the proof of the theorem is complete, since then T (k) = oo for all 0 < k < .

Suppose, by way of contradiction, that T, (ko) < co. We will show that solutions can actually be
extended past T, (ko) and that these solutions satisfy G,y (T>) < é for T, > T,(kp), contradicting the
definition of T, (xp). We begin by extending the solutions. By the definition of T, (x(), we know that,
for every 0 < T < Ty (ko) and any choice of data satisfying the compatibility conditions and the bound
Eon (0) + Fon (0) < ko, there exists a unique solution on [0, T7] that achieves the initial data and satisfies
%,n(Ty) < 6. Then, by Theorem 9.8, we know that, actually,

Gon (T1) = C1(é2n(0) + F2n (0) < Ciko. (11-21)

In particular, this and (11-20) imply that

Fan (Th)
%ZN(TI) + m < C]K() < 50(8) forall 0 < T] < T*(Ko), (11-22)
1

where ¢ is given by (11-19). We view (u(Ty), p(T1), n(T1)) as initial data for a new problem; since
(u, p, n) are already solutions, they satisfy the compatibility conditions needed to use them as data. Then,
since €on (T1) < 8p(e), we can use Theorem 10.7 with e given by (11-19) to extend solutions to [T}, 73]
for any 7, satisfying

0<Tr—T; <Ty=C(e)min{l, Fon(T1)"'}. (11-23)

In light of (11-22), we may bound

T .= C(s)mm{l, PN TCER arrens } <T. (11-24)
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Notice that T depends on ¢ (given by (11-19)) and T, (xp), but is independent of 7. Let

- I
y =min{ T, 7, (xo), (1+2T*(K0))1+)‘/2}’ (11-25)

and then let us choose 71 = Ty (xg) — ¥ /2 and T> = Ty (ko) + y /2. The choice of y implies that
0<Ti <Tu(ko) <Tr <2Ty(kg) and O<y=T—T, <T <T,. (11-26)

Then Theorem 10.7 allows us to extend solutions to the interval [0, 7>], and it provides estimates on the
extended interval [T}, T»]:

.Tz))*

< Ca(e + 19u(T) 15+ 1920 (T 1), (11-27)

T
sup Gon () + sup [ p0)]3 + / Doy (1) di + 197 el
T

T <t<T h=<t<T, 1

and
sup En(t) <e and sup Fon(t) < CaFan (1) + €. (11-28)
Ti<t<D Ti<t<D
Here, in (11-27), we understand that ¥z, 1,) is defined as in (1-11) except on the temporal interval
(Ty, T») rather than (0, T).

Having extended the existence interval, we will now show that G, (7>) < §. Note that the constant §,
which comes from Theorem 9.8, is already smaller than the § appearing in Lemma 2.6. Then the first
estimate in (11-28) and the bound ¢ < § (a consequence of (11-19)) imply that supy, -, -, [In(?) ||§ 2 is
smaller than the § in Lemma 2.6, which means we may use the second estimate in Proposition 11.1. We
then combine the estimates (11-27)—(11-28) with (11-21)—(11-22) and the bound (11-2) of Proposition 11.1
to see that

CiCako(1+Ty) + ¢
Gon (T2) < C1Cako + Ca(e + Ciko) + — 1+ T )1 +eC3(Tr — T)*(1 + Tr)*™
1
< KkoC1(C34+2C2) 4+ (1 + C2) +eC3y>(1 + 2T (k) < % + % + % =, (11-29)

where the second inequality follows from (11-26) and the third follows from the choice of ¢, kg, and y
given in (11-19), (11-20), and (11-25), respectively. Hence %,y (T>) < §, contradicting the definition of
T (ko). We then deduce that T, (ko) = 0o, which completes the proof of the claim and the theorem. [J

With this result in hand, it is a simple matter to prove Theorem 1.3.

Proof of Theorem 1.3. We set N =5 in Theorem 11.2 to deduce all of the conclusions of Theorem 1.3
except the estimates (1-20)—(1-21). Proposition 3.9 implies that

lellgaq) < Cr)(€10)7 % (&72)% ) (11-30)

for any r € (0, 1), where C(r) > 0 is a constant depending on r. Let 0 < p < A and then choose r € (0, 1)

such that

2+A . 2
<2-—=-2 lentl 2 <2 —. 11-31
O<r< 4 , orequivalently (24 p) < ( —|—k)2+r (11-31)
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Then C(r) = C(p) and the bound 9;g(c0) < C1(€10(0) + F10(0)) implies that

2+p 2 o 24p 1 2/(2+r)
sup(1 -+ 07 (1)1 22,0, = C(PIC1 (E19(0) + F10(0)) sup(l + 0> ()
=0 >0 (1+1)

= C(p)C1(€10(0) + F10(0)), (11-32)

which is (1-20). The estimate (1-21) follows similarly by using the interpolation estimates of Lemma 3.1
for the n terms and the interpolation estimates of Theorem 3.14 for ||u ||%. In this case, though, no use of
r € (0, 1) is necessary because it does not appear in the interpolations. O

Appendix: Analytic tools
Products in Sobolev spaces. We will need some estimates of the product of functions in Sobolev spaces.
Lemma A.1. Let U denote either ¥ or Q2.

(1) Let O <r <s1 <sp be such that s1 > n/2. Let f € H"(U), g € H2(U). Then fg € H"(U) and

I fglar SN s gl (A-1)
(2) Let O <r <51 <53 be such that s >r+n/2. Let f € H**(U), g € H>(U). Then fg € H" (U) and
I fglar SN s gl (A-2)
(3) LetO<r <sy<sybesuchthatsy; >r+n/2. Let f € H"(X), g € H2(X). Then fge H™*(X) and
1/8ll=s; S IS N=NIglls,- (A-3)

Proof. The proofs of (A-1) and (A-2) are standard; the bounds are first proved in R"” with the Fourier
transform, and then the bounds in sufficiently nice subsets of R” are deduced by use of an extension
operator. To prove (A-3) we argue by duality. For ¢ € H*'(X) we use (A-2) to bound

f ofg SNeglell fll-r S llels lighs I 1l-r, (A-4)
z

so that upon taking the supremum over ¢ with [|¢|;, <1 we get (A-3). U
We will also need the following variant.

Lemma A.2. Suppose that f € C'(X) and g € H'/*(X). Then

18l SN flleiliglhye (A-5)

Proof. Consider the operator F : H* — H* given by F(g) = fg for k =0, 1. It is a bounded operator for
k=0, 1 since

Ifgllo = flictligllo and [ fglli S HFlcrllglh. (A-6)

Then the theory of interpolation of operators implies that F is bounded from H'/? to itself, with operator
norm less than a constant times /|| fllci+/l| fllct = |l fllci» which is the desired result. U
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Estimates of the Riesz potential §;. Consider Q = R? x (—b, 0) for b > 0. For a function f, defined on
2, we define the Riesz potential $, f by

9 f (' x3) = / fE x| g, (A-7)
R
where * denotes the Fourier transform in (x1, x2). Similarly, for f defined on X, we set

960 = [ Fee e e (A8)
We have a product estimate that is a fractional analogue of the Leibniz rule.
Lemma A.3. Let A € (0,1). If f € H(Q) and g, Dg € H' (), then
19:.(f )0 S 11 flollg NI Dg ™ (A-9)
If f e H(X) and g € H (), then
||9A(fg)||H0(2) S ||f||H0(2)||g||;10(2)||Dg||11q_o%2)- (A-10)

Proof. The Hardy-Littlewood—Sobolev inequality (see, for example, Theorem 4.3 of [Lieb and Loss
2001]) implies that ; : L% 1+%)(R?) — L?(R?) is a bounded linear operator for A € (0, 1). We may then
employ Fubini’s theorem and apply this result to each slice {x3 = z} for z € (—b, 0) to estimate

0 0 1+A
/ 9, (fo)P = / / 19, (Fo)P dx'dxs < / </ |fg|2/“+“dx’) dxs
Q —b JR2 —b R2
0 A
< | (f |f|2dx/>(f |g|2/kdxf> dus s fgColg [IFF (A1)
—b \JR2 R2 —b<x3<0 Q

where, in the second inequality, we have applied Holder’s inequality. By the Gagliardo—Nirenberg
interpolation inequality on R? we may bound

g xa)lon ey S 18, x3) gy 1DE (- X3) 1 20ke, (A-12)

but, by trace theory, we also have

lgC-,x3)ll2mey Sllglh and  [[Dg(-, x3) | 2@y S 1Dgll1s (A-13)
so that
sup 118 43122 e, S gl IDgII (A-14)
—b=<x3<0

Chaining together (A-11) and (A-14) then yields the estimate (A-9). A similar argument, not employing
Fubini’s theorem or trace theory, provides the estimate (A-10). O

Our next result shows how $, interacts with horizontal derivatives in €.

Lemma A4. Let » € (0, 1). If f € HX(Q) for k > 1 an integer, then

19 D% Fllo S ID* £IGIDE Fllg™ (A-15)
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Proof. On a fixed horizontal slice {x3 = z} for z € (—b, 0), Parseval’s theorem implies that
oDt P < [ PSP fe P ds
R2 R2

= [ 0PI xR de

A 1—A
5( / ID"“f(xst)lzdx/> ( / ID"f(x/,x3)|2dx’) : (A-16)
RZ R2

Here, in the second inequality, we have used Holder and Parseval. Integrating both sides of this inequality
with respect to x3 € (—b, 0) and again applying Holder’s inequality yields the estimate (A-15). O

Poisson integral. For a function f defined on ¥ = R?, the Poisson integral in R?> x (—o0, 0) is defined
by

91w = [ @ g (A-17)

R2
Although % f is defined in all of R? x (—o0, 0), we will only need bounds on its norm in the restricted
domain = R? x (—b, 0). This yields a couple improvements of the usual estimates of % f on the set

R? x (—o0, 0). Recall that we use the conventions for sums of derivatives described on page 1443, which
in particular means that V¥ involves x3 derivatives.

Lemma A.5. Let P f be the Poisson integral of a function f that is either in H1(X) or H1~Y2(%) for

q € N (here H* is the usual homogeneous Sobolev space of order s). Then

A — p—4mbl§]
v s [ ep e () de (A-18)
R 151

and in particular

IVIP LIS SN Vo) and  IVIP LIS S 1 1z (A-19)

Proof. Employing Fubini, the horizontal Fourier transform, and Parseval, we may bound

0 0
IVIPLIG < /R 2 / JEPS @) P ER dusds < / |5|24|f(s>|2( / eHTIEls dx3) dé
e~ 4bls|
< [ Jernier(t=g) a0
This is (A-18). To deduce (A-19) from (A-18), we simply note that
1 —e—4mbls|
—|~§| < m1n{47'rb ] } (A-21)

which means we are free to bound the right side of (A-20) by either | f || (I

1/2(2) or ”fHH‘I(E)
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Interpolation estimates. Assume that ¥ = R? and Q = ¥ x (—b, 0). We begin with an interpolation
result for Poisson integrals, as defined by (A-17).
Lemma A.6. Let P f be the Poisson integral of f, defined on . Let A >0,q € N, s >0, and r > 0.
(1) Let

A
= —5  and 1—p=-1T% (A-22)
q+s+Ai q+s+Ai
Then
IVIP LIS < S5 FIDAIDIT £115)' . (A-23)
(2) Letr+s > 1,
_ A+1
_ rts=l = 4FTATL (A-24)
qts+r+a qg+s+r+i
Then
IVIP f1I7 0 S U1 £I3) QDT £ 0. (A-25)
(3) Lets > 1. Then
IVIPfl7 S IIDYFIZ. (A-26)

Proof. Employing Fubini, the horizontal Fourier transform, and Parseval, we may bound
0
||V‘I@>f||%5/2/ |s|2q|f<s>|2e4”'€'“dxzds5/2|S|2q|f(s>|2df.
R J—b R

= /R EPTF P T AEIHF @) dE (A2T)

for 0 and 1 — @ defined by (A-22). An application of Holder’s inequality and a second application of
Parseval’s theorem then provides the estimate (A-23).

For the L estimate (A-25), we use the definition of % f in conjunction with the trivial estimate
exp(2m|€]x3) < 1in 2 to bound

IVIP fliL S fwlélqlf(é)ldé. (A-28)

We write By for the open ball of radius R, B for its complement, and (§) = /14 |§|2. For R > 0 we
split into high and low frequencies to see that

f|s|q|f(s>|ds= |s|q+*|sr*|f<s)|ds+/ |E17F5 (&) (8) "1 751 £ (£)| dE
R? Bg B%

1/2

1/2
5( |§|2<‘f+“ds> |mf||o+< / |5|—2S<s>—2’ds) I DIFS £,
Bg By
S RIS, fllo+ R™CH=DDIT £, (A-29)

The condition r +s > 1 guarantees that the integral over By is finite. Minimizing the right side with
respect to R € (0, co) then yields (A-25).
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The estimate (A-26) follows from the easy bound

A 12
[ emi@iae siorp( [ @2 ag) <100

which holds when s > 1.
The next result is a similar interpolation result for functions defined only on X.
Lemma A.7. Let f be defined on . Let A > 0.
(1) Let g, s €10, co) and

A
— S5  and I_QZL.
q+s+a q+s+A

Then
IDYF1I5 < A FIHEADIT £

(2) Letg,s eN,r >0,r+s > 1,

r4s—1 g+i+1
=— adl—-0=—————,
q+s+r+i qg+s+r+a

Then
ID? 117 S (15 £I5)P QDT £11H0.

Proof. For the H? estimate we use

IIquII%SfRZISIZqIf(S)IZdE

and argue as in Lemma A.6. For the L* estimate we bound

ID? flle S /Rzlélqlf(é)ldé

and again argue as in Lemma A.6.

1529

(A-30)

(A-31)

(A-32)

(A-33)

(A-34)

(A-35)

(A-36)

O

Now we record a similar result for functions defined on €2 that are not Poisson integrals. The result

follows from estimates on fixed horizontal slices.
Lemma A.8. Let f be a function on Q2. Let . >0, q,s € N, and r > 0.

(1) Let

A
0=—5  and 1_9:L‘
EXE) g+s+h

Then
1D £1I3 < 155 £ 1D DTS £115)' .
2) Letr+s > 1,

r+s—1 g+r+l
=" and 1-0=—"—"———,
qg+s+r+i g+s+r+xr

(A-37)

(A-38)

(A-39)
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Then
1-6
ID 11200 S S FID? (DI £112,)) (A-40)

and
ID? fl ooz S UEFIDCADIT FlI7 D' (A-41)

Proof. We employ the horizontal Fourier transform and Parseval in conjunction with Fubini to bound
O ~A
10713 [ [ PG P ded (A42)
—b JR

For a fixed x3 we may argue as in Lemma A.6 to show that

/R 2|s|2‘f|f<§, )NPdE < (19 f G AP £, x3) 115 (A-43)

for 6 and 1 — @ given by (A-37). Combining these two inequalities with Holder’s inequality then shows
that

0
ID? £ < / b(MAf(-,x3>||%>9<||D4“f(-,xz)u%)l*’ dxs < (19 FIDCADTT £ 0, (A-44)

which is (A-38).
Now, for the L estimate, we first work on a horizontal slice {x3 = z} for some z € [—b, 0]. Indeed,
using the horizontal Fourier transform on the slice, we have

IIqu(‘,X3)||LooSAQISIqIf(E,X3)IdS- (A-45)

We may then argue as in Lemma A.6 to show that

/ JEIIF @ x3)1dE < (192 f (o xn)llo) DT f (- x3) ) '™ (A-46)
R
for 6 and 1 — @ given by (A-39). By the usual trace theory

195 fCox3)llo SN flle and [IDTF° £ (- x3)llr SUDT fllrn (A-47)

Combining (A-45)—-(A-47) and taking the supremum over x3 € [—b, 0] then gives (A-40). A similar
argument yields (A-41). (Il

Transport estimate. Consider the equation

(A-48)

{8,n+u-Dn=g inX x(0,7),
nt=0)=mno

with T € (0, oo] and ¥ = R2. We have the following estimate of the transport of regularity for solutions
to (A-48), which is a particular case of a more general result proved in [Danchin 2005].
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Lemma A.9 [Danchin 2005, Proposition 2.1]. Let n be a solution to (A-48). Then there is a universal
constant C > 0 such that, for any 0 < s < 2,

t t
sup [[n(r)llas < eXP(C/ [ Du(r)l 32 dr)(llnollm +/ g () Il as dr)- (A-49)
O<r<t 0 0

Proof. Use p=p, =2, N =2, and o = s in Proposition 2.1 of [Danchin 2005] along with the embedding
H*— B) NL>. O
Poincaré-type inequalities. Let ¥ and 2 be as before.

Lemma A.10. We have

117200 S Iy + 193 F117 2 (A-50)
forall f e H'(Q). Also, if f € WH°(Q), then
1/ Wiy S N We () + 105 g - (A-51)

Proof. By density we may assume that f is smooth. Writing x = (x’, x3) for x" € X and x3 € (—b, 0),
we have

0 0
|f (X x) P = f(x',0)[*=2 / f D8 f(x,dz<|f(x,0)]*+2 / Jf(x’,z)llaaf(x’,z)ldz. (A-52)

We may integrate this with respect to x3 € (—b, 0) to get

0 0
/ 1O xa) P dxs S 1, 0) +2/ |fG DI f(x, 2] dz. (A-53)
—b —b
Now we integrate over x’ € X to find

2 2 2 2 C 2
fQ [f P dy <C Il 1225, +2C /Q £ F @ dx < CIF T2y te 1 o)+ T 105 f 1 2q)  (A-54)
for any ¢ > 0. Choosing ¢ > 0 sufficiently small then yields (A-50). The estimate (A-51) follows similarly,
taking suprema rather than integrating. U
A simple modification of the proof of Lemma A.10 yields the following estimates.

Lemma A.11. We have || f || gocs) S 1103 f | gog) for f € H'(Q) such that f = 0 on Xp,. Moreover,
Il ooy SN03F Nl ooy for f€ WE(Q) such that f =0 on .

We will need a version of Korn’s inequality, which is proved, for instance, in Lemma 2.7 of [Beale
1981].

Lemma A.12. We have |lu||y < ||Du|lo for all u € HY(Q; R?) such that u =0 on X,

We also record the standard Poincaré inequality, which applies for functions taking either vector or

scalar values.
Lemma A.13. We have || fllo < 1 fIh S IV fllo for all f € HY(Q) such that f = 0 on Xp. Also,

IF ey S W lwresy S IV Fll e for all f € WH(Q) such that f =0 on Z,
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An elliptic estimate. The proof of the following estimate may be found in [Beale 1981].
Lemma A.14. Suppose (u, p) solve

—Au+Vp=¢ec H2Q),
divu =y € H1(Q),

A-55
(pl —D))es = a € H=3/2(3), (A-53)
M|2b =0.
Then, forr > 2,
a2 + 113 S U2+ 12+ el s (A-56)
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