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FROM THE LAPLACIAN WITH VARIABLE MAGNETIC FIELD
TO THE ELECTRIC LAPLACIAN IN THE SEMICLASSICAL LIMIT

NICOLAS RAYMOND

We consider a twisted magnetic Laplacian with Neumann condition on a smooth and bounded domain of
R2 in the semiclassical limit h→ 0. Under generic assumptions, we prove that the eigenvalues admit a
complete asymptotic expansion in powers of h1/4.

1. Introduction and main results

Let � be an open bounded and simply connected subset of R2 with smooth boundary. Let us consider a
smooth vector potential A such that β =∇× A> 0 on � and a a smooth and positive function on �. We
are interested in estimating the eigenvalues λn(h) of the operator Ph,A = (ih∇ + A)a(ih∇ + A) whose
domain is given by

Dom(Ph,A)=
{
ψ ∈ L2(�) : (−ih∇ + A)a(−ih∇ + A)ψ ∈ L2(�) and (−ih∇ + A)ψ · ν = 0 on ∂�

}
.

The corresponding quadratic form, denoted by Qh,A, is defined on H 1(�) by

Qh,A(ψ)=

∫
�

a(x)|(−ih∇ + A)ψ |2 dx .

By gauge invariance, it is standard that the spectrum of Ph,A depends on the magnetic field β =∇ × A,
but not on the potential A itself.

Motivation and presentation of the problem.

Motivation and context. Before stating our main result, we should briefly describe the context and the
motivations of this paper. As much in 2D as in 3D, the magnetic Laplacian, corresponding to the case
when a = 1, appears in the theory of superconductivity when studying the third critical field HC3 that
appears after the linearization of the Ginzburg–Landau functional (see, for instance, [Lu and Pan 1999;
2000; Fournais and Helffer 2010]). It turns out that HC3 can be related to the lowest eigenvalue of the
magnetic Laplacian in the regime h→ 0.

In fact, the case which is mainly investigated in the literature is the case when the magnetic field is
constant. In 2D, the two-terms asymptotics is done in the case of the disk by Bauman, Phillips and Tang
in [Bauman et al. 1998] (see also [Bernoff and Sternberg 1998; del Pino et al. 2000]) and is generalized by
Helffer and Morame [2001] to smooth and bounded domains. The asymptotic expansion at any order of
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all the lowest eigenvalues is proved by Fournais and Helffer [2006]. In 3D, one can mention the celebrated
paper [Helffer and Morame 2004], which gives the two-terms asymptotics of the first eigenvalue.

When the magnetic field is variable (and a = 1), fewer results are known. In 2D, [Lu and Pan 1999]
provides a one-term asymptotics of the lowest eigenvalue, and [Raymond 2009] gives the two-term
asymptotics under generic assumptions (we can also mention [Helffer and Kordyukov 2011], which deals
with the case without boundary and provides a full asymptotic expansion of the eigenvalues). In 3D, for
the one-term asymptotics, one can mention [Lu and Pan 2000], and for a three-terms asymptotics upper
bound, [Raymond 2010] (see also [Raymond 2012], where a complete asymptotics is proved for a toy
model).

Here we consider a twist factor a > 0. As we will see, the presence of a (which is maybe not the
main point of this paper) will not complicate the philosophy of the analysis, even if it will lead us to use
generalizations of the Feynman–Hellmann theorems (such generalizations were introduced by physicists
to analyze the anisotropic Ginzburg–Landau functional; see [Doria and de Andrade 1996]). In fact, this
additional term obliges us to have a more synthetic sight of the structure of the magnetic Laplacian.
The motivation to add this term comes from [Chapman et al. 1995], where the authors deal with the
anisotropic Ginzburg–Landau functional (which is an effective mass model). We can also refer to [Alama
et al. 2010], where closely related problems appear. Moreover, we will see that the quantity to minimize
to get the lowest energy is the function aβ, so that this situation recalls what happens in 3D in [Lu and
Pan 2000; Raymond 2010] and where the three-terms asymptotics is still not established.

Under generic assumptions, we will prove in this paper that the eigenvalues λn(h) admit complete
asymptotic expansions in powers of h1/4.

Heuristics. Let us discuss the heuristics a little bit, to understand the problem. Let us fix a point x0 ∈�.
If x0 ∈� and if we approximate the vector potential A by its linear part, we can locally write the magnetic
Laplacian as

a(x0)(h2 D2
x + (h Dy −β(x0)x)2)+ lower-order terms.

The lowest eigenvalue can be computed after a Fourier transform with respect to y and a translation
with respect to x (which reduces to a 1D harmonic oscillator); it provides an eigenvalue a(x0)β(x0)h.
If x0 ∈ ∂�, and considering the standard boundary coordinates (s, t) (t > 0 being the distance to the
boundary and s the curvilinear coordinate), we get the approximation

h2 D2
t + (h Ds −β(x0)t)2+ lower-order terms.

The shape of this formal approximation invites us to recall basic properties of the de Gennes operator.

The de Gennes operator. For ξ ∈ R, we consider the Neumann realization Hξ in L2(R+) associated with
the operator

−
d2

dt2 + (t − ξ)
2, Dom(Hξ )= {u ∈ B2(R+) : u′(0)= 0}. (1-1)

One knows (see [Dauge and Helffer 1993]) that it has compact resolvent and that its lowest eigenvalue is
denoted by µ(ξ); the associated L2-normalized and positive eigenstate is denoted by uξ = u( · , ξ) and is
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in the Schwartz class. The function ξ 7→ µ(ξ) admits a unique minimum, say at ξ = ξ0, and we let

20 = µ(ξ0), C1 =
u2
ξ0
(0)

3
. (1-2)

Let us also recall identities established in [Bernoff and Sternberg 1998]. For k ∈ N, we let

Mk =

∫
t>0
(t − ξ0)

k
|uξ0(t)|

2 dt,

and we have

M0 = 1, M1 = 0, M2 =
1
220, M3 =

1
2C1,

1
2µ
′′(ξ0)= 3C1

√
20. (1-3)

Main result. Let us introduce the general assumptions under which we will work throughout this paper.
As already mentioned, the natural invariant associated with the operator is the function aβ. We will
assume that

20 min
∂�

a(x)β(x) <min
�

a(x)β(x) (1-4)

and that
x ∈ ∂� 7→ a(x)β(x) admits a unique and nondegenerate minimum at x0. (1-5)

Remark 1.1. Assumption (1-4) is automatically satisfied when the magnetic field is constant (and is
sometimes called the surface superconductivity condition), and Assumption (1-5) excludes the case of
constant magnetic field. Therefore, our generic assumption deals with a complementary situation analyzed
in [Fournais and Helffer 2006], that is, the situation with a generically variable magnetic field.

Let us state our first rough estimate of the n-th eigenvalue λn(h) of Ph,A that we will prove in this
paper:

Proposition 1.2. Under Assumptions (1-4) and (1-5), for all n ≥ 1, we have

λn(h)=20ha(x0)β(x0)+ O(h5/4). (1-6)

From this proposition, we see that the asymptotics of λn(h) is related to local properties of Ph,A near
the point of the boundary x0. That is why we are led to introduce the standard system of local coordinates
(s, t) near x0, where t is the distance to the boundary and s the curvilinear coordinate on the boundary
(see (2-1)). We denote by 8 : (s, t) 7→ x the corresponding local diffeomorphism. We write the Taylor
expansions

ã(s, t)= a(8(s, t))= 1+ a1s+ a2t + a11s2
+ a12st + a22t2

+ O(|s|3+ |t |3) (1-7)

and
β̃(s, t)= β(8(s, t))= 1+ b1s+ b2t + b11s2

+ b12st + b2t2
+ O(|s|3+ |t |3), (1-8)

where we have assumed the normalization

a(x0)= β(x0)= 1. (1-9)

Let us translate the generic assumptions (1-4) and (1-5). The critical point condition becomes

a1 =−b1, (1-10)
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and the nondegeneracy property can be reformulated as

b11+ a1b1+ a11 = a11+ b11− a2
1 = α > 0. (1-11)

We can now state the main result of this paper:

Theorem 1.3. We assume (1-4) and (1-5) and the normalization condition (1-9). For all n ≥ 1, there exist
a sequence (γn, j ) j≥0 and h0 > 0 such that for all h ∈ (0, h0), we have

λn(h) ∼
h→0

h
∑
j≥0

γn, j h j/4.

Moreover, we have, for all n ≥ 1,

γn,0 =20, γn,1 = 0, γn,2 = C(k0, a2, b2)+ (2n− 1)
(
α20µ

′′(ξ0)

2

)1/2

,

with
C(k0, a2, b2)=−C1k0+

3C1

2
a2+

(
C1

2
+ ξ020

)
b2.

Comments about the main theorem. Let us first notice that Theorem 1.3 completes the one of Fournais
and Helffer [2006, Theorem 1.1] dealing with a constant magnetic field (see also [Fournais and Helffer
2006, Remark 1.2], where the variable magnetic field case is left as an open problem).

It turns out that Theorem 1.3 generalizes [Raymond 2009, Theorem 1.7]. Moreover, as a consequence
of the asymptotics of the eigenvalues (which are simple for h small enough), we also get the corresponding
asymptotics for the eigenfunctions. These eigenfunctions are approximated (in the L2 sense) by the power
series, which we will use as quasimodes (see (2-10)). In particular, the eigenfunctions are approximated
by functions in the form

uξ0(h
−1/2t)g(h−1/4s),

where g is a renormalized Hermite function.
As we will see in the proof, the construction of appropriate trial functions can give a hint of the natural

scales of the problem (h1/2 with respect to t and h1/4 with respect to s). Nevertheless, as far as we
know, there are no structural explanations in the literature of the double scales phenomena related to the
magnetic Laplacian.

In this paper, we will explain how, thanks to conjugations of the magnetic Laplacian (by explicit
unitary transforms in the spirit of Egorov’s theorem; see [Egorov 1971; Robert 1987; Martinez 2002]),
we can reduce the study to an electric Laplacian which is in the Born–Oppenheimer form (see [Combes
et al. 1981; Martinez 1989]). The main point of the Born–Oppenheimer approximation is that it naturally
involves two different scales (related to the so-called slow and fast variables).

As we recalled at the beginning of the introduction, many papers deal with the two or three first terms of
λ1(h) and do not analyze λn(h) (for n≥ 2); see, for instance, [Helffer and Morame 2004; Raymond 2009].
One could think that it is just a technical extension. But, as can be seen in [Fournais and Helffer 2006]
(see also [Dombrowski and Raymond 2013]), the difficulty of the extension relies on the microlocalization
properties of the operator: The authors have to combine a very fine analysis using pseudodifferential
calculus (to catch the a priori behavior of the eigenfunctions with respect to a phase variable) and the
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Grušin reduction machinery [1972]. Let us emphasize that these microlocalization properties are one of
the deepest features of the magnetic Laplacian and are often found at the core of proofs (see, for instance,
[Helffer and Morame 2004, Sections 11.2 and 13.2; Fournais and Helffer 2006, Sections 5 and 6]). We
will see how we can avoid the introduction of the pseudodifferential (or abstract functional) calculus.
In fact, we will also avoid the Grušin formalism by keeping only the main idea behind it: We can use
the true eigenfunctions as quasimodes for the first-order approximation of Ph,A and deduce a tensorial
structure for the eigenfunctions.

In our investigation, we will introduce successive changes of variables and unitary transforms, such as
changes of gauge and weighted Fourier transforms (which are all associated with canonical transformations
of the symbol). By doing this, we will reduce the symbol of the operator (or, equivalently, reduce the
quadratic form), thanks to the a priori localization estimates. By gathering all these transforms, one
would obtain a Fourier integral operator which transforms (modulo lower-order terms) the magnetic
Laplacian into an electric Laplacian in the Born–Oppenheimer form. For this normal form, we can prove
Agmon estimates with respect to a phase variable. These estimates involve, for the normal form, strong
microlocalization estimates, and spare us, for instance, the multiple commutator estimates needed in
[Fournais and Helffer 2006, Section 5].

Scheme of the proof. Let us now describe the scheme of the proof. In Section 2, we perform a construction
of quasimodes and quasieigenvalues thanks to a formal expansion in power series of the operator. This
analysis relies on generalizations of the Feynman–Hellmann formula and of the virial theorem, which
were already introduced in [Raymond 2010], and which are an alternative to the Grušin approach used in
[Fournais and Helffer 2006]. Then we use the spectral theorem to infer the existence of a spectrum near
each constructed power series. In Section 3, we prove a rough lower bound for the lowest eigenvalues
and deduce Agmon estimates with respect to the variable t , which provide a localization of the lowest
eigenfunctions in a neighborhood of the boundary of size h1/2. In Section 4 , we improve the lower
bound of Section 3 and deduce a localization of size h1/4 with respect to the tangential coordinate s. In
Section 5, we prove a lower bound for Qh,A thanks to the definition of “magnetic coordinates,” and we
reduce the study to a model operator (in the Born–Oppenheimer form) for which we are able to estimate
the spectral gap between the lowest eigenvalues.

2. Accurate construction of quasimodes

This section is devoted to the proof of the following theorem:

Theorem 2.1. For all n ≥ 1, there exists a sequence (γn, j ) j≥0 such that, for all J ≥ 0, there exist h0 > 0,
C > 0 such that

d
(

h
J∑

j=0

γn, j h j/4, σ (Ph,A)

)
≤ Ch(J+1)/4.

Moreover, we have, for all n ≥ 1:

γn,0 =20, γn,1 = 0, γn,2 = C(k0, a2, b2)+ (2n− 1)
(
(a11+ b11− a2

1)20µ
′′(ξ0)

2

)1/2

.
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The proof of Theorem 2.1 is based on a construction of quasimodes for Ph,A localized near x0.

Local coordinates (s, t). We use the local coordinates (s, t) near x0 = (0, 0), where t (x)= d(x, ∂�) and
s(x) is the tangential coordinate of x . We choose a parametrization of the boundary:

γ : R/(|∂�|Z)→ ∂�.

Let ν(s) be the unit vector normal to the boundary, pointing inward at the point γ (s). We choose the
orientation of the parametrization γ to be counterclockwise, so that

det(γ ′(s), ν(s))= 1.

The curvature k(s) at the point γ (s) is given in this parametrization by

γ ′′(s)= k(s)ν(s).

The map 8 defined by

8 : R/(|∂�|Z)×]0, t0[ →�, (s, t) 7→ γ (s)+ tν(s) (2-1)

is clearly a diffeomorphism, when t0 is sufficiently small, with image

8
(
R/(|∂�|Z)×]0, t0[

)
= {x ∈� | d(x, ∂�) < t0} =�t0 .

We let

Ã1(s, t)= (1− tk(s))A(8(s, t)) · γ ′(s), Ã2(s, t)= A(8(s, t)) · ν(s), β̃(s, t)= β(8(s, t)),

and we get
∂s Ã2− ∂t Ã1 = (1− tk(s))β̃(s, t).

The quadratic form becomes

Qh,A(ψ)=

∫
ã(1− tk(s))

∣∣(−ih∂t + Ã2)ψ
∣∣2+ ã(1− tk(s))−1∣∣(−ih∂s + Ã1)ψ

∣∣2 ds dt.

In a (simply connected) neighborhood of (0, 0), we can choose a gauge such that

Ã1(s, t)=−
∫ t

t1
(1− t ′k(s))β̃(s, t ′) dt ′, Ã2 = 0. (2-2)

The operator in the coordinates (s, t). Near x0 and using a suitable gauge (see (2-2)), we are led to
construct quasimodes for the operator

L(s,−ih∂s; t,−ih∂t)=

−h2(1− tk(s))−1∂t(1− tk(s))ã∂t + (1− tk(s))−1(−ih∂s + Ã)(1− tk(s))−1ã(−ih∂s + Ã),

where (see (1-8))

Ã(s, t)= (t − ξ0h1/2)+ b1s(t − ξ0h1/2)+ (b2− k0)
t2

2
+ b11s2(t − ξ0h1/2)+ O(|t |3+ |st2

|).

Let us now perform the scaling
s = h1/4σ and t = h1/2τ.
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The operator becomes
L(h)= L

(
h1/4σ,−ih3/4∂σ ; h1/2τ,−ih1/2∂τ

)
.

We can formally write L(h) as a power series:

L(h)∼ h
∑
j≥0

L j h j/4,

where

L0 =−∂
2
τ + (τ − ξ0)

2, (2-3)

L1 =−a1σ∂
2
τ − 2i∂σ (τ − ξ0)+ a1(τ − ξ0)

2σ + 2b1στ(τ − ξ0)

= a1σHξ0 − 2i∂σ (τ − ξ0)+ 2b1σ(τ − ξ0)
2, (2-4)

L2 =−a2τ∂
2
τ − a2∂τ + k0∂τ + 2k0τ(τ − ξ0)

2
+ a2τ(τ − ξ0)

2

+ (b2− k0)τ
2(τ − ξ0)− ia1(τ − ξ0)

+ σ 2(a11 Hξ0 − a2
1(τ − ξ0)

2
+ 2b11(τ − ξ0)

2)
− ∂2

σ − 2ia1(τ − ξ0)σ∂σ + ia1(τ − ξ0)∂σσ. (2-5)

The aim is now to define good quasimodes for L(h). Before starting the construction, we shall recall in
the next subsection a few formulas coming from perturbation theory.

Feynman–Hellmann and virial formulas. For ρ > 0 and ξ ∈R, let us introduce the Neumann realization
on R+ of

Hρ,ξ =−ρ−1∂2
τ + (ρ

1/2τ − ξ)2.

By scaling, we observe that Hρ,ξ is unitarily equivalent to Hξ and that H1,ξ = Hξ (the corresponding
eigenfunction is u1,ξ = uξ ). The form domain of Hρ,ξ is B1(R+) and is independent from ρ and ξ so
that the family (Hρ,ξ )ρ>0,ξ∈R is a holomorphic family of type (B) (see [Kato 1966, p. 395]). The lowest
eigenvalue of Hρ,ξ is µ(ξ) and we will denote by uρ,ξ the corresponding normalized eigenfunction:

uρ,ξ (τ )= ρ1/4uξ (ρ1/2τ).

Since uξ satisfies the Neumann condition, we observe that ∂m
ρ ∂

n
ξ uρ,ξ also satisfies it. In order to lighten

the notation, when it is not ambiguous we will write H for Hρ,ξ , u for uρ,ξ , and µ for µ(ξ).
The main idea is now to take derivatives of

Hu = µu (2-6)

with respect to ρ and ξ . Taking the derivative with respect to ρ and ξ , we get the following proposition:

Proposition 2.2. We have
(H −µ)∂ξu = 2(ρ1/2τ − ξ)u+µ′(ξ)u (2-7)

and
(H −µ)∂ρu =−ρ−2∂2

τ − ξρ
−1(ρ1/2τ − ξ)− ρ−1τ(ρ1/2τ − ξ)2. (2-8)
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Moreover, we get

(H −µ)(Su)= Xu, (2-9)

where
X =−

ξ

2
µ′(ξ)+ ρ−1∂2

τ + (ρ
1/2τ − ξ)2

and
S =−

ξ

2
∂ξ − ρ∂ρ .

Proof. Taking the derivatives with respect to ξ and ρ of (2-6), we get

(H −µ)∂ξu = µ′(ξ)u− ∂ξ Hu

and
(H −µ)∂ρu =−∂ρH.

We have ∂ξ H =−2(ρ1/2τ − ξ) and ∂ρH = ρ−2∂2
ρ + ρ

−1/2τ(ρ1/2τ − ξ). �

Taking ρ = 1 and ξ = ξ0 in (2-7), we deduce, with the Fredholm alternative:

Corollary 2.3. We have
(Hξ0 −µ(ξ0))vξ0 = 2(t − ξ0)uξ0,

with
vξ0 = (∂ξuξ )|ξ=ξ0 .

Moreover, we have ∫
τ>0
(τ − ξ0)u2

ξ0
dτ = 0.

Corollary 2.4. We have, for all ρ > 0,∫
τ>0
(ρ1/2τ − ξ0)u2

ρ,ξ0
dτ = 0

and ∫
τ>0
(τ − ξ0)(∂ρu)ρ=1,ξ=ξ0u dτ =−

ξ0

4
.

Corollary 2.5. We have
(Hξ0 −µ(ξ0))S0u = (∂2

τ + (τ − ξ0)
2)uξ0,

where
S0u =−(∂ρuρ,ξ )|ρ=1,ξ=ξ0 −

ξ0

2
vξ0 .

Moreover, we have
‖∂τuξ0‖

2
= ‖(τ − ξ0)uξ0‖

2
=
20

2
.

The next three propositions deal with the second derivatives of (2-6) with respect to ξ and ρ.
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Proposition 2.6. We have

(Hξ −µ(ξ))wξ0 = 4(τ − ξ0)vξ0 + (µ
′′(ξ0)− 2)uξ0,

with
wξ0 = (∂

2
ξ uξ )|ξ=ξ0 .

Moreover, we have ∫
τ>0
(τ − ξ0)vξ0uξ0 dτ =

2−µ′′(ξ0)

4
.

Proof. Taking the derivative of (2-7) with respect to ξ (with ρ = 1), we get

(Hξ −µ(ξ))∂2
ξ uξ = 2µ′(ξ)∂ξuξ + 4(τ − ξ)∂ξuξ + (µ′′(ξ)− 2)uξ .

It remains to take ξ = ξ0 and to write the Fredholm alternative. �

Proposition 2.7. We have

(H−µ)(∂2
ρu)ρ=1,ξ=ξ0 =−2(∂2

τ +(τ−ξ0)
2)(∂ρu)ρ=1,ξ=ξ0−2ξ0(τ−ξ0)(∂ρu)ρ=1,ξ=ξ0+

(
2∂2
τ −

ξ0τ

2

)
uξ0

and 〈
(∂2
τ + (τ − ξ0)

2)(∂ρu)ρ=1,ξ=ξ0, uξ0

〉
=−

20

2
.

Proof. We just have to take the derivative of (2-8) with respect to ρ and ρ = 1, ξ = ξ0. To get the second
identity, we use the Fredholm alternative, Corollaries 2.4 and 2.5. �

Taking the derivative of (2-9) with respect to ρ, we find:

Lemma 2.8. We have

(H −µ)(∂ρSu)ρ=1,ξ=ξ0 = (−∂
2
τ + τ(τ − ξ0))uξ0 − (∂ρH)ρ=1,ξ=ξ0(S0u)+ (∂2

τ + (τ − ξ0)
2)(∂ρu)ρ=1,ξ=ξ0

and 〈
(∂ρH)ρ=1,ξ=ξ0(S0u), u

〉
=
20

2
.

Lemma 2.9. We have
〈(τ − ξ0)S0u, uξ0〉 =

ξ0

8
µ′′(ξ0).

Proof. We have
µ′(ξ)=−2

∫
τ>0
(ρ1/2τ − ξ)u2

ρ,ξ dτ

and
S0µ
′
=−2

∫
τ>0

S0(ρ
1/2τ − ξ)u2

ξ0
dτ − 4

∫
τ>0
(τ − ξ0)S0u uξ0 dτ. �

Combining Lemmas 2.8 and 2.9, we deduce:

Proposition 2.10. We have〈
(−∂2

τ − (τ − ξ0)
2)S0u, uξ0

〉
=−

20

2
+
20

8
µ′′(ξ0).
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Proposition 2.11. We have 〈
(∂2
τ + (τ − ξ0)

2)vξ0, uξ0

〉
=
ξ0µ
′′(ξ0)

4
.

Proof. We take the derivative of (2-7) with respect to ρ (after having fixed ξ = ξ0):

(H −µ)(∂ξu)ξ=ξ0 = 2(ρ1/2τ − ξ0)uρ,ξ0 .

We deduce

(H −µ)(∂ρ∂ξu)ρ=1,ξ=ξ0 =−(∂ρH)ρ=1,ξ=ξ0vξ0 + τuξ0 + 2(τ − ξ0)(∂ρu)ρ=1,ξ=ξ0 .

The Fredholm alternative provides〈
(∂2
τ + τ(τ − ξ0))vξ0, uξ0

〉
= ξ0+ 2

〈
(τ − ξ0)(∂ρu)ρ=1,ξ=ξ0, uξ0

〉
=
ξ0

2
,

where we have used Corollary 2.4. �

We have now the elements to perform an accurate construction of quasimodes.

Construction. We look for quasimodes expressed as power series,

ψ ∼
∑
j≥0

ψ j h j/4,

and eigenvalues,
λ∼ h

∑
j≥0

λ j h j/4,

so that, in the sense of formal series,

L(h)ψ ∼ λψ.

Term in h. We consider the equation
(L0− λ0)ψ0 = 0.

We are led to take λ0 =20 and ψ0(σ, τ )= f0(σ )uξ0(τ ).

Term in h5/4. We want to solve the equation

(L0−20)ψ1 = λ1ψ0−L1ψ0.

We have, using that b1 =−a1 and by Proposition 2.2,

(L0−20)
(
ψ1− i f ′0(σ )vξ0 − a1σ f0(σ )S0u

)
= λ1uξ0 .

This implies that λ1 = 0, and we take

ψ1(σ, τ )= i f ′0(σ )vξ0 + a1σ f0(σ )S0u+ f1(σ )uξ0(τ ),

f0 and f1 being to determine.
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Term in h3/2. We consider the equation

(L0−20)ψ2 = λ2ψ0−L1ψ1−L2ψ0.

Let us rewrite this equation by using the expression of ψ1:

(L0−20)ψ2 = λ2ψ0−L1
(
i f ′0(σ )vξ0 + a1σ f0(σ )S0u

)
−L1( f1(σ )uξ0)−L2ψ0.

With Proposition 2.2, we deduce

(L0−20)
(
ψ2− i f ′1(σ )vξ0 − a1σ f1(σ )S0u

)
= λ2ψ0−L1

(
i f ′0(σ )vξ0 + a1σ f0(σ )S0u

)
−L2ψ0.

We take the partial scalar product (with respect to τ ) of the right-hand side with uξ0 , and we get the
equation 〈

L1
(
i f ′0(σ )vξ0 + a1σ f0(σ )S0u

)
+L2ψ0, uξ0

〉
τ
= λ2 f0.

This equation can be written in the form(
AD2

σ + B1σDσ + B2 Dσσ +Cσ 2
+ D

)
f0 = λ2 f0.

Terms in D2
σ . Let us first analyze 〈L2uξ0, uξ0〉. It is easy to see that this term is 1. Let us then analyze

〈L1ψ1, uξ0〉. With Proposition 2.6, we deduce that this term is −2〈(τ − ξ0)vξ0uξ0〉 = (µ
′′(ξ0)/2)− 1. We

get A = µ′′(ξ0)/2> 0.

Terms in σ 2. Let us collect the terms of 〈L2uξ0, uξ0〉. We get

20a11+ 2b11〈(τ − ξ0)
2uξ0, uξ0〉− a2

1〈(τ − ξ0)
2uξ0, uξ0〉.

With Corollary 2.5, this term is equal to

20a11+20b11−
20

2
a2

1 .

Let us analyze the terms coming from 〈L1ψ1, uξ0〉. We obtain the term

a2
1
〈
(−∂2

τ − (τ − ξ0)
2)S0u, uξ0

〉
=−

20

2
a2

1 +20
µ′′(ξ0)

8
a2

1,

where we have used Proposition 2.10. Thus, we have

C =20a11+20b11−20a2
1 +

20

8
µ′′(ξ0)a2

1 > 0.

Terms in σDσ . This term only comes from 〈L1ψ1, uξ0〉. It is equal to

a1
〈
(∂2
τ + (τ − ξ0)

2)vξ0, uξ0

〉
= a1

ξ0µ
′′(ξ0)

4
,

where we have used Proposition 2.11.

Terms in Dσσ . This term is
2a1〈(τ − ξ0)S0u, uξ0〉 = a1

ξ0µ
′′(ξ0)

4
,

where we have applied Lemma 2.9.
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Value of D. We have:

D =
〈(
−a2τ∂

2
τ − a2∂τ + k0∂τ + 2k0τ(τ − ξ0)

2
+ a2τ(τ − ξ0)

2)uξ0, uξ0

〉
+
〈(
(b2− k0)τ

2(τ − ξ0)− ia1(τ − ξ0)
)
uξ0, uξ0

〉
.

Using the relations (1-3) and the definition of C1 given in (1-2), we get

D = C(k0, a2, b2).

Let us introduce the quadratic form, which is fundamental in the analysis. We let

Q(σ, η)=
µ′′(ξ0)

2
η2
+ a1

ξ0µ
′′(ξ0)

4
ησ + a1

ξ0µ
′′(ξ0)

4
ση+20

(
a11+ b11− a2

1 + a2
1
µ′′(ξ0)

8

)
σ 2.

Lemma 2.12. Q is definite and positive.

Proof. We notice that µ′′(ξ0) > 0 and a11+ b11− a2
1 + a2

1(µ
′′(ξ0)/8) > 0. The determinant is given by

20
µ′′(ξ0)

2

(
a11+ b11− a2

1 + a2
1
µ′′(ξ0)

8

)
− a2

1
20µ

′′(ξ0)
2

16
=
20µ

′′(ξ0)

2
(a11+ b11− a2

1) > 0. �

We immediately deduce that Q(σ,−i∂σ ) is unitarily equivalent to a harmonic oscillator and that the
increasing sequence of its eigenvalues is given by{

(2n+ 1)
(
20µ

′′(ξ0)

2
(a11+ b11− a2

1)

)1/2}
n∈N

.

The compatibility equation becomes

Q(σ, Dσ ) f0 = (λ2− D) f0.

Thus, we choose λ2 such that λ2−D is in the spectrum of Q(σ, Dσ ) and we take for f0 the corresponding
normalized eigenfunction (which is in the Schwartz class). For that choice of f0, we can consider the
unique solution ψ⊥2 (which is in the Schwartz class) of

(L0−20)ψ
⊥

2 = λ2ψ0−L1
(
i f ′0(σ )vξ0 + a1σ f0(σ )S0u

)
−L2ψ0

satisfying 〈ψ⊥2 , uξ0〉 = 0. It follows that ψ2 is in the form

ψ2 = ψ
⊥

2 (σ, τ )+ i f ′1(σ )vξ0 + a1σ f1(σ )S0u+ f2(σ )uξ0,

where f1 and f2 are still to be determined.

Higher-order terms. Let N ≥ 2. Let us assume that, for 0≤ j ≤ N − 2, the functions ψ j are determined
and belong to the Schwartz class. Moreover, let us also assume that, for j = N − 1, N , we can write

ψ j (σ, τ )= ψ
⊥

j (σ, τ )+ i f ′j−1(σ )vξ0 + a1σ f j−1(σ )S0u+ f j (σ )uξ0,

where the (ψ⊥j ) j=N−1,N and fN−2 are determined functions in the Schwartz class and the ( f j ) j=N−1,N

are not determined. Finally, we also assume that the (λ j )0≤ j≤N are determined. We notice that this
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recursion assumption is satisfied for N = 2. Let us write the equation of order N + 1:

(L0−20)ψN+1 = λN+1ψ0−L1ψN + (λ2−L2)ψN−1−LN+1ψ0+

N−2∑
j=1

(λN+1− j −LN+1− j )ψ j .

This equation takes the form

(L0−20)ψN+1 = λN+1ψ0−L1ψN + (λ2−L2) ψN−1+ FN (σ, τ ),

where FN is a determined function in the Schwartz class by the recursion assumption. By Proposition 2.2,
we can rewrite

(L0−20)
(
ψN+1− i f ′N (σ )vξ0 − a1σ fN (σ )S0u

)
= λN+1ψ0−L1

(
ψ⊥N (σ, τ )+ i f ′N−1(σ )vξ0 + a1σ fN−1(σ )S0u

)
+ (λ2−L2)ψN−1+ FN (σ, τ )

= λN+1ψ0−L1
(
i f ′N−1(σ )vξ0 + a1σ fN−1(σ )S0u

)
+ (λ2−L2)( fN−1uξ0)+G N (σ, τ ),

where G N is a determined function of the Schwartz class. We now write the Fredholm condition. The
same computation as previously leads to an equation in the form

Q(σ,−i∂σ ) fN−1 =
(
λ2−C(a2, b2, k0)

)
fN−1+ λN+1 f0+ gN (σ ),

with gN = 〈G N , uξ0〉τ . This can be rewritten as(
Q(σ,−i∂σ )− (λ2−C(a2, b2, k0))

)
fN−1 = gN (σ )+ λN+1 f0.

The Fredholm condition applied to this equation provides λN+1=−〈gN , f0〉σ and a unique solution fN−1

in the Schwartz class such that 〈 fN−1, f0〉σ = 0. For this choice of fN−1 and λN+1, we can consider the
unique solution ψ⊥N+1 (in the Schwartz class) such that

(L0−20)ψ
⊥

N+1

= λN+1ψ0−L1
(
ψ⊥N (σ, τ )+ i f ′N−1(σ )vξ0 + a1σ fN−1(σ )S0u

)
+ (λ2−L2)ψN−1+ FN (σ, τ ).

This leads us to take

ψN+1 = ψ
⊥

N+1+ i f ′N (σ )vξ0 + a1σ fN (σ )S0u+ fN+1uξ0 .

This ends the proof of the recursion. Thus, we have constructed two sequences (λ j ) j and (ψ j ) j which
depend on n (through the choice of f0). Let us write λn, j for λ j and ψn, j for ψ j to emphasize this
dependence.

Conclusion: proof of Theorem 2.1. Let us consider a smooth cutoff function χ0 near x0. For n ≥ 1 and
J ≥ 0, we let

ψ
[n,J ]
h (x)= χ0(x)

J∑
j=0

ψn, j
(
h−1/4s(x), h−1/2t (x)

)
h j/4 (2-10)

and

λ
[n,J ]
h =

J∑
j=0

λn, j h j/4.
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Using the fact that the ψ j are in the Schwartz class, we get∥∥(Ph,A− λ
[n,J ]
h

)
ψ
[n,J ]
h

∥∥≤ C(n, J )h(J+1)/4
‖ψ
[n,J ]
h ‖.

Thanks to the spectral theorem, we deduce Theorem 2.1.

3. Rough lower bound and consequence

This section is devoted to establishing a rough lower bound for λn(h). In particular, we give the first term
of the asymptotics and deduce the so-called normal Agmon estimates, which are rather standard (see, for
instance, [Helffer and Morame 2001; Fournais and Helffer 2006; Raymond 2009]).

A first lower bound. We now aim at proving a lower bound:

Proposition 3.1. We have
λn(h)≥20ha(x0)β(x0)−Ch5/4.

Proof. We use a partition of unity with balls D j of size r = hρ , satisfying∑
j

χ2
j = 1 and

∑
j

‖∇χ j‖
2
≤ Cr−2

= Ch−2ρ . (3-1)

The so-called IMS formula (see [Cycon et al. 1987]) provides

Qh,A(ψ)=
∑

j

Qh,A(χ jψ)− h2
∑

j

∫
�

a‖∇χ j‖
2
|ψ |2 dx,

and thus
Qh,A(ψ)≥

∑
j

Qh,A(χ jψ)−Ch2−2ρ
‖ψ‖2.

In each ball, we approximate a by a constant:

Qh,A(χ jψ)≥ (a(x j )−Chρ)‖(−ih∇ + A)(χ jψ)‖
2.

If D j does not intersect the boundary, then

‖(−ih∇ + A)(χ jψ)‖
2
≥ h

∫
�

β(x)|χ jψ |
2 dx .

We deduce
Qh,A(χ jψ)≥

(
a(x j )β(x j )h−Ch1+ρ)

‖χ jψ‖
2.

If D j intersects the boundary, we can assume that its center is on the boundary, and we write in the local
coordinates (up to a change of gauge):

Qh,A(χ jψ)≥ (1−Chρ)
∫

ã
(
h2
|∂t(χ jψ)|

2
+ |(−ih∂s + Ã1)(χ jψ)|

2) ds dt.

We deduce

Qh,A(χ jψ)≥ (1−Chρ)(a(x j )−Chρ)
∫

h2
|∂t(χ jψ)|

2
+ |(−ih∂s + Ã1)(χ jψ)|

2 ds dt.
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We approximate A1 by its linear approximation Alin
1 , and we have∫

h2
|∂t(χ jψ)|

2
+ |(−ih∂s + Ã1)(χ jψ)|

2 ds dt

≥ (1− ε)
∫

h2
|∂t(χ jψ)|

2
+ |(−ih∂s + Ãlin

1 )(χ jψ)|
2 ds dt −Cε−1

∫
|x − x j |

4
|χ jψ |

2 dx

≥
(
(1− ε)20β(x j )h−Cε−1h4ρ)

‖χ jψ‖
2.

To optimize the remainder, we choose ε = h2ρ−1/2. Then we take ρ = 3
8 , and the conclusion follows. �

Normal Agmon estimates: localization in t. We now prove the following (weighted) localization esti-
mates:

Proposition 3.2. Let us consider a smooth cutoff function χ supported in a fixed neighborhood of the
boundary. Let (λn(h), ψh) be an eigenpair of Ph,A. For all δ ≥ 0, there exist ε0,C ≥ 0 and h0 such that,
for h ∈ (0, h0),

‖eε0t (x)h−1/2
+δχ(x)|s(x)|h−1/4

ψh‖
2
≤ C‖eδχ(x)|s(x)|h

−1/4
ψh‖

2,

Qh,A
(
eε0t (x)h−1/2

+δχ(x)|s(x)|h−1/4
ψh
)
≤ Ch‖eδχ(x)|s(x)|h

−1/4
ψh‖

2.

Proof. The proof is based on a technique of Agmon (see, for instance, [Agmon 1982; 1985; Helffer
1988]). Let us recall the IMS formula; we have, for an eigenpair (λn(h), ψh),

Qh,A(e8ψh)= λn(h)‖e8ψh‖
2
+ h2
‖a1/2
∇8e8ψh‖

2.

We take
8= ε0t (x)h−1/2

+ δχ(x)|s(x)|h−1/4, (3-2)

where χ is a smooth cutoff function supported near the boundary and where s : ∂� 7→ (−|∂�|/2, |∂�|/2)
is the curvilinear coordinate such that s(x0)= 0. We use a partition of unity χ j as in (3-1), but with balls
of radius Rh1/2 with R large enough (the x j denote the centers), and we get∑

j

(
Qh,A(χ j e8ψh)− λn(h)‖χ j e8ψh‖

2
−CR−2h− h2

‖χ j a1/2
∇8e8ψh‖

2)
≤ 0.

We now distinguish between the balls intersecting the boundary (bnd) and the others (int). For the interior
balls, we have the lower bound, for η > 0 and h small enough,

Qh,A(χ j e8ψh)≥
(
a(x j )β(x j )h−Ch3/2)

‖χ j e8ψh‖
2.

For the boundary balls, we have

Qh,A(χ j e8ψh)≥
(
20a(x j )β(x j )h−Ch3/2)

‖χ j e8ψh‖
2.

Let us now split the sum:∑
j int

∫ (
a(x j )β(x j )h−20a(x0)β(x0)h−Ch3/2

−CR−2h−Ch2
‖∇8‖2

)
|χ j e8ψh|

2 dx

≤ Ch
∑
j bnd

‖χ j e8ψh‖
2.
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With (3-2), we can notice that
‖∇8‖2 ≤ C(ε2

0h−1
+ δ2h−1/2).

Taking R large enough and ε0 and h small enough and using (1-5), we get the existence of c> 0 such that

a(x j )β(x j )h−20a(x0)β(x0)h−Ch3/2
−CR−2h−Ch2

‖∇8‖2 ≥ ch.

We deduce
c
∑
j int

‖χ j e8ψh‖
2
≤ C

∑
j bnd

‖χ j e8ψh‖
2.

Due to support considerations, we can write

C
∑
j bnd

‖χ j e8ψh‖
2
≤ C̃

∑
j bnd

∥∥χ j eδχ(x)|s(x)|h
−1/4
ψh
∥∥2
.

Thus, we infer
‖e8ψh‖

2
≤ C̃

∥∥eδχ(x)|s(x)|h
−1/4
ψh
∥∥2
.

We deduce that ∑
j

Qh,A(χ j e8ψh)≤ Ch
∥∥eδχ(x)|s(x)|h

−1/4
ψh
∥∥2
,

and thus
Qh,A(e8ψh)≤ Ch

∥∥eδχ(x)|s(x)|h
−1/4
ψh
∥∥2
. �

Corollary 3.3. Let η ∈
(
0, 1

2

]
. Let (λn(h), ψh) be an eigenpair of Ph,A. For all δ≥ 0, there exist ε0,C ≥ 0

and h0 such that, for h ∈ (0, h0),∥∥χh,ηeε0t (x)h−1/2
+δχ(x)|s(x)|h−1/4

ψh
∥∥2
≤ C

∥∥χh,ηeδχ(x)|s(x)|h
−1/4
ψh
∥∥2
,

Qh,A
(
χh,ηeε0t (x)h−1/2

+δχ(x)|s(x)|h−1/4
ψh
)
≤ Ch

∥∥χh,ηeδχ(x)|s(x)|h
−1/4
ψh
∥∥2
,

where χh,η(x)= χ̂(t (x)h−1/2+η), and with χ̂ a smooth cutoff function being 1 near 0.

Proof. With Proposition 3.2, we have∥∥χh,ηeε0t (x)h−1/2
+δχ(x)|s(x)|h−1/4

ψh
∥∥2
≤ C

∥∥eδχ(x)|s(x)|h
−1/4
ψh
∥∥2
.

We can write∥∥eδχ(x)|s(x)|h
−1/4
ψh
∥∥2
=
∥∥χh,ηeδχ(x)|s(x)|h

−1/4
ψh
∥∥2
+
∥∥√1−χh,ηeδχ(x)|s(x)|h

−1/4
ψh
∥∥2
.

Using Proposition 3.2, we have the estimate∥∥√1−χh,ηeδχ(x)|s(x)|h
−1/4
ψh
∥∥2
=
∥∥√1−χh,ηe−ε0t (x)h−1/2

eχ(x)ε0t (x)h−1/2
+δχ(x)|s(x)|h−1/4

ψh
∥∥2

= O(h∞)
∥∥eδχ(x)|s(x)|h

−1/4
ψh
∥∥2
.

The IMS formula provides

Qh,A(e8ψh)= Qh,A(χh,ηe8ψh)+ Qh,A
(√

1−χh,ηe8ψh
)
+ O(h1+2η)‖e8ψh‖

2. �
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Corollary 3.4. Let η ∈
(
0, 1

2

]
. Let (λn(h), ψh) be an eigenpair of Ph,A. For all δ≥ 0, there exist ε0,C ≥ 0

and h0 such that, for h ∈ (0, h0),∥∥χh,ηeε0t (x)h−1/2
+δχ(x)|s(x)|h−1/4

(−ih∂s + Ã1)ψh
∥∥2
≤ Ch

∥∥χh,ηeδχ(x)|s(x)|h
−1/4
ψh
∥∥2
,∥∥χh,ηeε0t (x)h−1/2

+δχ(x)|s(x)|h−1/4
(−ih∂t + Ã2)ψh

∥∥2
≤ Ch

∥∥χh,ηeδχ(x)|s(x)|h
−1/4
ψh
∥∥2
.

4. Order of the second term: localization in s

It is well-known that the order of the second term in the asymptotics of λn(h) is closely related to
localization properties of the corresponding eigenfunctions. The aim of this section is to establish such
properties. Let us mention that similar estimates were proved in [Raymond 2009] through a technical
analysis. Here we give a less technical proof using a very rough functional calculus.

Proposition 4.1. Under the generic assumptions, there exist C > 0 and h0 > 0 such that for h ∈ (0, h0),

λn(h)≥20a(x0)β(x0)h−Ch3/2.

Moreover, for all δ ≥ 0, there exist C > 0 and h0 > 0 such that for h ∈ (0, h0),∫
e2δχ(x)|s|h−1/4

|ψ |2 ds dt ≤ C‖ψ‖2.

Proof. Let us recall the so-called IMS formula (see, for instance, [Cycon et al. 1987]); we have, for an
eigenpair (λn(h), ψ),

Qh,A(e8ψ)− λn(h)‖e8ψ‖2− h2
‖a1/2
∇8e8ψ‖2 = 0.

We take
8= δχ(x)|s(x)|h−1/4, with δ ≥ 0. (4-1)

The idea is now to prove a suitable lower bound for Qh,A. We use a partition of unity (χ j ) (see (3-1))
with balls of radius h1/4 and centers (s j , t j ). We get the lower bound

Qh,A(e8ψ)≥
∑

j

Qh,A(ψ j )−Ch3/2
‖e8ψ‖2,

where
ψ j = χ j e8ψ,

and we deduce ∑
j

Qh,A(ψ j )−Ch3/2
‖ψ j‖

2
− λn(h)‖ψ j‖

2
≤ 0, (4-2)

since we have, thanks to (4-1), ‖∇8‖2 ≤ Ch−1/2.

Interior balls. Considering the balls not intersecting the boundary, we get (see the proof of Proposition 3.1):∑
j int

Qh,A(ψ j )≥
∑
j int

(
a(x j )β(x j )h−Ch5/4)

‖ψ j‖
2.

Using Assumption (1-4), we deduce∑
j int

Qh,A(ψ j )≥
∑
j int

(
20a(x0)β(x0)h−Ch5/4)

‖ψ j‖
2. (4-3)
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Boundary balls. Let us consider the j such that D j intersects the boundary (we can assume that its center
is (s j , 0)). Using first the normal Agmon estimates, we have the lower bound∑

j bnd

Qh,A(ψ j )≥
∑
j bnd

∫
ã
(
|(−ih∂t + Ã2)ψ j |

2
+ |(ih∂s + Ã1)ψ j |

2) ds dt −Ch3/2
‖e8ψ‖2,

where we have used the IMS formula to get∑
j bnd

∫
t ã
(
|(−ih∂t + Ã2)ψ j |

2
+ |(ih∂s + Ã1)ψ j |

2) ds dt

≤ C
∫

0<t<t0
t ã
(
|(−ih∂t + Ã2)e8ψ |2+ |(ih∂s + Ã1)e8ψ |2

)
ds dt +Ch3/2

‖e8ψ‖2.

Using again the normal estimates (see Corollaries 3.3 and 3.4) and also the size of the balls, we get∑
j bnd

Qh,A(ψ j )≥
∑
j bnd

∫
ãlin

j
(
|(−ih∂t + Ã2)ψ j |

2
+ |(ih∂s + Ã1)ψ j |

2) ds dt −Ch3/2
‖e8ψ‖2, (4-4)

where
ãlin

j = a j + (s− s j )∂s ã(x j ).

Let us fix S0 > 0 to distinguish between the balls whose centers are close to x0 = (0, 0) and the others.

Case |s j | ≥ S0. Let us consider the boundary balls such that |s j | ≥ S0. Using the size of the balls, we get
the lower bound∫

ãlin
j
(
|(−ih∂t + Ã2)ψ j |

2
+ |(ih∂s + Ã1)ψ j |

2) ds dt ≥
(
20a(x j )β(x j )h−Ch5/4)

‖ψ j‖
2

≥20(1+ ε)a(x0)β(x0)h‖ψ j‖
2, (4-5)

where ε > 0 only depends on S0, β, a and �.

Case |s j | ≤ S0. Let us consider the boundary balls such that |s j | ≤ S0. In each ball, we can use a new
gauge so that∑

j bnd
|s j |≤S0

∫
ãlin

j
(
|(−ih∂t + Ã2)ψ j |

2
+ |(ih∂s + Ã1)ψ j |

2) ds dt

=

∑
j bnd
|s j |≤S0

∫
ãlin

j
(
|h∂tψ j |

2
+ |(ih∂s + Ãnew

1 )ψ j |
2) ds dt,

where Ãnew
1 (we omit the dependence on j) satisfies

| Ãnew
1 − t β̃ lin

j | ≤ C(t |s− s j |
2
+ t2),

with
β̃ lin

j = β̃ j + ∂s β̃(x j )(s− s j ).
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We obtain, thanks to the (weighted) estimates of Agmon,∑
j bnd
|s j |≤S0

∫
ãlin

j
(
|h∂tψ j |

2
+ |(ih∂s + Ãnew

1 )ψ j |
2) ds dt

≥ (1− h1/2)
∑
j bnd
|s j |≤S0

∫
ãlin

j
(
h2
|∂tψ j |

2
+ |(ih∂s + t β̃ lin

j )ψ j |
2) ds dt −Ch3/2

‖e8ψ‖2. (4-6)

In each ball, we use the change of variables (which is a scaling with respect to τ depending on σ )

σ = s and τ = {β̃ lin
j }

1/2t.

We can write
∂t = {β̃

lin
j }

1/2∂τ and ∂s = ∂σ + ∂s({β̃
lin
j }

1/2)∂τ

and
ds dt = {β̃ lin

j }
−1/2 dσ dτ.

We obtain∫
ãlin

j
(
h2
|∂tψ j |

2
+ |(ih∂s + t β̃ lin

j )ψ j |
2) ds dt

≥ (1− h1/2)

∫
ãlin

j β̃
lin
j
(
h2
|∂t ψ̂ j |

2
+ |
(
ih{β̃ lin

j }
−1/2∂σ + τ

)
ψ̂ j |

2)
{β̃ lin

j }
−1/2 dσ dτ

−Ch3/2
∫
|τ∂τ ψ̂ j |

2 dσ dτ, (4-7)

where ψ̂ j denotes ψ j in the coordinates (σ, τ ). With the normal Agmon estimates (see Corollaries 3.3
and 3.4), we have ∑

j bnd
|s j |≤S0

∫
|τ∂τ ψ̂ j |

2 dσ dτ ≤ C‖e8ψ‖2.

We must now obtain an appropriate lower bound for∫
ãlin

j β̃
lin
j
(
h2
|∂t ψ̂ j |

2
+ |
(
ih{β̃ lin

j }
−1/2∂σ + τ

)
ψ̂ j |

2)
{β̃ lin

j }
−1/2 dσ dτ.

This is the end of the following lemma.

Lemma 4.2. We have∫
ãlin

j β̃
lin
j
(
h2
|∂t ψ̂ j |

2
+
∣∣(ih{β̃ lin

j }
−1/2∂σ + τ

)
ψ̂ j
∣∣2){β̃ lin

j }
−1/2 dσ dτ

≥ h20

∫ (
a(x0)β(x0)+

α

4
σ 2
)
|ψ̂ j |

2
{β̃ lin

j }
−1/2 dσ dτ −Ch2

‖ψ̂ j‖
2.

Proof. We can notice that the Dirichlet realization on (−S̃0, S̃0) of Dσ {β̃
lin
j }
−1/2 is self-adjoint on

L2({β̃ lin
j }
−1/2dσ). Thus, we shall commute Dσ and {β̃ lin

j }
−1/2 and control the remainder due to the

commutator.
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Notation 4.3. Henceforth, ∂σ ( f ) will denote the derivative of the function f , whereas ∂σ f will denote
the composition of the differentiation ∂σ with the multiplication by f .

We can write∫
ãlin

j β̃
lin
j

(
h2
|∂t ψ̂ j |

2
+
∣∣(ih{β̃ lin

j }
−1/2∂σ + τ

)
ψ̂ j
∣∣2){β̃ lin

j }
−1/2 dσ dτ

=

∫
ãlin

j β̃
lin
j h2
|∂t ψ̂ j |

2
{β̃ lin

j }
−1/2 dσ dτ

+

∫
alin

j β̃
lin
j

∣∣(ih∂σ {β̃ lin
j }
−1/2
− ih∂σ ({β̃ lin

j }
−1/2)+ τ

)
ψ̂ j
∣∣2{β̃ lin

j }
−1/2 dσ dτ.

We can estimate the double product:

2h<
(∫

alin
j β̃

lin
j
(
ih∂σ {β̃ lin

j }
−1/2
+ τ

)
ψ̂ j i∂σ

(
{β̃ lin

j }
−1/2)ψ̂ j {β̃

lin
j }
−1/2 dσ dτ

)
=−2h2

<

(∫
alin

j β̃
lin
j ∂σ

(
{β̃ lin

j }
−1/2)∂σ ({β̃ lin

j }
−1/2ψ̂ j

)
{β̃ lin

j }
−1/2ψ̂ j dσ dτ

)
=−h2

∫
alin

j β̃
lin
j ∂σ

(
{β̃ lin

j }
−1/2)∂σ(∣∣{β̃ lin

j }
−1/2ψ̂ j

∣∣2) dσ dτ = O(h2)‖ψ j‖
2,

where we have used an integration by parts for the last estimate. We deduce∫
ãlin

j β̃
lin
j

(
h2
|∂t ψ̂ j |

2
+
∣∣(ih{β̃ lin

j }
−1/2∂σ + τ

)
ψ̂ j
∣∣2){β̃ lin

j }
−1/2 dσ dτ

≥

∫
ãlin

j β̃
lin
j

(
h2
|∂t ψ̂ j |

2
+
∣∣(ih∂σ {β̃ lin

j }
−1/2
+ τ

)
ψ̂ j
∣∣2){β̃ lin

j }
−1/2 dσ dτ −Ch2

‖ψ j‖
2. (4-8)

For S0 small enough, we have, using the nondegeneracy, for s such that |s| ≤ S̃0 (with S̃0 slightly bigger
than S0),

ãlin
j (s)β̃

lin
j (s)≥ a(x0)β(x0)+

α

4
|s|2.

Let us analyze the integral:∫ ∣∣σ (ih∂σ {β̃ lin
j }
−1/2
+ τ

)
ψ̂ j
∣∣2{β̃ lin

j }
−1/2 dσ dτ

=

∫ ∣∣(ih∂σ {β̃ lin
j }
−1/2
+ τ

)
σψ̂ j − ih{β̃ lin

j }
−1/2ψ̂ j

∣∣2{β̃ lin
j }
−1/2 dσ dτ.

We must estimate the double product:

2<
∫ ((

ih∂σ {β̃ lin
j }
−1/2
+ τ

)
σψ̂ j ih{β̃ lin

j }
−1/2ψ̂ j

)
{β̃ lin

j }
−1/2 dσ dτ

=−2h2
<

∫ (
∂σ
(
{β̃ lin

j }
−1/2σψ̂ j

)
{β̃ lin

j }
−1/2ψ̂ j

)
{β̃ lin

j }
−1/2 dσ dτ

=−h2
∫
∂σ
∣∣{β̃ lin

j }
−1/2ψ̂ j

∣∣2{β̃ lin
j }
−1/2 dσ dτ + O(h2)‖ψ̂ j‖

2
= O(h2)‖ψ̂ j‖

2.
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We infer:∫
ãlin

j β̃
lin
j

(
h2
|∂t ψ̂ j |

2
+
∣∣(ih∂σ {β̃ lin

j }
−1/2
+ τ

)
ψ̂ j
∣∣2){β̃ lin

j }
−1/2 dσ dτ

≥ a(x0)β(x0)

∫ (
h2
|∂t ψ̂ j |

2
+
∣∣(ih∂σ {β̃ lin

j }
−1/2
+ τ

)
ψ̂ j
∣∣2){β̃ lin

j }
−1/2 dσ dτ

+
α

4

∫ (
h2
|∂t(σ ψ̂ j )|

2
+
∣∣(ih∂σ {β̃ lin

j }
−1/2
+ τ

)
σψ̂ j

∣∣2){β̃ lin
j }
−1/2 dσ dτ −Ch2

‖ψ̂ j‖
2.

We recall that, for all ξ ∈ R,∫ (
h2
|∂tφ|

2
+
∣∣(τ − hξ − ξ0h1/2)φ

∣∣2) dτ ≥ hµ(ξ0+ h1/2ξ)‖φ‖2 ≥20h‖φ‖2.

We infer with the functional calculus:∫
ãlin

j β̃
lin
j

(
h2
|∂t ψ̂ j |

2
+
∣∣(ih∂σ {β̃ lin

j }
−1/2
+ τ − ξ0h1/2)ψ̂ j

∣∣2){β̂ lin
j }
−1/2 dσ dτ

≥ h20

∫ (
a(x0)β(x0)+

α

4
σ 2
)
|ψ̂ j |

2
{β̃ lin

j }
−1/2 dσ dτ −Ch2

‖ψ̂ j‖
2. (4-9)

This concludes the proof. �

Lower bound for λn(h). If we take δ = 0, we deduce, with (4-2)–(4-7) and Lemma 4.2,

λn(h)‖ψ‖2 ≥
∑

j

20ha(x0)β(x0)

∫
|ψ j |

2 dx −Ch3/2
‖ψ‖2.

Tangential Agmon estimate. Gathering the estimates (4-3), (4-5), (4-7) and Lemma 4.2, we deduce the
existence of c > 0 such that∑

j bnd
|s j |≤S0

(
20h

∫ (
a(x0)β(x0)+

α

4
s2
)
|ψ j |

2 ds dt −20h‖ψ j‖
2
−Ch3/2

‖ψ j‖
2
)

+

∑
j bnd
|s j |≥S0

ch‖ψ j‖
2
+

∑
j int

ch‖ψ j‖
2
≤ 0

and ∑
j bnd

2C0h1/4
≤|s j |≤s0

(
20h

∫
α

4
s2
|ψ j |

2 ds dt −Ch3/2
‖ψ j‖

2
)
≤ Ch3/2

‖ψ0‖
2
≤ Ch3/2

‖ψ‖2.

Taking C0 large enough, we infer ∑
j bnd

2C0h1/4
≤|s j |≤s0

‖ψ j‖
2
≤ C‖ψ‖2,

so that ∑
j bnd
|s j |≤s0

‖ψ j‖
2
≤ C‖ψ‖2 and

∑
j

‖ψ j‖
2
= ‖e8ψ‖2 ≤ C‖ψ‖2. �
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Let us write an immediate corollary (see Corollaries 3.3 and 3.4).

Corollary 4.4. Let (η1, η2) ∈
(
0, 1

2

]
×
(
0, 1

4

]
. Let (λn(h), ψh) be an eigenpair of Ph,A. For all (k, l) ∈N,

there exist C ≥ 0 and h0 > 0 such that, for h ∈ (0, h0),∥∥χh,η1,η2sk t lψh
∥∥2
≤ Chk/2hl

‖ψh‖
2,∥∥χh,η1,η2sk t l(−ih∂s + Ã1)ψh

∥∥2
≤ Chhk/2hl

‖ψh‖
2,∥∥χh,η1,η2sk t l(−ih∂t + Ã2)ψh

∥∥2
≤ Chhk/2hl

‖ψh‖
2,

where χh,η1,η2(x)= χ̂(t (x)h
−1/2+η1)χ̂(s(x)h−1/4+η2). Moreover, we have∥∥(1−χh,η1,η2)s

k t lψh
∥∥2
= O(h∞)‖ψh‖

2,∥∥(1−χh,η1,η2)s
k t l(−ih∂s + Ã1)ψh

∥∥2
= O(h∞)‖ψh‖

2,∥∥(1−χh,η1,η2)s
k t l(−ih∂t + Ã2)ψh

∥∥2
= O(h∞)‖ψh‖

2.

Remark 4.5. In the following, each reference to the “estimates of Agmon” will be a reference to this last
corollary. Moreover, at some point, the localization ideas behind Section 3 and 4, which are summarized
in the last corollary, follow from the general philosophy developed in the last decade (an improvement of
the approximation of the eigenvalues provides an improvement of localization and conversely). In the
next section, we will strongly use these a priori estimates.

5. Unitary transforms and the Born–Oppenheimer approximation

We use a cutoff function χh near x0 with support or order h1/4−η̃ with η̃ > 0. For all N ≥ 1, let us consider
L2-normalized eigenpairs (λn(h), ψn,h)1≤n≤N such that 〈ψn,h, ψm,h〉 = 0 when n 6= m. We consider the
N dimensional space defined by

EN (h)= span
1≤n≤N

ψ̃n,h, where ψ̃n,h = χhψn,h .

Remark 5.1. The estimates of Agmon of Corollary 4.4 are satisfied by all the elements of EN (h).

We can notice that, with the estimates of Agmon, for all ψ̃ ∈ EN (h),

Qh,A(ψ̃)≤ λN (h)‖ψ̃‖2+ O(h∞)‖ψ̃‖2. (5-1)

In the following subsection, we provide a lower bound for Qh,A on EN (h).

Remark 5.2. Let us underline the main spirit of this section. We are going to use successive canonical
transformations of the symbol of our operator (change of variable, change of gauge, weighted Fourier
transform) or, equivalently, of the associated quadratic form. In the spirit of Egorov’s theorem, all these
transformations will give rise to different remainders which can be treated thanks to the a priori localization
estimates. Then, after conjugations by these successive unitary transforms, we will reduce the analysis to
one of an electric Laplacian in the Born–Oppenheimer form.
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Choice of gauge and new coordinates: a first lower bound. On the support of χh , we use a gauge such
that Ã2 = 0 and

| Ã1− Ãapp
1 | ≤ C(t3

+ |s|t2
+ |s|2t),

where

Ãapp
1 = t (1+ b1s+ b11s2)− ξ0b̂(s)1/2h1/2

+
b̂2

2
t2
= t b̂(s)− ξ0b̂(s)1/2h1/2

+
b̂2

2
t2,

where b̂2 = b2− k0. We also let

ãapp(s, t)= 1+ a1s+ a11s2
+ a2t = â(s)+ a2t.

Moreover, in this neighborhood of (0, 0), we introduce new coordinates:

τ = t (b̂(s))1/2, σ = s. (5-2)

In particular, we get
∂t = (b̂(σ ))1/2∂τ , ∂s = ∂σ +

1
2 b̂−1∂s b̂τ∂τ

and
ds dt = b̂−1/2 dσ dτ.

To simplify the notation, we let p = b̂−1/2. We will also use the change of variable

σ̌ =

∫ σ

0

1
p(u)

du = f (σ )

so that L2(pdσ) becomes L2( p̌2 dσ̌ ).
This subsection is devoted to the proof of the following lower bound of Qh,A on EN (h).

Proposition 5.3. There exist h0 > 0 and C > 0 such that for h ∈ (0, h0) and all ψ̃ ∈ EN (h),

Qh,A(ψ̃)≥ Q̌h,app(ψ̌)−Ch3/2+1/4
‖ψ̃‖2, (5-3)

where

Q̌h,app(ψ̌)=

∫
(1+ a2τ)(1− τk0)|h∂τ ψ̌ |2 p̌2 dσ̌ dτ

+

∫
(1+ a2τ)(1− τk0)

−1
∣∣∣(ih p̌−1∂σ̌ p̌+ τ − ξ0h1/2

+
b̂2

2
τ 2
− h

b1

2
τDτ

)
ψ̌

∣∣∣2 p̌2 dσ̌ dτ

+ hα20

∫
σ̌ 2
|ψ̌ |2 p̌2 dσ̌ dτ,

where ψ̌ denotes ψ̃ in the coordinates (σ̌ , τ ).

In order to prove Proposition 5.3, we will need this lemma:

Lemma 5.4. There exist h0 > 0 and C > 0 such that for h ∈ (0, h0) and all ψ̃ ∈ EN (h),

Qh,A(ψ̃)≥ Q̂h,app(ψ̂)−Ch3/2+1/4
‖ψ̃‖2,



1312 NICOLAS RAYMOND

where

Q̂h,app(ψ̂)

=

∫
m2(σ, τ )|h∂τ ψ̂ |2b̂−1/2 dσ dτ+

∫
m1(σ, τ )

∣∣∣(h4+τ−ξ0h1/2
+

b̂2

2
τ 2
−h

b1

2
τDτ

)
ψ̂

∣∣∣2b̂−1/2 dσ dτ,

with

4= i∂σ b̂−1/2, m1(σ, τ )= (1+ασ 2)(1+a2τ)(1−τk0)
−1, m2(σ, τ )= (1+ασ 2)(1+a2τ)(1−τk0),

and where ψ̂ denotes ψ̃ in the coordinates (σ, τ ).

Proof. We have

Qh,A(ψ̃)=

∫
ã
(
1− tk(s)

)∣∣(−ih∂t + Ã2)ψ̃
∣∣2+ ã

(
1− tk(s)

)−1∣∣(ih∂s + Ã1)ψ̃
∣∣2 ds dt.

Thanks to the normal and tangential Agmon estimates, we get

Qh,A(ψ̃)≥

∫
ã(1− tk0)h2

|∂t ψ̃ |
2
+ ã(1− tk0)

−1∣∣(ih∂s + Ã1)ψ̃
∣∣2 ds dt −Ch3/2+1/4

‖ψ̃‖2.

The Agmon estimates imply

Qh,A(ψ̃)≥

∫
ãapp(1− tk0)h2

|∂t ψ̃ |
2
+ ãapp(1− tk0)

−1∣∣(ih∂s + Ãapp
1 )ψ̃

∣∣2 ds dt −Ch3/2+1/4
‖ψ̃‖2.

We get

Qh,A(ψ̃)≥

∫
â(1+ a2t)

(
(1− tk0)h2

|∂t ψ̃ |
2
+ (1− tk0)

−1∣∣(ih∂s + Ãapp
1

)
ψ̃
∣∣2) ds dt −Ch3/2+1/4

‖ψ̃‖2.

With the coordinates (σ, τ ), we obtain∫
â(1+a2t)(1−tk0)h2

|∂t ψ̃ |
2
+(1+a2t)(1−tk0)

−1∣∣(ih∂s+ Ãapp
1 )ψ̃

∣∣2 ds dt ≥ Q̂h(ψ̂)−Ch3/2+1/4
‖ψ̃‖2,

where

Q̂h(ψ̂)=

∫
m̃2(σ, τ )|h∂τ ψ̂ |2b̂−1/2 dσ dτ

+

∫
m̃1(σ, τ )

∣∣∣(hb̂−1/2i∂σ + τ − ξ0h1/2
+

b̂2

2
τ 2b̂−1/2

− h
∂σ b̂

2b̂3/2
τDτ

)
ψ̂

∣∣∣2b̂−1/2 dσ dτ,

where

m̃1(σ, τ )= âb̂(1+ a2τ)(1− τk0)
−1, m̃2(σ, τ )= âb̂(1+ a2τ)(1− τk0).
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With the estimates of Agmon, we can simplify the quadratic form modulo lower-order terms:

Q̂h(ψ̂)≥

∫
m̃2(σ, τ )|h∂τ ψ̂ |2b̂−1/2 dσ dτ

+

∫
m̃1(σ, τ )

∣∣∣(hb̂−1/2i∂σ + τ − ξ0h1/2
+

b̂2

2
τ 2
− h

b1

2
τDτ

)
ψ̂

∣∣∣2b̂−1/2 dσ dτ

−Ch3/2+1/4
‖ψ̃‖2.

We recall that âb̂ = 1+ασ 2
+ O(|σ |3), so that with the estimates of Agmon we infer

Q̂h(ψ̂)≥

∫
m2(σ, τ )|h∂τ ψ̂ |2b̂−1/2 dσ dτ

+

∫
m1(σ, τ )

∣∣∣(hb̂−1/2i∂σ + τ − ξ0h1/2
+

b̂2

2
τ 2
− h

b1

2
τDτ

)
ψ̂

∣∣∣2b̂−1/2 dσ dτ

−Ch3/2+1/4
‖ψ̃‖2.

We now want to replace b̂−1/2i∂σ by i∂σ b̂−1/2, which is self-adjoint on L2(b̂−1/2dσdτ). Writing a
commutator, we get

∫
m1(σ, τ )

∣∣∣(hb̂−1/2i∂σ + τ − ξ0h1/2
+

b̂2

2
τ 2
− h

b1

2
τDτ

)
ψ̂

∣∣∣2b̂−1/2dσdτ

=

∫
m1(σ, τ )

∣∣∣(hi∂σ b̂−1/2
− ih(∂σ b̂−1/2)+ τ − ξ0h1/2

+
b2

2
τ 2
− h

b1

2
τDτ

)
ψ̂

∣∣∣2b̂−1/2 dσ dτ.

Let us consider the double product

2h<
(∫

m1(σ, τ )
(

hi∂σ b̂−1/2
+ τ − ξ0h1/2

+
b̂2

2
τ 2
− h

b1

2
τDτ

)
ψ̂i(∂σ b̂−1/2)ψ̂ b̂−1/2 dσ dτ

)
= 2h<

(∫
m1(σ, τ )

(
hi∂σ b̂−1/2

− h
b1

2
τDτ

)
ψ̂i(∂σ b̂−1/2)ψ̂ b̂−1/2 dσ dτ

)
=−2h2

<

∫
m1(σ, τ )

(
∂σ (b̂−1/2ψ̂)(∂σ b̂−1/2)ψ̂ b̂−1/2 dσ dτ

)
+ O(h2)‖ψ̂‖2,

where we have used the normal Agmon estimates. We deduce that

2<
(∫

m1(σ, τ )
(

hi∂σ b̂−1/2
+ τ − ξ0h1/2

+
b̂2

2
τ 2
− h

b1

2
τDτ

)
ψ̂i(∂σ b̂−1/2)ψ̂ b̂−1/2 dσ dτ

)
=−h2

∫
m1(σ, τ )(∂σ b̂−1/2)∂σ |b̂−1/2ψ̂ |2 dσ dτ + O(h2)‖ψ̂‖2

= O(h2)‖ψ̂‖2.
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This implies∫
m1(σ, τ )

∣∣∣(hb̂−1/2i∂σ + τ − ξ0h1/2
+

b̂2

2
τ 2
− h

b1

2
τDτ

)
ψ̂

∣∣∣2b̂−1/2 dσ dτ

≥

∫
m1(σ, τ )

∣∣∣(hi∂σ b̂−1/2
+ τ − ξ0h1/2

+
b̂2

2
τ 2
− h

b1

2
τDτ

)
ψ̂

∣∣∣2b̂−1/2 dσ dτ −Ch2
‖ψ̂‖2. �

Proof of Proposition 5.3. We use Lemma 5.4. In the coordinates (σ̌ , τ ), we have

Q̂h,app(ψ̂)=

∫
m2( f −1(σ̌ ), τ )|h∂τ ψ̌ |2 p̌2 dσ̌ dτ

+

∫
m1( f −1(σ̌ ), τ )

∣∣∣(ih p̌−1∂σ̌ p̌+ τ − ξ0h1/2
+

b̂2

2
τ 2
− h

b1

2
τDτ

)
ψ̌

∣∣∣2 p̌2 dσ̌ dτ,

where
m1( f −1(σ̌ ), τ )=

(
1+α f −1(σ̌ )2

)
(1+ a2τ)(1− τk0)

−1,

m2( f −1(σ̌ ), τ )=
(
1+α f −1(σ̌ )2

)
(1+ a2τ)(1− τk0).

We notice that f −1(σ̌ )= σ̌ + O(|σ̌ |2), so we can use the estimates of Agmon to get

Q̂h,app(ψ̂)≥

∫
m2(σ̌ , τ )|h∂τ ψ̌ |2 p̌2 dσ̌ dτ

+

∫
m1(σ̌ , τ )

∣∣∣(ih p̌−1∂σ̌ p̌+ τ − ξ0h1/2
+

b̂2

2
τ 2
− h

b1

2
τDτ

)
ψ̌

∣∣∣2 p̌2 dσ̌ dτ −Ch3/2+1/4
‖ψ̃‖2.

This inequality can be rewritten as

Q̂h,app(ψ̂)≥ Q̌h,app,1(ψ̌)+ Q̌h,app,2(ψ̌)−Ch3/2+1/4
‖ψ̃‖2,

where

Q̌h,app,1(ψ̌)=

∫
(1+ a2τ)(1− τk0)|h∂τ ψ̌ |2 p̌2 dσ̌ dτ

+

∫
(1+ a2τ)(1− τk0)

−1
∣∣∣(ih p̌−1∂σ̌ p̌+ τ − ξ0h1/2

+
b̂2

2
τ 2
− h

b1

2
τDτ

)
ψ̌

∣∣∣2 p̌2 dσ̌ dτ

and

Q̌h,app,2(ψ̌)=

∫
(1+ a2τ)(1− τk0)|h∂τ (σ̌ ψ̌)|2 p̌2 dσ̌ dτ

+

∫
(1+ a2τ)(1− τk0)

−1
∣∣∣σ̌(ih p̌−1∂σ̌ p̌+ τ − ξ0h1/2

+
b̂2

2
τ 2
− h

b1

2
τDτ

)
ψ̌

∣∣∣2 p̌2 dσ̌ dτ.

Reduction of Q̌h,app,2(ψ̌). By the estimates of Agmon, we have

Q̌h,app,2(ψ̌)≥

∫
|h∂τ (σ̌ ψ̌)|2 p̌2 dσ̌ dτ

+

∫ ∣∣∣σ̌(ih p̌−1∂σ̌ p̌+ τ − ξ0h1/2
+

b̂2

2
τ 2
− h

b1

2
τDτ

)
ψ̌

∣∣∣2 p̌2 dσ̌ dτ −Ch3/2+1/4
‖ψ̃‖2.
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Moreover, we get∫ ∣∣∣σ̌(ih p̌−1∂σ̌ p̌+ τ − ξ0h1/2
+

b̂2

2
τ 2
− h

b1

2
τDτ

)
ψ̌

∣∣∣2 p̌2dσ̌dτ

≥

∫ ∣∣σ̌ (ih p̌−1∂σ̌ p̌+ τ − ξ0h1/2)ψ̌∣∣2 p̌2dσ̌dτ −Ch3/2+1/4
‖ψ̃‖2.

Let us analyze
∫
|σ̌ (ih p̌−1∂σ̌ p̌+ τ − ξ0h1/2)ψ̌ |2 p̌2 dσ̌ dτ . We have∫ ∣∣σ̌ (ih p̌−1∂σ̌ p̌+ τ − ξ0h1/2)ψ̌∣∣2 p̌2 dσ̌ dτ =

∫ ∣∣(ih p̌−1∂σ̌ p̌+ τ − ξ0h1/2)σ̌ ψ̌ − ihψ̌
∣∣2 p̌2 dσ̌ dτ.

The double product is

2<
(∫ (

ih p̌−1∂σ̌ p̌+ τ − ξ0h1/2)σ̌ ψ̌ihψ̌ p̌2 dσ̌ dτ
)
=−2h2

<

(∫
( p̌−1∂σ̌ p̌)σ̌ ψ̌ψ̌ p̌2 dσ̌ dτ

)
.

But we have

2<
(∫

∂σ̌ (σ̌ p̌ψ̌) p̌ψ̌ dσ̌ dτ
)
= 2<

(∫
p̌ψ̌ p̌ψ̌dσ̌dτ

)
+

∫
σ̌ ∂σ̌ | p̌ψ̌ |2 dσ̌ dτ

and ∫
σ̌ ∂σ̌ | p̌ψ̌ |2 dσ̌ dτ =−

∫
| p̌ψ̌ |2 dσ̌ dτ.

Gathering the estimates, we obtain the lower bound:

Q̂h,app(ψ̂)≥ Q̌h,app(ψ̌)−Ch3/2+1/4
‖ψ̃‖2.

A weighted Fourier transform: toward a model operator. We now define the unitary transform which
diagonalizes the self-adjoint operator p̌−1 Dσ̌ p̌ (for completeness, one should extend p̌ by 1 away from a
neighborhood of 0). As we will see, with the coordinate σ̌ , this transform admits a nice expression.

Weighted Fourier transform. Let us now introduce the weighted Fourier transform F p̌:

(F p̌ψ)(λ)=

∫
R

e−iλσ̌ψ(σ̌ ) p̌(σ̌ ) dσ̌ = F( p̌ψ).

We observe that F p̌ : L2(R, p̌2dσ̌ )→ L2(R, dλ) is unitary. Standard computations provide

F p̌(( p̌−1 Dσ̌ p̌)ψ)= λF p̌(ψ) and F p̌(σ̌ψ)=−DλF p̌(ψ).

Proposition 5.5. There exist h0 > 0 and C > 0 such that for h ∈ (0, h0) and all ψ̃ ∈ EN (h),

Q̌h,app(ψ̌)≥

∫
(1+ a2τ)(1− τk0)|h Dτ φ̌|

2 dλ dτ

+

∫
(1+ a2τ)(1− τk0)

−1
∣∣∣∣(−hλ+ τ − ξ0h1/2

+
b̂2

2
τ 2
)
φ̌

∣∣∣∣2 dλ dτ

+ hα20

∫
|Dλφ̌|

2 dλ dτ −Ch3/2+1/4
‖ψ̃‖2,
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where φ̌ = e−ib1/2h(−hλτ 2/2+τ 3/3−ξ0h1/2τ 2/2+(b2/8)τ 4)F p̌(ψ̌).

Proof. We have

Q̌h,app(ψ̌)=

∫
(1+ a2τ)(1− τk0)|h∂τ ϕ̌|2 dλ dτ

+

∫
(1+ a2τ)(1− τk0)

−1
∣∣∣∣(−hλ+ τ − ξ0h1/2

+
b̂2

2
τ 2
− h

b1

2
τDτ

)
ϕ̌

∣∣∣∣2 dλ dτ

+ hα20

∫
|Dλϕ̌|

2 dλ dτ,

where ϕ̌ = F p̌(ψ̌). With the normal estimates, we can write∫
(1+ a2τ)(1− τk0)

−1
∣∣∣∣(−hλ+ τ − ξ0h1/2

+
b̂2

2
τ 2
− h

b1

2
τDτ

)
ϕ̌

∣∣∣∣2 dλ dτ

≥

∫
(1+ a2τ)(1− τk0)

−1
∣∣∣∣(−hλ+ τ − ξ0h1/2

+
b̂2

2
τ 2
)
ϕ̌

∣∣∣∣2 dλ dτ

− b1<

(∫
(1+ a2τ)(1− τk0)

−1
(
−hλ+ τ − ξ0h1/2

+
b̂2

2
τ 2
)
ϕ̌τh Dτ ϕ̌ dλ dτ

)

≥

∫
(1+ a2τ)(1− τk0)

−1
∣∣∣∣(−hλ+ τ − ξ0h1/2

+
b̂2

2
τ 2
)
ϕ̌

∣∣∣∣2 dλ dτ

− b1<

(∫ (
−hλ+ τ − ξ0h1/2

+
b̂2

2
τ 2
)
ϕ̌τh Dτ ϕ̌ dλ dτ

)
−Ch3/2+1/4

‖ψ̃‖2.

Completing a square and using the normal Agmon estimates to control the additional terms, we get

Q̌h,app(ψ̌)≥

∫
(1+ a2τ)(1− τk0)

∣∣∣∣(h Dτ −
b1

2
τ

(
−hλ+ τ − ξ0h1/2

+
b̂2

2
τ 2
))
ϕ̌

∣∣∣∣2 dλ dτ

+

∫
(1+a2τ)(1−τk0)

−1
∣∣∣∣(−hλ+τ−ξ0h1/2

+
b̂2

2
τ 2
)
ϕ̌

∣∣∣∣2 dλ dτ+hα20

∫
|Dλϕ̌|

2 dλ dτ−Ch3/2+1/4
‖ψ̃‖2.

We now change the gauge by letting

ϕ̌ = eib1/2h(−hλτ 2/2+τ 3/3−ξ0h1/2τ 2/2+(b2/8)τ 4)φ̌.

We deduce

Q̌h,app(ψ̌)≥

∫
(1+ a2τ)(1− τk0)|h Dτ φ̌|

2 dλ dτ

+

∫
(1+ a2τ)(1− τk0)

−1
∣∣∣∣(−hλ+ τ − ξ0h1/2

+
b̂2

2
τ 2
)
φ̌

∣∣∣∣2 dλ dτ

+ hα20

∫ ∣∣∣∣Dλ

(
e−iλb1τ

2/4φ̌
)∣∣∣∣2 dλ dτ −Ch3/2+1/4

‖ψ̃‖2.
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Finally we write ∫ ∣∣Dλ

(
e−iλb1τ

2/4φ̌
)∣∣2 dλ dτ =

∫ ∣∣∣∣Dλφ̌−
b1

4
τ 2φ̌

∣∣∣∣2 dλ dτ

≥

∫
|Dλφ̌|

2 dλ dτ −C‖τ 2φ̌‖‖Dλφ̌‖

≥

∫
|Dλφ̌|

2 dλ dτ −C‖τ 2ψ̌‖‖Dλφ̌‖.

In addition, we notice that

‖Dλφ̌‖ ≤ C
(
‖σ̌ ψ̌‖+‖τ 2ψ̌‖

)
≤ Ch1/4

‖ψ̃‖. �

In order to get a good model operator, we shall add a cutoff function with respect to τ . Let η ∈
(
0, 1

100

)
.

Let χ be a cutoff function such that

χ(t)= 1 for |t | ≤ 1, 0≤ χ ≤ 1, suppχ ⊂ [−2, 2].

We define

l(x)= xχ(hηx).

Applying the normal Agmon estimates, we have:

Proposition 5.6. There exist h0 > 0 and C > 0 such that for h ∈ (0, h0) and all ψ̃ ∈ EN (h),

Q̌h,app(ψ̌)≥

∫ (
1+ a2h1/2l(h−1/2τ)

)(
1− h1/2l(h−1/2τ)k0

)
|h Dτ φ̌|

2 dλ dτ

+

∫ (
1+ a2h1/2l(h−1/2τ)

)(
1− h1/2l(h−1/2τ)k0

)−1
∣∣∣(−hλ+ τ − ξ0h1/2

+
b̂2

2
hl(h−1/2τ)2

)
φ̌

∣∣∣2 dλ dτ

+ hα20

∫
|Dλφ̌|

2 dλ dτ −Ch3/2+1/4
‖ψ̃‖2,

where φ̌ = e−ib1/2h(−hλτ 2/2+τ 3/3−ξ0h1/2τ 2/2+(b2/8)τ 4)F p̌(ψ̌).

Remark 5.7. In particular, we have reduced the analysis to an electric Laplacian (with curvature terms),
which has essentially the Born–Oppenheimer form (see our recent work [Bonnaillie-Noël et al. 2012],
where a similar and simpler model appears). To see this more precisely, let us adopt a heuristical point of
view. If we forget the different terms due to curvature, the operator which appears is in the form

hα20 D2
λ+ h2 D2

τ + (−hλ+ τ − ξ0h1/2)2.

After the rescaling λ= h−1/4λ̃, τ = h1/2x , we get

h
(
h1/2α20 D2

λ̃
+ D2

x + (−h1/4λ̃− x − ξ0)
2).
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Therefore we are led to analyze a problem which is semiclassical with respect to just one variable. At
some point (that we will justify at the end of this section), we can reduce the study to

h
(
h1/2α20 D2

λ̃
+µ(ξ0+ h1/4λ̃)

)
,

and then (Taylor expansion)

h
(

h1/2α20 D2
λ̃
+20+

µ′′(ξ0)

2
h1/2λ̃2

)
.

Finally we recognize the harmonic oscillator, whose spectrum is well-known.

A simpler model in the Born–Oppenheimer spirit. We introduce the rescaled quadratic form:

Qη,h(ϕ)=

∫ (
1+ a2h1/2l(x)

)(
1− l(x)k0h1/2)

|∂xϕ|
2 dλ dx

+

∫ (
1+ a2l(x)h1/2)(1− l(x)k0h1/2)−1

∣∣∣∣(x − ξ0+ h1/2λ+
b̂2

2
l(x)2h1/2

)
ϕ

∣∣∣∣2 dλ dx

+α20

∫
|Dλϕ|

2 dλ dx .

We recall that b̂2 = b2 − k0. We will denote by Hη,h its corresponding Friedrichs extension. We will
denote by νn(Qη,h) the sequence of its Rayleigh quotients. For each λ, we will need to consider the
quadratic form

qλ,η,h(ϕ)=
∫ (

1+ a2h1/2l(x)
)(

1− l(x)k0h1/2)
|∂xϕ|

2 dx

+

∫ (
1+ a2l(x)h1/2)(1− l(x)k0h1/2)−1

∣∣∣∣(x − ξ0+ h1/2λ+
b̂2

2
l(x)2h1/2

)
ϕ

∣∣∣∣2 dx,

whose domain is B1(R+). We denote by ν j (qλ,η,h) the increasing sequence of the eigenvalues of the
associated operator. The main proposition of this subsection is the following:

Proposition 5.8. For all n ≥ 1, there exist h0 > 0 and C > 0 such that, for h ∈ (0, h0):

νn(Qη,h)≥20+

(
C(k0, a2, b2)+ (2n− 1)

√
αµ′′(ξ0)20

2

)
h1/2
−Ch1/2+1/8.

With Propositions 5.6 and 5.3, inequality (5-1), and the min-max principle, we first deduce the size of
the spectral gap between the lowest eigenvalues of Ph,A. Then, with Theorem 2.1, we deduce Theorem 1.3.

Elementary properties of the spectrum. This subsection is devoted to basic properties of the spectrum of
Qη,h . The following proposition provides a lower bound for ν1(qλ,η,h).

Proposition 5.9. There exist positive constants C, c0,M and h0 such that if h ∈ (0, h0), then:

(1) If |λ| ≥ Mh−1/4−η, then
ν1(qλ,η,h)≥20+ c0 min(1, λ2h).



LAPLACIAN WITH VARIABLE MAGNETIC FIELD TO ELECTRIC LAPLACIAN IN SEMICLASSICAL LIMIT 1319

(2) If |λ| ≤ Mh−1/4−η, then

ν1(qλ,η,h)≥20+C(k0, a2, b2)h1/2
+
µ′′(ξ0)

2
λ2h−Ch3/4−3η,

where C(k0, a2, b2) is given in Theorem 1.3.

Proof. The proof is left to the reader as an adaptation of [Fournais and Helffer 2010, Proposition 5.2.1]. �

Let us now prove a lower bound for the essential spectrum of Hη,h .

Proposition 5.10. There exist h0 > 0 and c̃0 > 0 such that, if h ∈ (0, h0), then

inf σess(Qη,h)≥20+ c̃0.

Proof. Let φ ∈ Dom(Qη,h) such that supp(φ) ⊂ R2
+
\ [−R̃, R̃]2. Let us use a partition of unity

χ2
1,R +χ

2
2,R = 1 such that χ1,R(x)= χ1(R−1x) and where χ1 is a smooth cutoff function being 1 near 0.

We have
Qη,h(φ)≥ Qη,h(χ1,Rφ)+ Qη,h(χ2,Rφ)−CR−2

‖φ‖2.

For R ≥ 2h−η, we have (the metrics becomes flat and we can compare with a problem in R2)

Qη,h(χ2,Rφ)≥ ‖χ2,Rφ‖
2.

We have
Qη,h(χ1,Rφ)≥

∫
R2
+

ν1(qλ,η,h)|χ1,Rφ|
2
+α20|Dλ(χ1,Rφ)|

2 dx dλ.

Taking h ∈ (0, h0) (where h0 is given by Proposition 5.9) and R̃ ≥ h−1/2, we infer

Qη,h(χ1,Rφ)≥

∫
R2
+

(20+ c0)|χ1,Rφ|
2 dx dλ.

This implies that
Qη,h(φ)≥

(
min(1,20+ c0)−Ch2η)

‖φ‖2.

The conclusion follows from a Persson’s lemma-like argument (see [Persson 1960; Fournais and Helffer
2010, Appendix B.3]). �

The following proposition provides an upper bound for the lowest eigenvalues of Hη,h .

Proposition 5.11. For all M ≥ 1, there exist h0 > 0, C > 0 such that for all 1≤ n ≤ M :

νn(Qη,h)≤ h−1λn(h)+ O(h∞).

Proof. This is a consequence of (5-1) together with the lower bounds of Propositions 5.3 and 5.6 and the
min-max principle (see for instance [Reed and Simon 1978]). �

Remark 5.12. For h small enough, we deduce that there are at least M eigenvalues below 20+ c̃0. Let
us consider the first M eigenvalues νn(Qη,h) below 20+ c̃0. With Theorem 2.1, we deduce that, for all
M ≥ 1, there exist h0 > 0 and C(M) > 0 such that, for 1≤ n ≤ M ,

0≤ νn(Qη,h)−20 ≤ C(M)h1/2.
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For 1≤ n ≤ M , let us consider a normalized eigenfunction fn,η,h associated to νn(Qη,h) so that fn,η,h

and fm,η,h are orthogonal if n 6= m. Let us introduce:

FM(h)= span1≤ j≤M( f j,η,h).

Agmon estimates. First, let us state Agmon estimates with respect to x .

Proposition 5.13. There exist h0 > 0, ε0 > 0, C > 0 such that, for all f ∈ FM(h),∫
R2
+

eε0x
| f |2 dx dλ≤ C‖ f ‖2.

Proof. Let us use a partition of unity, χ2
1,R +χ

2
2,R = 1, with R ≥ h−η. We take 8= ε0χ(x/r)|x |. This

IMS formula implies (with f = fn,η,h)

Qη,h(χ1,Re8 f )+ Qη,h(χ2,Re8 f )−Cε2
0‖e

8 f ‖2− νn(Qη,h)‖e8 f ‖2 ≤ 0.

We recall that
Qη,h(χ2,Re8 f )≥ ‖χ2,Re8 f ‖2

and that
Qη,h(χ1,Re8 f )≥

∫
ν1(qλ,η,h)|χ1,Re8 f |2 dx dλ.

On the one hand, we have

Qη,h(χ2,Re8 f )−Cε2
0‖χ2,Re8 f ‖2− (20+Ch1/2)‖χ2,Re8 f ‖2 ≥ (1−Cε2

0−20−Ch1/2)‖χ2,Re8 f ‖2.

On the other hand, we get

Qη,h(χ1,Re8 f )−Cε2
0‖χ1,Re8 f ‖2− (20+Ch1/2)‖χ1,Re8 f ‖2

≥

∫ (
ν1(qη,λ,h)−Cε2

0 −20−Ch1/2)
|χ1,Re8 f |2 dx dλ.

When |λ| ≥ Mh−1/4−η, we have

ν1(qη,λ,h)−Cε2
0 −20−Ch1/2

≥−Cε2
0 −Ch1/2.

When |λ| ≤ Mh−1/4, we have

ν1(qη,λ,h)−Cε2
0 −20−Ch1/2

≥−Cε2
0 − C̃h1/2.

If h and ε0 are small enough, we deduce that

(1−Cε2
0 −20−Ch1/2)‖χ2,Re8 f ‖2 ≤ C‖χ1,Re8 f ‖2,

so that
‖χ2,Re8 f ‖2 ≤ C̃‖ f ‖2 and ‖e8 f ‖2 ≤ Ĉ‖ f ‖2,

where C̃ and Ĉ are independent from r . It remains to make r→+∞ and apply the Fatou lemma. Finally,
it is easy to extend the inequality to f ∈ FM(h). �
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Then, we will need Agmon estimates with respect to λ:

Proposition 5.14. There exist h0 > 0, C > 0 such that, for all f ∈ FM(h),∫
R2
+

e2h1/4
|λ|
| f |2 dx dλ≤ C‖ f ‖2 (5-4)

and ∫
R2
+

e2h1/4
|λ|
|Dλ f |2 dx dλ≤ Ch1/2

‖ f ‖2. (5-5)

Remark 5.15. Heuristically, these estimates with respect to λ correspond to the phase space localization
of [Fournais and Helffer 2006, Section 5].

Proof. We take f = f j,η,h and use the IMS formula (with 8= h1/4χ(r−1
|λ|)|λ|) to get

Qη,h(e8 f )≤ ν j (Qη,h)‖e8 f ‖2+C‖∇8e8 f ‖2 ≤
(
20+C(M)h1/2

+Ch1/2)
‖e8 f ‖2.

We recall that

Qη,h(e8 f )≥
∫

R2
+

ν1(qλ,η,h)|e8 f |2+α20|Dλ(e8 f )|2 dx dλ≥
∫

R2
+

ν1(qλ,η,h)|e8 f |2 dx dλ.

We have, for all D > 0,∫
R2
+

ν1(qλ,η,h)|e8 f |2 dx dλ=
∫
|λ|≤Dh−1/4

ν1(qλ,η,h)|e8 f |2 dx dλ+
∫
|λ|≥Dh−1/4

ν1(qλ,η,h)|e8 f |2 dx dλ.

Moreover, we get∫
|λ|≥Mh−1/4−η

ν1(qλ,η,h)|e8 f |2 dx dλ≥
∫
|λ|≥Mh−1/4−η

(
20+ c0 min(1, hλ2)

)
|e8 f |2 dx dλ

and∫
Dh−1/4≤|λ|≤Mh−1/4−η

ν1(qλ,η,h)|e8 f |2 dx dλ

≥

∫
Dh−1/4≤|λ|≤Mh−1/4−η

(
20+C(k0, a2, b2)h1/2

+
µ′′(ξ0)

2
λ2h−Ch3/4−3η

)
|e8 f |2 dx dλ.

This leads to∫
|λ|≥Dh−1/4

(
c1 min(1, hλ2)− C̃h1/2

−Cα2h1/2)
|e8 f |2 dx dλ≤ C̃h1/2

∫
|λ≤Dh−1/4

| f |2 dλ dx .

It remains to take D large enough, and we get (5-4). Then we have∫
R2
+

(
ν1(qλ,η,h)−20

)
|e8 f |2+α20|Dλ(e8 f )|2 dx dλ≤ Ch1/2

‖ f ‖2.
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But we notice that∫
R2
+

(
ν1(qλ,η,h)−20

)
|e8 f |2 dx dλ

≥

∫
Dh−1/4≤|λ|≤Mh−1/4−η

(
C(k0, a2, b2)h1/2

+
µ′′(ξ0)

2
λ2h−Ch3/4−3η

)
|e8 f |2 dx dλ

+

∫
|λ≤Dh−1/4

(
C(k0, a2, b2)h1/2

+
µ′′(ξ0)

2
λ2h−Ch3/4−3η

)
|e8 f |2 dλ dx .

Taking D larger, we get∫
Dh−1/4≤|λ|≤Mh−1/4−η

(
µ′′(ξ0)

2
λ2h−Ch1/2

−Ch3/4−3η
)
|e8 f |2 dx dλ≥ 0.

Moreover, we have∣∣∣∣∫
|λ≤Dh−1/4

(
C(k0, a2, b2)h1/2

+
µ′′(ξ0)

2
λ2h−Ch3/4−3η

)
|e8 f |2 dλ dx

∣∣∣∣≤ Ch1/2
‖ f ‖2. �

Approximations of eigenvectors by tensor products. Let us define the quadratic form q0 with domain
B1(R+)⊗ L2(R):

q0(ϕ)= Q0(ϕ)−20‖ϕ‖
2
=

∫
R2
+

|∂xϕ|
2
+ |(x − ξ0)ϕ|

2
−20|ϕ|

2 dx dλ.

The Friedrichs extension of q0 is the operator Hξ0⊗IdL2(R). We also define the Feshbach–Grušin projection
on the kernel of Hξ0 ⊗ IdL2(R):

50ϕ = 〈ϕ, uξ0〉x uξ0(x).

The next proposition states an approximation result for the elements of FM(h) (which behave as tensor
products):

Proposition 5.16. For all M ≥ 1, there exist h0 > 0 and C > 0 such that we have, for all f ∈ FM(h),

‖ f −50 f ‖L2 +‖∂x( f −50 f )‖L2 +‖x( f −50 f )‖L2 ≤ Ch1/8
‖ f ‖, (5-6)

‖(λ f −50λ f ‖L2 +‖∂x(λ f −50λ f )‖L2 +‖x(λ f −50λ f )‖L2 ≤ Ch−1/8
‖ f ‖, (5-7)

‖(∂λ f −50∂λ f ‖L2 +‖∂x(∂λ f −50∂λ f )‖L2 +‖x(∂λ f −50∂λ f )‖L2 ≤ Ch3/8
‖ f ‖. (5-8)

In particular, 50 is an isomorphism from FM(h) onto its range.

Proof. We take f = f j,η,h . By definition, we have

Hη,h f = ν j (Qη,h) f. (5-9)
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Approximation of f . We deduce

Qη,h( f )= ν j (Qη,h)‖ f ‖2 ≤ (20+Ch1/2)‖ f ‖2.

We have

Qη,h( f )≥ (1−Ch1/2−η)

∫
R2
+

|∂x f |2+
∣∣∣∣(x − ξ0+ h1/2λ+ h1/2 b̂2

2
l(x)2

)
f
∣∣∣∣2 dx dλ.

Moreover, we get (using the estimates of Agmon), for all ε ∈ (0, 1):∫
R2
+

|∂x f |2+
∣∣∣∣(x − ξ0+ h1/2λ+ h1/2 b2

2
l(x)2

)
f
∣∣∣∣2 dx dλ≥ (1− ε)Q0( f )−Cε−1h1/2

‖ f ‖2.

Taking ε = h1/4, we deduce
q0( f )≤ Ch1/4

‖ f ‖2.

We deduce (5-6).

Approximation of λ f . We multiply (5-9) by λ and take the scalar product with λ f :

Qη,h(λ f )≤ (20+Ch1/2)‖λ f ‖2+
∣∣〈[Hη,h, λ] f, λ f 〉

∣∣.
Thus, it follows that

Qη,h(λ f )≤ (20+Ch1/2)‖λ f ‖2+α20|〈Dλ f, λ f 〉| ≤20‖λ f ‖2+C‖ f ‖2.

We get
Qη,h(λ f )≥ (1−Ch1/2−η)

(
(1− ε)Q0(λ f )−Cε−1

‖ f ‖2
)
.

We take ε = h1/4 to deduce
q0(λ f )≤ Ch−1/4

‖ f ‖2.

We infer (5-7).

Approximation of Dλ f . We take the derivative of (5-9) with respect to λ and take the scalar product with
∂λ f :

Qη,h(∂λ f )≤ (20+Ch1/2)‖∂λ f ‖2+
∣∣〈[Hη,h, ∂λ] f, ∂λ f 〉

∣∣.
The estimates of Agmon give ∣∣〈[Hη,h, ∂λ] f, ∂λ f 〉

∣∣≤ Ch3/4
‖ f ‖2.

We have

Qη,h(∂λ f )≥ (1−Ch1/2−η)
(
(1− ε)Q0(∂λ f )−Cε−1h‖ f ‖2

)
.

We take ε = h1/4 and deduce
q0(∂λ f )≤ Ch3/4

‖ f ‖2.

We infer (5-8). �
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Conclusion: proof of Proposition 5.8. For all f ∈ FM(h), we have the lower bound

Qη,h( f )≥
∫

R2
+

ν1(qλ,η,h)| f |2+α20|Dλ f |2 dx dλ

≥

∫
R2
+

(
ν1(qλ,η,h)−

(
20+C(k0, a2, b2)h1/2

+
µ′′(ξ0)

2
λ2h

))
| f |2 dx dλ

+

∫
R2
+

(
20+C(k0, a2, b2)h1/2

+
µ′′(ξ0)

2
λ2h

)
| f |2 dx dλ+α20|Dλ f |2 dx dλ.

We now estimate∫
R2
+

(
ν1(qλ,η,h)−

(
20+C(k0, a2, b2)h1/2

+
µ′′(ξ0)

2
λ2h

))
| f |2 dx dλ

=

∫
|λ|≥Mh−1/4−η

(
ν1(qλ,η,h)−

(
20+C(k0, a2, b2)h1/2

+
µ′′(ξ0)

2
λ2h

))
| f |2 dx dλ

+

∫
|λ|≤Mh−1/4−η

(
ν1(qλ,η,h)−

(
20+C(k0, a2, b2)h1/2

+
µ′′(ξ0)

2
λ2h

))
| f |2 dx dλ.

Moreover, we get∫
|λ|≥Mh−1/4−η

(
ν1(qλ,η,h)−

(
20+C(k0, a2, b2)h1/2

+
µ′′(ξ0)

2
λ2h

))
| f |2 dx dλ

≥

∫
|λ|≥Mh−1/4−η

−

(
20+C(k0, a2, b2)h1/2

+
µ′′(ξ0)

2
λ2h

)
| f |2 dx dλ= O(h∞)‖ f ‖2,

where the last estimate is a consequence of the estimates of Agmon. Then we get∫
|λ|≤Mh−1/4−η

(
ν1(qλ,η,h)−

(
20+C(k0, a2, b2)h1/2

+
µ′′(ξ0)

2
λ2h

))
| f |2 dx dλ≥−Ch3/4−3η

‖ f ‖2.

We deduce

Qη,h( f )≥
∫

R2
+

(
C(k0, a2, b2)h1/2

+
µ′′(ξ0)

2
λ2h

)
| f |2 dx dλ+α20|Dλ f |2 dx dλ

+20‖ f ‖2−Ch3/4−3η
‖ f ‖2.

We now use Proposition 5.16 to get

Qη,h( f )≥
∫

R2
+

(
C(k0, a2, b2)h1/2

+
µ′′(ξ0)

2
λ2h

)
|50 f |2 dx dλ+α20|Dλ50 f |2 dx dλ

+20‖ f ‖2−Ch1/2+1/8
‖50 f ‖2.

But we notice that for all f ∈ FM(h),

Qη,h( f )≤ νM(Qη,h)‖ f ‖2,
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and thus:∫
R2
+

(
C(k0, a2, b2)h1/2

+
µ′′(ξ0)

2
λ2h

)
|50 f |2 dx dλ+α20|Dλ50 f |2 dx dλ

≤
(
νM(Qη,h)−20

)
‖ f ‖2+Ch1/2+1/8

‖50 f ‖2

≤
(
νM(Qη,h)−20

)
‖50 f ‖2+ C̃h1/2+1/8

‖50 f ‖2.

The conclusion follows from the min-max principle.
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